
ZMAC: A Fast Tweakable Block Cipher Mode
for Highly Secure Message Authentication?

Tetsu Iwata1, Kazuhiko Minematsu2, Thomas Peyrin3,4,5, and Yannick Seurin6

1 Nagoya University, Japan
tetsu.iwata@nagoya-u.jp
2 NEC Corporation, Japan

k-minematsu@ah.jp.nec.com
3 School of Physical and Mathematical Sciences
Nanyang Technological University, Singapore

4 School of Computer Science and Engineering
Nanyang Technological University, Singapore

5 Temasek Laboratories, Nanyang Technological University, Singapore
thomas.peyrin@ntu.edu.sg

6 ANSSI, Paris, France
yannick.seurin@m4x.org

June 14, 2017

Abstract. We propose a new mode of operation called ZMAC allowing
to construct a (stateless and deterministic) message authentication code
(MAC) from a tweakable block cipher (TBC). When using a TBC with
n-bit blocks and t-bit tweaks, our construction provides security (as
a variable-input-length PRF) beyond the birthday bound with respect
to the block-length n and allows to process n + t bits of inputs per
TBC call. In comparison, previous TBC-based modes such as PMAC1,
the TBC-based generalization of the seminal PMAC mode (Black and
Rogaway, EUROCRYPT 2002) or PMAC_TBC1k (Naito, ProvSec 2015)
only process n bits of input per TBC call. Since an n-bit block, t-bit tweak
TBC can process at most n + t bits of input per call, the efficiency of
our construction is essentially optimal, while achieving beyond-birthday-
bound security. The ZMAC mode is fully parallelizable and can be directly
instantiated with several concrete TBC proposals, such as Deoxys and
SKINNY. We also use ZMAC to construct a stateless and deterministic
Authenticated Encryption scheme called ZAE which is very efficient and
secure beyond the birthday bound.
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1 Introduction

Block Cipher-Based MACs. A Message Authentication Code (MAC) is a
symmetric-key cryptographic function that ensures the authenticity of messages.
A large family of MACs (such as CBC-MAC [BKR00] or OMAC [IK03]) are
constructed as modes of operation of some underlying block cipher. They are
often provably secure and reasonably efficient, however, they also have inherent
limitations with respect to speed and security. First, such modes cannot process
more than n bits of input per block cipher call, where n is the block-length (in
bits) of the underlying block cipher. Second, most block cipher-based modes
are secure only up to the so-called birthday bound (i.e., up to 2n/2 message
blocks), and very few proposals, such as PMAC_Plus [Yas11], achieve security
beyond the birthday bound (BBB), often at the cost of efficiency. For block ciphers
with block-length 128, birthday-bound security can be deemed to low in many
situations.

For these reasons, a recent popular trend has been to design modes of op-
eration for a stronger primitive, namely tweakable block ciphers (TBCs). In
comparison to traditional block ciphers, TBCs take an extra t-bit input called
the tweak, and should behave as a family of 2t independent block ciphers in-
dexed by the tweak. This primitive was formalized by Liskov et al. [LRW02]
(even though the informal idea surfaced in several papers before), and turns out
to be surprisingly flexible for building various cryptographic functionalities. A
TBC can be either constructed in a generic way from a block cipher through a
mode of operation such as XEX [Rog04], or as a dedicated design such as Three-
fish [FLS+10], SCREAM [GLS+14], Deoxys-BC [JNP14a], Joltik-BC [JNP14b],
KIASU-BC [JNP14c], and SKINNY [BJK+16], these last four examples following
the so-called TWEAKEY framework [JNP14d].

The first construction of a parallelizable7 MAC from a TBC is PMAC1 [Rog04],
derived from the block cipher-based construction PMAC [BR02] by abstracting the
block cipher-based TBC implicitly used in PMAC. Assuming that the underlying
TBC has n-bit blocks and t-bit tweaks, PMAC1 processes n bits of inputs per
TBC call, handles messages of length up to (roughly) 2t n-bit blocks, and is
secure up to the birthday bound (i.e., up to roughly 2n/2 message blocks). This
scheme is simple, efficient and fully parallelizable (all calls to the TBC except
the final one can be made in parallel). For these reasons, it has been adopted
for example by multiple TBC-based submissions to the CAESAR competition
for Authenticated Encryption (AE), e.g. SCREAM [GLS+14], Deoxys [JNP14a],
Joltik [JNP14b], or KIASU [JNP14c].

Several authors have proposed schemes that push security beyond the birth-
day bound. Naito [Nai15] proposed two constructions called PMAC_TBC1k and
PMAC_TBC3k which are reminiscent from PMAC_Plus [Yas11]. As PMAC1, they
allow to process only n bits of inputs per TBC call, but their security is signifi-
cantly higher than for PMAC1: they are secure up to roughly 2n message blocks.
7 Liskov et al. [LRW02] suggested a MAC construction from a TBC called TBC-MAC,
but the construction is serial.
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Recently, List and Nandi [LN17] proposed PMAC2x which extends the output size
of Naito’s PMAC_TBC1k scheme from n to 2n bits without harming efficiency nor
security. (They also proposed a minor modification of PMAC_TBC1k with n-bit
outputs called PMACx.) We remark that Minematsu and Iwata [MI17] recently
reported severe flaws in [LN17] (the ePrint version of [LN17] was subsequently
updated in order to fix these flaws).

Our Contribution. We propose a new TBC-based MAC called ZMAC. As
PMAC_TBC1k [Nai15] or PMAC2x/PMACx [LN17], it achieves BBB-security (as
a variable-input-length PRF) and it is fully parallelizable. However, our proposal
is more efficient than any of the previous schemes. Specifically, ZMAC processes
n + t bits of inputs per TBC call when using an n-bit block and t-bit tweak
TBC, whereas previous schemes are limited to n bits of inputs per TBC call,
independently of the tweak size (see Table 1 for a comparison with existing
schemes). To the best of our knowledge, this is the first TBC-based MAC that
exploits the full power of the tweak input of the underlying TBC. Note that an
n-bit block, t-bit tweak TBC cannot handle more than n+ t bits of public input
per call, hence the efficiency of our construction is essentially optimal (a few
tweak bits are reserved for domain separation but the impact is very limited). The
tweak-length t of the TBC used in ZMAC can be arbitrary, which is important
since existing dedicated TBCs have various tweak-length, smaller (e.g. Threefish
or KIASU-BC) or larger (e.g. Deoxys-BC or SKINNY) than the block-length n.

Main Ideas of Our Design. Our construction follows the traditional “UHF-
then-PRF” paradigm: first, the message is hashed with a universal hash function
(UHF), and the resulting output is given to a fixed-input-length PRF. Building a
BBB-secure fixed-input-length PRF from a TBC is more or less straightforward
(one can simply use the “XOR of permutations” construction, which has been
extensively analyzed [Luc00, Pat08a, Pat13, CLP14]). The most innovative part
of our work lies in the design of our TBC-based UHF, which we call ZHASH.
The structure of our proposal is reminiscent of Naito’s PMAC_TBC1k (and
thus of PMAC_Plus) combined with the XTX tweak extension construction by
Minematsu and Iwata [MI15]. We note that a TBC is often used to abstract
a block cipher-based construction to simplify the security proof, for example
in the case of PMAC and OCB [Rog04], where one can prove the security of
TBC-based abstraction and the construction of TBC itself separately. The TBC-
based abstraction eliminates the handling of masks, which simplifies the security
proof. That is, it is often the case that TBC-based constructions do not have
masks, where the masks are treated as tweaks. With ZMAC, we take the opposite
direction to the common approach. We restore the masks in the construction,
and our scheme explicitly relies on the use of masks together with a TBC.

Application to Deterministic Authenticated Encryption. Following
List and Nandi [LN17], we use ZMAC to construct a (stateless) Deterministic
Authenticated Encryption (DAE) scheme (i.e., a scheme whose security does not
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Table 1. Comparison of our designs ZMAC and ZAE with other prominent (T)BC-
based MAC and DAE (a.k.a MRAE) schemes. Column “# bits per call” refers to the
number of bits of input processed per primitive call. Notation: n is the block-length of
the underlying BC/TBC, t is the tweak-length of the underlying TBC. NR denotes the
nonce-respecting scenario.

Scheme Prim. # bits per call Parallel Security Ref.

Message Authentication Code
CMAC BC n N n/2 [IK03]
PMAC BC n Y n/2 [BR02]
SUM-ECBC BC n/2 N 2n/3 [Yas10]
PMAC_Plus BC n Y 2n/3 [Yas11]
PMAC1 TBC n Y n/2 [Rog04]
PMAC_TBC1k TBC n Y n [Nai15]
PMACx/PMAC2x TBC n Y n [LN17]
ZMAC TBC n+ t Y min{n, (n+ t)/2} Sec. 3

Deterministic Authenticated Encryption
SIV BC n/2 Y n/2 [RS06]
SCT TBC n/2 Y n/2 (n for NR) [PS16]
SIVx TBC n/2 Y n [LN17]
ZAE TBC n(n+ t)/(2n+ t) Y min{n, (n+ t)/2} Sec. 5

rely on the use of random IVs or nonces8 [RS06]). The resulting scheme, called
ZAE, is BBB-secure and very efficient: it processes on average n(n+ t)/(2n+ t)
input bits per TBC call (this complex form comes from the fact that the MAC,
resp. encryption part processes n+ t, resp. n input bits per TBC call). Note that
when t = 0, this is (unsurprisingly) similar to standard double-pass block cipher-
based DAE schemes (n/2 bits per block cipher call), but as t grows, efficiency
approaches n bits per TBC calls, i.e., the efficiency of an online block cipher-based
scheme (which cannot be secure in the DAE sense). We provide a comparison
with other (T)BC-based DAE schemes in Table 1. We also mention two recent
proposals of BBB-secure DAE schemes not listed in Table 1: DCT [FLLW16],
which relies on both an algebraic UHF and a TBC, and GCM-SIVr [IM16], which
reuses GCM components but is not efficient.

We emphasize that ZAE is a mere combination of ZMAC with a TBC-based
encryption mode called IVCTRT previously proposed in [PS16] through the SIV
composition method [RS06]. Nevertheless, we think that the proposal of a concrete
DAE scheme based on ZMAC is quite relevant here, and helps further illustrate
the performance gains allowed by ZMAC (see Table 3 in Section 6).

