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Abstract—We are witnessing a confluence between applied
cryptography and secure hardware systems in enabling secure
cloud computing. On one hand, work in applied cryptography has
enabled efficient, oblivious data-structure and memory primitives.
On the other, secure hardware and the emergence of Intel
SGX has enabled a low-overhead and mass market mechanism
for isolated execution. By themselves these technologies have
their disadvantages. Oblivious memory primitives carry high
performance overheads, especially when run non-interactively.
Intel SGX, while more efficient, suffers from numerous software-
based side-channel attacks, high context switching costs, and
bounded memory size.

In this work we build a new library of oblivious memory
primitives, which we call ZeroTrace. ZeroTrace is designed
to carefully combine state-of-art oblivious RAM techniques
and SGX, while mitigating individual disadvantages of these
technologies. To the best of our knowledge, ZeroTrace represents
the first oblivious memory primitives running on a real secure
hardware platform. ZeroTrace simultaneously enables a dramatic
speedup over pure cryptography and protection from software-
based side-channel attacks. The core of our design is an efficient
and flexible block-level memory controller that provides oblivious
execution against any active software adversary, and across
asynchronous SGX enclave terminations. Performance-wise, the
memory controller can service requests for 4 Byte blocks in 1.2 ms
and 1 KB blocks in 3.4 ms (given a 10 GB dataset). On top of
our memory controller, we evaluate Set/Dictionary/List interfaces
which can all perform basic operations (e.g., get/put/insert) in 1-
5 ms for a 4-8 Byte block size.

I. INTRODUCTION

Cloud computing is a paradigm, ever growing in popularity,
that offers on-demand compute and storage resources for users.
Applications such as machine learning, AI, analytics, web, and
mobile services are now frequently hosted in public clouds.
Protecting users’ data in these environments is challenging due
to their underlying complexity and shared infrastructure model.
As a result, multiple attacks vectors from infrastructure and
service providers, other users, and targeted adversaries remain
open.

Up until recently, secure cloud computing could only
be achieved through cryptography (e.g., fully homomorphic
encryption – FHE [12]), or through course-grain hardware
isolation techniques (e.g., Intel TPM+TXT [17], [25], [47]).
Both of the above have severe performance and usability limi-
tations. FHE, for example, introduce many orders of magnitude
overheads. On the other hand, these techniques provide very
strong security guarantees (stronger than TPM+TXT) needed
for applications that operate over highly sensitive data (e.g.,

federal, military, government data, etc.). They can be used to
protect even against malicious operating systems snooping on
the data access-pattern.

Recently, Intel released an instruction set extension called
Software Guard Extensions (SGX) which addresses the above
performance challenges [9], [26]–[28]. In SGX, user-level
sensitive portions of ring-3 applications can be run in one or
more application containers called enclaves. While running,
SGX uses a set of hardware mechanisms to preserve the
privacy and integrity of enclave memory. One open challenge
in using SGX is determining how best to map applications to
enclave(s), that gives the best trade-off in trusted computing
base (TCB) size, performance and code isolation. A common
approach, natively supported by the Intel SGX, is to partition
an application into trusted and untrusted code [41], [62].
Alternatively, a number of works study how to load unmodified
applications into enclaves [2], [4], [16], [48]. This removes
the need to decide how to re-architect the application, but
introduces a large TCB. Additional architectural limitations
must also be addressed when building applications with SGX.
For instance, SGX provides a user-level enclave, and therefore
IO or system calls are not allowed from within it. Moreover,
SGX has a bounded memory size (of roughly 90 MB) and
suffers from numerous side-channels [6], [20], [36], [50], [55].
Due to the architectural limitations and security weaknesses
(such as lack of access-pattern protections) it remains an open
problem to learn how to build applications leveraging SGX
that satisfy security properties deemed needed for applications
operating over highly sensitive data.

This Work: We address this challenge by designing
and implementing ZeroTrace – an oblivious library enabling
applications to be built out of fine-grained, building-blocks
at the application’s data-structure interface boundary. Any
operation on the data stored by the library is protected using
SGX enclaves and remains secure against all software attacks,
including side-channels. This makes the library suitable for
building applications that must operate over highly sensitive
data. As part of this research, we implement and evaluate the
first oblivious memory controller running on a real secure
hardware platform. Also, we evaluate different state-of-art
oblivious schemes (Path ORAM and Circuit ORAM) suitable
as core building blocks to work with SGX. Based on our
results, we establish a few possible instantiations of our
controller that may be adjusted depending on the workload to
optimize performance. We observe in our evaluation that the
performances of these oblivious schemes differ from what may
be expected when instantiated within SGX due to limitations



of the SGX architecture. Below, we summarize some design
choices and challenges that were taken into consideration while
building ZeroTrace.

Partitioning applications at the oblivious data-structure
boundary hits a sweet spot for several reasons. First, the data-
structure interface can be small enough to make it easier
to sanitize requests and responses from application to data-
structure, improving intra-application security. Second, the
data-structure interface is re-usable across many applications.
A service provider can pre-package data-structure backends as
pre-certified blocks with a common interface, enabling appli-
cation developers to build complex applications from known-
good pieces. Further, there is a rich literature in the security
community on how to efficiently achieve various security
properties when working with various data-structures [5], [13],
[52], [60]. These works can be dropped into our system as
different backend implementations, which gives clients the
ability to hot-swap between implementations, depending on
the application’s security requirements.

Our system’s core component is a fully-implemented
SGX-based secure memory controller that exposes a block
read(addr) and write(addr, data) interface to applications.
This memory controller runs in software, partly in an SGX
enclave and partly in outside ring-3 support logic. The
controller’s primary design consideration is flexibility: we
wish for the core controller to be usable across a variety of
threat and usage models. At the highest level of security,
the controller hides which operations it is issued by the user
and the arguments issued to those commands. That is, it
runs obliviously [13], [29], [30], [32]. The module can be
parameterized to defend against several types of adversaries,
where the highest level of security provides obliviousness
(privacy) and integrity (authenticity and freshness) guarantees
against arbitrary software-based adversaries. The core
can be parameterized to defend against a subset of these
threats, depending on the context. To maximize usability,
our controller exposes a low-level and generic ‘frontend’
secure channel-like interface to applications. The controller’s
backend interacts directly with untrusted, available DRAM
and/or HDD/SSD storage, in a fashion transparent to the
application.

Building an efficient memory controller in SGX is non-
trivial, presenting security and performance challenges, due
to the nature of SGX. First, despite isolating enclave virtual
memory from direct inspection, SGX can leak sensitive data
over covert channels (e.g., cache/branch predictor sharing,
page fault pattern). We employ additional mechanisms (e.g.,
[29], [30], [32]) to prevent these leakages. Second, SGX
enclaves do not support direct IO to disk. To support disk
backend storage, we partition the controller between trusted
and un-trusted zones in a secure fashion. Third, SGX does
not support persistent integrity across boots, and risks memory
controller data corruption on sudden/un-expected shutdowns.
We develop a novel protocol to make the core memory
controller fault tolerant: allowing the controller to quickly and
securely recover from such a shutdown or failure (even in
the event of partial data loss). On the performance front, the
whole system design requires a careful balance of resources
between enclave memory, untrusted DRAM and untrusted
disk(s). We propose optimizations to efficiently make use of

these different resources in a way that preserves the module’s
security guarantee.

Using our core memory controller as a building-block,
we implement a library of data-structures that can interface
directly with applications. We evaluate several common data-
structures including arrays, sets, dictionary and lists. Building
on top of enclaves that have flexible client-facing interfaces
brings new advantages. Multiple clients can seamlessly share
the same data-structure, with software-controlled access poli-
cies depending on the trust between those applications. Clients
can also attach remotely to the data-structure, creating novel
distributed systems that create interesting improvements to
related research directions. For example, by extending the
TCB to Intel SGX, we reduce the client-server bandwidth of a
traditional oblivious file server by over an order of magnitude.

Contributions: To summarize, this paper makes the
following contributions.

1) We design and build an oblivious memory controller
from Intel SGX. To the best of our knowledge, the
core memory controller (the bulk of our system) is
the first oblivious memory controller implemented on
a real secure hardware platform.

2) We design and implement ZeroTrace, an application
library for serving data-structures obliviously in an
SGX environment that runs on top of our memory
controller.

3) We evaluate system performance for ZeroTrace as
a stand alone oblivious memory controller and for
plug-and-play data structures. It can make oblivious
read and write calls to 1 KB memory locations on a
10 GB dataset in 3.4 ms. In the plug-and-play setting,
ZeroTrace can make oblivious read and write calls at
8 B granularity on an 80 MB array in 1.2 ms.

Paper Organization: In Section II, we describe our us-
age model and security models. Section III gives a background
on Intel SGX and ORAM. Section IV gives we give details on
our architecture; including the instantiation process, client and
server components, optimizations and security analysis. Sec-
tion V gives a scheme to achieve persistant integrity and fault
tolerance. Section VI describes our prototype implementation
and evaluation. Section VII gives related work, and finally
Section VIII concludes.

II. OUR MODEL

A. Usage Model

We consider a setting where a computationally weak client
wishes to outsource storage or computation to an untrusted
remote server that supports Intel’s Software Guard Extension
(SGX). As secure hardware extensions such as SGX reach
the market, we anticipate this setting will become a common
way to implement many real world applications such as
image/movie/document storage and computation outsourcing.
The cloud can be any standard public cloud such as Amazon
AWS, Microsoft Azure or Google cloud, and the client can be
any mobile or local device.

As introduced in Section I, our proposal consists of stand-
alone enclaves that implement secure memory services. We
envision future applications being constructed from these (and
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similar) plug-and-play services. We now describe this general
scenario in more detail. Afterwards, we show how a special
case of this scenario improves performance in a related branch
of research.

