Committed MPC

Maliciously Secure Multiparty Computation from Homomorphic Commitments

Tore K. Frederiksen, Benny Pinkas, and Avishay Yanay

Department of Computer Science, Bar-Ilan University, ISRAEL*
tore. frederiksen@biu.ac.il, benny@pinkas.net, ay.yanay@gmail.com

Abstract. We present a new multiparty computation protocol secure against a static and malicious dishonest ma-
jority. Unlike most previous protocols that were based on working on MAC-ed secret shares, our approach is based
on computations on homomorphic commitments to secret shares. Specifically we show how to realize MPC using
any additively-homomorphic commitment scheme, even if such a scheme is an interactive two-party protocol.
Our new approach enables us to do arithmetic computation over arbitrary finite fields. In addition, since our protocol
computes over committed values, it can be readily composed within larger protocols, and can also be used for
efficiently implementing committing OT or committed OT. This is done in two steps, each of independent interest:
1. Black-box extension of any (possibly interactive) two-party additively homomorphic commitment scheme to
an additively homomorphic multiparty commitment scheme, only using coin-tossing and a “weak” equality
evaluation functionality.
2. Realizing multiplication of multiparty commitments based on a lightweight preprocessing approach.
Finally we show how to use the fully homomorphic commitments to compute any functionality securely in the
presence of a malicious adversary corrupting any number of parties.

1 Introduction

Secure computation (MPC) is the area of cryptography concerned with mutually distrusting parties who wish to com-
pute some function f on private input from each of the parties, yielding some private output to each of the parties. If
we consider p parties, Py, ..., P, where party P; has input x; the parties then wish to learn their respective output y;.
We can thus describe the function to compute as f(xi, x2,...,%,) = (V1,¥2,...,¥p). It was shown in the 80’s how to
realize this, even against a malicious adversary taking control over a majority of the parties [GMW®87]. With feasibility
in place, much research has been carried out trying to make MPC as efficient as possible. One specific approach to
efficient MPC, which has gained a lot of traction is based on secret sharing [GMW87,BGW88,Bead1]: Each party
secretly shares his or her input with the other parties. The parties then parse f as an arithmetic circuit, consisting of
multiplication and addition gates. In a collaborative manner, based on the shares, they then compute the circuit, to
achieve shares of the output which they can then open.

1.1 Our Contributions

Using the secret sharing approach opens up the possibility of malicious parties using “inconsistent” shares in the
collaborative computation. To combat this, most protocols add a MAC on the true value shared between the parties. If
someone cheats it is then possible to detect this when verifying the MAC [DPSZ12,DZ13,NNOB12].

In this paper we take a different approach to ensure correctness: We have each party commit to its shares towards
the other parties using an additively homomorphic commitment. We then have the collaborative computation take
place on the commitments instead of the pure shares. Thus, if some party tries to change its share during the protocol
then the other parties will notice when the commitments are opened in the end (as the opening will be invalid).

By taking this path, we can present the following contributions:

1. An efficient and black-box reduction from random multiparty homomorphic commitments, to two-party additively
homomorphic commitments.

* Supported by the BIU Center for Research in Applied Cryptography and Cyber Security in conjunction with the Israel National
Cyber Bureau in the Prime Minsters Office.



2. Using these multiparty commitments we present a new secret-sharing based MPC protocol with security against
a majority of malicious adversaries. Leveraging the commitments, our approach does not use any MAC scheme
and does not rely on a random oracle or any specific number theoretic assumptions.

3. The new protocol has several advantages over previous protocols in the same model. In particular our protocol
works over fields of arbitrary characteristic, independent of the security parameter. Furthermore, since our protocol
computes over committed values it can easily be composed inside larger protocols. For example, it can be used
for computing committed OT in a very natural and efficient way.

4. We suggest an efficient realization of our protocol, which only relies on a PRG, coin-tossing and OT'. We give
a detailed comparison of our scheme with other dishonest majority, secret-sharing based MPC schemes, showing
that the efficiency of our scheme is comparable, and in several cases preferable, over state-of-the-art.

