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Abstract

An OT-combiner takes n implementations of the oblivious transfer (OT) functionality,
some of which may be faulty, and produces a secure instance of oblivious transfer as long as
a large enough number of the candidates are secure. More specifically, an OT-combiner is a
2-party protocol between Alice and Bob which can make several black-box calls to each of
the n OT candidates. An adversary can corrupt one of the players and certain number of
OT candidates, obtaining their inputs and (in the active case) full control of their outputs
and we want the resulting protocol to be secure against such adversary.

In this work we consider perfectly (unconditionally, zero-error) secure OT-combiners and
we focus on minimizing the number of calls to the candidate OTs.

First, we extend a result from Ishai et. al (ISIT 2014), constructing a perfectly secure
single-use (one call per OT candidate) OT-combiner which is secure against active adver-
saries corrupting one player and at most a tenth of the OT candidates. Ishai et. al obtained
the same result for passive adversaries.

Second, we consider a general asymmetric corruption model where an adversary can
corrupt different sets of OT candidates depending on whether it is Alice or Bob who is
corrupted. We give sufficient and necessary conditions on the existence of an OT combiner
with a given number of calls to each server in terms of the existence of secret sharing schemes
with certain access structures and share-lengths. This allows us for example to reduce the
number of calls needed by known OT combiners, and in fact to determine the optimal
number of calls, in some concrete situations even in the symmetric case, e.g. when there are
three OT candidates and one of them is corrupted.



1 Introduction

1-out-of-2 bit oblivious transfer [EGL82] (OT) is a well-known cryptographic primitive between
two parties, a sender and a receiver, in which the sender has two messages and the receiver
chooses to learn one of them; in addition, two other guarantees hold, namely the sender does
know which of her two messages was chosen by the receiver and the receiver obtains no infor-
mation about the message that he did not choose to learn.

OT is a fundamental primitive for secure multiparty computation. In fact it is known that
secure multiparty computation protocols can be entirely based on OT [Kil88, IPS08]. However,
unconditionally secure two-party computation is not possible in the plain model, even if we only
assume that one of the players may be passively corrupted. Hence, OT is likewise impossible to
attain unless we assume the existence of some additional resource. Examples of such resources
can be physical assumptions such as the existence of a noisy channel between the sender and
the receiver [CK88], hardware tokens [GIS+10], or the assumption that one of the parties
have bounded memory [CCM98]. However, arguably the most studied resource for oblivious
transfer is the assumption that the parties are computationally bounded. In this vein, oblivious
transfer protocols have been proved secure assuming the computational hardness of different
problems, for example hardness of factoring [Rab81], the DDH assumption [BM89, AIR01],
hardness of decoding [DvdGMN08], the quadratic residuosity assumption, and worst-case lattice
assumptions [PVW08].

Basing oblivious transfer on a computational assumption however forces each party to rely
on the fact that the particular hardness assumption used has not been broken so far by the
other party. This motivates the notion of an OT combiner which is a protocol between Alice
and Bob that makes black-box calls to n candidate implementations of OT, and produces a
single instance of OT which is secure as long as a certain number of the candidates were secure
to start with. This way we can for example use candidate implementations which are secure
under different hardness assumptions and the combiner will produce a secure OT as long as not
too many of these hardness assumptions are broken.

An OT combiner can also be seen as a server-aided oblivious transfer protocol, where Alice
and Bob have access to n servers S1, S2, . . . , Sn, each of them only implementing one of the
candidates for the OT functionality. Alice and Bob can call each of the servers several times,
where for each execution a server receives two bits from Alice and one bit from Bob, and outputs
the resulting bit to Bob. Therefore, in particular, these servers do not communicate to (or even
need to be aware of) each other. We adopt this view of OT combiners in what follows.

OT combiners were introduced in [HKN+05] and further studied in [HIKN08, PW08, IMSW14].
In this paper we are interested in minimizing the number of calls to each of the servers. We take
as starting point [IMSW14], where the authors focus on single-use OT combiners, in which each
OT server is used only once. In their work, they consider an adversary that may corrupt Alice
and up to tA servers or Bob and up to tB servers, thereby obtaining all information seen during
the protocol by the corrupted servers and party. We will call this adversary a (tA, tB)-adversary.
It is shown that for large enough n, there exists a single-use OT combiner which is perfectly
secure against a passive (tA, tB)-adversary where tA = tB = Ω(n). More precisely this holds for
tA = tB = 0.11n. Furthermore, they show that the existence of single-use OT combiners implies
the existence of a certain secret sharing scheme whose privacy and reconstruction thresholds
are related to tA and tB and where the shares are of constant size. By applying certain bounds
on secret sharing over small alphabets [CCX13], they conclude among other facts that uncon-
ditionally secure single-use OT-combiners cannot exist when tA + tB = n − O(1) (it is easy to
show that perfectly secure OT combiners, single-use or not, cannot exist if tA + tB ≥ n).

In this work, we first show a construction of single-use OT-combiners which are perfectly
secure against an active adversary corrupting the same sets as in [IMSW14], namely:
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Theorem 1.1. For any large enough n, there exists an n-server single-use OT-combiner which
is perfectly secure against an active (0.11n, 0.11n)-adversary.

In fact this theorem is a special case of a more general result, that represents a much tighter
link between secret sharing schemes and OT combiners.

In order to explain this result, we first need to consider a slightly more general adversary
that can corrupt either Alice and a set A ∈ A of servers, or Bob and a set B ∈ B of servers.
Here A and B are two adversary structures1 in {1, . . . , n}. Now we say that (A,B) is an R2

pair of structures if there is at least one server i ∈ {1, . . . , n} such that i /∈ A ∪ B. Our result
is then as follows.

Theorem 1.2. Let A, B be adversary structures on the set of servers {S1, . . . , Sn}. Suppose
that the following conditions are true:

• (A,B) is an R2 pair of structures.

• There exists a secret sharing scheme S for n players with the following properties:

1. It is a linear secret sharing scheme.

2. The domain of secrets is {0, 1} and the domain of the i-th share is {0, 1}`i, for
i = 1, . . . , n.

3. Every set A ∈ A is unqualified in S and for every set B ∈ B, its complement B is
qualified in S.

Then there exists a OT-combiner which is perfectly secure against any active (A,B)-adversary
and uses server Si exactly `i times.

Therefore we can see that a single-use OT combiner will exist in the cases where an ideal (i.e.
every share is one bit long) secret sharing scheme S exists satisfying all properties. Theorem 1.1
is then obtained by using secret sharing schemes coming from families of binary linear codes such
that both them and their duals are on the Gilbert-Varshamov bound [CCG+07] (see Section 5.3
for more details)

An interesting fact about Theorem 1.2 is that it is close to give a tight characterization of
unconditionally secure OT combiners in terms of secret sharing schemes, since one can extend
the arguments in [IMSW13] to prove the following result.