8 DAE implies resistance against nonce-misuse by incorporating the nonce into the
associated data, and thus is also called Misuse-Resistant AE (MRAE).
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Future Works. ZMAC achieves optimal efficiency while providing full n-bit
security (assuming t ≥ n). For this reason, it seems that this mode cannot be
substantially improved. However, it would be very interesting to study how
ZMAC’s design can influence ad-hoc TBC constructions: if one could construct
an efficient, BBB-secure n-bit block TBC with a very large tweak (something
which has not been studied much yet), this would lead to extremely efficient
MAC algorithms.

Organization. We give useful definitions in Section 2. Our new mode ZMAC
is defined in Section 3, and its security is analyzed in Section 4. Applications
to Authenticated Encryption are presented in Section 5. Finally, a performance
estimation for ZMAC and ZAE when Deoxys-BC or SKINNY are used to instantiate
the TBC is provided in Section 6.

2 Preliminaries

Basic Notation. Let {0, 1}∗ be the set of all finite bit strings. For an integer
n ≥ 0, let {0, 1}n be the set of all bit strings of length n, and ({0, 1}n)+ be the set
of all bit strings of length a (non-zero) positive multiple of n. For X ∈ {0, 1}∗, |X|
is its length in bits, and for n ≥ 1, |X|n = d|X|/ne is its length in n-bit blocks.
The string of n zeros is denoted 0n. The concatenation of two bit strings X and
Y is written X ‖Y , or XY when no confusion is possible. For any X ∈ {0, 1}n
and i ≤ n, let msbi(X), resp. lsbi(X) be the first, resp. last i bits of X. For
non-negative integers a and d with a ≤ 2d − 1, let strd(a) be the d-bit binary
representation of a.

Given a bit string X ∈ {0, 1}i+j , we write

(X[1], X[2]) i,j←− X

where X[1] = msbi(X) and X[2] = lsbj(X). For X ∈ {0, 1}∗, we also define the
parsing into fixed-length subsequences of length n, denoted

(X[1], X[2], . . . , X[m]) n←− X,

where m = |X|n, X[1] ‖X[2] ‖ . . . ‖X[m] = X, |X[i]| = n for 1 ≤ i < m and
0 < |X[m]| ≤ n when |X| > 0. When |X| = 0, we let X[1] n←− X, where X[1] is
the empty string.

Let n and t be positive integers. For any X ∈ {0, 1}∗, we define the “one-zero
padding” ozp(X) to be X if |X| is a positive multiple of (n+ t) and X ‖ 10c for
c = |X| mod (n+ t)−1 otherwise. We stress that ozp(·) is defined with respect to
(n+ t)-bit blocks rather than n-bit blocks, and that the empty string is padded
to 10n+t−1.

For any X ∈ {0, 1}n and Y ∈ {0, 1}t, we define

X ⊕t Y
def=
{

msbt(X)⊕ Y if t ≤ n,
(X ‖ 0t−n)⊕ Y if t > n.
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Hence, |X ⊕t Y | = t in both cases and if t = n then X ⊕t Y = X ⊕ Y .
Given a non-empty set X , we let X $← X denote the draw of an element X

uniformly at random in X .

Galois Field. An element a in the Galois field GF(2n) will be interchangeably
represented as an n-bit string an−1 . . . a1a0, a formal polynomial an−1xn−1 +
· · ·+ a1x + a0, or an integer

∑n−1
i=0 ai2i. Hence, by writing 2 · a or 2a when no

confusion is possible, we mean the multiplication of a by 2 = x. This operation
is called doubling. For n = 128, we define the field GF(2n) (as is standard) by
the primitive polynomial x128 + x7 + x2 + x + 1. The doubling 2a over this field
is (a � 1) if msb1(a) = 0 and (a � 1) ⊕ (012010000111) if msb1(a) = 1, where
(a� 1) denotes the left-shift of a by one bit.

Keyed Functions and Modes. A keyed function with key space K, domain
X , and range Y is a function F : K ×X → Y. We write FK(X) for F (K,X). If
Mode is a mode of operation for F using a single key K ∈ K for F , we write
Mode[FK ] instead of Mode[F ]K .

For any keyed function F : K × ({0, 1}n)+ → {0, 1}a for some a, we define
the collision probability of F as

CollF (n,m,m′) def= max
M∈({0,1}n)m

M ′∈({0,1}n)m′

M 6=M ′

Pr[K $← K : FK(M) = FK(M ′)].

Tweakable Blockciphers. A tweakable blockcipher (TBC) is a keyed function
Ẽ : K × T × M → M such that for each (K,T ) ∈ K × T , Ẽ(K,T, ·) is a
permutation overM. Here, K is the key and T is a public value called tweak.
Note that a conventional block cipher is a TBC such that the tweak space T is a
singleton. The output Ẽ(K,T,X) of the encryption of X ∈M under key K ∈ K
and tweak T ∈ T may also be written ẼK(T,X) or ẼTK(X). Following [PS16],
when the tweak space of Ẽ is TI = T × I for some I ⊂ N and for some set
T , we call T the effective tweak space of Ẽ, and we write Ẽi(K,T,X) to mean
Ẽ(K, (T, i), X). By convention we also write ẼiK(T,X) or Ẽi,TK (X). The set I is
typically a small set used to generate a small number of distinct TBC instances
in the scheme, something we call domain separation. For T ′ = (T, i) ∈ TI , we call
i ∈ I the domain separation integer of tweak T ′.

Random Primitives. Let X , Y and T be non-empty finite sets. Let Func(X ,Y)
be the set of all functions from X to Y, and let Perm(X ) be the set of all
permutations over X . Moreover, let PermT (X ) be the set of all functions f :
T × X → X such that for any T ∈ T , f(T, ·) is a permutation over X .

A uniform random function (URF) with domain X and range Y, denoted
R : X → Y, is a random function with uniform distribution over Func(X ,Y).
Similarly, a uniform random permutation (URP) over X , denoted P : X → X , is
a random permutation with uniform distribution over Perm(X ). An n-bit URP is
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a URP over {0, 1}n. Finally, a tweakable URP (TURP) with tweak space T and
message space X , denoted P̃ : T × X → X , is a random tweakable permutation
with uniform distribution over PermT (X ).

Security Notions. We recall standard security notions for (tweakable) block
ciphers and keyed functions.

Definition 1. Let Ẽ : K × T × X → X be a TBC, and let A be an adversary
with oracle access to a tweakable permutation whose goal is to distinguish Ẽ
and a TURP P̃ : T × X → X by oracle access. The advantage of A against
the Tweakable Pseudorandom Permutation-security (or TPRP-security) of Ẽ is
defined as

Advtprp

Ẽ
(A) def=

∣∣∣Pr[K $← K : AẼK ⇒ 1]− Pr[P̃ $← PermT (X ) : AP̃ ⇒ 1]
∣∣∣ ,

where AẼK ⇒ 1 denotes the event that the final binary decision by A is 1.

We remark that the above definition only allows A to make encryption queries.
If decryption queries are allowed, the corresponding notion is called Strong TPRP
(or STPRP) security. In this paper, we only use TPRP-security for the TBC
underlying our constructions. The standard PRP-security notion for conventional
block ciphers is recovered by letting the tweak space T be a singleton.

Definition 2. For F : K × X → Y, let A be an adversary whose goal is to
distinguish FK and a URF R : X → Y by oracle access. The advantage of A
against the PRF-security of F is defined as

Advprf
F (A) def=

∣∣∣Pr[K $← K : AFK ⇒ 1]− Pr[R $← Func(X ,Y) : AR ⇒ 1]
∣∣∣ .

Moreover, for any F : K ×X → Y and G : K′ ×X → Y, the advantage of A in
distinguishing F and G is defined as

Advdist
F,G (A) def=

∣∣∣Pr[K $← K : AFK ⇒ 1]− Pr[K ′ $← K′ : AGK′ ⇒ 1]
∣∣∣ .

When a cryptographic scheme (or a mode of operation) Mode uses a (T)BC
of block-length n bits, the security bound (i.e., the best advantage for any
adversary with fixed resources) is typically a function of the query complexity
of the adversary (in terms of number q of queries or total number σ of queried
blocks) and n. When this function reaches 1 for query complexity 2n/2, we say
that Mode is secure up to the birthday bound, since this typically arises from the
birthday paradox on the block input of the (T)BC. Conversely, if the advantage
is negligibly small for any adversary of query complexity 2n/2, we say that Mode
is secure beyond the birthday bound (BBB-secure).
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3 Specification of ZMAC

3.1 Overview

Let Ẽ : K×TI×{0, 1}n → {0, 1}n be a TBC with tweak space TI = T ×I, where
T = {0, 1}t for some t > 0 and I ⊇ {0, 1, . . . , 9}. We present a construction of
a PRF ZMAC[Ẽ] : K × {0, 1}∗ → {0, 1}2n with variable-input-length and 2n-bit
outputs based on Ẽ.

The ZMAC mode has the following properties, holding for any effective tweak
size t > 0:

1. it uses a single key for calls to Ẽ;
2. the calls to Ẽ are parallelizable;
3. it processes on average n+ t input bits per TBC call;
4. it is provably secure as long as the total length σ of queries in (n + t)-bit

blocks is small compared with 2min{n,(n+t)/2}.

ZMAC is more efficient that any previous TBC-based MAC, which process at
most n bits per TBC call (e.g., when t = n, ZMAC is twice faster than PMAC1).
We emphasize that any mode based on an n-bit block, t-bit tweak TBC can
process at most n+t input bits per TBC call, thus ZMAC’s efficiency is essentially
optimal if one wants to achieve any meaningful provable security, since otherwise
there must be some part of the input which is not processed by the TBC.9

Property 4 shows that the security of ZMAC is beyond the birthday bound
with respect to n. In particular, it is n-bit secure when t ≥ n. These properties
demonstrate that ZMAC is the first TBC-based MAC to fully use the power of
the underlying TBC.

We specify ZMAC with 2n-bit outputs, which will be useful for defining our
BBB-secure DAE scheme in Section 5. However, if one simply wants an n-bit-
secure MAC, one can truncate the output of ZMAC to n bits (which saves two
TBC calls in the finalization).

Design Rationale. The structure of ZMAC has some similarities with previous
BBB-secure TBC-based PRF constructions [Nai15, LN17]. However, there are
several innovative features that make ZMAC faster and n-bit secure.