Plug-and-play memory protection for outsourced com-
putation.: We envision an emerging scenario where client
applications (e.g., a database server), which run in an SGX en-
clave(s), connect to other enclaves to implement secure mem-
ory and data-structure services. In an example deployment,
calling a memory service enclave is hidden behind a function
call, which is dynamically linked (connected to another enclave
via a secure channel) at runtime. What “backend” memory
service our system supports can be changed depending on the
application’s needs. For example, our core memory controller
currently supports an ORAM backend. Without changing the
application-side interface, this backend can be transparently
changed to support a different ORAM, different security level
for memory protection (e.g., plain encryption) or different
security primitive entirely (e.g., a proof of retrievability [5]). A
similar argument goes for memory services exposing a data-
structure interface. For example, Wang et al. [52] proposed
a linked-list optimized for use as an iterator, while another
implementation can be optimized for insertion.

A reasonable question is: why break these services into
separate enclaves, as opposed to statically linking them into
the main application? Our design has several advantages. First,
breaking an application into modules eases verification. SGX
provides enclave memory isolation. Thus, verifying correct
operation reduces to sanitizing the module interface (a similar
philosophy is used by Google’s NaCl [58]). Data structures
and memory controllers naturally have narrow interfaces (com-
pared to more general interfaces, such as POSIX [41]), easing
this verification. Second, breaking applications into modules
eases patching. Upgraded memory services can be re-certified
and re-attached piecemeal, without requiring the vendor to
re-compile and the client to re-attest the entire application.
Third, inter-communicating between enclaves gives flexibility
in deployment, as shown in the next paragraph.

(Special case) Remote block data storage: Suppose a
client device wishes to store blocks of data (e.g., files) on the
remote server (e.g., Amazon S3). To achieve obliviousness,
the standard approach is for the client to use an Oblivious
RAM protocol where the client runs the ORAM controller
locally [42], [54]. The ORAM controller interacts over the
network with the server, which acts as a disk. While benefitting
from not trusting the server, these solutions immediately incur
an at-least logarithmic bandwidth blowup over the network
(e.g., WAN) due to the protocol between ORAM controller
and server. As a special case of the first setting (above), the
core memory controller can serve as the ORAM controller,
from the oblivious remote file server setting, now hosted
on the server side. As our architecture can protect side-
channel leakages introduced from the SGX architecture, the
only change to security is we now trust the SGX mechanism.
The advantage is bandwidth savings: this deployment improves
client communication over the network by over an order
of magnitude. Our scheme still incurs logarithmic bandwidth
blowup between the enclave code and server disks, but this is
dwarfed by the cost to send data over the network.

B. Threat Model

In our setting, memory controller logic (e.g., the ORAM
controller) and higher-level interfaces are implemented in
software run on the server. The server hosts SGX and a
regular software stack outside of SGX. The client and SGX
mechanism are trusted; memory controller logic is assumed
to be implemented correctly. We do not trust any component
on the server beyond SGX (e.g., the software stack, disks,
the connection between client and server, other hardware
components besides the processor hosting SGX). Per the usual
SGX threat model, we assume the OS is compromised and
may run concurrently on the same hardware as the memory
controller. By trusting the SGX mechanism, we trust the
processor manufacturer (e.g., Intel).

Security goals: Our highest supported level of security
– thus, our focus for much of the paper – is for the SGX
enclave running the memory controller to operate obliviously
in the presence of any active (malicious), software-based
adversary. In this case, the memory controller must run an
ORAM protocol over untrusted storage. We default to this
level of security because a known limitation of SGX is its
software-based side-channel leakages (Section I), which are
dealt with via oblivious execution. (Related work calls these
digital side-channels [32].) Obliviousness means the adversary
only learns the number of requests made between client and
memory controller; i.e., not any information contained in those
requests. We are interested in preserving privacy and integrity
of requests. The server may deviate from the protocol, in an
attempt to learn about the client’s requests or to tamper with
the result. Our system’s threat surface is broken into several
parts:

Security of memory: First, the memory accesses made
by the SGX enclave to external memory. These are completely
exposed to the server and must preserve privacy and integrity
of the underlying data. These accesses inherit the security of
the underlying memory protection (e.g., ORAM), which we
detail in Section III-C.

Security of enclave execution: Second, the SGX en-
clave’s execution as it is orchestrating accesses to external
memory. At a high level, SGX only provides privacy/integrity
guarantees for enclave virtual memory. Running ORAM con-
troller code in an enclave does not, by itself, ensure oblivi-
ousness. External server software (which shares the hardware
with the enclave) can still monitor any interactions the enclave
makes with the outside world (e.g., syscalls, etc.), how the
enclave uses shared processor resources such as cache [6],
[36] and how/when the enclave suffers page faults [55]. Our
system has mechanisms to preserve privacy and integrity
despite the above vulnerabilities. We formalize this security
guarantee in Section III-A and map SGX to these definitions
in Section III-B.

Security across enclave termination: Third, recovery
and security given enclave termination. An important caveat
of SGX is that the OS can terminate enclave execution at
any time. This has been shown to create avenues for replay
attacks [24], and risks irreverable data-loss. We develop novel
protocols in Section V to make the ORAM+enclave system
fault tolerant and secure against arbitrary enclave terminations.
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Security non-goals: We do not defend against hardware
attacks (e.g., power analysis [19] or EM emissions [37]),
compromised manufacturing (e.g., hardware trojans [56]) or
denial of service attacks.

III. PRELIMINARIES

A. Oblivious Enclave Execution

We now formalize oblivious execution for enclaves that
we set out to achieve in our system. We first give a general
definition for enclave-based trusted execution, that defines the
client API, security guarantees, and where privacy leakages can
occur. In the next section, we describe exactly what privacy
and integrity threats are present in Intel SGX in particular, and
the challenges in protecting them.

To help us formalize the definition, we define a pair of
algorithms Load and Execute, that are required by a client to
load a program into an enclave, and execute it with a given
input.

Load(P)→ (EP, φ): The load function takes a program
P, and produces an enclave EP, loaded with P along with a
proof φ, which the client can use to verify that the enclave did
load the program P.

Execute(EP, in) → (out, ψ): The execute function,
given an enclave loaded with a program P, feeds the enclave
with an input in, to produce a tuple constituting of the output
out, and ψ which the client can use to verify that the output
out was produced by the enclave EP executing with input in.

Execution also produces trace(EP,in), which captures the
execution trace induced by running the enclave EP with the
input in which is visible to the server. This trace(EP,in) contains
all the powerful side channel artifacts that the adversarial
server can view, such as cache usage, etc. These are discussed
in detail in the case of Intel SGX in Section III-B1, below.

Security: When a program P is loaded in an enclave,
and a set of inputs −→y := (inM, ..., in1) are executed by
this enclave, it results in an adversarial view V(−→y ) :=
(trace(EP,inM), ..., trace(EP,in1)). We say that an enclave exe-
cution is oblivious, if given two sets of inputs −→y and −→z ,
their adversarial views V(−→y ) and V(−→z ) are computationally
indistinguishable to anyone but the client.

B. Intel SGX

In this section we give a brief introduction to Intel Software
Guard Extensions (SGX) and highlight aspects relavent to
ZeroTrace. (See [1], [9] give more details on SGX.) Intel
SGX is a set of new x86 instructions that enable code
isolation within virtual containers called enclaves. In the SGX
architecture, developers are responsible for partitioning the
application into enclave code and untrusted code, and to
define an appropriate IO communications interface between
them. In SGX, security is bootstrapped from an underlying
trusted processor, not trust in a remote software stack. We
now describe how Intel SGX implements the Load(P) and
Execute(EP, in) functions from the previous section.

Load(P) → (EP, φ): A client receives a proof φ that
its intended program P (and initial data) has been loaded
into an enclave via an attestation procedure. Code loaded into
enclaves is measured by SGX during initialization (using SHA-
256) and signed with respect to public parameters. The client
can verify the measurement/signature pair to attest that the
intended program was loaded via the Intel Attestation Service.

Execute(EP, in) → (out, ψ): SGX protects enclave
program execution by isolating enclave code and data in
Processor Reserved Memory (PRM), referred as Enclave Page
Cache (EPC), which is a subset of DRAM that gets set aside
securely at boot time. Cache lines read into the processor cache
from the EPC are isolated from non-enclave read/writes via
hardware paging mechanisms, and encrypted/integrity checked
at the processor boundary. Cryptographic keys for these oper-
ations are owned by the trusted processor. Thus, data in the
EPC is protected (privacy and integrity-wise) against certain
physical attacks (e.g., bus snooping), the operating system
(direct inspection of pages, DMA), and the hypervisor.

Paging: In Intel SGX, the EPC has limited capacity. To
support applications with large working sets, the OS performs
paging to move pages in and out of the EPC on demand.
Hardware mechanisms in SGX ensure that all pages swapped
in/out of the EPC are integrity checked and encrypted before
being handed to the OS. Thus, the OS learns only that a
page with a public address needed to be swapped, not the
data in the page. Special pages controlled by SGX (called VA
pages) implement an integrity tree over swapped pages. In the
event the system is shutdown, the VA pages and (consequently)
enclave data pages are lost.

Enclave IO: It is the developer’s responsibility to
partition applications into trusted and untrusted parts and to
define a communication interface between them. The literature
has made several proposals for a standard interface, e.g., a
POSIX interface [41].

1) Security Challenges in Intel SGX: We now detail aspects
of Intel SGX that present security challenges for and motivate
the design of ZeroTrace.

Software side channels: Although SGX prevents an
adversary from directly inspecting/tampering with the contents
of the EPC, it does not protect against multiple software-based
side channels. In particular, SGX enclaves share hardware
resources with untrusted applications and delegate EPC paging
to the OS. Correspondingly, the literature has demonstrated
attacks that extract sensitive data through hardware resource
pressure (e.g., cache [6], [36], [50] and branch predictor [20])
and the application’s page-level access pattern [7], [55].