Theorem 1.3. Let A, B be adversary structures on the set of servers {S1, . . . , Sn}. If there
exists a perfectly secure OT-combiner which is secure against any active (A,B)-adversary and
uses server Si exactly `i times, then:

• (A,B) is an R2 pair of structures.

• There exists a secret sharing scheme for n players with the following properties:

1. The domain of secrets is {0, 1} and the domain of the i-th share is {0, 1}`i, for
i = 1, . . . , n.

2. Every set A ∈ A is unqualified in S and for every set B ∈ B, its complement B is
qualified in S.

If we compare both Theorems 1.2 and 1.3 we see there is just one gap regarding sufficient
and necessary conditions, namely that our construction from Theorem 1.2 requires a linear
secret sharing scheme.

1An adversary (or anti-monotone) structure A is a family of subsets of in {1, . . . , n} such that if A ∈ A and
A′ ⊆ A, then A′ ∈ A
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1.1 Details and techniques

Our construction of an OT combiner showing Theorem 1.2 relies on the combination of two secret
sharing schemes. The first one is the secret sharing scheme S assumed by the theorem, which
is used by Bob in order to secret share his input among the servers. The other secret sharing
scheme is a multi-secret sharing scheme Σ with some unusual properties, whose construction
may be of independent interest. This will be used by Alice in order to secret share her inputs
among the servers.

Such secret sharing scheme takes a 2-bit secret (m0,m1) and, in the simplified “single-use”
case of our theorem (which is enough to show Theorem 1.1), splits it into 2n shares, indexed
by pairs (i, j), where i = 1, . . . , n, and j = 0, 1. The secret sharing scheme is such that a set
of participants of the form {(1, v1), (2, v2), . . . , (n, vn)} (where vi ∈ {0, 1}) can reconstruct the
message m0 if and only if the bit-string (v1, . . . , vn) belongs to some given vector space V , while
it can reconstruct m1 if and only if (v1, . . . , vn) belongs to some affine space t+V for some given
vector t. Further, these sets are the only minimally qualified sets for each of the messages.

If that were the only requirements, the existence of such a secret sharing scheme would
be guaranteed by known general results in secret sharing (where each coordinate m0 and m1

would then be independently shared with a secret sharing scheme with potentially exponentially
long shares). But what makes the problem interesting is that for our problem we need the
additional condition that every share is one bit long. Moreover, it is also necessary to exact
some conditions preventing certain sets of shares from leaking correlations between m0 and m1

even if they give no information about either individual message. We show that we can achieve
all these properties by a relatively simple construction.

With all these elements in hand, it is now easy to explain how our OT combiner works. Alice
will use a secret sharing scheme as specified above where V is the set of all possible sharings
of 0 in the scheme S used by Bob, and t is a sharing of 1 in S. In this situation t + V is the
set of all sharings of 1 in S by linearity of S. She then sends the (i, 0) and (i, 1)-th shares to
the i-th server. If Bob has used bi, i = 1, ..., n as input for the servers, he will receive the shares
of (m0,m1) with indices (1, b1), ..., (n, bn). By the properties of the scheme Σ given that set of
shares he can now reconstruct m0 if (b1, . . . , bn) was a sharing of 0 with S, and m1 if (b1, . . . , bn)
was a sharing of 1 with S.

Of course this only shows the correctness of the protocol when Alice and Bob are honest. In
particular, we need to take into account that Bob can corrupt a set B ∈ B of servers, obtaining
both of Alice’s shares corresponding to those servers. Furthermore, in the active case, he can
also submit values that do not correspond to a valid sharing of a bit with S. However, we show
that even using both strategies simultaneously will not give him information about more than
one of Alice’s messages.

1.2 Related work

[HKN+05] introduced the notion of OT combiners. Several different flavours are introduced;
the notion we are considering in this paper corresponds to that they call third-party black-
box combiners. They consider threshold security with tA = tB = t, and show that passively
unconditionally secure OT combiners cannot exist for n = 2, t = 1. On the other hand, they
give a concrete construction of a secure OT combiner for n = 3, t = 1 which makes 2 calls to
each OT-candidate. In Section 8, we show how our construction can improve the number of
server calls of this result, since we can construct an OT combiner which makes two calls to two
of the servers, but only one to the other server. Furthermore, we can show that this is optimal.

In [HIKN08] OT-combiners are constructed from secure multiparty computation protocols.
Again the threshold case with tA = tB = t is considered. They show how to construct passively
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statistically secure OT combiners with t = Ω(n) which make O(1) calls to each server. Further-
more they achieve constant production rate, meaning that their construction allows to produce
Θ(n) instances of OT.

In [PW08] an oblivious linear function evaluation (OLFE) combiner is constructed where
each server executes a single instance of OLFE and the construction achieves perfect security
whenever tA + tB < n. OLFE is a functionality where Alice has as input two values a, b in
a finite field Fq of q elements, Bob has as input x ∈ Fq and receives ax + b as output. Even
though OLFE is a generalization of OT (OT is equivalent to OLFE over F2), the construction
in [PW08] requires q > n, since it uses Shamir secret sharing in order to share the players’
inputs among the servers.

Finally, it is interesting to point out that [BI01] and [VV15] consider, in different contexts,
secret sharing schemes with access structures that are somewhat related to the ones we need.
Given a language L ⊆ {0, 1}n, their secret sharing schemes for 2n players have as minimally
qualified subsets all those of the form {(1, v1), (2, v2), . . . , (n, vn)} where (v1, v2, . . . , vn) ∈ L.
However, both works also include the sets of the form {(i, 0), (i, 1)} as minimally qualified.

1.3 Overview

Section 2 contains preliminaries on secret sharing and adversary structures, although we also
introduce the notion of R2 pair. Section 3 describes our model. Section 4 gives a construction of
a multi-secret sharing scheme with certain properties regarding its access structure; this will be
the secret sharing scheme used by Alice in our construction. In Section 5 we show Theorem 1.2
in the case where S can be taken to be an ideal secret sharing scheme (i.e. every share is a bit
long). This is enough to show Theorem 1.1. In Section 6 we show Theorem 1.2 in the general
case. In Section 7 we show Theorem 1.3. In Section 8 we show how Theorems 1.2 and 1.3 can
be used to determine the exact minimal number of calls that we need for a perfectly secure OT
combiner in the case where we have 3 servers and one can be corrupted.

2 Preliminaries

2.1 Q2 structures and R2 pairs of structures

We denote by Pn the set {1, 2, . . . , n}. Furthermore, 2Pn is the family of all subsets of Pn. An
adversary (or antimonotone) structure A ⊆ 2Pn is a family of subsets of Pn such that ∅ ∈ A
and for every A ∈ A and B ⊆ A we have B ∈ A.