1.2 High Level Idea

We depart from any (possibly interactive) two-party additively homomorphic commitment scheme. To achieve the
most efficient result, without relying on a random oracle or specific number theoretic assumptions, we consider the
scheme of [FINT16]. This scheme, along with others [CDD*15a,CDD*16] works on commitments to vectors of m
elements over some field F. For this reason we also present our results in this setting.

The first part of our protocol constructs a large batch of commitments to random values. The actual value in such
a commitment is unknown to any party, instead, each party holds an additive share of it. This is done by having each
party pick a random message and commit to it towards every other party, using the two-party additively homomorphic
commitment scheme. The resulted multiparty commitment is the sum of all the messages the parties committed to,
which is uniformly random if there is at least one honest party. We must ensure that a party commits to the same
message towards all other parties, to this end the parties agree on a few (random) linear combinations over the com-
mitments, which are then opened and being checked.

Based on these random additively shared commitments, the parties execute a preprocessing stage to construct
random multiplication triples. This is done in a manner similar to MASCOT [KOS16], yet a bit different, since our
scheme supports computation over arbitrary small fields and MASCOT requires a field of size exponential in the
security parameter. More specifically the Gilboa protocol [Gil99] for multiplication of additively shared values is used
to compute the product of two shares of the commitments between each pair of parties. However, this is not maliciously
secure as the result might be incorrect and a few bits of information on the honest parties’ shares might be leaked. To
ensure correctness cut-and-choose and sacrificing steps are executed. First, a few triples are opened and checked for
correctness. This ensures that not all triples are incorrectly constructed. Next, the remaining triples are mapped into
buckets, where some triples are sacrificed to check correctness of another triple. At this point all the triples are correct
except with negligible probability. Finally, since the above process grants the adversary the ability to leak some bits
from the honest parties shares, the parties engage in a combining step, where triples are randomly “added” together to
ensure that the result will contain at least one fully random triple.

As the underlying two-party commitments are for vectors of messages, our protocol immediately features single-
instruction multiple-data (SIMD), which allows multiple simultaneously executions of the same computation (over
different inputs). However, when performing only a single execution we would like to use only one element out of the
vector and save the rest of the elements for a later use. We do so by preprocessing reorganization pairs, following the
same approach presented in MiniMAC [DZ13,DLT14,DZ16], which allows to perform a linear transformation over a
committed vector.

With the preprocessing done, the online phase of our protocol proceeds like previous secret-sharing based MPC
schemes such as [DPSZ12,KOS16,DZ13]. That is, the parties use their share of the random commitments to give input
to the protocol. Addition is then carried out locally and the random multiplication triples are used to interactively
realize multiplication gates.

Efficiency In table Table 1 we count the amount of OTs, two-party commitments and coin tossing operations required
in the different commands of our protocol (specifically, in the Rand, Input, ReOrg, Add and Mult commands).

1 OT can be efficiently realized using an OT extension, without the usage of a random oracle, but rather a type of correlation
robustness, as described in [ALSZ15].



The complexities describe what is needed to construct a vector of m elements in the underlying field in the amor-
tized sense. When using the commitment scheme of [FINT16] it must hold that m > s/|log,(|F|)].

Rand, Input | ReOrg | Add Mult
OTs 0 0 0 | 27mlog(JFhp(p — 1)
Two-party Commitments p(p—1) 3p(p—-1 | O 8lp(p-1)
Random coins log(|Fl) 4log(|F|) 0 108 log(|F|)

Table 1. Amortized complexity of each instruction of our protocol (Rand,Input,ReOrg,Add and Mult), when constructing a batch
of 22° multiplication triples, each with m independent components among p parties. The quadratic complexity of the number of
two-party commitments reflects the fact that our protocol is constructed from any two-party commitment scheme in a black-box
manner, and so each party independently commits to all other party for every share it posses.