The core idea of [Nai15, LN17] is to start from a TBC-based instantiation of
PHASH, the UHF underlying PMAC [Rog04]. PHASH is quite simple: it simply
XORs together the encryptions ẼK(i,Mi) of message blocks with the index i
of the block as tweak. In order to obtain a 2n-bit output, some linear layer is
applied to all encrypted blocks, as originally introduced by Yasuda [Yas11] in
his PMAC_Plus block cipher-based PRF. This yields a 2n-bit message hash, to
which some finalization function (a fixed-input-length PRF) is applied to obtain
the final output.
9 Alternatively, one can combine another large non-linear component such as a field
multiplication with an extra key, however this increases the implementation size.
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Whereas the t-bit tweak in the previous schemes takes as input the index
of each message block, we crucially use both the message space and the tweak
space of the TBC to process n+ t input bits in order to improve efficiency. The
block index is incorporated via (a variant of) a tweak extension scheme called
XTX [MI15], which allows to efficiently update the block index with only two
field doublings, somehow similarly to XEX [Rog04].

The above trick, however, is not enough to achieve BBB-security. Since we
process each (n+ t)-bit input block by one call to an n-bit output TBC, the input
block and the output block are no longer in one-to-one correspondence. Yet the
BBB-security of previous schemes (where each input block is n-bit) crucially relies
on this fact (otherwise, one can find a collision with complexity 2n/2, resulting
in n/2-bit security). Fortunately, this problem can be solved by processing each
(n+ t)-bit input block with a Feistel-like permutation involving one TBC call,
and applying the linear layer to the output of this (n+ t)-bit permutation.

High-Level Structure of ZMAC. ZMAC consists of a hashing part

ZHASH[Ẽ] : K × ({0, 1}n+t)+ → {0, 1}n+t

and a finalization part

ZFIN[Ẽ] : K × {0, 1}n+t → {0, 1}2n.

Then, ZMAC is defined as the composition of ZHASH and ZFIN. When the input-
length is not a positive multiple of (n+ t) bits, one-zero padding (into (n+ t)-bit
blocks) is applied first. To separate inputs whose length is a positive multiple of
(n+ t) bits or not, we use distinct domain separation integers in ZFIN.

The pseudocode for ZHASH, ZFIN, and ZMAC is shown in Figure 1. It gives
a unified specification that covers both cases t ≤ n and t > n (note that the
only operation which differs in the two cases is the ⊕t operation). We describe
more informally ZHASH separately for t ≤ n and t > n, as well as ZFIN in the
following sections.

3.2 Specification of ZHASH for the Case t ≤ n

We first define ZHASH[Ẽ] when t ≤ n. For simplicity, we assume n+ t is even.
Before processing the input, ZHASH[Ẽ] computes two n-bit initial mask values
L` = Ẽ9

K(0t, 0n) and Lr = Ẽ9
K(0t−11, 0n).

Given input X ∈ ({0, 1}n+t)+, ZHASH[Ẽ] parses X into (n + t)-bit blocks
(X[1], . . . , X[m]), parses each block X[i] as X`[i] = msbn(X[i]) and Xr[i] =
lsbt(X[i]), and computes, for i = 1 to m,

C`[i] = Ẽ8
K(2i−1Lr ⊕t Xr[i], 2i−1L` ⊕X`[i]), (1)

Cr[i] = C`[i]⊕t Xr[i]. (2)
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Algorithm ZHASH[ẼK ](X)

1. U ← 0n, V ← 0t

2. L` ← Ẽ9
K(0t, 0n)

3. Lr ← Ẽ9
K(0t−11, 0n)

4. (X[1], . . . , X[m]) n+t←−− X
5. for i = 1 to m do
6. (X`, Xr) n,t←−− X[i]
7. S` ← L` ⊕X`

8. Sr ← Lr ⊕t Xr

9. C` ← Ẽ8
K(Sr, S`)

10. Cr ← C` ⊕t Xr

11. U ← 2(U ⊕ C`)
12. V ← V ⊕ Cr

13. (L`, Lr)← (2L`, 2Lr)
14. return (U, V )

Algorithm ZFIN[ẼK ](i, U, V )

1. Y [1]← Ẽi
K(V,U)⊕ Ẽi+1

K (V,U)
2. Y [2]← Ẽi+2

K (V,U)⊕ Ẽi+3
K (V,U)

3. Y ← Y [1] ‖Y [2]
4. return Y

Algorithm ZMAC[ẼK ](M)

1. X ← ozp(M)
2. (U, V )← ZHASH[ẼK ](X)
3. if M ∈ ({0, 1}n+t)+

4. Y ← ZFIN[ẼK ](0, U, V )
5. else
6. Y ← ZFIN[ẼK ](4, U, V )
7. return Y

Fig. 1. Specification of ZMAC.

Then ZHASH[Ẽ] computes two chaining values, U ∈ {0, 1}n and V ∈ {0, 1}t
defined as

U =
m⊕
i=1

2m−i+1C`[i],

V =
m⊕
i=1

Cr[i].

The final output is (U, V ).
As shown in Figure 1, the field doublings are computed in an incremental

manner. Specifically, ZHASH[Ẽ] needs one call to Ẽ and three GF(2n) doublings
to process an (n+ t)-bit block, plus two pre-processing calls to Ẽ. Obviously, the
calls to Ẽ are parallelizable.

3.3 Specification of ZHASH for the Case t > n

The hashing scheme ZHASH[Ẽ] for the case t > n is defined as follows (the two
internal masks L` and Lr are derived and incremented in the same way as in the
case t ≤ n).

– The input X is parsed into (n+ t)-bit blocks as in the case t ≤ n, and each
block is further parsed into n, n, and t− n bit-blocks;

– The first and second n-bit sub-blocks are processed in the same way as in
the case t = n. The third (t− n)-bit sub-block is directly fed to the tweak
input of the TBC as the last (t− n) bits of effective tweak;
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ZHASH
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Fig. 2. The ZHASH hash function.

– The output consists of two checksums, U ∈ {0, 1}n and V ∈ {0, 1}t, where
(U, msbn(V )) corresponds to the output for the case t = n, and lsbt−n(V )
corresponds to the sum of all third (t− n)-bit sub-blocks.

Hence, the computation of V is just written as the sum of all Cr blocks in the
unified specification of Figure 1, since the last (t− n) bits of Cr[i] only contains
the last (t− n) bits of the input block X[i].

Remark 1. We note that it is quite unusual for a universal hash function to have
some bits of its output which only depend on the input (and not on the key), as
is the case here for lsbt−n(V ). Intuitively, one might be tempted to simply drop
them and truncate the output of ZHASH to 2n bits when t > n. However, this
would lower the collision probability to 2−n and allow birthday attacks similar to
the one against PMAC2x [MI17]. Indeed, consider two distinct inputs X and X ′
to ZHASH that only differ in the last t−n bits of their first (n+t)-bit block. Then,
the 2n first bits of the outputs ZHASH[ẼK ](X) and ZHASH[ẼK ](X ′) collision
iff the outputs of the TBC calls corresponding to the first (n+ t)-bit block of X
and X’ collision, which happens with probability exactly 2−n since the tweaks
for the two TBC calls are distinct. However, this does not imply a collision for
the full (n+ t)-bit output of ZHASH since the last t− n bits of the outputs are
necessarily distinct for two such inputs. (Said differently, we need the mapping
(X`[i], Xr[i]) 7→ (C`[i], Cr[i]) to be a permutation, which is ensured by the Feistel
structure with group operation ⊕t.)

3.4 Finalization
The finalization function, denoted by ZFIN[Ẽ], takes the output of ZHASH[Ẽ],
(U, V ) ∈ {0, 1}n × {0, 1}t, and generates a 2n-bit output. It is defined as

ZFIN[ẼK ](i, U, V ) = (ẼiK(U, V )⊕ Ẽi+1
K (U, V ) ‖ Ẽi+2

K (U, V )⊕ Ẽi+3
K (U, V )),

11
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Fig. 3. The ZFIN finalization function.

where the first argument i is a non-negative integer used for domain separation.
Note that if |i − j| ≥ 4, domain separation integers used for TBC calls in
ZFIN[ẼK ](i, ·, ·) and in ZFIN[ẼK ](j, ·, ·) are distinct. We use i = 0 when no
padding is applied, i.e., when M ∈ ({0, 1}n+t)+, and i = 4 otherwise.

We remark that ZFIN is close but not identical to finalization functions
used in previous works [Nai15, LN17]. For example, Naito [Nai15] employed
ẼiK(U, V ) ⊕ Ẽi+1

K (V,U) for building a PRF with n-bit outputs. One potential
advantage of ZFIN over using two independent instances of Naito’s construction is
that ZFIN can be faster if the algorithm of Ẽ allows to leverage on the similarity
of inputs for computing ẼiK(U, V ) and Ẽi+1

K (U, V ).

4 The PRF Security of ZMAC

4.1 XT Tweak Extension

Our first step is to recast the use of masks 2i−1L` and 2i−1Lr as a way to extend
the tweak space of Ẽ. More specifically, we observe that the “core” construction
of ZHASH in Eq. (1),

((T, i), X) 7→ Ẽ8
K(2i−1Lr ⊕t T, 2i−1L` ⊕X), (3)

keyed by (K, (L`, Lr)), is an instantiation of a CPA-secure variant of a tweak
extension scheme called XTX proposed in [MI15], which allows to extend the
tweak space of Ẽ8 from T = {0, 1}t to TJ = T × J with J = {1, . . . , 2n − 1}.
Following the naming convention for XE and XEX by Rogaway [Rog04] which
defines CPA- and CCA-secure TBCs based on a block cipher, we use XT to
denote the CPA-secure variant of XTX without output mask.

In order to describe the XT construction, we need the notion of partial AXU
hash function introduced by [MI15].
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Definition 3. Let H : L×X → Y be a keyed function with key space L, domain
X , and range Y = {0, 1}n × {0, 1}t. We say that H is (n, t, ε)-partial almost-
XOR-universal ((n, t, ε)-pAXU) if for any X 6= X ′, one has

max
δ∈{0,1}n

Pr[L $← L : HL(X)⊕HL(X ′) = (δ, 0t)] ≤ ε.