EPC scope: Since the integrity verification tree for EPC
pages is located in the EPC itself (in VA pages), SGX does
not support integrity (with freshness) guarantees in the event
of a system shutdown [24]. More generally, SGX provides no
privacy/integrity guarantees for any memory beyond the EPC
(e.g., non-volitile disk). Ensuring persistent integrity for data
and privacy/integrity for non-volitile data is delegated to the
user/application level.

No direct IO/syscalls: Code executing within an en-
clave operates in ring-3 user space and is not allowed to
perform direct IO (e.g., disk, network) and system calls. If
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an enclave has to make use of either, then it must delegate it
to untrusted code running outside of the enclave.

2) Additional Challenges In Enclave Design: We now
summarize additional properties of Intel SGX (1.0) that make
designing prevention methods against the above issues chal-
lenging.

EPC limit: Currently, the size of EPC is physically
upper bounded by 128 MB by the processor. Around 30 MB
of EPC is used for bookkeeping, leaving around 95 MB of
usable memory. As mentioned above, EPC paging alleviates
this problem but reveals page-level access patterns. However
EPC paging is expensive and can cost between 3x and 1000x
depending on the underlying page access pattern (Figure 3 in
[2]).

Context switching: At any time, the OS controls when
enclave code starts and stops running. Each switch incurs
a large performance overhead – the processor must save
the state needed to resume execution and clear registers
to prevent information leakages. Further, it is difficult to
achieve persistant system integrity if the enclave can be
terminated/swapped at any point in its execution.

C. ORAM

We now describe the popular definition for ORAM from the
literature [43], [44]. Afterwards, we provide additional details
of the Path ORAM [44] scheme, used in our system.

An ORAM scheme can be used to store and retrieve
blocks of memory on a remove server, such that the server
learns nothing about the data access patterns. Informally,
no information should be leaked about: (a) the data being
accessed, (b) whether the same/different data is being accessed
relative to a prior access (linkability), (c) whether the access
is a read or write.

Correctness.: The ORAM construction is correct if
it returns, on input −→y , data that is consistent with −→y with
probability ≥ 1 - negl(|−→y |), i.e. the ORAM may fail with
probability negl(|−→y |).

Security.: Let
−→y := ((opM, aM, dataM), ..., (op1, a1, data1))

denote a data request sequence of length M where each opi
denotes a read(ai) or a write(ai) operation. Specifically, ai
denotes the identifier of the block being read or written, and
datai represents the data being written. In this notation, index
1 corresponds to the most recent load/store and index M
corresponds to the oldest load/store operation. Let ORAM(−→y )
denote the (possibly randomized) sequence of accesses to the
remote storage given the sequence of data requests −→y . An
ORAM construction is said to be secure if for any two data
request sequences −→y and −→z of the same length, their access
patterns ORAM(−→y ) and ORAM(−→z ) are computationally in-
distinguishable to anyone but the client.

D. Path ORAM

We now give a summary of Path ORAM [44], one of the
ORAMs used in our implementation. Which ORAM is used
isn’t fundamental, and this can be switched behind the memory

controller interface. That said, ORAM bandwidth to untrusted
storage and ORAM controller trusted storage are inversely
proportional [43], [44], [51]. Further, the SGX and oblivious
settings decrease performance when using larger controller
storage (due to EPC evictions [24] and the cost of running
oblivious programs; see Section VI). Path ORAM provides a
middle ground here: better bandwidth/larger storage than [51];
worse bandwidth/smaller storage than [43].

Server Storage: Path ORAM stores N data blocks,
where B is the block size in bits, and treats untrusted storage
as a binary tree of height L (with 2L leaves). Each node in
the tree is a bucket that contains ≤ Z blocks. In the case of
a bucket having < Z blocks, remaining slots are padded with
dummy blocks.

Controller Storage: The Path ORAM controller storage
consists of a stash and position map. The stash is a set of blocks
that Path ORAM can hold onto at any given time (see below).
To keep the stash small (negligible probability of overflow),
experiments show Z ≥ 4 is required for the stash size to
ω(logN) [44]. The position map is a dictionary that maps
each block in Path ORAM to a leaf in the server’s binary tree.
Thus, the position map size is O(LN) bits.

Operation: As stated above, each block in Path ORAM
is mapped to a leaf bucket in the server’s binary tree via the
position map. For a block a mapped to leaf l, Path ORAM
guarantees that block a is currently stored in (i) some bucket
on the path from the tree’s root to leaf l, or (ii) the stash. Then,
to perform a read/write request to block a (mapped to leaf l),
we perform the following steps: First, read the leaf label l for
the block a from the position map. Re-assign this block to
a freshly sampled leaf label l′, chosen uniformly at random.
Second, Fetch the entire path from the root to leaf bucket in
server storage. Third, retrieve the block from the combination
of the fetched path and the local stash. Fourth, write back the
path to the server storage. In this step the client must push
blocks in the stash as far down the path as possible, while
keeping with the main invariant. This strategy minimizes the
number of blocks in the stash after each access and is needed
to achieve a small (logarithmic) stash size.

Security intuition: The adversary’s view during each
access is limited to the path read/written (summarized by the
leaf in the position map) during each access. This leaf is re-
assigned to a uniform random new leaf on each access to
the block of interest. Thus, the adversary sees a sequence of
uniform random-sampled leaves that are independent of the
actual access pattern.

Extension: Recursion: The Path ORAM position map is
O(N) bits, which is too large to fit in trusted storage for large
N . To reduce the client side storage to O(1), Path ORAM
can borrow the standard recursion trick from the ORAM
constructions of Stefenov et al. [43] and Shi et al. [38]. In short,
the idea is to store the position map itself as a smaller ORAM
on the server side and then recurse. Each smaller “position
map” ORAM must be accessed in turn, to retrieve the leaf
label for the original ORAM.

Extension: Integrity: Path ORAM assumes a passive
adversary by default. To provide an integrity guarantee with
freshness, one can construct a Merkle tree mirrored [44] onto
the Path ORAM tree, which adds a constant factor to the
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bandwidth cost. We remark that when ORAM recursion is
used, an integrity mechanism is also required to guarantee
ORAM privacy [35].

Both integrity verification and ORAM recursion will be
needed in our final design to achieve a performant system
against active attacks.

E. Circuit ORAM

We now briefly highlight the differences between Circuit
ORAM [51] and Path ORAM. In the interest of space,
we describe our work using PathORAM as the memory
controller since it is the conceptually simpler ORAM schema.
Circuit ORAM was designed with the intent of having the
smallest circuit complexity.1 Both of these construction operate
identically upto the fetch path step. The difference lies in their
eviction strategy.

Circuit ORAM uses two additional eviction paths unlike
Path ORAM which evicts blocks from the local stash onto the
fetched path itself. The strategy is to perform eviction on a path
in a single pass over (the stash and ) the path, by picking up
blocks that can be pushed deeper down the path and dropping
it into vacant/dummy slots that are deeper in the path. This
however requires some amount of “foresight” for which blocks
can potentially move to a deeper location in the path and if
there are vacant slots that could accommodate them. To achieve
this foresight, Circuit ORAM makes two meta data scans over
each eviction path, to construct helper arrays that assist in
performing eviction in a single (stash +) path scan.

There are two significant differences between these eviction
strategies in the context of ZeroTrace:

• Circuit ORAM introduces more I/O bandwidth than
PathORAM, since it has to fetch and evict two
additional paths per access.

• The stash required by Circuit ORAM is much lesser
than that of PathORAM.

IV. ZeroTrace MEMORY CONTROLLER

We now describe how the core memory controller is
implemented on the server. We focus on supporting our
strongest level of security: obliviousness against an active
adversary (Section II-B). The entire system is shown in Fig. 1.
The design’s main component is a secure Intel SGX enclave
which we henceforth call the ORAM Controller Enclave. This
ORAM Controller Enclave acts as the intermediary between
client and the server. The client and controller enclave engage
in logical data block requests and responses. Behind the scenes,
the ORAM Controller Enclave interacts with the server to
handle the backend storage for each of these requests.

A. Design Summary

Security challenges and solutions.: Since ZeroTrace’s
ORAM controller runs inside an enclave, and is therefore vul-
nerable to software-level side channel attacks (Section III-B1),
we will design the ORAM controller to run as an oblivious

1In the interest of optimizing ORAMs for use in the multi-party computation
(MPC) context
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Fig. 1. System components on the server. Trusted components (software and
regions of memory) are shaded. Depending on the setting, the client may be
connecting from a remote device (not on the server) or from another enclave
on the same machine.

program. (A similar approach is used to guard against software
side channels by Olga et al. [30] and Rane et al. [32].) For
instance, if the ORAM controller were to access an index in
the position map directly, it would fetch a processor cache
line whose address depended on the program access pattern.
To prevent revealing this address, our oblivious program scans
through the position map and uses oblivious select operations
to extract the index as it is streamed through.

A second security challenge is how to map the controller
logic itself to SGX enclaves. In a naive design, the entire
ORAM controller and memory can be stored in the EPC. The
enclave makes accesses to its own virtual address space to
perform ORAM accesses and run controller logic, and the OS
uses EPC paging as needed. This design seems reasonable
because it re-uses existing integrity/privacy mechanisms for
protecting the EPC. Unfortunately, it makes supporting persis-
tant storage difficult because the EPC is volitile (Section III-B),
incurs large EPC paging overheads (Section III-B2) and
bloats the TCB (the entire controller runs in the enclave).
To address this challenge, we make an observation that
once Path ORAM (and other tree-based ORAMs [33], [38],
[51]) reveals the leaf it is accessing, the actual fetch logic
can performed by an untrusted party. Correspondingly, we
split the ORAM controller into trusted (runs inside enclave)
and untrusted (runs in Ring-3 outside of enclave) parts,
which communicate between each other at the path fetch/store
boundary. This approach has un-expected TCB benefits: we
propose optimizations in Section IV-E which bloat the path
fetch/store code. By delegating these parts to untrusted code,
they can be implemented with no change to the TCB.