1.3 Related Work

Comparison to SPDZ and TinyOT. In general having the parties commit to their shares allows us to construct a secret-
sharing based MPC protocol ala SPDZ [DPSZ12,KOS16], but without the need of shared amd specific information
theoretic MACs. This gives us several advantages over the SPDZ approach:

— We get a light preprocessing stage of multiplication triples as we can base this on commitments to random values,
which are later adjusted to reflect a multiplication. Since the random values are additively homomorphic and
committed, this limits the adversary’s possible attack vector. In particular we do not need an authentication step.

— Using the commitment scheme of [FINT16] we get the possibility of committing to messages in any field F among
p parties, using communication of only O(log(|F|) - p?) bits, amortized. This is also the case when F is the binary
field” or of different characteristic than 2. In comparison, SPDZ requires the underlying field to be of size Q(2°)
where s is a statistical security parameter.

— The TinyOT protocol [NNOB12,LLOS14,BLN"15] on the other hand only works over GF(2) and requires a MAC
of O(s) bits on each secret bit. Giving larger overhead than in SPDZ, MiniMAC and our protocol and limiting its
use-case to evaluation of boolean circuits.

Comparison to MiniMAC. The MiniMAC protocol [DZ13] uses an error correcting code over a vector of data el-
ements. It can be used for secure computation over small fields without adding long MACs to each data element.
However, unfortunately the authors of [DZ13] did not describe how to realize the preprocessing needed. Neither did
the follow up works [DLT14,DZ16]. The only efficient’ preprocessing protocol for MiniMAC that we know of is the
one presented in [FKOS15] based on OT extension. However this protocols has it quirks:

— It only works over fields of characteristic 2.

The ideal functionality described is different from the ones in [DZ13,DLT14,DZ16]. Furthermore, it is non-
standard in the sense that the corruption that an adversary can apply to the shares of honest parties can be based
on the inputs of the honest parties.

There is no proof that this ideal functionality works in the online phase of MiniMAC.

There seems to be a bug in one of the steps of the preprocessing of multiplication triples. We discuss this in further
detail in Appendix G.

OT Extensions. All the recent realizations of the preprocessing phase on secret shared protocols such as SPDZ,
MiniMAC and TinyOT are implemented using OT. The same goes for our protocol. Not too long ago this would have
not been a practically efficient choice since OT generally requires public key operations. However, the seminal work
of Beaver [Bea96] showed that it was possible to extend a few OTs, using only symmetric cryptography, to achieve a

2 This requires a commitment to be to a vector of messages in F.
3 Le. one that does not use a generic MPC protocol to do the preprocessing.



practically unbounded amount of OTs. Unfortunately Beaver’s protocol was not practically efficient, but much research
has been carried out since then [IKNP03,NNOB12,ALSZ13,ALSZ15,KOS15], culminating with a maliciously secure
OT extension where a one-out-of-two OT of 128 bit messages with s = 64 can be done, in the amortized sense, in
0.3us [KOS15].

Commitment Extensions. Using additive homomorphic commitments is a path which would also not have been possi-
ble even just a few years ago. However, much study has undergone in the area of “commitment extension” in the recent
years. All such constructions that we know of require a few OTs in a preprocessing phase and then construction and
opening of commitments can be done using cheap symmetric or information theoretic primitives. The work on such ex-
tensions started in [GIKW 14] and independently in [DDGN14]. A series of follow-up work [CDD*15b,CDD*16,NST17]
made it possible to get additively homomorphic commitments. [NST17] showed that committing and opening 128 bit
messages with s = 40 can be done in less than 0.5us and 0.2us respectively, in the amortized sense. *

It should be noted that the paper [DDGN14] also achieves both additively and multiplicative homomorphic com-
mitments as well. They use this to get an MPC protocol cast in the client/server setting. We take some inspiration
form their work, but note that their setting and protocols are quite different from ours in that they use verifiable secret
sharing to achieve the multiplicative property and so their scheme is based on threshold security, meaning they get
security against a constant fraction of servers in a client/server protocol.