Now define the XT tweak extension scheme. Let Ẽ : K×T ×{0, 1}n → {0, 1}n
be a TBC with tweak space T = {0, 1}t and let H : L × T ′ → Y be a keyed
function with range Y = {0, 1}n × {0, 1}t. Let XT[Ẽ,H] be the TBC with key
space K × L, tweak space T ′, and message space {0, 1}n defined as

XT[Ẽ,H]K,L(T ′, X) = ẼK(Zr, Z` ⊕X) where HL(T ′) = (Z`, Zr). (4)

The following lemma characterizes the security of XT[P̃, H] where Ẽ is replaced
by a TURP P̃. It is similar to [MI15, Theorem 1] and its proof is deferred to
Appendix A.

Lemma 1. Let XT[P̃, H] be defined as above, where P̃ : T × {0, 1}n → {0, 1}n
is a TURP and H is (n, t, ε)-pAXU. Then, for any adversary A making at most
q queries, one has

Advtprp

XT[̃P,H]
(A) ≤ q2ε

2 .

Assume for a moment that L` = Ẽ9
K(0t, 0n) and Lr = Ẽ9

K(0t−11, 0n) are
uniformly random (this will hold once the TBC underlying ZMAC has been
replaced by a TURP later in the security proof). Consider the function H with
key space {0, 1}n × {0, 1}n, domain TJ = T × J with J = {1, . . . , 2n − 1}, and
range {0, 1}n × {0, 1}t defined as

H(L`,Lr)(T, i) = (2i−1L`, 2i−1Lr ⊕t T ). (5)

Then observe that the construction of Eq. (3) is exactly XT[Ẽ8, H] with H defined
as above. We prove that H is pAXU in the following lemma.

Lemma 2. Let H be defined as in Eq. (5). Then H is (n, t, 1/2n+min{n,t})-pAXU.

Proof. Assume first that t ≤ n. Then, by definition of ⊕t, one has

H(L`,Lr)(T, i) = (2i−1L`, msbt(2i−1Lr)⊕ T ).

Hence, we must upper bound

p
def= Pr

(L`,Lr)

[(
(2i−1 + 2j−1)L`, msbt((2i−1 + 2j−1)Lr)⊕ T ⊕ T ′

)
= (δ, 0t)

]
for any distinct inputs (T, i), (T ′, j) ∈ TJ and any δ ∈ {0, 1}n.

If i = j, then necessarily T 6= T ′, and hence

msbt((2i−1 + 2j−1)Lr)⊕ T ⊕ T ′ = T ⊕ T ′ 6= 0t.

13



Thus the probability p is zero.
If i 6= j, then 2i−1 6= 2j−1. Therefore, 2i−1 + 2j−1 is a non-zero element over

GF(2n) and thus

p = Pr
(L`,Lr)

[(2i−1 + 2j−1)L` = δ, msbt((2i−1 + 2j−1)Lr)⊕ T ⊕ T ′ = 0t]

= Pr
(L`,Lr)

[(2i−1 + 2j−1)L` = δ, msbt((2i−1 + 2j−1)Lr) = T ⊕ T ′]

= 1
2n ·

1
2t = 1

2n+t .

For the case t > n, observe that by definition of ⊕t,

H(L`,Lr)(T, i) = (2i−1L`, (2i−1Lr ‖ 0t−n)⊕ T ).

Hence, we can use the previous analysis for the special case t = n, so that p is at
most 1/22n. In all cases, p is at most 1/2n+min{n,t}.

Combining Lemmas 1 and 2, we obtain the following for the construction of
Eq. (3) when Ẽ8

K is replaced by a TURP.

Lemma 3. Let XT[P̃, H] be defined as in Eq. (4) where P̃ : T ×{0, 1}n → {0, 1}n
is a TURP and H is defined as in Eq. (5). Then, for any adversary making at
most q queries,

Advtprp

XT[̃P,H]
(A) ≤ q2

2n+min{n,t}+1 .

4.2 Collision Probability of ZHASH

Let Ẽ′ : K′×TJ×{0, 1}n → {0, 1}n be a TBC with tweak space TJ = T ×J where
T = {0, 1}t and J = {1, . . . , 2n − 1} as before. We define ZHASH[Ẽ′] as shown
in Figure 4 and depicted in Figure 5. Note that, assuming that masking keys
L` and Lr are uniformly random rather than derived through Ẽ9

K , ZHASH[Ẽ] is
exactly ZHASH[XT[Ẽ8, H]], with H defined as in Eq. (5).

Let P̃J : TJ × {0, 1}n → {0, 1}n be a TURP. The following lemma plays a
central role in our security proof.

Lemma 4. For any m,m′ ≤ 2min{n,(n+t)/2}, we have

CollZHASH[̃PJ ](n+ t,m,m′) ≤ 4
2n+min{n,t} .

Proof. Without loss of generality, we assume m ≤ m′. Let X = (X[1], . . . , X[m])
and X ′ = (X ′[1], . . . , X ′[m′]) be two distinct messages of (n+ t)-bit blocks. Let
(U, V ) = ZHASH[P̃J ](X) and (U ′, V ′) = ZHASH[P̃J ](X ′) be the outputs. We
define Xr[i], X`[i], C`[i], and Cr[i] following Figure 4 augmented with the loop
index i. Let ∆U = U ⊕U ′, ∆V = V ⊕V ′, etc. A collision of ZHASH[P̃J ] outputs
is equivalent to (∆U,∆V ) = (0n, 0t).

We perform a case analysis. We first focus on the case t ≤ n, and consider
four sub-cases.
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Algorithm ZHASH[Ẽ′K′ ](X)
(|X| is a positive multiple of n+ t)

1. U ← 0n, V ← 0t

2. (X[1], . . . , X[m]) n+t←−− X
3. for i = 1 to m do
4. (X`, Xr) n,t←−− X[i]
5. C` ← Ẽ′K′((Xr, i), X`)
6. Cr ← C` ⊕t Xr

7. U ← 2(U ⊕ C`)
8. V ← V ⊕ Cr

9. return (U, V )

Fig. 4. Pseudocode for the ZHASH construction using Ẽ′ : K′×TJ ×{0, 1}n → {0, 1}n

with TJ = {0, 1}t × {1, 2, . . . , 2n − 1}.

Case 1: m = m′, ∃h ∈ {1, . . . ,m}, X[h] 6= X ′[h], X[i] = X ′[i] for ∀i 6= h. Then
we have

∆U =
⊕

1≤i≤m
2m−i+1∆C`[i] = 2m−h+1∆C`[h],

∆V =
⊕

1≤j≤m
∆Cr[j] = ∆Cr[h].

Since the mapping (X`[i], Xr[i]) 7→ (C`[i], Cr[i]) is a permutation, we have
(C`[h], Cr[h]) 6= (C ′`[h], C ′r[h]) and thus we have either ∆C`[h] 6= 0n or
∆Cr[h] 6= 0t. This implies ∆U 6= 0n or ∆V 6= 0t.

Case 2: m = m′, ∃h, s ∈ {1, . . . ,m}, h 6= s, X[h] 6= X ′[h], X[s] 6= X ′[s]. Then
we have

∆U = 2m−h+1∆C`[h]⊕ 2m−s+1∆C`[s]⊕
⊕

1≤i≤m
i 6=h,s

2m−i+1∆C`[i]

︸ ︷︷ ︸
∆1

,

∆V = ∆Cr[h]⊕∆Cr[s]⊕
⊕

1≤i≤m
i 6=h,s

∆Cr[i]

︸ ︷︷ ︸
∆2

.

Observe that ∆1 and ∆2 are functions of variables of the form P̃J ((T, i), X ′′)
where i /∈ {h, s} and T and X ′′ are determined by X and X ′. In particular,
by definition of a TURP, they are independent (as random variables) from
the other terms in the two right-hand sides. Hence, letting λh = 2m−h+1 and
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Fig. 5. The ZHASH hash function.

λs = 2m−s+1, and using that since t ≤ n, Cr[i] = msbt(C`[i])⊕Xr[i], we have{
∆U = 0n
∆V = 0t ⇐⇒

{
λh∆C`[h]⊕ λs∆C`[s] = ∆1
∆Cr[h]⊕∆Cr[s] = ∆2

⇐⇒
{
λh∆C`[h]⊕ λs∆C`[s] = ∆1
msbt(∆C`[h])⊕∆Xr[h]⊕ msbt(∆C`[s])⊕∆Xr[s] = ∆2

⇐⇒
{
λh∆C`[h]⊕ λs∆C`[s] = ∆1
msbt(∆C`[h]⊕∆C`[s]) = ∆2 ⊕∆Xr[h]⊕∆Xr[s].

Hence, it follows that

Pr
[
∆U = 0n
∆V = 0t

]
≤ max
δ1∈{0,1}n

δ2∈{0,1}t

Pr
[
λh∆C`[h]⊕ λs∆C`[s] = δ1
msbt(∆C`[h]⊕∆C`[s]) = δ2

]

≤ max
δ1∈{0,1}n

δ2∈{0,1}t

∑
δ3∈{0,1}n

msbt(δ3)=δ2

Pr
[
λh∆C`[h]⊕ λs∆C`[s] = δ1
∆C`[h]⊕∆C`[s] = δ3

]
.

Observe that since h 6= s, λh ⊕ λs 6= 0 and the linear system inside the last
probability above has a unique solution for any pair (δ1, δ3), namely

∆C`[h] = (λsδ3 ⊕ δ1)/(λh ⊕ λs)
∆C`[s] = δ3 ⊕ (λsδ3 ⊕ δ1)/(λh ⊕ λs).

Moreover, the random variables ∆C`[h] and ∆C`[s] are independent (as they
involve distinct tweaks) and their probability distributions are uniform over
either {0, 1}n or {0, 1}n \ {0n}, implying that their point probabilities are at
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most 1/(2n − 1). Hence,

Pr
[
∆U = 0n
∆V = 0t

]
≤ max
δ1∈{0,1}n

δ2∈{0,1}t

∑
δ3∈{0,1}n

msbt(δ3)=δ2

1
(2n − 1)2

≤ 2n−t

(2n − 1)2 ≤
4 · 2n−t

22n ≤ 4
2n+t .