Performance challenges and solutions.: Running an
oblivious ORAM controller inside of SGX efficiently requires
a careful partitioning of the work/data-structures between the
enclave (which controls the EPC pages ∼ 95 MB), untrusted
in-memory code (which has access to DRAM ∼ 64 GB)
and untrusted code managing disk. For instance, the cost to
access ORAM data structures obliviously increases as their
size increases. Further, as mentioned above, when the enclave
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memory footprint exceeds the EPC page limit, software paging
introduces an additional overhead between 3× and 1000× –
depending on the access pattern [2]. To improve performance,
we will carefully set parameters to match the hardware and use
techniques such as ORAM recursion to further reduce client
storage.

Additionally, the ORAM storage itself should be split
between DRAM and disk to maximize performance. For
instance, we design the protocol to keep the top-portion of the
ORAM tree in non-EPC DRAM when possible. In some cases,
disk accesses can be avoided entirely. When the ORAM spills
to disk, we layout the ORAM tree in disk to take advantage
of parallel networks of disks (e.g., RAID0).

B. Client Interface

The ORAM Controller Enclave exposes two API calls
to the user, namely read(addr) and write(addr, data). Under
the hood, both the API functions perform an ORAM access
(Section III-D).

C. Server Processes

The server acts as an intermediary between the trusted
enclave and the data (either memory or disk). It performs the
following two functions on behalf of the trusted enclave (e.g.,
in a Ring-3 application that runs alongside the enclave):

• FetchPath(leaf): Given a leaf label, the server trans-
fers all the buckets on that path in the tree to the
enclave.

• StorePath(tpath, leaf): Given a tpath, the server over-
writes that existing path to the addresses deduced from
the leaf label, leaf.

Passing data in/out of enclave.: The standard mecha-
nism of data passing between enclave and untrusted application
is through a sequence of input/output routines defined for that
specific enclave. The Intel SGX SDK comes with the Intel
Edger8r tool that generates edge routines as a part of enclave
build process. Edger8r produces a pair of edge routines for
each function that crosses the enclave boundary, one routine
sits in the untrusted domain, and the other within the trusted
enclave domain. Data is transferred across these boundaries by
physically copying it across each routine, while checking that
the original address range does not cross the enclave boundary.

TCB implications.: Fetch/store path are traditionally
the performance bottleneck in ORAM design. Given the
above interface, these functions make no assumptions on the
untrusted storage or how the server manages it to support
ORAM. Thus, the server is free to perform performance
optimizations on Fetch/Store path (e.g., split the ORAM
between fast DRAM and slow disk, parallelize accesses to
disk; see Section IV-E). Since Fetch/Store path are not in the
TCB, these optimizations do not effect security.

D. Memory Controller Enclave Program

In this section we outline the core memory controller’s
enclave program which we refer to from now on as P.

1) Initialization: For initialization, the server performs the
function Load(P) → (EP, φ), where P is the ZeroTrace
Controller Enclave. The client can then verify the proof φ
produced by this function to ensure that ZeroTrace has been
honestly initialized by the server. We note that the proof also
embeds within it a public key Ke from an asymmetric key
pair (Ke,Kd) sampled within the enclave. The client encrypts
a secret key K under this public key Ke for the enclave. The
user and enclave henceforth communicate using this K for an
authenticated encrypted channel.

2) Building Block: Oblivious Functions: To remain data
oblivious, we built the ORAM controller out of a library of
assembly-level functions that perform oblivious comparisons,
arithmetic and other basic functions. The only code executed in
the enclave is specified precisely by the assembly instructions
in our library (all compiler optimizations on our library are
disabled).

Our library is composed of several assembly level in-
structions, most notably the CMOV x86 instruction [30],
[32]. CMOV is a conditional move instruction that takes
a source and destination register as input and moves the
source to destination if a condition (calculated via the CMP
instruction) is true. CMOV has several variants that can be
used in conjunction with different comparison operators, we
specifically use the CMOVZ instruction for equality com-
parisons. The decision to use CMOV was not fundamental:
we could have also used bitwise instructions (e.g., AND,
OR) to implement multiplexers in software to achieve the
obliviousness guarantee.

CMOV safely implements oblivious stores because it does
the same work regardless of the input. Regardless of the
input, all operands involved are brought into registers inside
the processor, the conditional move is performed on those
registers, and the result is written back.

Throughout the rest of the section, we will describe the
ORAM controller operations in terms of a wrapper function
around cmov called oupdate, which has the following signa-
ture:

oupdate<srcT, dstT>(bool cond, srcT src,
dstT dst, sizeT sz)

oupdate uses CMOV to obliviously and conditionally copy
sz bytes from src to dst, depending on the value of a
bit cond which is calculated outside the function. src and
dst can refer to either registers or memory locations based
on the types srcT and dstT. We use template parameters
srcT and dstT to simplify the writing, but note that CMOV
doesn’t support setting dst to a memory location by default.
Additional instructions (not shown) are needed to move the
result of a register dst CMOV to memory.

3) System Calls: Our enclave logic does not make any
syscalls. All enclave memory is statically allocated in the
EPC based on initialization parameters. Server processes (e.g.,
Fetch/Store path) may perform arbitrary syscalls without im-
pacting the TCB.

4) Building Block: Encryption & Cryptographic Hashing:
Our implementation relies on encryption and integrity check-
ing via cryptographic hashing in several places. First, when
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the client sends an ORAM request to the ORAM Controller
Enclave, that request must be decrypted and integrity checked
(if integrity checking is enabled). Second, during each ORAM
access, the path returned and re-generated by Fetch/Store Path
(Section IV-C) need to be decrypted/re-encrypted and integrity
verified. These routines must also be oblivious. For encryption,
we use the Intel instruction set extensions AES-NI, which
were designed by Intel to be side channel resistant (i.e., the
AES SBOX is built directly into hardware). Unless otherwise
stated, all encryption is AES-CTR mode; which can easily
be achieved by wrapping AES-NI instructions in oblivious
instructions which manage the counter. For hashing we use
SHA-256, which is available through the Intel tcrypto library.

To avoid confusion: SGX has separate encryption/hashing
mechanisms to ensure privacy/integrity of pages evicted from
the EPC [9]. Since our design accesses ORAM through a
Fetch/Store Path interface, we cannot use these SGX built-in
mechanisms for ORAM privacy/integrity.

5) ORAM Controller: The ORAM Controller handles
client queries of the form (op, id, data∗), where op is the
mode of operation, i.e. read or write, id corresponds to an
identifier of the data element and data∗ is a dummy block in
case of read and the actual data contents to be written in case
it is a write operation. These queries are encrypted under K,
the secret key established in the Initialization (Section IV-D1)
phase. The incoming client queries are first decrypted within
the enclave program. From this point, the ORAM controller
enclave runs the ORAM protocol. Given that the adversary
may moniter any pressure the enclave places on shared
hardware resources, the entire ORAM protocol is re-written in
an oblivious form. The Raccoon system performed a similar
exercise to convert ORAM to oblivious form, in a different
setting [32].

Path ORAM can be broken into two main data-structures
(position map and stash) and three main parts. We now explain
how these parts are made oblivious.

Oblivious Leaf-label Retrieval.: When the enclave re-
ceives an access request (op, id, data∗), it must read and update
a location in the position map (Section III-D) using oupdate
calls, as shown in the pseudocode below.

newleaf = random(N)
for i in range(0, N):

cond = (i == id)
oupdate(cond, pos_map[i], leaf, size)
oupdate(cond, newleaf, pos_map[i], size)

We note that P samples a new leaf label through a call to
AES-CTR with a fresh counter. Due to a requirement in
Section V, where execution must be deterministic, we will
assume leaf generation is seeded by the client when the ORAM
is initialized (and not by a TRNG such as Intel’s RDRAND
instruction). The entire position map must be scanned to
achieve obliviousness, as will be the case for the other parts
of the algorithm, regardless of when cond is true. At the end
of this step, the enclave has read the leaf label, leaf, for this
access.

Oblivious Block Retrieval.: P must now fetch the path
for leaf (Section III-D) using a Fetch Path call (Section IV-C).

When the server returns the path, now loaded into enclave
memory, P does the following:

path = FetchPath(leaf)
for p in path:
for s in stash:
cond = (p != Dummy) && (s != occupied)
oupdate(cond, s, p, BlockSize)

result = new Block
for s in stash:
cond = (s.id == id)
oupdate(cond, s, result, BlockSize)

The output of this step is result, which is encrypted and
returned to the client application.

In the above steps, iterating over the stash must take a
data-independent amount of time. First, regardless of when
oupdate succeeds in moving a block, the inner loop runs to
completion. When the update succeeds, a bit is obliviously
set to prevent the CMOV from succeeding again (to avoid
duplicates). Second, the stash size (the inner loop bound)
must be data-independent. This will not be the case with
Path ORAM: the stash occupancy depends on the access
pattern [44]. To cope, we use a stash with a static size at
all times, and process empty slots in the same way as full
slots. Prior work [23], [44] showed that a stash size of 89 to
147 is sufficient to achieve failure probability of 2−λ with the
security parameter values from λ = 80 to λ = 128. In our
implementation, we use a static stash size of 90. 2

Oblivious Path Rebuilding: Finally, P must rebuild and
write back the path for leaf (Section III-D) using internal logic
and a Store Path call (Section IV-C). P rebuilds this path by
making a pass over the stash for each bucket in the path as
shown here:

for bu in new_path:
for b in bu:
for s in stash:
cond = FitInPath(s.id,leaf)
oupdate(cond, b, s, BlockSize)

StorePath(leaf,new_path)

For each bucket location bu on path to leaf in reverse order
(i.e. from leaf to root), iterates over the block locations b
(in the available Z locations) and perform oupdate calls to
obliviously move compatible blocks from the stash to that
bucket (using an oblivious subroutine called FitInPath).
This greedy approach of filling buckets in a bottom to top
fashion is equivalent to the eviction routine in Section III-D.
At the end, P then calls Store Path on the rebuilt path, causing
the server to overwrite the existing path in server storage.