Definition 2.1. We say that an adversary structure A is Q2 if for all A,B ∈ A, we have
A ∪B 6= Pn.

Definition 2.2. We say that a pair (A,B) of adversary structures is R2 if for all A ∈ A,
B ∈ B, we have A ∪B 6= Pn.

R2 is a generalization of Q2. More precisely, the pair of adversary structures (A,A) is R2

if and only if A is Q2. However, there exist adversary structures A,B such that neither A nor
B are Q2, while the pair (A,B) is R2. For example: n = 4, and A and B are the adversary
structures with maximal sets {1, 2}, {3, 4} in the case of A, and {1, 3}, {2, 4} in the case of B.

Definition 2.3. For an adversary structure A, the dual adversary structure A∗ is defined as
follows: A ∈ A∗ if and only if Ā 6∈ A, where Ā = Pn \A.

Lemma 2.4. If (A,B) is R2, then B ⊆ A∗ (consequently also A ⊆ B∗).

Indeed, if B ∈ B, then B̄ 6∈ A by R2, and then B ∈ A∗ by definition of the dual adversary
structure.
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2.2 Secret sharing

Our protocols rely heavily on secret sharing, a well-known cryptographic primitive introduced
by Shamir [Sha79] and, independently, Blakley [Bla79]. We recall some terminology and results
which will be needed later.

A secret sharing scheme for the set of players Pn is given by a probabilistic algorithm ShareS
that takes as input a secret s and outputs values a1, a2, . . . , an known as shares. The vector
(a′1, a

′
2, . . . , a

′
n) is called a sharing of s if on input s ShareS outputs the values a′i as shares with

non-zero probability.
We say that a set A ⊆ Pn is unqualified if for any secret s and any sharing (a1, a2, . . . , an)

for it, the vector (ai)i∈A gives no information about the secret, i.e., the conditional probability
that ShareS outputs the values (ai)i∈A conditioned to the secret being s is the same as the
probability of the same event conditioned to the secret being s′. Note that the family A ⊆ 2Pn

of all unqualified sets of S is an adversary structure. We say that a set A ⊆ Pn is qualified if for
any secret s and any sharing (a1, a2, . . . , an) for it, the the vector (ai)i∈A uniquely determines
the secret, i.e. there is a unique secret s for which ShareS can output those values. The family
of all qualified sets is called the access structure of S. We say that a secret sharing scheme is
perfect if every set A ⊆ Pn is either qualified or unqualified (there are no sets of shares which
give partial information about the secret).

We also define ReconstructS , an algorithm that takes as input a set of pairs {(i, ai) : i ∈ A}
where A ⊆ Pn and outputs s if A is a qualified set for S and the values {ai : i ∈ A} are part of
a valid sharing of the secret s, and ⊥ otherwise.

Let F be a finite field. A linear secret sharing scheme S (over F), LSSS for short, is a secret
sharing scheme where the space of secrets is a vector space F`0 , the space of the i-th shares is F`i

for i = 1, . . . , n, and there exists as integer e and a map M : F`0+e → F`1 × · · · × F`n such that
ShareS consists in choosing a uniformly random vector u ∈ Fe and outputting M(s,u) as shares.

We denote by [s,u]S ∈ F` this sharing, where ` =
∑n

i=1 `i. Given a set A ⊆ Pn we use [s,u]
(A)
S to

denote the vector consisting only of the shares corresponding toA. When we do not need to make

the randomness explicit, then we write [s]S and [s]
(A)
S . Moreover, we say that ` is the complexity

of S. We note that ShareS runs in polynomial time in `. It is also satisfied that the set of possible
sharings is a vector space and that given λ1[s1,u1]S+λ2[s2,u2]S = [λ1s1 +λ2s2, λ1u1 +λ2u2]S ,
i.e. a linear combination of sharings is a sharing for the same linear combination applied to the
secrets. It is easy to see that this implies that ReconstructS , on input a qualified set A and a
set of shares for it, acts by applying a linear function to these shares.

We need a few facts about when sets are qualified and unqualified in a linear secret sharing
scheme. First, consider the case `0 = 1, where the secret is just an element in F. In that case a
LSSS is perfect, and we have:

Lemma 2.5. Let S be a LSSS with secrets in F. A set A ⊆ Pn is unqualified if and only if there

exists a vector u, such that [1,u]
(A)
S = 0, i.e., if we share the secret 1 using randomness u, the

shares corresponding to A are all zero. It is qualified otherwise.

This can be easily derived by taking into account that, if the condition above is satisfied,
then[s, t]S and [s′, t′]S = [s, t]S + (s′ − s)[1,u]S are sharings of s, s′ such that all the shares in
A coincide.

Now suppose that in addition F = F2, so we are dealing with binary LSSS and that every
share is one bit long, i.e., `i = 1. Since given a qualified set A, the reconstruction algorithm in
a LSSS consists of applying a linear function on the corresponding shares, under the conditions
above it must hold that the secret equals the sum of the shares of a fixed subset A′ ⊆ A.
Therefore we can characterize the minimally qualified set (those qualified sets such that none
of their subsets are qualified) as follows
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Lemma 2.6. Let S be a LSSS with secrets in F2 and shares in F2. A set A is minimally
qualified if and only if for any secret s ∈ F2 and any sharing (a1, a2, . . . , an) = [s]S , we have
that s =

∑
i∈A ai.

In this work it will also be essential to understand LSSSs where `0 = 2 and F is the binary
field F2. In general, if `0 > 1, the situation is more complicated than in the case `0 = 1
since there may be sets A ⊆ Pn which can obtain partial information about the secret. The
generalization of Lemma 2.5 is as follows. Let TA ⊆ F`0 be the set of secrets s such that there

exists u with [s,u]
(A)
S = 0. Then for any secret m, when given [m]

(A)
S , any element in m + TA

has the same probability of being the secret and any element not in m+ TA can be ruled out.
Furthermore, TA is always a vector space. In the case `0 = 2, F = F2, this means that a set A can
be either qualified, unqualified or learn one bit of information, about the secret m = (m0,m1)
and this partial information can be of three types: either it learns one coordinate m0 and has
no information about the other m1, or viceversa, or it learns m0 + m1 and nothing else. A
LSSS Σ with secrets (m0,m1) in F2

2 induces a perfect LSSS Σ0 for the secret m0 (by considering
m1 as randomness) and similarly, perfect LSSSs Σ1 and Σ2 for m1 and m0 + m1 respectively.
Therefore we can talk about qualified sets and unqualified sets for m0 (resp. m1, m0 +m1) and
we will use Lemma 2.5 and Lemma 2.6 for these individual secrets later on. We are therefore
seeing Σ as a multi-secret sharing scheme (in a multi-secret sharing scheme[JMO93] several
secret values are distributed among a set of users, and each secret may have different qualified
subsets). Moreover, we can clearly define a reconstruction algorithm for the individual secrets
m0 and m1, which we call Reconstruct0

Σ and Reconstruct1
Σ respectively.