Case 3: m′ = m+ 1. Then, isolating the terms corresponding to block indices
m and m+ 1, we have

∆U =
⊕

1≤i≤m
2m−i+1C`[i]⊕

⊕
1≤i≤m+1

2m+1−i+1C ′`[i]

= 2(C`[m] + 2C ′`[m] + C ′`[m+ 1]⊕∆1)

and

∆V =
⊕

1≤i≤m
Cr[i]⊕

⊕
1≤i≤m+1

C ′r[i]

= msbt(C`[m] + C ′`[m] + C ′`[m+ 1])⊕∆2,

where ∆1 and ∆2 are independent (as random variables) from C`[m], C ′`[m],
and C ′`[m+ 1]. Hence, exactly as for Case 2, the probability that ∆U = 0n
and ∆V = 0t is at most

max
δ1∈{0,1}n

δ2∈{0,1}t

∑
δ3∈{0,1}n

msbt(δ3)=δ2

Pr
[
C`[m] + 2C ′`[m] + C ′`[m+ 1] = δ1
C`[m] + C ′`[m] + C ′`[m+ 1] = δ3

]
.

Letting Y = C`[m] + C ′`[m + 1] and Z = C ′`[m], the linear system in the
probability above becomes {

Y + 2Z = δ1
Y + Z = δ3,

which has a unique solution over GF(2n) for any pair (δ1, δ3). Note that
Y and Z are uniformly random and independent (since Y involves domain
separation integer m+ 1 but Z does not) and hence, the system is satisfied
with probability 1/22n. Therefore,

Pr
[
∆U = 0n
∆V = 0t

]
≤ max
δ1∈{0,1}n

δ2∈{0,1}t

∑
δ3∈{0,1}n

msbt(δ3)=δ2

1
22n = 1

2n+t .
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Case 4: m′ ≥ m+2. Then, isolating terms corresponding to block indices m′−1
and m′, we have

∆U = 2(2C ′`[m′ − 1]⊕ C ′`[m′]⊕∆1),
∆V = msbt(C ′`[m′ − 1]⊕ C ′`[m′])⊕∆2,

where ∆1 and ∆2 are independent of C ′`[m′ − 1] and C ′`[m′]. Moreover,
C ′`[m′ − 1] and C ′`[m′] are independent and uniformly random. Letting Y =
C ′`[m′] and Z = C ′`[m′ − 1], we can apply the same analysis as for Case 3,
and therefore, the collision probability is at most 1/2n+t.

In the above analysis, the collision probability is bounded by 4/2n+t for all
cases, which proves the lemma for the case t ≤ n.

We next consider the case t > n. We let Xw[i] = lsbt−n(X[i]) and Xr[i] =
lsbn(msb2n(X[i])), i.e., the (n + 1)-th to 2n-th bits of X[i]. For V ∈ {0, 1}t,
let V = msbn(V ) and W = lsbt−n(V ), thus V = (V ‖W ). The corresponding
variables are also defined for X ′.

We first focus on the case m = m′. When Xw[i] = X
′
w[i] for all 1 ≤ i ≤ m,

the analysis is the same as the case t ≤ n, since for each i-th input block, P̃J
takes exactly the same values (between X and X ′) for the last (t− n)-bit of T .
Thus the output collision probability (in particular, the first 2n-bit of output
(U, V )) is at most 4/22n.

If there exists an index i such that Xw[i] 6= X
′
w[i] and Xw[j] = X

′
w[j] for all

j 6= i, then we have ∆W 6= 0t−n, i.e., the difference in the last (t−n) bits of ∆V
is non-zero. Hence the collision probability is zero. (See also Remark 1.)

If there exist two (or more) distinct indices i, j such that Xw[i] 6= X
′
w[i] and

Xw[j] 6= X
′
w[j], the analysis is almost the same as (the Case 2 of) the case t ≤ n.

The collision probability of (U, V ) is at most 1/22n.
Finally, we consider the case m < m′. For both m′ = m+ 1 and m′ ≥ m+ 2,

we can apply the same arguments as the corresponding cases for t ≤ n and
the collision probability of (U, V ) is at most 1/22n. Summarizing, the collision
probability of (U, V ) is at most 4/22n.

We remark that because of Case 1 when t ≤ n, ZHASH[P̃J ] is not almost
XOR universal (i.e., the output differential probability is not guaranteed to be
small).

4.3 PRF Security of Finalization

We prove that ZFIN is a fixed-input-length PRF with n-bit security. The key
observation is that, given V ∈ {0, 1}t, ZFIN is reduced to a pair of independent
instances of the sum of two independent random permutations, also called SUM2
by Lucks [Luc00]. More precisely, let SUM2[P1,P2] be the function that maps
n-bit inputs to n-bit outputs defined as SUM2[P1,P2](X) def= P1(X)⊕ P2(X) for
X ∈ {0, 1}n, using two independent n-bit URPs P1 and P2.
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On input (U, V ), the n-bit left- and right-halves of the output of ZFIN are
equivalent to SUM2[P1,P2](U) for two independent n-bit URPs P1 and P2, and
the sampling of this pair of URPs is independent for each V ∈ {0, 1}t and for
each n-bit half of the output thanks to tweak domain separation.

The SUM2 construction has been actively studied and several proofs of
BBB-security have been given [Luc00, BI99, Pat08a, Pat13, CLP14, MN17]. In
particular, Dai et al. [DHT17] recently gave a short proof of the following bound.

Lemma 5. For any adversary A making at most q ≤ 2n−4 queries, one has

Advprf
SUM2(A) ≤

( q
2n
)3/2

.

For i ∈ {0, 4}, we let ZFINi[ẼK ](U, V ) = ZFIN[ẼK ](i, U, V ). From Lemma 5,
we obtain the following result for the PRF security of ZFINi in the information-
theoretic setting, i.e., when ẼK is replaced by a TURP P̃I : TI×{0, 1}n → {0, 1}n.

Lemma 6. Let A be an adversary against the PRF-security of ZFINi[P̃I ] making
at most q ≤ 2n−4 queries. Then, for i ∈ {0, 4}, we have

Advprf

ZFINi [̃PI ]
(A) ≤

∑
T∈{0,1}t

2
(qT

2n
)3/2

≤ 2
( q

2n
)3/2

,

where qT denotes the number of queries with V = T .

The proof is obtained by a standard hybrid argument and the observation
that the adaptive choice of qT ’s does not help. Lemma 6 shows that ZFIN is a
parallelizable and n-bit secure PRF with (n+ t)-bit inputs and 2n-bit outputs
based on a TBC with n-bit blocks and t-bit tweaks.

Alternative Constructions. We could build the finalization function from
[CDMS10, Min09]. Coron et al. [CDMS10] proposed a 2n-bit SPRP construction
using three TBC calls of n-bit block and tweak, and Minematsu [Min09] proposed
a 2n-bit SPRP construction using 2 TBC calls with two GF(2n) multiplications.
Both constructions achieve n-bit security with small constants. As they are also
n-bit secure 2n-bit PRFs (via standard PRP-PRF switching), we could use them.
However, they are totally serial, hence if the MAC input is short (say 64 bytes)
and we have a parallel TBC computation unit, this choice of finalization will be
quite slower than ZFIN.

We could also use CENC by Iwata [Iwa06]. In a recent work by Iwata et
al. [IMV16], it is observed that P(X ‖ 0) ⊕ P(X ‖ 1) for X ∈ {0, 1}n−1, called
XORP[1], achieves n-bit PRF-security with constant 1, by making explicit that this
was in fact already proved by Patarin [Pat10]. However, we think the finalization
based on this construction would be slightly more complex than ours.
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4.4 PRF Security of ZMAC
We are now ready to state and prove the security result for ZMAC.
Theorem 1. Let A be an adversary against ZMAC[Ẽ] making at most q ≤ 2n−4

queries of total length (in number of (n+ t)-bit blocks) at most σ and running in
time at most time. Then there exists an adversary B against Ẽ making at most
σ + 4q + 2 queries and running in time at most time +O(σ) such that

Advprf

ZMAC[Ẽ]
(A) ≤ Advtprp

Ẽ
(B) + 2.5σ2

2n+min{n,t} + 4
( q

2n
)3/2

.

Proof. Since ZMAC calls the underlying TBC Ẽ with a single key K, we can
replace ẼK by a TURP P̃I : TI ×{0, 1}n → {0, 1}n and focus on the information-
theoretic security of ZMAC[P̃I ]. Derivation of the computational counterpart is
standard.

Let G : KG × ({0, 1}n+t)+ → {0, 1}n+t and F : KF × {0, 1}n+t → {0, 1}2n.
Let CW3[GK1 , FK2 , FK3 ] be the three-key Carter-Wegman construction with
independent keys (K1,K2,K3) as defined by Black and Rogaway [BR05], i.e.,

CW3[GK1 , FK2 , FK3 ](M) =
{
FK2(GK1(ozp(M))) if M ∈ ({0, 1}n+t)+,
FK3(GK1(ozp(M))) otherwise.

It is easy to see that ZMAC[P̃I ] is a instantiation of CW3. Indeed,

ZMAC[P̃I ] = CW3
[
ZHASH[P̃I ],ZFIN0[P̃I ],ZFIN4[P̃I ]

]
,

and independence between the three components follows from domain separation
of tweaks which implies that for distinct integers i, j ∈ I, P̃

i

I and P̃
j

I are inde-
pendent TURPs with tweak space T = {0, 1}t. Besides, as already observed in
Section 4.2, since the masking keys L` = P̃

9
I(0t, 0n) and Lr = P̃

9
I(0t−11, 0n) are

uniformly random, one has

ZHASH[P̃I ] = ZHASH
[
XT[P̃

8
I , H]

]
,

with H as defined by Eq. (5). Hence, by replacing XT[P̃
8
I , H] by a TURP P̃J :

TJ ×{0, 1}n → {0, 1}n and ZFIN0, resp. ZFIN4 by independent random functions
R0, resp. R1 from {0, 1}n+t to {0, 1}n, we have that there exists an adversary
B′ against XT[P̃

8
I , H] making at most σ queries and an adversary B′′ against

ZFIN0/4[P̃I ] making at most q queries such that

Advprf

ZMAC[̃PI ]
(A) = Advprf

CW3[ZHASH[XT[̃P
8
I ,H]],ZFIN0 [̃PI ],ZFIN4 [̃PI ]]

(A)

≤ Advprf

CW3[ZHASH[̃PJ ],R0,R1]
(A) + Advtprp

XT[̃P
8
I ,H]

(B′)

+ Advprf

ZFIN0 [̃PI ]
(B′′) + Advprf

ZFIN4 [̃PI ]
(B′′)

≤ Advprf

CW3[ZHASH[̃PJ ],R0,R1]
(A) + σ2

2n+min{n,t}+1 + 4
( q

2n
)3/2

,

(6)
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where the last inequality follows from Lemmas 3 and 6.
From Lemma 2 of [BR05] and Lemma 4, we have

Advprf

CW3[ZHASH[̃PJ ],R0,R1]
(A) ≤ max

m1,...,mq

∑
i 6=j

CollZHASH[̃PJ ](n+ t,mi,mj)

≤ max
m1,...,mq

∑
i 6=j

4
2n+min{n,t}

≤ 2q2

2n+min{n,t} , (7)

where the maximum is taken over all m1, . . . ,mq such that
∑
imi = σ. Combin-

ing (6) and (7), we obtain the information-theoretic bound.