Encryption and Integrity: As data is processed in the
block retrieval and path re-building steps, it is decrypted/re-
encrypted using the primitives in Section IV-D4. At the
same time, an oblivious implementation of the Merkle tree
(Section III-C) checks and re-build are performed to verify
integrity with freshness.

2For our Circuit ORAM variant we use a fixed stash size of 10 which is
known to be sufficient from [51] .
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E. Optimizing Fetch/Store Path

We now discuss several performance optimiza-
tions/extensions for the Fetch/Store Path subroutines, to
take advantage of the server’s storage hierarchy (which
consists of DRAM and disk). Since these operations run in
untrusted code, they do not impact the TCB.

Scaling bandwidth with multiple disks: Ideally, if
the server supports multiple disks which can be accessed
in parallel (e.g., in a RAID0), the time it takes to perform
Fetch/Store Path calls should drop proportionally. We now
present a scheme to perfectly load-balance a Tree ORAM in
a RAID0-like configuration.

RAID0 combines W disks (e.g., SSDs, HDDs, etc) into
a larger logical disk. A RAID0 ‘logical disk’ is accessed at
stripe granularity (S bytes). S is configurable and S = 4 KB is
reasonable. When disk stripe address i is accessed, the request
is sent to disk i%W under the hood.

The problem with RAID0 (and similar organizations)
combined with Tree ORAM is that when the tree is laid out
flat in memory, the buckets touched on a random path will
not hit each of the W disks the same number of times (if
S ∗W > B ∗Z for ORAM parameters B and Z). In that case,
potential disk parallelism is lost. We desire a block address
mapping from (ORAM tree address, at stripe granularity) to
(RAID0 stripe address) that equalizes the number of accesses
to each of the W disks, while ensuring that each disk stores
an equal (ORAM tree size) / W Byte share. Call this mapping
Map(tree addr) → RAID addr, which may be implemented
as a pre-disk lookup table in untrusted Fetch/Store Path code.

We now describe how to implement Map. First, define a
new parameter subtree height H . A subtree is a bucket j,
and all of the descendant buckets of j in the tree, that are
< H levels from bucket j. For ORAM tree height L, choose
H < L (ideally, H divides L). Break the ORAM tree into
disjoint subtrees. Second, consider the list of all the subtrees
ALoST. We will map each stripe-sized data chunk in each
subtree to a disk in the RAID0. The notation Disk[k] +=
[stripeA, stripeB] means we use an indirection table
to map stripeA and stripeB to disk k. We generate Disk
as:

//s_index is subtree_index
for s_index in length(ALoST):

// levels run from 0...H-1
for level in subtree:

// break data in subtree level
// into stripe-sized chunks
stripes = ALoST[s_index][level]
Disk[(s_index + level) % W] += stripes

When W = H , mapping each subtree level to a single disk
means any path in the ORAM tree will access each disk
O(L/H) times. Changing the subtree level → disk map in a
round-robin fashion via subtree_index ensures that each
disk will hold the same number of stripes, counting all the
subtrees. Finally, from Disk, it is trivial to derive Map.

Fig. 2. Execution of an access request

Caching the ORAM tree: A popular Tree ORAM
optimization is to cache the top portion of the ORAM tree
in a fast memory [23], [33]. This works because each access
goes from root to leaf: caching the top l′ levels is guaranteed
to improve access time for those top l′ levels. Because the
shape is a tree, the top levels occupy relatively small storage
(e.g., caching the top half requires O(

√
N) blocks of storage).

This optimization is very effective in our system because
the server (who controls Fetch/Store Path) can use any spare
DRAM (e.g., GigaBytes) to store the top portion of the tree,
as seen later in Fig 4 and Table I . In this case, Fetch/Store
Path allocate regular process memory to store the top portion,
and explicitly store the lower portion behind disk IO calls.

F. Security Analysis

We now give a security analysis for the core memory
controller running ORAM. Since we support ORAM, we wish
to show the following theorem:

Theorem 4.1: Assuming the security of the Path ORAM
protocol, and the isolated execution and attestation properties
of Intel SGX, the core memory controller is secure according
to the security definition in Section III-C.

In this section, we’ll prove the above theorem informally, by
tracing the execution of a query in ZeroTrace, step by step as
shown in Figure 2.

Claim 4.1.1: Initialization is secure

For initialization, the enclave first samples a public key
pair, then includes this public key in the clear with the enclave
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measurement, in the attestation (Section III-B) that it produces.
No malicious adversary can tamper with this step, as it would
have to produce a signature that is verifiable by the Intel
Attestation Service.

Claim 4.1.2: Decrypting and encrypting requests leak no
information

We use AES-NI, the side-channel resilient hardware instruction
by Intel for performing encryption and decryption.

Claim 4.1.3: Oblivious Leaf-Label Retrieval leaks no in-
formation

Retrieving a leaf label from the EPC-based position map per-
forms a data-independent traversal of the entire position map
via oupdate (Section IV-D2) operations. oupdate performs
work independent of its arguments within the register space
of the processor chip, which is hidden from adversarial view.
Thus, the adversary learns no information from observing leaf-
label retrieval.

Claim 4.1.4: FetchPath leaks no information

FetchPath retrieves the path to a given leaf label. The
randomness of this reduces to the security of the underlying
Path ORAM protocol (Section III-D).

Claim 4.1.5: Verifying fetched path leaks no information

To verify the integrity of a fetched path, the enclave re-
computes the Merkle root using SHA-256 over the path it
fetched and subling hashes [44]. We note that our current
implementation uses SHA-256 from the Intel tcrypto library,
which is not innately side-channel resistant. Despite this, our
scheme still achieves side-channel resistance because all SHA-
256 operations are over encrypted buckets. The same argument
applies when rebuilding the path on the way out to storage.

Claim 4.1.6: Oblivious Block Retrieval leaks no informa-
tion

Once FetchPath completes, the only code that processes the
path, to load that path into the stash and return the requested
block to the user, is decryption logic plus the oblivious
subroutine given in Section IV-D5. Since the length of path
and stash are data-dependent, obliviousness reduces to the
security of oupdate (see Claim 4.1.3).

Claim 4.1.7: Oblivious Rebuild leaks no information

Same argument as Claim 4.1.6, since new_path, bu and
stash have data independent size.

Claim 4.1.8: StorePath leaks no information

StorePath returns the new path to a leaf label that was
fetched by an ORAM controller enclave. From the adversary’s
perspective, the stored path itself is an encrypted payload of a
known size, independent of underlying data.

V. PERSISTANT INTEGRITY

An important attribute in storage systems is to be persistant
and recoverable across protocol disruptions. This is particularly
important for ORAM, and similar memory controller back-
ends, where corrupting any state (in the ORAM Controller
Enclave itself or in the ORAM trees) can lead to partial or
complete loss of data. SGX exacerbates this issue, as enclave

state is wiped on disruptions such as reboots and power
failures.

We now discuss an extension to ZeroTrace that allows
untrusted storage and the ORAM Controller Enclave to recover
from data corruptions and achieve persistant integrity. First,
we state a sufficient condition to achieve fault tolerance. We
model an enclave program as a function P which performs
St+1 ← P(It, St), where It is the t-th request made by the
client and St is the enclave state after requests 0, . . . , t−1 are
made. When we say enclave protocol, we refer to the multi-
interactive protocol between the client and P from system
initialization onwards (i.e., all of Section IV).

Definition 5.1 (Fault tolerance): Suppose an enclave pro-
tocol has completed t′ requests. If the enclave protocol is de-
signed such that the server can efficiently re-compute St+1 ←
P(It, St) for any t < t′, then the enclave protocol is fault
tolerant.

This provides fault tolerance as follows: if the current state St′
is corrupted, St′ can be iteratively re-constructed by replaying
past (not corrupted) states and inputs to P. We remark that the
above definition is similar to RDD fault tolerance in Apache
Spark [59], [62]. Finally, the above definition isn’t specific
to ORAM controllers, however we will assume an ORAM
controller for concreteness.

Functionality: In our setting, S includes the ORAM
Controller Enclave state (the stash, position map, ORAM key,
merkle root hash) and the ORAM tree. In practice, the server
can snapshot S at some time t (or at some periodic schedule),
and save future client requests It, . . . , It′ to recover St′ . Thus,
we must add a server-controllable operation to the ORAM
Controller Enclave that writes out the enclave state to untrusted
storage on-command.

Security: To maintain the same security level as de-
scribed in Section II-B, the above scheme needs to defeat all
mix-and-match and replay attacks.

A mix-and-match attack succeeds if the server is able to
compute P(Ia, Sb) for a 6= b, which creates a state inconsistent
with the client’s requests. These attacks can be prevented
by encrypting state in S and each client request I with an
authenticated encryption scheme, that uses the current request
count t as a nonce. The client generates each request I and
thus controls the nonce on I . For S: the enclave controls the
nonce on its private state and integrity verifies external storage
with a merkle tree (whose root hash is protected as a part of
the private state). On re-execution, P can integrity-verify Ia
and Sb under the constraint that a = b.