As for the existence of LSSS, it is well known [ISN87] that every adversary structure is the
adversary structure of a LSSS.

Theorem 2.7. For every finite field F and integer `0 ≥ 1 and for every adversary structure A
there exists a perfect LSSS S with secrets in F`0 and adversary structure A.

In general the complexity of the LSSS S constructed with the methods used in [ISN87] is
exponential in n. We say that a LSSS is ideal if `0 = 1 and `i = 1 for all i. The complexity of
an ideal LSSS is n, which is smallest possible. Given a field F and an adversary structure A, it
is not necessarily true that there exists an ideal LSSS over F with A as its adversary structure.

3 OT-combiners

We describe our model in more detail. Alice has a pair of inputs m0,m1 ∈ {0, 1} and Bob
has an input a selection bit b ∈ {0, 1}. They execute a protocol π whose goal is to implement
functionality FOT securely (in the presence of an adversary which we specify below) on those
inputs. The protocol π consists only of local computations by each of the players and oracle calls
to servers S1, . . . , Sn (in particular, we do not need a direct communication channel between
Alice and Bob). If the server Si is not corrupted, then it executes a copy of the functionality
FOT and may be called several times. Each time a server is called, it receives a new pair of
inputs x0, x1 ∈ {0, 1} from Alice and c from Bob, and executes the functionality FOT on these
inputs, therefore outputting the message xc towards Bob.

We consider a static adversary Adv characterized by a pair of adversary structures (A,B)
each contained in 2{S1,...,Sn}, which we call an (A,B)-adversary. Such adversary can corrupt,
before the protocol starts, either Alice and a set of servers A ∈ A or Bob and a set of servers
B ∈ B. If the adversary is passive, then it obtains all information seen by the corrupted
party and servers during the protocol, but cannot make them deviate from the protocol. If the
adversary is active, it can in addition make the corrupted player and servers deviate arbitrarily
from the protocol.
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Functionality FOT

1. On input (transfer, b) from Bob, send (ready) to Alice.

2. On input (send,m0,m1) from Alice, if (transfer, b) has been received previously from Bob,
send (sent,mb) to Bob.

Figure 1: Functionality FOT

In this conditions, we say that the protocol π is an n-server OT-combiner secure against Adv
if it securely implements the functionality FOT in the presence of this adversary. In this paper
we will prove security using the Universal Composability framework [Can01], see [CDN15] for
more information.

Let 1 ≤ tA, tB ≤ n. If there exist A and B such that A contains all subsets of size tA
of {1, . . . , n} and B contains all subsets of size tB of {1, . . . , n} and if π is an n-server OT-
combiner secure against any (A,B)-adversary, then we say that π is an n-server OT-combiner
secure against a (tA, tB)-adversary.

4 A multi-secret sharing scheme

As we mentioned in Section 1.1, our OT combiners rely on the combination of two linear secret
sharing schemes S and Σ. S is given by the statement of Theorem 1.2 and is used by Bob. The
secret sharing scheme Σ, used by Alice, is a multi-secret sharing scheme satisfying a number of
properties that we need in order to achieve security of our combiner.

In this section, we abstract the properties that we will need for Σ, and we give a construction
achieving these properties. How this will play a role in our OT-combiners will become apparent
in the next sections.

Proposition 4.1. Let ` be an integer, V ⊆ F`
2 a vector subspace, t ∈ F`

2 be a vector such that
t /∈ V and let W be the affine space W = t + V . Finally for I ⊆ {1, . . . , `} let eI ∈ F`

2 denote
the vector with 1’s in the I-coordinates and 0’s in the rest.

Then the linear secret sharing scheme Σ for 2` players (indexed by pairs (i, j)) with secrets
in {0, 1}2 and shares in {0, 1}, given in Figure 2, is such that the following properties hold:

1. The minimally qualified sets A for reconstructing the first coordinate m0 of the secret are
exactly the sets of the form A = {(i, ai) : i = 1, . . . , n, (a1, . . . , an) ∈ V }.

2. The minimally qualified sets A′ for reconstructing the second coordinate m1 of the secret
are exactly the sets of the form A′ = {(i, ai) : i = 1, . . . , n, (a1, . . . , an) ∈W}.

3. The minimally qualified sets A′′ for reconstructing the sum m0 +m1 are those of the form
A′′ = {(i, c) : i ∈ H, c = 0, 1} where H is such that eH ∈W and eH′ /∈W for H ′ ⊆ H.

Before starting with the proof, we need some definitions.
Let U be the vector space spanned by the set V ∪ {t}. Note U = V +W . We define

Z0 = U⊥ = {h ∈ F`
2 : h ∈ V ⊥, < t,h >= 0}

and
Z1 = {h ∈ F`

2 : h ∈ V ⊥, < t,h >= 1}.

Note since b /∈ V , then Z1 is non-empty and Z1 = Z0 +g for some g such that < t,g >= 1.
We also need the following lemma, which is a basic fact of linear algebra.
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The multi-secret sharing scheme Σ

Let V ⊥ be the orthogonal space to V , i.e.,

V ⊥ = {h ∈ F`
2 : 〈v,h〉 = 0 for all v ∈ V }.

To share (m0,m1) ∈ F2
2.

• Sample uniformly at random r1, . . . , r`−1 ∈ F2 and let r` = m0 −
∑`−1

i=1 ri.

• Sample h = (h1, h2, . . . , h`) uniformly at random in the space

{h ∈ F`
2 : h ∈ V ⊥, < t,h >= m0 +m1}.

• Send a(i,j) = ri + jhi ∈ F2 to participant (i, j)

Figure 2: The multi-secret sharing scheme Σ

Lemma 4.2. For every u /∈ U , the random variable < u,h >, where h is chosen uniformly at
random in Z0 (resp. Z1), is uniformly distributed in F2.

Now we can proceed with the proof of Proposition 4.1

Proof of Proposition 4.1. Clearly Σ is linear, since a fixed linear combination of the sharings
is a sharing for the same linear combination applied to the secrets. Nevertheless we can also
make the linearity of the construction more explicit by showing how the shares are constructed
as a linear function of the secret (m0,m1) and a uniform random vector in some space Fe

2, as
follows. Note that V ⊥ is a vector subspace. The set Z0 is also a vector subspace which will
have a basis {z(1), z(2), . . . , z(s)}.