4.5 Other Variants of ZMAC
ZMAC has a wide range of variants, depending on the required level of security.
We briefly discuss some of them.

Eliminating The Input-Length Effect. ZMAC ensures security as long as
the total number of (n+ t)-bit blocks σ throughout queries is small compared to
2min{n,(n+t)/2}. If one wants to completely remove the effect of the input length as
in [Nai15, LN17] (i.e., to get security as long as the number of queries q is small
compared to 2min{n,(n+t)/2}), we suggest to use ZHASH. The underlying TBC Ẽ
needs to have a tweak space of the form {0, 1}t×J ×I, where J = {1, 2, . . . , B}
for some B > 0 and I is a set of domain separation integers. Here, the effective
tweak space of Ẽ is {0, 1}t × J and the effective tweak-length is t′ = t+ log2 B
bits.

For finalization, we can use ZFIN[Ẽ] with an adequate domain separation.
From Lemma 4, the message hashing has a constant collision probability of
4/2n+min{n,t} for both cases of t ≤ n and t > n. The security bounds (for both
t ≤ n and t > n) are O(q2/2n+min{n,t}) plus the PRF bound of ZFIN[Ẽ], thus,
security does not degrade with the total input length.

On the downside, since we waste log2 B effective tweak bits to process the
input block index, this mode processes only n+ t input bits per TBC call rather
than the optimal amount n+ t′. This is a trade-off between efficiency and security.

Birthday Security. If we only require up-to-birthday bound security, then
we could simply use XT[Ẽ] in the same manner to PMAC, that is, the message
hashing is mostly the same as ZHASH, however we XOR all TBC outputs C`
in Figure 1 to form the final n-bit output. The finalization is done by a single
TBC call with an adequate domain separation, and hashing and finalization are
composed by CW3.

From Lemma 3 and the security proof for (TBC-based) PMAC1 found
in [Rog04], this variant has PRF advantage O(σ2/2n+min{n,t} + q2/2n), which is
slightly better than “standard” birthday bound O(σ2/2n). Efficiency is optimal
since n+ t input bits are processed per TBC call for any Ẽ having effective tweak
space of t bits, for any t > 0.
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5 Application to Authenticated Encryption: ZAE

As an application of ZMAC, we provide an efficient construction of a Deterministic
Authenticated Encryption (DAE) scheme [RS06] from a TBC called ZAE.

Let us briefly recall the syntax and the security definition for a DAE scheme
(see [RS06] for details). A DAE scheme DAE is a tuple (K,AD,M, C,DAE.Enc,
DAE.Dec), where K, AD, M, and C are non-empty sets and DAE.Enc and
DAE.Dec are deterministic algorithms. The encryption algorithm DAE.Enc takes
as input a key K ∈ K, associated data AD ∈ AD, and a plaintext M ∈ M,
and returns a ciphertext C ∈ C. The decryption algorithm DAE.Dec takes as
input a key K ∈ K, associated data AD ∈ AD, and a ciphertext C ∈ C, and
returns either a message M ∈ M or the special symbol ⊥ indicating that the
ciphertext is invalid. We write DAE.EncK(AD,M), resp. DAE.DecK(AD,C) for
DAE.Enc(K,AD,M), resp. DAE.Dec(K,AD,C). As usual, we require that for
any tuple (K,AD,M) ∈ K ×AD ×M, one has

DAE.Dec(K,AD,DAE.Enc(K,AD,M)) = M.

The associated data AD is authenticated but not encrypted, and may include a
nonce, which is why DAE is sometimes called nonce-misuse resistant authenticated
encryption (MRAE), since for such a scheme the repetition of a nonce does not
hurt authenticity and only allows the adversary to detect repetitions of inputs
(AD,M) to the encryption algorithm.

Definition 4. Let DAE be a DAE scheme. The advantage of an adversary A in
breaking the DAE-security of DAE is defined as

Advdae
DAE(A) def=

∣∣∣Pr[K $← K : ADAE.EncK ,DAE.DecK ⇒ 1]− Pr[A$,⊥ ⇒ 1]
∣∣∣ ,

where oracle $(·, ·), on input (AD,M), returns a random bit string of length10

|DAE.EncK(AD,M)|, and oracle ⊥(·, ·) always returns ⊥. The adversary A is not
allowed to repeat an encryption query or to submit a decryption query (AD,C)
if a previous encryption query (AD,M) returned C.

In addition to ZMAC, our construction will rely on a (random) IV-based
encryption (ivE) scheme IVE. Such a scheme consists of a tuple (K, IV,M, C,
IVE.Enc, IVE.Dec), where K, IV ,M, and C are non-empty sets and IVE.Enc and
IVE.Dec are deterministic algorithms. The encryption algorithm IVE.Enc takes
as input a key K ∈ K, an initialization value IV ∈ IV, and a plaintext M ∈M,
and returns a ciphertext C ∈ C. The decryption algorithm IVE.Dec takes as input
a key K ∈ K, an IV IV ∈ IV, and a ciphertext C ∈ C, and returns a message
M ∈M. Given K ∈ K, we let IVE.Enc$

K denote the randomized algorithm which
takes as input M ∈M, draws IV $← IV , computes C = IVE.Enc(K, IV,M), and
returns (IV, C).
10 We assume that the length of DAE.EncK(AD,M) is independent from the key K.
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Definition 5. Let IVE be an IV-based encryption scheme. The advantage of an
adversary A in breaking the ivE-security of IVE is defined as

Advive
IVE(A) def=

∣∣∣Pr[K $← K : AIVE.Enc$
K ⇒ 1]− Pr[A$ ⇒ 1]

∣∣∣ ,
where oracle $(·), on input M ∈ M, returns a random bit string of length
|IVE.Enc$

K(M)|.

For our purposes, we consider the IV-based encryption mode IVCTRT proposed
in [PS16, Appendix B]. This mode uses a TBC Ẽ with tweak space T ′ = {0, 1}t×I
and message space {0, 1}n, and has 2n-bit IVs. We assume 10 ∈ I as all calls to
Ẽ in IVCTRT will use domain separation integer 10 which is distinct from all
those used in ZMAC. The encryption IVCTRT[ẼK ].Enc(IV,M) of a message M
with initialization value IV under key K is defined as follows. The IV and the
message are parsed as

(IV [1], IV [2]) n,n←−− IV
(M [1], . . . ,M [m]) n←−M.

Let IV ′[1] = IV [1] ⊕t 0t, i.e., IV [1] is either padded with zeros up to t bits
when t > n or truncated to t bits when t ≤ n. Then, the ciphertext is C =
(C[1], . . . , C[m]) where X � Y denotes t-bit modular addition,

C[i] = M [i]⊕ Ẽ10
K (IV ′[1] � i, IV [2]) for i = 1, . . . ,m− 1,

C[m] = M [m]⊕ msb|M [m]|(Ẽ10
K (IV ′[1] �m, IV [2])).

Our TBC-based BBB-secure DAE mode proposal ZAE follows the generic11

SIV construction [RS06], where the PRF is instantiated with ZMAC and the
IV-based encryption mode is instantiated with IVCTRT.

Let Ẽ be a TBC with tweak space T ′ = {0, 1}t × I where I ⊇ {0, 1, . . . , 10}
and message space {0, 1}n. The encryption ZAE[ẼK ].Enc(AD,M) of a message
M with associated data AD under key K is the pair C ′ = (IV, C) where

IV = ZMAC[ẼK ](encode(AD,M))

C = IVCTRT[ẼK ].Enc(IV,M).

The encode function is an injective mapping which pads AD andM independently
using the ozp() function, so that the bit length of the resulting strings are
multiples of (n + t). Then, it concatenates these two strings and appends the
n/2-bit representations of the lengths of AD and M (an n-bit representation
can naturally be used if more than 2n/2 AD and M blocks are possible). The
11 The name SIV is used in [RS06] to denote either a generic construction of a DAE

scheme from a PRF and an IV-based encryption scheme, or the block cipher mode of
operation resulting from instantiating the PRF with (a variant of) CMAC and the
encryption scheme with the counter mode.
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Algorithm IVCTRT[ẼK ].Enc(IV,M)

1. (IV [1], IV [2]) n,n←−− IV
2. IV [1]← IV [1]⊕t 0t

3. (M [1], . . . ,M [m]) n←−M
4. for i = 1 to m− 1 do
5. C[i]←M [i]⊕ Ẽ10

K (IV [1] � i, IV [2])
6. S ← msb|M [m]|(Ẽ10

K (IV [1] �m, IV [2]))
7. C[m]←M [m]⊕ S
8. C ← (C[1]‖ . . . ‖C[m])
9. return C

Algorithm encode(AD,M)

1. Len← strn/2(|AD|)‖strn/2(|M |)
2. X ← (ozp(AD)‖ozp(M)‖Len)
3. return X

Algorithm ZAE[ẼK ].Enc(AD,M)

1. X ← encode(AD,M)
2. IV ← ZMAC[ẼK ](X)
3. C ← IVCTRT[ẼK ].Enc(IV,M)
4. return C′ = (IV, C)

Algorithm ZAE[ẼK ].Dec(AD,C′)

1. (IV, C) 2n,|C′|−2n←−−−−−−− C′

2. M ← IVCTRT[ẼK ].Dec(IV, C)
3. X ← encode(AD,M)
4. IV ′ = ZMAC[ẼK ](X)
5. if IV ′ = IV then return M
6. else return ⊥

Fig. 6. Pseudocode for the ZAE deterministic authenticated encryption scheme. Algo-
rithm IVCTRT[ẼK ].Dec is similar to IVCTRT[ẼK ].Enc and hence omitted.

tag (synthetic IV) is 2n bits, which is inevitable for n-bit security of the SIV
construction, since a collision of two tags would immediately break the scheme.
See Figure 6 for the pseudocode and Figure 7 for a graphical representation of
ZAE.