A replay attack succeeds if the server is able to learn
something about the client’s access pattern by re-computing
on consistant data – e.g., P(It, St). Replay attacks are pre-
vented if replaying P(It, St) always results in a statistically
indistinguishable trace trace (Section III-A). In our setting, we
must analyze two places in the protocol. First, the path written
back to untrusted storage after each request (Section IV-D5)
is always re-encrypted using a randomized encryption scheme
that is independent of underlying data. Second, the leaf label
output as an argument to Fetch/Store Path (Section IV-C)
must be deterministic with respect to previous requests. This
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Fig. 3. Representative result. Shows the number of data blocks vs.
time per request, with data blocks of size 1 KB with PathORAM as
the the underlying ORAM schema for ZeroTrace.

property is achieved by re-assigning leaf labels using a pseudo-
random number generator.

VI. IMPLEMENTATION AND EVALUATION

A. Experiment Setup

We implemented and evaluated the performance of
ZeroTrace on a Dell Optiflex 7040, with a 4 core Intel i5
6500 Skylake processor with SGX enabled and 64 GB of
DRAM.

Beyond DRAM, our system utilizes a Western Digital
WD5001AALS 500 GB 7200 RPM HDD as backing untrusted
storage. ZeroTrace is implemented purely in C/C++ (and
assembly) for both performance and easier compatibility with
Intel SGX as enclave code is limited to purely C/C++ code.
Our implementation consists of 6600 lines of code in total,
with almost 4000 lines of code within the enclave, which
counts towards the TCB. We measure the time it takes our
memory service enclaves to complete user requests. In all
experiments, our core memory controller and data-structure
APIs are implemented as application libraries in a stand-alone
enclave – to best model their performance as plug-and-play
memory protection primitives (Section II-A). Thus, request
time includes the time to send/receive the request to/from the
enclave, as well as the time to process the request (e.g., do
an ORAM access). We note that in our experiments we use
sequential memory access requests. 3

B. Evaluation of our Core Memory Controller

We first evaluate performance of ZeroTrace for the core
memory controller component, configured to resist software-
based side channel attacks from an active adversary (Sec-
tion II-B). Figure 3 shows the time taken by a single access
request in contrast with the number of data blocks N in the
system, for DRAM and HDD untrusted storage systems. For
the points using the ORAM recursion technique, we use a

3It is known from ORAM literature that sequential accesses put more
pressure on the stash, however in our context since we use a static stash
size it does not effect our response time.

Fig. 4. Detailed performance breakdown for ZeroTrace with
PathORAM as the underlying ORAM. Shows the number of data
blocks vs. time spent in different parts of the request, with different
storage backends, with a block size of 1KB. Total time per request
is the sum of controller and storage (DRAM or HDD) times. DRAM
experiments were performed till 107 blocks, which is our DRAM
capacity.

Fig. 5. Comparison of Circuit ORAM and Path ORAM as the ORAM
schemes for ZeroTrace under passive and active adversarial models. The
ORAM schemas use data blocks of 8 bytes, for our envisioned plug-and-play
memory controller setting.

position map of size 500 KB within the EPC pages and always
set the recursion ORAM block size to 64 Bytes (a cacheline).
When recursion is not used, the position map (which is
unbounded in size,) is streamed through the EPC, paging as
necessary, incurring the overhead of paging EPC pages as
mentioned in III-B2. From Figure 3, we see recursive ORAM
pays off for large datasets. This matches the theory [44] and
our system uses whichever configuration achieves the best
performance, depending on public parameters.

Performance breakdown: We further analyze the time
taken to run oblivious enclave code in the memory controller,
vs. the time spent servicing untrusted memory requests, in
Figure 4. In the tree top cache mode, our system caches the
top portion of the ORAM tree in DRAM until half of the
DRAM (32 GB) is used, after which the system incurs a
large latency for disk seeks. This issue isn’t fundamental; our
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Fig. 6. Performance as a function of data ORAM block size for a dataset
with N = 107 blocks, using recursion and DRAM as the storage backend.

system can use an SSD to improve disk latency. The main
result is that the oblivious controller is the bottleneck given
fast untrusted storage devices (e.g., DRAM). Hence in order
to improve performance in the context of our proposed plug-
and-play memory controller, we designed and implemented an
oblivious variant of Circuit ORAM as the underlying ORAM
schema. 4

In Fig 5, we compare the performance differences for
ZeroTrace with Circuit ORAM and Path ORAM as it’s
underlying ORAM controller under both active and passive
adversarial models. We notice that contrary to the expectation
Circuit ORAM does not perform significantly better than
PathORAM at the small block sizes. The primary reason
for this is the SGX ECALL/OCALLs have a large constant
overhead of 0.015ms in addition to the taking time proportional
to the path length. Circuit ORAM requires three path fetch and
stores from the server for each access, the pure eviction logic
alone for Circuit ORAM is about 2-3x faster than that of Path
ORAM, however the overhead of moving these three paths
in and out of the enclave memory controller throttles Circuit
ORAM’s performance. Moreover this overhead is aggravated
by recursion as well, since Circuit ORAM pays this cost for
each level of recursion.

Figure 6 shows the controller request time varying the data
block size. For data block sizes, the curve is flat because the
cost of recursion dominates. In Fig 6, we see that despite
the aforementioned limitation, Circuit ORAM’s eviction circuit
begins to outperform Path ORAM significantly at higher block
sizes. This is because the cost of obliviously moving blocks
increases with increase in their blocksize, and Path ORAM’s
eviction procedure has to perform signficantly more of these
oblivious move operations than Circuit ORAM.

We show a detailed performance breakdown for ZeroTrace
while varying the underlying ORAM scheme, data block sizes
and storage backend in Table I . The table illustrates the
overhead of I/O for Circuit ORAM as mentioned in Section
III-E. From Table I , it is clear that if the application requires

4We note that Circuit ORAM was designed to be asymptotically efficient
when coded in an oblivious manner, but it still needs to be written in terms
of CMOV in our setting.

Fig. 7. Evaluation of our oblivious memory controller library for
Set/Dictionary/List/Array. Array is a direct call to our core memory controller,
which uses ORAM recursion to be asymptotically efficient.

HDD backends, ZeroTrace should use Path ORAM instead
of Circuit ORAM, whereas in the plug and play memory
settings Path ORAM outperforms Circuit ORAM at low block
sizes and vice versa at large block sizes.5 This flexibility of
underlying ORAM schema, enables ZeroTrace to optimize
it’s performance based on public initialization parameters.
Additionally, as mentioned before if the application only
requires weaker security guarantees, ZeroTrace can leverage
the flexibility of security levels to optimize it’s performance
(as seen in Fig 5).

C. Evaluation of Data-Structure Modules

We now evaluate a library of oblivious data-structures,
which use our core memory controller as a primitive. Data-
structures expose two function calls to client applications:

Initialize(N, size): Informs the ZeroTrace memory con-
troller enclave to provision storage for N size-Byte blocks.

Access(op, req): Performs the operation op, given ar-
guments as a tuple req, whose format changes based on the
data-structure. Enclaves are required to sanitize this input to
ensure proper formatting.

Data-structures supported.: Our current
implementation supports oblivious arrays, sets, dictionaries
and lists. Array is a passthrough interface to our oblivious core
memory controller, suppporting the same interface read(addr)
and write(addr, data). Sets support the operations insert(data),
delete(data) and contains(data). Dictionaries support
put(tag, data) and get(tag). Lists support insert(index, data)
and remove(index). These options are implemented obliviously
in the enclave followed by the necessary ORAM lookups.

Implementation and results.: In our current implemen-
tation, each data-structure maintains a primitive array which
stores information used to lookup the data block stored by the
memory controller. For example, sets and dictionaries use the
array to store cryptographic hashes of data blocks, which map
array indices to addresses in the memory controller. (Given

5We see from Fig 6, the switch over point is around block size of 100 bytes.
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Underlying ORAM Block Size Backend Controller Time Backend Time Total Time
PathORAM 8 DRAM 1.2141 0.0048 1.2189
PathORAM 1024 DRAM 5.9938 0.0152 6.0091
PathORAM 8 HDD 1.2230 40.2137 41.4367
PathORAM 1024 HDD 5.9921 43.8868 49.8789

CircuitORAM 8 DRAM 1.304 0.0167 1.3207
CircuitORAM 1024 DRAM 3.3242 0.0645 3.3887
CircuitORAM 8 HDD 1.3270 132.5139 133.8409
CircuitORAM 1024 HDD 3.3359 137.4236 140.7595

TABLE I. PERFORMANCE NUMBERS FOR ZeroTrace UNDER DIFFERENT PARAMETRIZATIONS OF UNDERLYING ORAM CONTROLLER, DATA BLOCK
SIZE AND BACKEND STORAGES. ALL TIMINGS ARE IN MS. EXPERIMENTS HAVE N = 107 BLOCKS, AND ALL EXPERIMENTS THAT USE HDD BACKENDS IN

THIS TABLE MAKE USE OF TREE TOP CACHING. NOTE THAT THE CONTROLLER TIME IS ALSO INCLUSIVE OF TIME SPEND BY THE CONTROLLER IN
RECURSION AND TIME TAKEN BY THE OVERHEADS OF ECALL/OCALL

our interface for set, above, the data storage is simply the
array of hashes. Thus, set does not have a datasize.) The data-
structure logic obliviously scans the array in O(N) time, to
find the block, and then makes a single memory controller
access to fetch the block. Figure 7 performance figures. While
our design is efficient for reasonably sized data-structures
(≤ 105 elements), the O(N) time scan dominates for larger
datasets. The O(N) effect can be improved with optimized
data-structures from Wang et al. [53], which makes use of
ORAMs and can use our core memory controller as a primitive
as well.