A uniformly random element in {h ∈ F`
2 : h ∈ V ⊥, < t,h >= m0 + m1} can be then

sampled by sampling independent uniform random elements d1, . . . , ds ∈ F2 and outputting
d1z

(1)+· · ·+dsz(s)+(m0+m1)g. The elements hi in our construction are simply the coordinates

d1z
(1)
i + · · ·+dsz

(s)
i + (m0 +m1)gi. Therefore, the shares can be written as a linear combination

of uniformly random elements r1, . . . , r`−1, d1, . . . , ds ∈ F2 and the values m0, m1.
Now we need to argue about the access structure of the secret sharing schemes for the

different pieces of information m0, m1 and m0 +m1.
By Lemma 2.6, in the conditions of these scheme (linear, binary, every share is a bit) a set is

minimally qualified for m0 (resp. m1, m0 +m1) if and only if the corresponding shares always
sum up to m0 (resp. m1, m0 +m1) and there is no stricty smaller subset satisfying the same.

Fix A ⊆ {1, 2, . . . , `} × {0, 1} a set of indices. We define two sets I1, I2 ⊆ {1, 2, . . . , `} as
follows:

I1 = {i : exactly one of (i, 0) and (i, 1) is in A}

and
I2 = {i : (i, 1) ∈ A}.

Then ∑
(i,j)∈A

a(i,j) =
∑
i∈I1

ri +
∑
i∈I2

hi =
∑
i∈I1

ri+ < eI2 ,h >

where eI2 is the vector with 1’s in the positions of I2 and 0’s in the rest.
Note that if I1 6= ∅, {1, . . . , `}, then

∑
i∈I1 ri is uniformly distributed in F2 over the choice

of the ri’s. Furthermore,
∑

i∈I1 ri is clearly independent from < eI2 ,h >. Hence the sum∑
(i,j)∈A a(i,j) is uniformly distributed in F2.
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Likewise if eI2 /∈ U = V ∪W then < eI2 ,h > is uniformly distributed in F2 by Lemma 4.2
(regardless of whether m0 + m1 = 0 or m0 + m1 = 1). Therefore, the only cases where A can
be minimally qualified for either m0, m1, m0 +m1 are the following:

• I1 = {1, . . . , `}, eI2 ∈ V . This case corresponds to A = {(1, b1), (2, b2), . . . , (n, bn)} where
(b1, b2, . . . , bn) = eI2 ∈ V . Moreover

∑
(i,j)∈A a(i,j) = m0+ < h, eI2 >= m0, so this set

is minimally qualified for m0, since clearly there cannot be smaller subsets satisfying the
same property.

• I1 = {1, . . . , `}, eI2 ∈W . This case corresponds to A = {(1, b1), (2, b2), . . . , (n, bn)} where
(b1, b2, . . . , bn) = eI2 ∈ W . Moreover

∑
(i,j)∈A a(i,j) = m0+ < h, eI2 >= m1, so this set

is minimally qualified for m1, since clearly there cannot be smaller subsets satisfying the
same property.

• I1 = ∅, eI2 ∈ V : in this case, A = {(i, 0) : i ∈ I2} ∪ {(i, 1) : i ∈ I2}. However∑
(i,j)∈A a(i,j) =< h, eI2 >= 0, so this set is not minimally qualified for any of the secrets.

• I1 = ∅, eI2 ∈ W : in this case, again A = {(i, 0) : i ∈ I2} ∪ {(i, 1) : i ∈ I2}. Now∑
(i,j)∈A a(i,j) =< h, eI2 >= m0 +m1, so this set is minimally qualified for m0 +m1 unless

there is a smaller subset I ′2 ⊆ I2 such that eI′2 ∈W .

5 Construction of OT-combiners when S is ideal

In this section we will show Theorem 1.2, under the additional assumption that the secret
sharing scheme S is also ideal. That is, we show:

Theorem 1.2, case S ideal. Let A, B ⊆ 2Pn be adversary structures such that (A,B) is a R2
pair. Suppose there exists a linear secret sharing scheme S for n players where the secret is in
{0, 1} and every share is in {0, 1}, and such that every set A ∈ A is unqualified in S and the
complement B of every set B ∈ B is qualified in S.

Then there exists a single-use OT combiner which is perfectly secure against any active
(A,B)-adversary.

This result is enough to show Theorem 1.1, which is proven at the end of this section.

5.1 The protocol

Our protocol works as follows: Bob computes a secret sharing of his input b with the ideal linear
secret sharing scheme S promised above, therefore creating n shares bi, each of which is a bit
since the scheme is ideal. On the other hand, Alice will secret share her input (m0,m1) with
a secret sharing scheme Σ that is defined as follows: Σ is the secret sharing scheme given by
Proposition 4.1 where ` = n, V is the set of all possible sharings [0,u]S of 0 with S (which is a
vector space because S is linear) and t will be one sharing of 1 with S (for example t = [1,0]S).
By linearity W is the set of all possible sharings of 1.

Now Alice an Bob call each OT server once, the inputs to the i-th server being a(i,0) and a(i,1),
in this order, on Alice’s side, and bi on Bob’s side. Assuming there is no active corruption, Bob
will receive a(i,bi) from the servers. By definition of Σ he has enough information to reconstruct
mb by running the corresponding reconstruction algorithm (if the reconstruction fails, because
Alice’s shares were malformed, Bob outputs 0 by default).

Proposition 5.1. If Alice and Bob follow the protocol semi-honestly, then πOT implements OT
with perfect correctness.
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Oblivious transfer protocol πOT

Let (m0,m1) be Alice’s input and b be Bob’s input.

1. Local computation:

Alice creates a sharing [(m0,m1)]Σ = (a(i,j))(i,j)∈Pn,2
of her input.

Bob creates a sharing [b]S = (b1, . . . , bn) of his input. Note that each bi ∈ {0, 1} because S is
ideal.

2. Use of the OT servers:

For i ∈ {1, . . . , n}, Alice and Bob use server Si to execute an OT with inputs (ai,0, ai,1) for
Alice and bi for Bob. Let yi denote the output of Bob.

3. Local computation: If b = 0, Bob constructs m′0 by applying

Reconstruct0
Σ({((i, bi), yi) : i ∈ Pn}).

Similarly, if b = 1, Bob constructs m′1 by applying

Reconstruct1
Σ({(i, bi), yi) : i ∈ Pn}).

In any of the cases, if the reconstruction fails, output 0. Otherwise output the reconstructed
m′b.

Figure 3: Protocol πOT

Proof. If Alice and Bob follow the protocol (semi-)honestly, at the end of the protocol Bob

will have received all values m
(i,bi)
b , i = 1, . . . , n, for some sharing [b]S = (b1, . . . , bn). By

Proposition 4.1 {(1, b1), . . . , (n, bn)} is qualified for reconstructing mb (because (b1, . . . , bn) ∈ V
if b = 0 and (b1, . . . , bn) ∈W ).