Relation to [DO10]. The protocol by Damgard and Orlandi also considers an maliciously secure secret-sharing based
MPC in the dishonest majority setting. Like us, their protocol is based on additively homomorphic commitments where
each party is committed to its share to thwart malicious behavior. However, unlike ours, their protocol only works over
large arithmetic fields and uses a very different approach. Specifically they use the cut-and-choose paradigm along
with packed secret sharing in order to construct multiplication triples. Furthermore, to get random commitments in the
multiparty setting, they require usage of public-key encryption for each commitment. Thus, the amount of public-key
operations they require is linear in the amount of multiplication gates in the circuit to compute. In our protocol it is
possible to limit the amount of public-key operations to be asymptotic in the security parameter, as we only require
public-key primitives to bootstrap the OT extension.

Other Approaches to MPC. Other approaches to maliciously secure MPC in the dishonest majority setting exist. For
example Yao’s garbled circuit [ Ya086,LP07,LPSY15], where the parties first construct an encrypted Boolean circuit
and then evaluate it locally. Another approach is “MPC-in-the-head” [IKOSO07,IPS09] which efficiently combines any
protocol in the malicious honest majority settings and any protocol in the semi-honest dishonest majority settings into
a protocol secure in the malicious dishonest majority settings.

1.4 Paper Outline

We start with some preliminaries in Section 2 where we define our notation, variables names and ideal functionalities.
We continue in Section 3 with a description of how to achieve a multiparty additively homomorphic commitment
scheme from any (possibly interactive) two-party homomorphic commitment scheme. In Section 4 we describe how to
use the multiparty commitment scheme to preprocess multiplication triples and in general realize an offline phase for
a secret sharing based MPC protocol. Afterwards, in Section 5 we describe how to realize such an MPC scheme. We
compare the efficiency of our protocol to previous constructions in Section Section 6 and finally we consider possible
applications based on our protocol in Section 7.

2 Preliminaries

2.1 Parameters and Notation

Throughout the paper we use “negligible probability in s” to refer to a probability smaller than % and “overwhelming
probability in s a probability greater than 1 — 2l, where s is the statistical security parameter.
# Note that this specific implementation unfortunately uses a code which does not have the properties our scheme require. Specif-

ically its product-code has too low minimum distance.



There are p € N parties Py, ..., P, participating in the protocol. The notation [k] refers to the set {1,...,k}. We
let vector variables be expressed with bold phase. We use square brackets to select a specific element of a vector, that
is, x[£] € F is the €’th element of the vector x € F” for some m > €. We assume that vectors are column vectors
and use || to denote concatenation of rows, that is, x|ly with x,y € F" is a m X 2 matrix. We use = : F" X F" — F”
to denote component-wise multiplication and - : F X F” — F™ to denote a scalar multiplication. We will sometimes
abuse notation slightly and consider F as a set of elements and thus use F\{0} to denote the elements of F, excluding
the additive neutral element 0.

If § is a set we assume that there exists an arbitrary, but globally known deterministic ordering in such a set and
let S[i] = S; denote the ith element under such an ordering. In general we always assume that sets are stored as a
list under such an ordering. When needed we use (a, b, ...) to denote a list of elements in a specific order. This is in
particular used to construct unique session IDs when calling ideal functionalities.

All proof and descriptions of protocols are done using the Universally Composable framework [CanO1].

2.2 Ideal Functionalities

We list the ideal UC-functionalities we need for our protocol. Note that we use the standard functionalities for Coin
Tossing, Secure Equality Check, Oblivious Transfer and Multiparty Computation.

Coin-tossing. We need a functionality that allows all parties to agree on uniformly random elements in a field. For this
purpose we describe a general, maliciously secure coin-tossing functionality in Fig. 1.

Functionality interacts with Py, ..., P, and an adversary A. It proceeds as follows:

Toss: Upon receiving (toss, n, F) from all parties, where F is a description of some field F and » an integer, leak (toss, n,F)
to A. Then sample n uniformly random elements x,...,x, €z F and send (random, xi, ..., x,) to A. If A returns the
message (deliver) then send the message delivered to A to all parties, otherwise if (A returns the message (abort) then
output abort to all parties.