The security bound for ZAE is given in the following theorem. Here, we
let the length of a query (encryption or decryption) be the block length of
encode(AD,M), where (IV, C) 2n,|C′|−2n←−−−−−− C ′ andM ← IVCTRT[ẼK ].Dec(IV, C)
for a decryption query (AD,C ′).

Theorem 2. Let Ẽ be a TBC with tweak space T ′ = {0, 1}t × I and message
space {0, 1}n. Let A be an adversary attacking ZAE[Ẽ] making at most q ≤ 2n−4

(encryption or decryption) queries, such that the total length of all its queries is
at most σ blocks of n bits12, and running in time at most time. Then there exists
an adversary B against Ẽ making at most 2σ + 4q + 2 chosen-plaintext queries
and running in time at most time +O(σ) such that

Advdae
ZAE[Ẽ]

(A) ≤ Advtprp

Ẽ
(B) + 3.5σ2

2n+min{n,t} + 4
( q

2n
)3/2

+ q

22n .

Proof. We prove the information-theoretic security of ZAE[P̃] where P̃ is a TURP
(the computational counterpart is standard). By Theorem 2 of [RS06], there exists
an adversary A′ attacking ZMAC[P̃] and an adversary A′′ attacking IVCTRT[P̃],
both making at most q queries of total length σ, such that

Advdae
ZAE[̃P]

(A) ≤ Advprf

ZMAC[̃P]
(A′) + Advive

IVCTRT[̃P]
(A′′) + q

22n . (8)

12 Note that, for simplicity, the lengths are counted in n-bit blocks.
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According to [PS16, Appendix B], we have

Advive
IVCTRT[̃P]

(A′′) ≤ σ2

2n+min{n,t} .

(In more details, the security bound from [PS16, Appendix B] is σ2/2n+t assuming
IV ′[1] is uniform in {0, 1}t, which is the case here only when t ≤ n. When t > n,
the security bound caps at σ2/22n since only the first n bits of IV ′[1] are random.)
The result follows by combining these two equations with Theorem 1. The query
complexity of B follows from the fact that ZAE makes at most 2 TBC calls per
n-bit block of input and the complexity of ZFIN and masks.

It is to be noted that for the encryption part IVCTRT there is no specific
efficiency benefit in having access to a TBC with a larger tweak input than n bits.
In contrary, for the ZMAC part, there is a direct gain in having a large tweak if
this is not too costly (say much smaller than a factor of two), since this increases
the amount of input bits per TBC call. In order to optimize performance, one
can thus use a TBC with t = n for the encryption part, but switch to a TBC
with t > n for the MAC part of the scheme, since building a TBC with a large
tweak usually leads to (slightly) slower performances than a TBC with a small
tweak [JNP14d].

Another direction to further increase performance of ZAE in practice, without
reducing its security, is to use a counter addition on only min{n, t} bits instead
of t bits, i.e. by redefining X � Y for Y ∈ {1, . . . , 2min{n,t}} to denote

msbmin{n,t}(X) + Y mod 2min{n,t} ‖ lsbt−min{n,t}(X),

that is, addition over the first min{n, t} bits and the remaining bits intact. One
could even consider having a LFSR-based counter instead of a modular addition
based counter to improve hardware implementations. We have not used these
improvements in ZAE specifications in order to simplify its description.

ZAE compares very favorably with existing TBC-based MRAE solutions both
in terms of efficiency and security. Indeed, it can process n + t message bits
per TBC call for the MAC part, and n bits per TBC call for the encryption
part. Other schemes such as SIV [RS06], SCT [PS16], or SIVx [LN17] can only
handle n message bits per TBC call in the MAC part. Moreover, ZAE is secure
beyond the birthday bound and hence provides better security than SIV (only
birthday security) or SCT (only birthday security in the nonce-misuse setting)
while leading to better performances.

We remark that ZMAC could also be used to improve OCB-like (more precisely
its TBC-based generalization ΘCB [KR11]) or SCT-like designs: by changing
the PMAC-like part that handles the associated data for ZMAC, one would fully
benefit from the efficiency improvement provided by our design.

6 MAC and AE Instances

In this section, we give instantiation examples of ZMAC and ZAE. There are many
possible ways to build a TBC, but in practice block cipher-based constructions
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Fig. 7. The ZAE deterministic authenticated encryption scheme with associated data.
Note that the n-bit value IV [1] is mapped to the t-bit value IV [1]⊕t 0t to obtain the
initial t-bit counter.

are generally less efficient than ad-hoc TBCs. Since our design leverages heavily
the possibilities offered by a large tweak, a candidate such as Threefish [FLS+10]
is not very interesting as it handles only 128 bits of tweak input for a block size of
256/512/1024 bits. The effective efficiency gain would be limited (and Threefish
is much slower than AES on current platforms, due to AES-NI instruction sets).

One could also consider using block ciphers with large keys (in comparison
to their block size), but as remarked in [JNP14d], it remains unclear if one can
generally use the key input of a TBC as tweak input. For example, using AES-256
while allocating half of its key input as tweak is a very bad idea, considering the
related-key attacks against AES-256, such as [BKN09].

Recently, Jean et al. [JNP14d] proposed a framework called TWEAKEY
and a generic construction STK for building ad-hoc tweakable Substitution-
Permutation Network (SPN) ciphers. The authors proposed three TBCs based
on the STK framework, Deoxys-BC [JNP14a], Joltik-BC [JNP14b], and KIASU-
BC [JNP14c], as part of three candidates for CAESAR authenticated encryption
competition [CAE]. In particular, Deoxys-BC is the TBC used in the Deoxys
CAESAR candidate (together with the SCT authenticated encryption mode),
selected for the third round of the competition. Later, SKINNY [BJK+16], a
lightweight family of TBCs based on similar ideas was proposed.

We will study here the performances of ZMAC and ZAE when instantiated
with Deoxys-BC and the 128-bit block versions of SKINNY. Note that for a key
size of 128 bits, both these ciphers offer versions with 128 or 256 bits of tweak
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input (respectively Deoxys-BC-256/SKINNY-128-256 and Deoxys-BC-384/SKINNY-
128-384). It is interesting to compare the respective number of rounds (and thus
efficiencies) of these different versions (see Table 2).

Table 2. Number of rounds of Deoxys-BC-256/ Deoxys-BC-384, and SKINNY-128-128/
SKINNY-128-256/ SKINNY-128-384.

TBC t = 0 t = n t = 2n

Deoxys-BC – 14 16
SKINNY 40 48 56

This shows the strength of the ZMAC general design: for practical ad-hoc
TBC constructions, it seems that adding twice more input to the TBC slows
down the primitive by a much smaller factor than 2. Thus, we can expect the
efficiency to improve with the tweak-length.

6.1 Handling the Domain Separation of TBC Instances

In ZMAC and ZAE, we use several independent TBC instances through domain
separation integers. In detail, for ZMAC, one needs one TBC instance (Ẽ9

K) for
the generating the masking keys L` and Lr, one instance (Ẽ8

K) for the hashing
part, 4 instances (Ẽ0

K , Ẽ1
K , Ẽ2

K , Ẽ3
K) for the finalization function when the

message is a positive multiple of (n+ t) bits, and 4 instances (Ẽ4
K , Ẽ5

K , Ẽ6
K , Ẽ7

K)
for the finalization function when the message is not a positive multiple of (n+ t)
bits. This sums up to 10 instances. Moreover, ZAE requires one more instance
(Ẽ10

K ) for the encryption part.
For all instances, encoding can be achieved by simply reserving 4 bits of the

tweak input of the TBC. This has the advantage of being very simple and elegant,
but it also means that in practice the message block size of ZMAC will be a little
unusual (as the tweak-length is usually a multiple of the block-length).

Another solution is to separate the instances using distinct field multiplications.
This allows the message block size of ZMAC to be a multiple of the TBC block
size. However, the number of distinct multiplications is non-negligible and will
render the implementation much more complex.

Finally, a last solution could be to XOR into the state distinct words that are
dependent of the secret key (for example generated just like the masks L` and Lr,
but with different plaintext inputs). The advantage is that the implementation
is simple and it allows the message block size of ZMAC to be a multiple of the
TBC block size. However, more precomputations will be needed.

All these solutions represent different possible tradeoffs, and we note that
this issue is present for most TBC-based MAC or AE schemes.
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6.2 Efficiency Comparisons

In this subsection, we report the efficiency estimates of our operating modes
ZMAC and ZAE, when the TBC is instantiated with Deoxys-BC and SKINNY,
while comparing with existing MAC and AE schemes.

We do not perform a comprehensive comparison with schemes combining a
(T)BC and a 2n-bit algebraic UHF, such as a 256-bit variant of GMAC [MV04].
In principle, such schemes can achieve n-bit security. However, the additional
implementation of an algebraic UHF would require more resources (memory for
software and gates for hardware) than pure (T)BC modes, which is not desirable
for the performance across multiple devices. Moreover, the existence of weak-key
classes for polynomial hash functions [HP08, PC15] can be an issue.

We will consider two scenarios: (1) long messages and (2) long messages
with equally long associated data (AD). For these two scenarios, the cost of the
precomputations or finalizations can be considered negligible (for benchmarking,
we used 65536 bytes for long messages or AD). Moreover, we note that in ZMAC,
the two calls for precomputation can be done in parallel, as well as the calls in
the finalization function ZFIN. For modern processors, where parallel encryptions
(for bitslice implementations) or pipelined encryptions (for implementations using
the AES-NI instructions set) are by far the most efficient strategy, having a
finalization composed of four parallel encryption calls (like in ZMAC) or a single
one (like in SCT) will not make a big difference in terms of efficiency.