5.2 Security

In order to guarantee the privacy of Alice’s input, the first thing that we need to observe is
that Bob does not learn mb from a(i,bi) if (b1, . . . , bn) is not a valid sharing of b with S, since
in that case {(1, b1), . . . , (n, bn)} is not qualified for mb by Proposition 4.1. However, this only
guarantees privacy against a very weak semi-honest adversary corrupting Bob and no servers.
Note that, first of all, the adversary can corrupt some set B ∈ B of servers, thereby obtaining
both a(i,0) and a(i,1) for all i ∈ B. Moreover, if the adversary is malicious, it can also make
Bob submit values bi such that (b1, . . . , bn) is not a valid sharing [b]S . Finally, remember that
in Section 2.2 we argued that given an ideal LSSS with secrets in F2, like it is the case with Σ,
it may in principle happen that some sets of shares allow to reconstruct m0 + m1 even if they
do not get any information about the individual m0 and m1. Therefore we also need to ensure
that these cases will not happen in our problem.

We show how the properties we have guaranteed in Proposition 4.1 take care of all these
and prevent the potentially malicious Bob from learning other information than he should.

Proposition 5.2. Suppose (A,B) is an R2 pair of adversary structures and S and Σ are defined
as above. Let (m0,m1) be shared with Σ. Fix B ∈ B and (b′1, . . . , b

′
n) ∈ Fn

2 , and define the set
of indices

H = {(i, b′i) : i ∈ B} ∪ {(i, j) : i ∈ B, j ∈ {0, 1}}.

Then:
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• If the set {b′i : i ∈ B} is not part of any sharing [c]S for any c ∈ {0, 1} then the values
a(i,j), (i, j) ∈ I ′ give no information about the pair (m0,m1).

• If the set {b′i : i ∈ B} is a part of a sharing [c]S of some c ∈ {0, 1} then the values
a(i,j), (i, j) ∈ I ′ give full information about mc but no information about m1−c.

Proof. By the considerations in Section 2.2, we know that in principle a set of shares could
either be unqualified (give no information about (m0,m1)), qualified (give full information) or
give partial information, which in turn can be of three types: either it gives information about
one of the coordinates md and no information about m1−d or it could give information about
m0 +m1 and nothing else. On the other hand, Proposition 4.1 describes the minimally qualified
sets for m0, m1 and m0 +m1.

We show first that the set H is not qualified for m0 +m1 in any case. If that were the case,
then there would exist a set I ⊆ Pn such that H would contain all indices of the form (i, 0),
(i, 1) with i ∈ I and such that eI ∈ Fn

2 is a sharing of 1 with S. H contains both (i, 0) and (i, 1)
exactly for those i ∈ B. But assume there existed a I ⊆ B such that eI ∈ Fn

2 were a sharing of
1. Now we get a contradiction as follows: from the assumptions, B is qualified in S. Therefore
by linearity of S there cannot be a sharing of 1, [1]S , such that [1]BS = 0. But on the other hand

eI ∈ Fn
2 is a sharing of 1 which satisfies that [1]IS is zero, and since B ⊆ I both statements are

contradictory.
Now note that the minimally qualified sets for m0 (resp. m1) are those of the form

{(1, b1), . . . , (n, bn)} ⊆ Pn,2 where (b1, . . . , bn) is a sharing of 0 (resp. 1) with S. However
under the assumptions, H cannot contain any such set. Indeed if that were the case then neces-
sarily bi = b′i for i ∈ B but then {b′i : i ∈ B} would be part of a sharing [0]S (respectively [0]S),
contradicting the assumption.

These elements are enough to formally show the security of our construction.

Theorem 5.3. The protocol πOT UC-implements the functionality FOT in the presence of an
(A,B)-adversary.

Proof. Alice honest, Bob malicious: The first thing to notice is that the values b′i that
malicious sends to the servers do not need to be a correct sharing in S of any bit. The idea of
the proof is to have the simulator extract the environment’s input by applying the reconstruction
procedure of S to the b′i. By the R2 property, these shares can be consistent with at most one b.
If indeed they are a valid sharing of some b, this is sent to the functionality and mb is received;
the simulator then sets m1−b at random and generates shares for both messages. Otherwise, the
simulator generates shares for random m0,m1. After that the simulator generates the remaining
information as it would happen in the protocol. Proposition 5.2 will be used to guarantee that
indeed this is possible.

More precisely, the simulator is constructed as follows. We will suppose without loss of
generality that corrupted servers act as a dummy adversary. Let B denote the set of corrupted
servers.

First, Sim awaits (ready, i) for i ∈ B and that the environment has sent b′i for each i ∈ B.
Then it executes ReconstructS({(i, b′i) : i ∈ B}). If the reconstruction fails then Sim chooses
random messages m̃0, m̃1. If the reconstruction succeeds, let b be its output; then Sim sends
the command (transfer, b) to FOT , receives message (sent,mb) and sets m̃b := mb; it selects
a random message m̃1−b ∈M.

In any case, Sim generates a sharing (a(i,j))(i,j)∈Pn,2
= [(m̃0, m̃1)]Σ.

Finally, in parallel Sim sends the following to the environment: for each i ∈ B, it sends
a(i,b′i)

, and for each i ∈ B, it sends the entire vectors a(i,0), a(i,1).
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We need to prove now that the distribution of these values is indistinguishable from the ones
obtained in the interaction with the actual protocol. We should first note that since the set B is
qualified for S, the values {b′i : i ∈ B} cannot be part of both a sharing [0]S and a sharing [1]S .
Using Proposition 5.2, this implies that the distribution of the set of shares (m̃0)(i,j), (m̃1)(i,j),

for i ∈ B and j ∈ {0, 1} and (m̃0)(i,b′i)
), (m̃1)(i,b′i)

) for i ∈ B obtained in the simulation is the
same as the corresponding distribution in the actual protocol.
Alice malicious, Bob honest: The simulation in this case is slightly tricky, since a potential
problem of the protocol is that Alice can generate inconsistent shares which make Bob’s output
dependent on his selections (that is, on the random sharing of his input). We can show, perhaps
surprisingly, that this does not affect the security of the protocol. Essentially, the simulator
will generate one sharing for b = 0 and one for b = 1 such that the shares corresponding to the
corrupted servers coincide. The simulator will then construct the value that a receiver would
construct for each of these two sharings and will send these values to the functionality. This
results in a view in the ideal world which is perfectly indistinguishable from the real world, due
to the privacy for the set of corrupted servers.

Let A ∈ A be the set of corrupted servers. The simulator works as follows: Upon receiving
(ready) from the ideal functionality FOT , Sim generates uniformly random sharings of b = 0
and b′ = 1 in S subject to the only condition that if i ∈ A, then bi = b′i. Note that this is
possible since A is unqualified for S. Then, in parallel Sim sends bi to the environment for each
i ∈ A. Sim now awaits that for each i ∈ A, the environment sends a(i,0) and a(i,1) and that for
each i ∈ A the environment sends a(i,bi).