VII. RELATED WORK

Our work is the first demonstration of a completely
oblivious data structures library built on a real secure hardware
platform. For this project, we rely on research in several
foundational areas:

Oblivious RAMs and Secure Hardware: Research in
ORAM began with the seminal work by Goldreich and
Ostrovsky [13], and has culminated in practical constructions
with logarithmic bandwidth overhead [34], [44], [51]. In the
context of ORAM, our work moves the ORAM controller close
to storage, exploiting the fact that ORAM bandwidth overhead
occurs between ORAM controller and storage and not between
client and ORAM controller. This idea has been explored by
combining homomorphic encryption with ORAM [10], and by
the ORAM-based systems Oblivistore [42] and ObliviAd [3]
(which assume hypothetical secure hardware). The latter two
works have a weaker threat model than this paper: our goal
is to protect against all remote software attacks, whereas the
latter two focus only on hiding ORAM protocol-level access
patterns.

Another similar direction of research is secure hardware
projects such as Phantom [23], Aegis [45] and Ascend [11].
Phantom is a secure processor that obfuscates it’s memory
access patterns by using PathORAM intrinsically for all it’s
memory accesses. Aegis is aimed at incorporating privacy
and integrity guarantees for physical attacks (in addition to
software attacks) against the processor. (It makes use of PUF
- Physically Unclonable Functions to create Physical Random
Functions). Ascend is a secure coprocessor6 that aims at
achieving secure computations for a cloud server against semi-
honest adversary. It is designed to perform oblivious computa-
tions to which end it obfuscates its instruction execution such

6An additional processor that sits alongside the main server, for performing
secure computation.

that it appears to spend the same time/energy/effort for the
execution of each instruction independent of the underlying
instruction.

While Phantom achieves similar security goals as that of
ZeroTrace, there are several differences between our project
and such secure hardware projects. First, since these projects
rely on custom hardware that are uncommon commercially
(typically unavailable), deployability of these projects are du-
bious at best. Intel SGX (and therefore ZeroTrace) is commer-
cially available and already present on all Intel processors from
Skylake series onwards. Secondly, these secure processors
are innately tied to providing oblivious accesses to just the
DRAM, however ZeroTrace is extremely flexible with respect
to the underlying storage support. Additionally, ZeroTrace also
offers security flexibility, which allows applications to trade
their higher level of security for performance efficiency when
required.

Systems: A number of systems investigate the question
of protecting applications running in enclaves. Raccoon [32]
provides oblivious program execution via an integration with
an ORAM and control-flow obfuscation techniques. In par-
ticular, they obfuscate programs by ensuring that all possible
branches are executed, regardless of the input data. This
approach is conceptually differs from ours since we provide
oblivious building blocks for sensitive data with strict under-
lying security guarantees. Also, because of how the control-
flow techniques are enforced in Racoon, it assumes a trusted
operating system (Section 3, [32]). In our design, obliviousness
is guaranteed even when an adversary compromises the entire
software stack including the OS. Finally, while Racoon can
run on an Intel SGX-enabled processor, the architectural
limitations of SGX are not taken into consideration in their
design.

GhostRider [21] proposed a software-hardware hybrid ap-
proach to achieve program obliviousness. It is a set of compiler
and hardware modifications that enables execution of an
ORAM controller inside an FPGA card used for sensitive data
accesses. Their work offers only a “conceptual” approach to
the problem. In particular, their assume “unbounded resources,
and no caching” and do not target any modern processor
(Introduction, [21]). In contract, the focus of this work is to
design a real-world system capable of running on a widely
available Intel CPU architecture.

Opaque [62] is a secure Spark database system where
components of the database server are run in SGX enclaves.
Opaque is complementary to ZeroTrace: their focus is to
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support oblivious queries for a database system; our focus is to
support arbitrary read/write operations. Each system is superior
in supporting its chosen task.

Attacks and Defenses: The primary attack vectors
against SGX in the literature stem from the fact that enclaves
share physical resources with other applications and interact
with the OS to perform syscalls and paging. Using a shared
resource (e.g., a cache [15], [18], [22], [31], [46], [49], [57],
[61] or branch predictor [20]) can be detected by an adversary
and can reveal fine-grain details about program execution. In
SGX-based systems, there is an arms race currently underway
between defenses that detect if the enclave is undergoing a
shared resource attack based on frequency or magnitude of
enclave exits/interruptions (e.g., T-SGX [39] and Deja Vu
[8]) and new attacks (e.g., Brasser et al. [6], Wang et al.
[50]) that work towards reducing the required enclave exits.
Gruss et al. [14] recently demonstrated a new direction for
defense mechanisms against cache side-channel by leveraging
Hardware Transactional Memory(HTM).

Similarly, a malicious OS can induce and monitor appli-
cation page fault behavior to learn program memory access
patterns [55]. Bulck et al. [7] demonstrated attacks that infer
page accesses through bits set in the page tables without
resorting to page faults. Shinde et al. [40] proposed compiler-
based defense mechanisms against page-level attacks by mov-
ing secret-dependent control and data flows into the same page.
However their approach is still susceptible to cache attacks.

ZeroTrace protects against all shared resource and page
fault-related attacks by converting the program to an oblivious
representation.

VIII. CONCLUSION

This paper designs and implements ZeroTrace, the first
library of oblivious memory primitives for a real secure
hardware platform, optimized for Intel’s SGX. Our work
argues for building applications out of modules at the memory-
service interface level. We provide several oblivious memory
services, the core block being an oblivious block-level memory
controller that can defend against software attacks from an
active adversary. While these services can be connected di-
rectly to co-located applications in the cloud, they can be used
to implement remote file storage systems – granting constant
WAN bandwidth overhead solutions at the expense of trusting
the SGX mechanism.
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Proceedings of the 2017 ACM on Asia Conference on Computer and
Communications Security, 2017, pp. 7–18.

[9] V. Costan and S. Devadas, “Intel sgx explained,” 2016.
[10] S. Devadas, M. van Dijk, C. W. Fletcher, L. Ren, E. Shi, and D. Wichs,

“Onion oram: A constant bandwidth blowup oblivious ram,” in Theory
of Cryptography Conference, 2016, pp. 145–174.

[11] C. W. Fletcher, M. v. Dijk, and S. Devadas, “A secure processor
architecture for encrypted computation on untrusted programs,” in
Proceedings of the Seventh ACM Workshop on Scalable Trusted
Computing, ser. STC ’12. New York, NY, USA: ACM, 2012, pp.
3–8. [Online]. Available: http://doi.acm.org/10.1145/2382536.2382540

[12] C. Gentry, “Fully homomorphic encryption using ideal lattices,”
in Proceedings of the Forty-first Annual ACM Symposium
on Theory of Computing, ser. STOC ’09. New York,
NY, USA: ACM, 2009, pp. 169–178. [Online]. Available:
http://doi.acm.org/10.1145/1536414.1536440

[13] O. Goldreich and R. Ostrovsky, “Software protection and simulation on
oblivious rams,” J. ACM, pp. 431–473, 1996.

[14] D. Gruss, J. Lettner, F. Schuster, O. Ohrimenko, I. Haller, and M. Costa,
“Strong and efficient cache side-channel protection using hardware
transactional memory.” USENIX Association, August 2017.

[15] D. Gullasch, E. Bangerter, and S. Krenn, “Cache games–bringing
access-based cache attacks on aes to practice,” in Security and Privacy
(SP), 2011 IEEE Symposium on, 2011, pp. 490–505.

[16] T. Hunt, Z. Zhu, Y. Xu, S. Peter, and E. Witchel, “Ryoan: A distributed
sandbox for untrusted computation on secret data,” in 12th USENIX
Symposium on Operating Systems Design and Implementation (OSDI
16), 2016, pp. 533–549.

[17] Intel, “Intel trusted execution technology,”
http://www.intel.com/technology/security/, 2007.

[18] G. Irazoqui, M. S. Inci, T. Eisenbarth, and B. Sunar, “Wait a minute!
a fast, cross-vm attack on aes,” in International Workshop on Recent
Advances in Intrusion Detection, 2014, pp. 299–319.

[19] P. Kocher, J. Jaffe, and B. Jun, “Differential power analysis,” in
Advances in cryptologyCRYPTO99, 1999, pp. 789–789.

[20] S. Lee, M.-W. Shih, P. Gera, T. Kim, H. Kim, and M. Peinado, “Inferring
fine-grained control flow inside sgx enclaves with branch shadowing,”
arXiv preprint arXiv:1611.06952, 2016.

[21] C. Liu, A. Harris, M. Maas, M. Hicks, M. Tiwari, and E. Shi,
“Ghostrider: A hardware-software system for memory trace oblivious
computation,” ACM SIGARCH Computer Architecture News, pp. 87–
101, 2015.

[22] F. Liu, Y. Yarom, Q. Ge, G. Heiser, and R. B. Lee, “Last-level cache
side-channel attacks are practical,” in Security and Privacy (SP), 2015
IEEE Symposium on, 2015, pp. 605–622.

[23] M. Maas, E. Love, E. Stefanov, M. Tiwari, E. Shi, K. Asanovic, J. Ku-
biatowicz, and D. Song, “Phantom: Practical oblivious computation in a
secure processor,” in Proceedings of the 2013 ACM SIGSAC conference
on Computer & communications security, 2013, pp. 311–324.

[24] S. Matetic, M. Ahmed, K. Kostiainen, A. Dhar, D. Sommer, A. Gervais,
A. Juels, and S. Capkun, “Rote: Rollback protection for trusted
execution,” 2017.

[25] J. M. McCune, B. J. Parno, A. Perrig, M. K. Reiter, and H. Isozaki,
“Flicker: An execution infrastructure for tcb minimization,” SIGOPS
Oper. Syst. Rev., vol. 42, no. 4, pp. 315–328, Apr. 2008. [Online].
Available: http://doi.acm.org/10.1145/1357010.1352625

14



[26] F. McKeen, I. Alexandrovich, I. Anati, D. Caspi, S. Johnson, R. Leslie-
Hurd, and C. Rozas, “Intel&reg; software guard extensions (intel&reg;
sgx) support for dynamic memory management inside an enclave,” in
Proceedings of the Hardware and Architectural Support for Security
and Privacy 2016, 2016, pp. 10:1–10:9.