On an Intel Skylake processor Intel Core i5-6600, we measure that for long
messages AES-128 runs at 0.65 c/B (cycles/Byte), while Deoxys-BC-256 runs at
0.87 c/B, Deoxys-BC-384 runs at 0.99 c/B, SKINNY-128-256 at 4.12 c/B and
SKINNY-128-384 at 4.8 c/B. However, these numbers assume that the tweak
input of the ciphers is being used as a counter (as in SCT or SIVx). This can
make an important difference depending on the TBC considered, especially for
ciphers with a heavy key schedule. One can observe [BJK+16] that when the
tweak input is considered random (in opposition to being a counter), there is
not much efficiency penalty for SKINNY (probably due to the fact that the best
SKINNY implementations use high-parallelism bitslice strategy). For Deoxys-BC,
we have implemented a random tweak version and compared it with the case
where the tweak is used as a counter. We could observe that in the case of AES-NI
implementations a penalty factor on efficiency of 1.4 must be taken in account
for Deoxys-BC-256, and a factor 1.8 for Deoxys-BC-384. We emphasize that these
penalties will probably not appear for other types of implementations (table or
bitslice implementations).

Taking into account all these considerations, we compare ZMAC and ZAE
efficiencies with its competitors13 in Table 3. One can see that ZMAC is the fastest
13 We can mention that algebraic UHFs such as GHASH would probably perform twice

slower for a 2n-bit output and current best implementation on latest processors show
that GHASH costs about 1/2 of an AES call. Therefore, we can estimate that ZHASH
instantiated with Deoxys-BC-256 or Deoxys-BC-384 would require a bit more clock
cycles than a 2n-bit version of GHASH, while processing much more data at the same
time (ZHASH can handle n+ t bit per TBC call).
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Table 3. Estimated efficiencies (in c/B) of various MAC and AE primitives (for (1)
long messages and (2) long message with equally long AD) on a Intel Skylake processor.
For (2), the input bytes are the sum of message and AD bytes. NR denotes the nonce-
respecting scenario. GCM-SIV is proposed by [GL15]. (?) Performances are reported for
SIV instantiated with a fully parallelizable PRF (e.g., PMAC), while the specifications
from [RS06] use a PRF based on CMAC which has a limited parallelizability.

mode Cipher Long M Long M Security
Long AD

Message Authentication Code
CMAC AES-128 2.68 – 64
PMAC AES-128 0.65 – 64
PMAC1 Deoxys-BC-256 0.87 – 64

PMAC_TBC1k Deoxys-BC-256 0.87 – 128
ZMAC Deoxys-BC-256 0.61 – 128
ZMAC Deoxys-BC-384 0.52 – 128
ZMAC SKINNY-128-256 2.06 – 128
ZMAC SKINNY-128-384 1.60 – 128

(Deterministic) Authenticated Encryption
OCB AES-128 0.65 0.65 64 (NR)
GCM AES-128 0.65 0.65 64 (NR)
ΘCB Deoxys-BC-256 0.87 0.87 128 (NR)
SIV AES-128 1.30? 0.97? 64

GCM-SIV AES-128 0.95 0.80 64
SCT Deoxys-BC-256 1.74 1.30 64 (128 for NR)
SIVx Deoxys-BC-256 1.74 1.30 128
ZAE Deoxys-BC-256 1.48 1.04 128
ZAE Deoxys-BC-384 1.58 1.09 128
ZAE Deoxys-BC-256/Deoxys-BC-384 1.46 1.03 128
ZAE SKINNY-128-256 6.18 4.12 128
ZAE SKINNY-128-256 6.38 3.98 128
ZAE SKINNY-128-256/SKINNY-128-384 5.70 3.64 128
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MAC, while providing n-bit security. Moreover, ZAE offers better performances
when compared to misuse-resistant competitors, while providing optimal n-bit
security, even in nonce-misuse scenario.

It is interesting to note that, as foreseen in previous section, for ZAE the
maximum speed might be achieved by using a TBC version with a large tweak
for the MAC part, and a TBC version with a small tweak for the encryption part
(typically Deoxys-BC-384 for the MAC part and Deoxys-BC-256 for the encryption
part). This is because ZMAC really benefits from using a TBC with a large tweak,
while the encryption part is not faster when using a TBC with a large tweak
(and a TBC with a large tweak is supposed to be slightly slower).
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A Proof of Lemma 1

The proof can be obtained by slightly modifying the proof of [MI15], which
is based on the Random System framework by Maurer [Mau02], or using the
game-playing technique by Bellare and Rogaway [BR06]. Here, we present a
different proof based on the H-coefficients technique [Pat08b].

The task of adversary A is to distinguish XT[P̃, H] from a TURP P̃id :
T ′ × {0, 1}n → {0, 1}n using q encryption queries. For notational convenience,
this section uses letter G (for global tweak) to denote an element of T ′. We use
letter T to denote the t-bit tweak of P̃ inside XT.

We informally say that A is in the “real” world when it interacts with
XT[P̃, HL] and in the “ideal” world when it interacts with P̃id. Let (Gi, Xi, Yi) ∈
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T ′ × {0, 1}n × {0, 1}n denote the tuple of i-th adversary’s query (Gi, Xi) and
response Yi from the oracle.

Since the game is purely information-theoretic, we can assume wlog that A
is deterministic. We also assume that A never repeats queries (i.e., (Gi, Xi) 6=
(Gj , Xj) for any 1 ≤ i < j ≤ q).

In the real world, we have HL(Gi) = (Wi, Ti) ∈ {0, 1}n × {0, 1}t as internal
variables for the i-th query. The output is Yi = P̃(Si, Ti) where Si = Xi ⊕Wi. In
the ideal world, we assume that “dummy” values (Wi, Si, Ti) are computed using
a uniform key L $← L, independently of answers Yi = P̃id(Gi, Xi).

In order to ease the proof, we let the hash key L be revealed to A after its q
queries. Note that this is wlog since this can only increase A’s advantage. Hence,
we define the transcript of the attack as

τ = ((G1, X1, Y1), . . . , (Gq, Xq, Yq), L).

We observe that the transcript uniquely determines {(Wi, Si, Ti)}i=1,...,q for both
worlds.

Once a deterministic A is fixed, we can define the probability space of the
transcript defined as Pr[Θre = τ ] for the real world and Pr[Θid = τ ] for the
ideal world. We say τ is attainable if Pr[Θid = τ ] > 0. Now we introduce the
fundamental lemma of the H-Coefficients technique (see e.g. [Pat08b],[CS14] for
details).

Lemma 7. Assume that the set of all attainable transcripts is partitioned into
the two disjoint sets, GoodT and BadT. If there exists ε1 and ε2 such that for
any τ ∈ GoodT,

Pr[Θre = τ ]
Pr[Θid = τ ] ≥ 1− ε1 and Pr[Θid ∈ BadT] ≤ ε2,

then A’s advantage is bounded by ε1 + ε2.

In our case, we define GoodT as the set of all transcripts such that (Si, Ti) 6=
(Sj , Tj) for any i 6= j. The set of bad transcripts BadT is thus defined as its
complement (i.e., transcripts containing at least one collision (Si, Ti) = (Sj , Tj)
for some i 6= j).

Then we have the following lemma.

Lemma 8. For any τ ∈ GoodT,

Pr[Θre = τ ]
Pr[Θid = τ ] ≥ 1.

Proof. Let (2n)i = (2n) · (2n − 1) · · · (2n − i+ 1). Given τ ∈ GoodT, let d be the
number of distinct (global) tweaks, and let {G]1, . . . , G

]
d} be the set of all distinct

(global) tweaks. Let I(G)
i = {j : Gj = G]i , 1 ≤ j ≤ q} for i = 1, . . . , d be the set

of indexes of queries having the same tweaks, and let |I(G)
i | = ci.
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Similarly, we define d′ be the number of distinct Ti’s, and let {T ]1 , . . . , T
]
d′} be

the set of all distinct Ti’s. Let I(T )
i = {j : Tj = T ]i , 1 ≤ j ≤ q} for i = 1, . . . , d′

be the set of indexes of queries having the same Ti, and let |I(T )
i | = c′i.

Here,
∑
i=1,...,d ci =

∑
i=1,...,d′ c

′
i = q holds and since Ti is a function of L

and Gi, we have d′ ≤ d.
In the ideal world, the distribution of (Y1, . . . , Yq) is completely determined

by {I(G)
1 , . . . , I(G)

d } from the definition of TURP and the assumption of non-
repeating queries. For any attainable transcript τ , we have

Pr[Θid = τ ] = 1
(2n)c1 · (2n)c2 · · · (2n)cd

· 1
|L|

, (9)

where the last term comes from the uniform distribution of the hashing key L.
In the real world, the distribution of (Y1, . . . , Yq) is completely determined by

{I(T )
1 , . . . , I(T )

d } since for any τ ∈ GoodT, two message-block inputs to P̃, Si and
Sj , are distinct if Ti = Tj (i.e., i, j ∈ I(T )

h for some h). Therefore, we have

Pr[Θre = τ ] = 1
(2n)c′1 · (2

n)c′2 · · · (2
n)c′

d′

· 1
|L|

. (10)

Here, we observe that, for all i, I(T )
i is either equal to I(G)

h for some h or
a union of {I(G)

k }k∈S for some set S ⊆ {1, . . . , d}, that is, {I(T )
1 , . . . , I(T )

d′ } is
obtained by applying some join operations to {I(G)

1 , . . . , I(G)
d }.

This implies that (2n)c′1 · (2
n)c′2 · · · (2

n)c′
d′
≤ (2n)c1 · (2n)c2 · · · (2n)cd

holds
since (2n)i+j ≤ (2n)i · (2n)j . Combined with (9) and (10), this concludes the
proof.

Lemma 9.

Pr[Θid ∈ BadT] ≤ q2ε

2 .

Proof. In the ideal world, the “dummy” hashing key L is independent from the
oracle answers Yi. Therefore we only have to consider all non-adaptive strategies.
Thus, Pr[Θid ∈ BadT] is at most

max
(G1,X1),...,(Gq,Xq)
(Gi,Xi)6=(Gj ,Xj)

∑
1≤i<j≤q

Pr[L $← L : Wi ⊕Xi = Wj ⊕Xj , Ti = Tj ]

≤
(
q

2

)
ε ≤ q2ε

2 ,

where the first inequality holds as H is (n, t, ε)-pAXU.

Combining Lemmas 7, 8, and 9 concludes the proof.
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