For k = 0, 1, if mk is not already set to 0 then Sim computes

mk = ReconstructkΣ({((i, bi), a(i,bi)) : i ∈ Pn})

If the reconstruction of mk fails, Sim sets mk = 0. Finally, it sends (send,m0,m1) to FOT .
By construction, the shares bi corresponding to the set A of corrupt servers that the envi-

ronment receives are indistinguishable from the A-shares in a uniformly random sharing of b,
regardless of whether b = 0 or b = 1. Hence these bi do not allow the receiver to distinguish
the real and ideal world. Now, since after that step there is no further interaction, it suffices to
show that the messages sent to Bob are indistinguishable from the ones sent in the real world.

This is the case since the shares have been chosen with the distribution Bob would use and
since the simulator reconstructs the messages m0 and m1 in exactly the same way as Bob would
reconstruct mb in the real protocol, if b is his input. Therefore the real and ideal world are
indistinguishable.

We note that the simulators in the proof above run in polynomial time.

5.3 Proof of Theorem 1.1

We know from [Mas93] (see also [CCG+07, Theorem 1]) that a linear code (over a field Fq)
with length n+ 1, minimum distance d and whose dual code has minimum distance d⊥ yields a
linear secret sharing scheme for n players, with secret and shares in the same field Fq and such
that any set of d⊥ − 2 players is unqualified and any set of n − d + 2 players is qualified. One
can use then Gilbert-Varshamov (see below) bound to show that

Theorem 5.4. For large enough n, there exists an ideal binary LSSS such that any set of 0.11n
players is unqualified and any set of 0.89n players is qualified.

Plugging this into Theorem 1.2 (in the case we have already proved) shows Theorem 1.1.
We now give a detailed argument on how to derive Theorem 5.4 from the Gilbert-Varshamov

bound. This essentially follows the steps from [CCG+07].
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Theorem 5.5 (Gilbert-Varshamov). For every 0 ≤ δ < 1/2 and any 0 < ε < 1− h2(δ) (where
h(·) denotes the binary entropy function), if a linear code is chosen uniformly at random among
all linear codes over F2 of length n + 1 and dimension k = d(1 − h2(δ) − ε)(n + 1)e, then with
probability 1− 2−Ω(n) the code has minimum distance at least δ(n+ 1).

Choosing δ = 0.11 (which guarantees h2(δ) < 1/2), and ε = 1/2− h2(δ) the theorem states
that for large n, a uniformly random binary linear code of dimension (n + 1)/2 has minimum
distance δ(n+1) with very large probability. Now the dual of a code of dimension (n+1)/2 also
has dimension (n+ 1)/2. So one can use a union bound argument and the observations above
to conclude that choosing a random code of of dimension (n+ 1)/2 yields an ideal binary linear
secret sharing scheme for n players such that any set of δ(n+ 1)− 2 players is unqualified and
any set of (1−δ)(n+1)+2 players is qualified. Now the probabilistic method guarantees that for
all large enough n there exists a binary ideal LSSS with 0.11n-privacy and 0.89n reconstruction.

We should point out that Theorem 1.1 is merely an existence result, since explicit construc-
tions of codes attaining the Gilbert-Varshamov bound are not known. Following [IMSW14],
since randomly selected codes attain the bound with large probability, this result can be turned
into an explicit construction of an statistically secure OT combiner, where Alice and Bob first
agree on a random binary linear code by means of a coin tossing protocol; in this case we need
a direct communication channel between Alice and Bob. Explicit constructions of perfectly
secure OT-combiners against an active (Ω(n),Ω(n))-adversary can be obtained from algebraic
geometric codes, but the underlying constant is worse than 0.11.

Note that one can also give non-asymptotic statements, at the cost of a small loss in the
constant 0.11. Indeed [CCG+07, Corollary 2] (see also Definition 5 in the same paper) guarantees
that for n ≥ 21, there exists a binary linear code with both d, d⊥ ≥ b0.1nc.

Finally, for small values of n one can also obtain explicit constructions of ideal binary LSSS
with relatively good privacy and reconstruction thresholds. One possibility is to use self-dual
codes (i.e. codes that are their own duals), since in that case the minimum distance of the
code and its dual is the same. Tables of such codes are available at [Gab]. These tables
show for instance the existence of a binary self-dual code of length 8 and minimum distance
4, which would yield a single-use 7-server OT-combiner with perfect security against an active
(2, 2)-adversary.

6 Construction of OT-combiners in the general case

We show the general version of the protocol πOT from the previous Section 5, when the adversary
structure A is not necessarily the adversary structure of an ideal LSSS over F2. Note that many
interesting access structures, for example most threshold structures, do not admit an ideal LSSS
over F2. We show:

Theorem 1.2. Let A, B ⊆ 2Pn be adversary structures such that (A,B) is a R2 pair. Suppose
there exists a linear secret sharing scheme S for n players where the secret is in {0, 1} and the
i-th share is in {0, 1}`i, and such that every set A ∈ A is unqualified in S and the complement
B of every set B ∈ B is qualified in S.

Then there exists an OT combiner which calls the i-th server `i times and is perfectly secure
against any active (A,B)-adversary.

Let S be a possibly non-ideal perfect secret sharing scheme with adversary structure A. For
i = 1, . . . , n the i-th share of S belongs to some vector space Ui = {0, 1}`i for some integer
`i ≥ 1. Let ` =

∑n
i=1 `i be the complexity of S.

The idea of the generalization is simple. The i-th server is split in `i subservers, each of
which will receive one different bit of the i-th share of Bob’s input. These subservers will now
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Oblivious transfer protocol πOT (non-ideal S case)

We use the index i ∈ {1, . . . , n} for the servers, ki ∈ {1, . . . , `i} to index the bits of the i-th share of
S and j ∈ {0, 1} to index the bits in Alice’s input to each instance of OT.

1. Local computation:

Bob creates a sharing [b]S = (bi)i∈{1,...,n}, where each bi ∈ {0, 1}`i is parsed as
(bi,1, bi,2, . . . , bi,`i) with bi,k ∈ {0, 1}.
Alice creates a sharing

[(m0,m1)]Σ = (a(i,k,j))i∈{1,...,n},k∈{1,...,`i},j∈{0,1}.

2. Use of the OT servers:

For i ∈ {1, . . . , n} and for each k ∈ {1, . . . , `i}, Alice and Bob use server Si to execute an
OT with inputs (ai,k,0, ai,k,1) for Alice and bi,k for Bob. Let yi,k denote the output of Bob in
instance (i, k).

3. Local computation:

If b = 0, Bob constructs m′0 by applying

Reconstruct0
Σ({((i, k, bi,k), yi,k) : i ∈ Pn, k ∈ {1, . . . , `i}}).