Fig. 1. Ideal Functionality Fcr

Secure Equality. In Fig. 2 we describe a functionality for evaluating secure equality for some value. Notice that this
functionality allows the adversary to learn the honest parties’ inputs after it supplies its own. Furthermore, we allow
the adversary to learn the result of the equality check before any honest parties, which gives him the chance to abort
the protocol. Thus this function should only be used on data that is not private. The functionality can for example be
implemented using a commitment scheme where each party commits to its input towards every other party. Once all
parties have committed, then the parties open the commitments and each party locally evaluates if everything is equal.

Functionality interacts with Py, ..., P, parties and an adversary A. It proceeds as follows:

Equality: Upon receiving (equal, i, xf) from party P; for all i € p (if P; is corrupted then x' is selected by A), proceed as

follows: If x! = x> = ... = x” then send (equal, accept) to A, otherwise send (equal,x',x?,...,x", reject) to A.
Proceed as follows:
— If A returns (deliver) and x! = x> = ... = x” then send the message (equal, accept) to all parties. If instead

x' # x/ for some i, j € [p], then send (equal,x',x?,...,x”, reject) to all parties.

— If A instead returns (abort) then output abort to all parties.

Fig. 2. Ideal Functionality Feq



Oblivious Transfer. We need a standard 1-out-of-2 functionality denoted by For as described in Fig. 3.

Functionality interacts with a sender Py, a receiver P, and an adversary A and proceeds as follows:

Sender Input: Upon receiving (transfer, xy, x;) from P, where xy, x| € {0, 1}* leak (transfer) to A.
Receiver Input: Upon receiving (receive,b) from P, where b € {0, 1} leak (receive) to A. If a message of the form
(transfer, xo, x;) has been received from P, then output (deliver, x,) to P, and (deliver, 1) to P;.

Fig. 3. Ideal Functionality For

Multiparty Computation. A fully fledged MPC functionality, very similar to the one described in previous works such
as SPDZ and MiniMAC, is described in Fig. 4. Note that the functionality maintains the dictionary id that maps indices
to values stored by the functionality. The expression id[k] = L means that no value is stored by the functionality at
index k in that dictionary. Also note that the functionality is described as operating over vectors from F" rather than
over elements from F. This is because our protocol allows up to m simultaneous secure computations of the same
function (on different inputs) at the price of a single computation, thus, every operation (such as input, random, add,
multiply) are done in a component wise manner to a vector from F”. As we describe later, it is indeed possible to
perform a single secure computation when needed.

Functionality interacts with Py, ..., P, and an adversary A.

Init: Upon receiving (init) from all parties forward this message to A. Initialize an empty dictionary id.

Input: Upon receiving (Input, i, k, X) from P; where x € F" and (Input, i, k) from all other parties, set id[k] = x and output
(Input, i, k) to all parties and A.

Rand: Upon receiving (random, k) from all parties, pick a random x € F”" and set id[k] = x. Output (random, k) to all parties
and A.

Add: Upon receiving (add, x, y, z) from all parties where id[x], id[y] # L, set id[z] = id[x] + id[y] and output (add, x, y, z) to all
parties and A.

Public Add: Upon receiving (add, x,y,z) from all parties where x € F” and id[y] # L, set id[z] = x + id[y] and output
(add, x, y, 2).

Multiply: Upon receiving (mult, x,y, z) from all parties where id[x], id[y] # L, setid[z] = id[x]*id[y] and output (mult, x,y, z)
to all parties and A.

Public Multiply: Upon receiving (mult, x, y, z) from all parties where x € F" and id[y] # L, set id[z] = x * id[y] and output
(mult, x,y, z) to all parties and A.

Output: Upon receiving (Output, k) from all parties where id[k] # L then output (k, id[k]) to A. If A returns (deliver) then
output (k, id[k]) to all parties, otherwise, if A returns (abort) then output abort to all parties.

Fig. 4. Ideal Functionality Fypcgn

Dependencies between functionalities and protocols. We illustrate the dependencies between the ideal functionali-
ties just presented and our protocols in Fig. 5. We see that F¢1 and Feq, along with a two-party commitments scheme,
Foncom-r» (presented in the next section) are used to realize our multiparty commitment scheme in protocol I7T4com-p».
Functionalities #¢1 and Fgq are again used, along with Frcom-p» and For to realize the augmented homomorphic com-
mitment scheme Ilapcom-pn. IIancom-» constructs all the preprocessed material, in particular multiplication triples,
needed in order to realize the fully fledged MPC protocol Fypc.pn.