[27] ——, “Intel&reg; software guard extensions (intel&reg; sgx) support
for dynamic memory management inside an enclave,” in Proceedings
of the Hardware and Architectural Support for Security and Privacy
2016, 2016, pp. 10:1–10:9.

[28] F. McKeen, I. Alexandrovich, A. Berenzon, C. V. Rozas, H. Shafi,
V. Shanbhogue, and U. R. Savagaonkar, “Innovative instructions and
software model for isolated execution,” in Proceedings of the 2Nd
International Workshop on Hardware and Architectural Support for
Security and Privacy, 2013, pp. 10:1–10:1.

[29] D. Molnar, M. Piotrowski, D. Schultz, and D. Wagner, “The program
counter security model: Automatic detection and removal of control-
flow side channel attacks,” in International Conference on Information
Security and Cryptology, 2005, pp. 156–168.

[30] O. Ohrimenko, F. Schuster, C. Fournet, A. Mehta, S. Nowozin,
K. Vaswani, and M. Costa, “Oblivious multi-party machine learning
on trusted processors,” in Proceedings of the 25th USENIX Conference
on Security Symposium, 2016.

[31] D. A. Osvik, A. Shamir, and E. Tromer, “Cache attacks and
countermeasures: the case of aes,” in Cryptographers Track at the RSA
Conference, 2006, pp. 1–20.

[32] A. Rane, C. Lin, and M. Tiwari, “Raccoon: Closing digital side-channels
through obfuscated execution,” in Proceedings of the 24th USENIX
Conference on Security Symposium, 2015, pp. 431–446.

[33] L. Ren, C. Fletcher, A. Kwon, E. Stefanov, E. Shi, M. Van Dijk,
and S. Devadas, “Constants count: Practical improvements to
oblivious ram,” in Proceedings of the 24th USENIX Conference
on Security Symposium, ser. SEC’15. Berkeley, CA, USA:
USENIX Association, 2015, pp. 415–430. [Online]. Available:
http://dl.acm.org/citation.cfm?id=2831143.2831170

[34] ——, “Constants count: Practical improvements to oblivious ram,” in
24th USENIX Security Symposium (USENIX Security 15), 2015, pp.
415–430.

[35] L. Ren, C. W. Fletcher, X. Yu, M. Van Dijk, and S. Devadas, “Integrity
verification for path oblivious-ram,” in High Performance Extreme
Computing Conference (HPEC), 2013 IEEE, 2013, pp. 1–6.

[36] M. Schwarz, S. Weiser, D. Gruss, C. Maurice, and S. Mangard,
“Malware guard extension: Using SGX to conceal cache attacks,” 2017.

[37] N. Sehatbakhsh, A. Nazari, A. Zajic, and M. Prvulovic, “Spectral
profiling: Observer-effect-free profiling by monitoring em emanations,”
in Microarchitecture (MICRO), 2016 49th Annual IEEE/ACM Interna-
tional Symposium on, 2016, pp. 1–11.

[38] E. Shi, T.-H. H. Chan, E. Stefanov, and M. Li, “Oblivious ram with o
((logn) 3) worst-case cost,” in International Conference on The Theory
and Application of Cryptology and Information Security, 2011, pp. 197–
214.

[39] M.-W. Shih, S. Lee, T. Kim, and M. Peinado, “T-SGX: Eradicating
Controlled-Channel Attacks Against Enclave Programs,” in Proceedings
of the 2017 Annual Network and Distributed System Security
Symposium (NDSS), 2017.

[40] S. Shinde, Z. L. Chua, V. Narayanan, and P. Saxena, “Preventing page
faults from telling your secrets,” in Proceedings of the 11th ACM on
Asia Conference on Computer and Communications Security, 2016, pp.
317–328.

[41] S. Shinde, D. L. Tien, S. Tople, , and P. Saxena, “Panoply: Low-tcb
linux applications with sgx enclaves,” in NDSS, 2017.

[42] E. Stefanov and E. Shi, “Oblivistore: High performance oblivious cloud
storage,” in Security and Privacy (SP), 2013 IEEE Symposium on, 2013,
pp. 253–267.

[43] E. Stefanov, E. Shi, and D. Song, “Towards practical oblivious ram,”
arXiv preprint arXiv:1106.3652, 2011.

[44] E. Stefanov, M. Van Dijk, E. Shi, C. Fletcher, L. Ren, X. Yu, and
S. Devadas, “Path oram: an extremely simple oblivious ram protocol,”
in Proceedings of the 2013 ACM SIGSAC conference on Computer &
communications security, 2013, pp. 299–310.

[45] G. E. Suh, C. W. O’Donnell, and S. Devadas, “Aegis: A single-chip
secure processor,” Information Security Technical Report, vol. 10, no. 2,
pp. 63–73, 2005.

[46] E. Tromer, D. A. Osvik, and A. Shamir, “Efficient cache attacks on aes,
and countermeasures,” Journal of Cryptology, pp. 37–71, 2010.

[47] Trusted Computing Group, “Trusted Computing
Platform Alliance (TCPA) Main Specification Version
1.1b,” https://www.trustedcomputinggroup.org/specs/TPM/
TCPA Main TCG Architecture v1 1b.pdf, 2003.

[48] C.-C. Tsai, K. S. Arora, N. Bandi, B. Jain, W. Jannen, J. John, H. A.
Kalodner, V. Kulkarni, D. Oliveira, and D. E. Porter, “Cooperation
and security isolation of library oses for multi-process applications,” in
Proceedings of the Ninth European Conference on Computer Systems,
2014, pp. 9:1–9:14.

[49] J. van de Pol, N. P. Smart, and Y. Yarom, “Just a little bit more,” in
Cryptographers Track at the RSA Conference, 2015, pp. 3–21.

[50] W. Wang, G. Chen, X. Pan, Y. Zhang, X. Wang, V. Bindschaedler,
H. Tang, and C. A. Gunter, “Leaky cauldron on the dark land:
Understanding memory side-channel hazards in sgx,” arXiv preprint
arXiv:1705.07289, 2017.

[51] X. Wang, H. Chan, and E. Shi, “Circuit oram: On tightness of the
goldreich-ostrovsky lower bound,” in Proceedings of the 22Nd ACM
SIGSAC Conference on Computer and Communications Security, 2015,
pp. 850–861.

[52] X. S. Wang, K. Nayak, C. Liu, T.-H. H. Chan, E. Shi, E. Stefanov, and
Y. Huang, “Oblivious data structures,” in Proceedings of the 2014 ACM
SIGSAC Conference on Computer and Communications Security, 2014,
pp. 215–226.

[53] X. S. Wang, K. Nayak, C. Liu, T. Chan, E. Shi, E. Stefanov, and
Y. Huang, “Oblivious data structures,” in Proceedings of the 2014
ACM SIGSAC Conference on Computer and Communications Security.
ACM, 2014, pp. 215–226.

[54] P. Williams and R. Sion, “Single round access privacy on outsourced
storage,” in Proceedings of the 2012 ACM Conference on Computer
and Communications Security, 2012, pp. 293–304.

[55] Y. Xu, W. Cui, and M. Peinado, “Controlled-channel attacks:
Deterministic side channels for untrusted operating systems,” in 2015
IEEE Symposium on Security and Privacy, 2015, pp. 640–656.

[56] K. Yang, M. Hicks, Q. Dong, T. Austin, and D. Sylvester, “A2:
Analog malicious hardware,” in Security and Privacy (SP), 2016 IEEE
Symposium on, 2016, pp. 18–37.

[57] Y. Yarom and K. Falkner, “Flush+ reload: a high resolution, low noise,
l3 cache side-channel attack,” in Proceedings of the 23rd USENIX
conference on Security Symposium, 2014, pp. 719–732.

[58] B. Yee, D. Sehr, G. Dardyk, J. B. Chen, R. Muth, T. Ormandy,
S. Okasaka, N. Narula, and N. Fullagar, “Native client: A sandbox
for portable, untrusted x86 native code,” in Proceedings of the
2009 30th IEEE Symposium on Security and Privacy, ser. SP ’09.
Washington, DC, USA: IEEE Computer Society, 2009, pp. 79–93.
[Online]. Available: http://dx.doi.org/10.1109/SP.2009.25

[59] M. Zaharia, M. Chowdhury, T. Das, A. Dave, J. Ma, M. McCauley,
M. J. Franklin, S. Shenker, and I. Stoica, “Resilient distributed datasets:
A fault-tolerant abstraction for in-memory cluster computing,” in
Proceedings of the 9th USENIX conference on Networked Systems
Design and Implementation, 2012, pp. 2–2.

[60] S. Zahur and D. Evans, “Circuit structures for improving efficiency
of security and privacy tools,” in Proceedings of the 2013 IEEE
Symposium on Security and Privacy, ser. SP ’13. Washington, DC,
USA: IEEE Computer Society, 2013, pp. 493–507. [Online]. Available:
http://dx.doi.org/10.1109/SP.2013.40

[61] Y. Zhang, A. Juels, M. K. Reiter, and T. Ristenpart, “Cross-tenant
side-channel attacks in paas clouds,” in Proceedings of the 2014 ACM
SIGSAC Conference on Computer and Communications Security, 2014,
pp. 990–1003.

[62] W. Zheng, A. Dave, J. G. Beekman, R. A. Popa, J. E. Gonzalez, and
I. Stoica, “Opaque: An oblivious and encrypted distributed analytics
platform,” in 14th USENIX Symposium on Networked Systems Design
and Implementation (NSDI 17), 2017, pp. 283–298.

15