Similarly, if b = 1, Bob constructs m′1 by applying

Reconstruct1
Σ({((i, k, bi,k), yi,k) : i ∈ Pn, k ∈ {1, . . . , `i}}).

In any of the cases, if the reconstruction fails, output 0. Otherwise output the reconstructed
m′b.

Figure 4: Protocol πOT

work as the servers did in the protocol from Section 5 (we remark however that the adversaries
corrupt full servers and not individual subservers). For that we need to modify the secret
sharing scheme Σ used by Alice accordingly. More precisely, let V,W ⊆ U1 × · · · × Un be the
sets of all possible sharings of 0 and 1 respectively. We can think of the elements of V and
W as `-bit strings, and we index their coordinates by pairs (i, k) where the (i, k)-th coordinate
of a sharing is the k-th bit of the i-th share. Now we can define Σ as in Proposition 4.1 for
these V and W (and setting t to be some sharing [1]S). Everything works therefore the same
as in Section 5.1 except that Σ will now have 2` shares. The set of shares will be indexed by
P`,2 := {(i, k, j) : i = 1, . . . , n, k = 1, . . . , `i, j = 0, 1}. The general protocol is given in Figure 4.
The security proofs work essentially as in the case presented in Section 5.

7 Necessary conditions for the existence of OT combiners

In this section we show Theorem 1.3,

Theorem 1.3. Let A, B be adversary structures on the set of servers {S1, . . . , Sn}. If there
exists a perfectly secure OT-combiner which is secure against any passive (A,B)-adversary and
uses server Si exactly `i times, then (A,B) is an R2 pair of structures and there exists a secret
sharing scheme for n players with secret in {0, 1}, the i-th share in {0, 1}`i, for i = 1, . . . , n and
such that every set A ∈ A is unqualified in S and the complement B of any set every set B ∈ B
is qualified in S.

First we show that if (A,B) were not R2 then the existence of an unconditionally secure OT
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combiner would imply the existence of a 2-party unconditionally secure OT protocol. Indeed if
(A,B) is not R2, then there exists A ∈ A and B ∈ B such that A ∪ B is the set of all servers.
Then the entire protocol can be emulated by two players: Alice’, who plays the joint role of
Alice and all the servers in A and Bob’ who plays for Bob and all servers in B. This is then
a two-party protocol in the plain model which is unconditionally secure against a semi-honest
adversary who can corrupt either of the players Alice’ and Bob’. This is known to be impossible.

Next, we prove the existence of a secret sharing scheme with the properties mentioned in the
theorem. In fact, we simply reproduce the arguments from [IMSW13] in our setting. Assume we
have an OT combiner which is perfectly secure against an (A,B)-adversary and where the i-th
server is used `i times. Then Bob’s inputs to the OT servers must have been computed from his
global input to the OT combiner by some probabilistic algorithm AlgBob. We now consider a
secret sharing scheme S whose sharing algorithm is AlgBob (understanding that the i-th share is
the bit-string containing all `i inputs bits to the i-th OT server produced by AlgBob). Since the
OT combiner is secure against and adversary corrupting Alice and a set A ∈ A, this means that
every A ∈ A must be unqualified in S. Next we show that for every B ∈ B, its complement B
must be a reconstructing set for S. Consider a player Alice’ who plays the role of Alice and the
servers in B in the OT-combiner and a player Bob’, who plays the role of Bob and the servers
in B. Assume that the inputs of Alice and Bob are independent. We then have a protocol
between Alice’ and Bob’ in the plain model, which correctly implements the OT functionality
and in which, by security of the OT combiner and since B ∈ B, Bob’ obtains no information
about the input (m0,m1) of Alice’ after the protocol has been executed. In these conditions, it
follows from standard arguments about the impossibility of two party computation in the plain
model (see e.g. [CDN15]) that Alice’ not only obtains information about Bob’s input, but in
fact she recovers it with probability 1. Given that all the information that Alice’ has learned
during the execution of the protocol is the input bits to the servers in B, we conclude that B
is a reconstructing set for S.

8 2-out-of-3 OT-combiners

As an application of Theorems 1.2 and 1.3 we determine the minimal number of calls for a
perfectly secure OT combiner where we have 3 servers, and 2 of them are secure. In other
words, we want perfect security against an (1, 1)-adversary, i.e. A = B = {{1}, {2}, {3}}. By
Theorem 1.2, we are then interested in finding a linear secret sharing scheme over F2 for 3
players such that it has 1-privacy (every single player is unqualified) and it has 2-reconstruction
(every set of two players is qualified). Note that we want to find a threshold secret sharing
scheme, but Shamir’s scheme cannot be used directly over F2 (we would tolerate at most 2
players). One could instead use Shamir’s scheme over the extension field F4, and in this case we
have shares which are each in {0, 1}2. This yields an OT-combiner where each server is called
twice, which matches the number of calls in a construction in [HKN+05]. However, we show
that one can do better with the following LSSS S.

Lemma 8.1. S has 2-reconstruction and 1-privacy.

Corollary 8.2. There exists an OT combiner for 3 OT servers which is perfectly secure against
an (1, 1)-adversary and makes 1 call to one of the OT servers and 2 calls to each of the other
2 servers.

Now we apply Theorem 1.3 in combination with the results from [CCX13] to show that this
is optimal in the total number of server calls. Theorem 1.3 states that given an OT-combiner
in the conditions above, there needs to exist a secret sharing scheme (linear or not) for 3
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Secret sharing scheme S

To share s ∈ {0, 1}.

• Sample r and r′ uniformly at random in {0, 1}.

• Send:

1. r to Player 1.

2. (s− r, r′) to Player 2.

3. (s− r, s− r′) to Player 3.

Figure 5: A 2-out-of-3 threshold linear secret sharing scheme S

players with 1-privacy, 2-reconstruction and share lengths matching the number of calls to the
OT-servers. On the other hand we have

Theorem 8.3 ([CCX13]). Suppose there exists a secret sharing scheme for n players, where the
i-th share takes values in an alphabet Ai, and such that it has t-privacy and r-reconstruction.
Let q = 1

n

∑n
i=1 |Ai| be the average cardinality of the share-alphabets. Then

r − t ≥ n− t+ 1

q
.

Therefore, a secret sharing in the conditions above must satisfy that the average cardinality
of the share-alphabets is q ≥ 3. Now note that in our case the shares are in {0, 1}`i , which
are alphabets of cardinality 2`i , and we can rule out degenerate cases where `i = 0 (since in
that case, clearly it cannot happen simultaneously that {i, j} is qualified and {j} is unqualified).
Under all these conditions, one can easily check that

∑3
i=1 `i < 5 and q = 1

3

∑3
i=1 2`i ≥ 3 cannot

be achieved simultaneously. Therefore,

Corollary 8.4. The minimal number of calls for a OT combiner for 3 OT servers which is
perfectly secure against an (1, 1)-adversary is 5.
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