2.3 Arithmetic Oblivious Transfer



Foncom—rn  Fcr  Feq Fot

Generally speaking, arithmetic oblivious transfer allows two parties

P; and P; to obtain an additive shares of the multiplication of two hcom—pm

elements x,y € F, where P; privately holds x and P; privately holds

y. . . . . . . . HAHCOM?]FM
A protocol for achieving this in the semi-honest settings is pre-

sented in [Gil99] and used in MASCOT [KOS16]. Let £ = [logF]

be the number of bits required to represent elements from the field upc—pm
F, then the protocol goes by having the parties run in ¢ (possibly
parallel) rounds, each of which invokes an instance of the general Fig. 5. Outline of functionalities and protocols.

oblivious transfer functionality (For). This is described by proce-
dure ArithmeticOT in Fig. 6.

Procedure ArithmeticOT(x, y):
For g = 1 to ¢ = [logF], the parties P; and P; do as follows:

1. Party P; (the sender) chooses a uniformly random r, € F and set the two £-bit strings s, s} where s) = r, and s} = y + r,.
2. Party P; invokes For with the message (transfer, sJ, s,).
3. Party P; (as the receiver) invokes For with the bit x, € {0, 1} with the message (receive, x,).

4. For returns (deliver, s;;") to P; and (deliver, 1) to P;.

Finally, party P; outputs z' = ¥ s 5, - 2" and P; outputs z/ = 3 sy =1y - 277"

Fig. 6. Procedure ArithmeticOT

Correctness. Note that P; outputs

i X -1 -1 -1 -1
7 = quqozq = Z(xq~y+rq)~2‘1 = qu.y.zq +qu~2‘1
qell] gell] qell] qell]
—1 i
=x'y+qu~2‘f =x-y-z
g€ll]

and thus we have z' + z/ = x - y. The second equality holds because s, equals y + r, if x, = 1 and equals r if x, = 0.

The use of arithmetic OT to construct multiplication triples. In our protocol we use the above procedure to multiply
two elements x,y € F” such that one party privately holds x and the other party privately holds y. Specifically, we
can do this using m invocations of the ArithmeticOT procedure, thus, to multiply elements from F”* we make a total of
mlog([|F|]) calls to the transfer command of the ¥t functionality.

Malicious behavior. In the above procedure party P; may guess bits of x in the following manner: To guess that the
g'thbitis 1 (i.e. x, = 1) P; calls (transfer, s), s})) with s) = O (rather than s) = r,) and s = y + r, (as required).
Then, if x, = 0 then P; adds s) - 29! = 0 when computing z', while P; decreases r, - 247" as required. On the other
hand, if x, = 1 then P; adds s; - 297! = (y + r,) - 29! when computing 7' and P; decreases r, - 247! as required. Now,
notice that if x, = 0 then the results of the procedure are z' and z/ such that 7' +z/ # xy while if x, = 1 then ' + 2/ = xy.
Thus, if 7 and z/ are used later on in the protocol then P; may learn x, by inspecting if the protocol aborts or not. If it
aborts before the parties decided their inputs then nothing is learned by P;, however, if the protocol aborts afterwards
then this reveals x, to P;. Furthermore, it is also possible for the sender P; to input “incorrect” value for both sg and
s; such that the receiver P; ends up with specific and incorrect result.

Note that the receiver could mount a selective attack as well: Consider sender and receiver with y/ and x' respec-

tively. The sender sets s) = r, and s, = r, + y/ and let the receiver’s g-th bit be x,. Now, if the receiver inputs 1 — x/



(instead of xf]) to the g-th OT then the output of the arithmetic OT would be correct iff y/ = 0. That is, the sender may
guess whether y/ = 0 or not and can also know that its guess was correct if the protocol does not abort.

Notice that the sender’s and receiver’s attacks are quite different: The sender may guess the value of each bit of the
receiver and guesses correctly with probability 1/2 for every guess while the sender may guess that the sender’s value
is zero and may succeed with probability 1/|F| (since the shares are uniformly random).

We treat these malicious behaviors in the protocol, specifically, in the combining step in Section 4.2.

3 Homomorphic Commitments

In this section we present the functionalities for two-party and multiparty homomorphic commitment schemes, how-
ever, we present a realization only to the multiparty case since it uses a two-party homomorphic commitment scheme
in a black-box manner and so it is not bound to any specific realization.

For completeness and concreteness of the efficiency analysis we do present a realization to the two-party homo-
morphic commitment scheme in Appendix A. Specifically, this is the scheme of [FINT16].

3.1 Two-Party Homomorphic Commitments

Functionality Foncom-z» is held between two parties P and P,, in which Py commits to some value x € F” toward
party P,, who eventually holds the commitment information, denoted [x]*". In addition, by committing to some value
x party P; holds the opening information, denoted (x)*", such that having P send (x)*" to P, is equivalent to issuing
the command Open on x by which P, learns x.

The functionality works in a batch manner, that is, P, commits to y (random) values at once using the Commit
command. These y random values are considered as “raw-commitments” since they have not been processes yet.
The sender turns the commitment from “raw” to “actual” by issuing either Input or Rand commands on it: The
Input command modifies the committed value to the sender’s choice and the Rand command keeps the same value
of the commitment (which is random). In both cases the commitment is considered as a “actual” and is not “raw”
anymore. Actual commitments can then be combined using the Linear Combination command to construct a new
actual-commitment.

To keep track on the commitments the functionality uses two dictionaries: raw and actual. Both map from iden-
tifiers to committed values such that the mapping returns L if no mapping exists for the identifier. We stress that a
commitment is either raw or actual, but not both. That means that either raw or actual, or both return L for every
identifier. To issue the Commit command, the committer is instructed to choose a set I of y freshly new identifiers,
this is simply a set of identifiers / such that for every k € I raw and actual return L. The functionality is formally
described in Fig. 7.

To simplify readability of our protocol we may use shorthands to the functionality’s commands invocations as
follows: Let [x;]®" and [x;]*" be two actual-commitments issued by party P, toward party P, (i.e. the committed
values are stored in actual[k] and actual[k’] respectively). The Linear Combination command of Fig. 7 allows
to compute the following operations which will be used in our protocol. The operations are defined over [x;]*" and
[xw-]*" and result with the actual-commitment [x;~]*":

— Addition. (Equivalent to the command (linear, {(k, 1), (k’,1)},0,%”).)
(Xl + X 17" =[x+ X0 ] =[x ] and (x0)™" + ()™ = (X + X)) = (%)™
— Constant Addition. (Equivalent to the command (1inear, {(k, 1)}, ¢, k”).)
C+ [X]™ = [e+ X" =[x ]" and €+ (x)™" = (e +x0)™" = (X))
— Constant Multiplication. (Equivalent to the command (1inear, {(k, ¢)},0,k").)

e XY = [ex X Y =[x 1™ and ¢ # (Xp)™ = (e * x0)™ = (X )™



Functionality Foycom-r: Interacts with two parties P, and P, and the adversary A.

Init: Upon receiving (init) from both parties set raw = actual = () and forward the message to A.

Commit: Upon receiving (commit, /) from P; where [ is a set of y freshly new identifiers, send the message (commit, /)
to A. If A sends back (no-corrupt) proceed as follows: For each k € [ sample x;, €z F” and store raw[k] = x;.
Finally send (committed, {(k, Xx)}ies) to P, and (committed, /) to P, and A. If P, is corrupted and A instead sends back
(corrupt, {(k, X;)}re;) proceed as above, but instead of sampling the values at random, use the values {(k, X;)}c;-

Input: Upon receiving a message (Input, k,y) from P if raw[k] # L then store raw[, k] = L and actual[k] = y. Then send
(Input, k) to P, and A.

Rand: Upon receiving a message (random, k) from P; if raw[k] = x; # L then store raw[k] = L and actual[k] = x;. Then
send (random, k) to P, and ‘A.

Linear Combination: Upon receiving (linear, ({(k, a)}iex » 3, k') for oy, B € F” from P; if actual[k] = x, # L for every
k € K and raw[k’] = actual[k’] = L then store actual[k’] = B + > icx Qu * X, and forward the message to P, and A.

Open: Upon receiving a message (open, k) from P, if actual[k] = x, # L then send (opened, x;) to P, and A.

Fig. 7. Ideal Functionality Foncom.p»

Realization of these operations depends on the underlying two-party commitment scheme. In Appendix A we
describe how addition of commitments and scalar multiplication are supported with the scheme of [FINT16]. We
show how to extend this to enable a componentwise multiplication of an actual-commitment with a public vector from
F™ as well (this is delayed to the appendix as it follows the same approach used in MiniMAC [DZ13]). In the following
we assume that public vector componentwise multiplication is supported in the two-party scheme.

3.2 Multiparty Homomorphic Commitments

Functionality Fycom-en, presented in Fig. 8, is a generalization of FoHcom-e» to the multiparty setting where the com-
mands Init, Commit, Input, Rand, Open and Linear Combination have the same purpose as before. The additional
command Partial Open allows the parties to open a commitment to a single party only (in contrast to Open that opens
a commitment to all parties). As before, the functionality maintains the dictionaries raw and actual to keep track on
the raw and actual commitments. The major change in the multiparty setting is that all parties take the role of both
the committer and receiver (i.e. Ps; and P, from the two-party setting). For every commitment stored by the function-
ality (either raw or actual), both the commitment information and the opening information are secret shared between
Py, ..., P, using a full-threshold secret sharing scheme.

3.3 Realizing Fycom-r» in the (Feq, Fc1s F2Hcom-r=)-hybrid Model

Let us first fix the notation for the multiparty homomorphic commitments: We use [x]] to denote a (multiparty) com-
mitment to the message x. As mentioned above, both the message x and the commitment to it [x] are secret shared
between the parties, that is, party P; holds x’ and [x]’ such that x = Dielp] x’ and [x] is composed of the information
described in the following. By issuing the Commit command, party P; sends [x']"/ for every j # i (by invoking the
Commit command from FoHcom-p»). Thus, party P; holds the opening information for all instances of the commit-

ments to x’ toward all other parties, that is, it holds {(x’)“ } —— In addition, P; holds the commitment information
JelpINti

received from all other parties, x/ (for j # i), that is, it holds {[xj]f’} — . All that information that P; holds with

regard to the value x is denoted by [x], which can be seen as a share to the multiparty commitment [x].

In protocol /Ticom-s» (from Fig. 9 and Fig. 10) each party has a local copy of the raw and actual dictionaries
described above, that is, party P; maintains raw’ and actual’. In the protocol, P; may be required to store [x]’ (i.e.
its share of [x]) in a dictionary (either raw’ or actual’) under some identifier k, in such case P; actually assigns
raw'[k] = {[xf]” (xtybi }]E[ " which may also be written as raw/[k] = [x])".

In the following we explain the main techniques used to implement the instructions of functionality Fycom.p» (We
skip the instructions that are straightforward):



Functionality Frcom: Interacts with parties Py, ..., P, and an adversary A, who may cause the functionality to abort at any
time:

Init: Upon receiving (init) from all parties, forward the message to A and initialize empty dictionaries raw and actual.

Commit: Upon receiving (commit, /) where [ is a set of y freshly new identifiers, for every k € I store raw[k] = T and send
(commit, /) to all parties and A.

Input: Upon receiving a message (Input,i, k,y) from P; and (Input,i, k) from all other parties, if raw[k] # L then assign
raw[k] = L, assign actual[k] = y and send (Input, i, k) to all parties and A.

Rand: Upon receiving a message (random, k) from all parties, if raw[k] # L then pick a random x; €z F", assign raw[k] = x;
and send (random, k) to all parties and A.

Linear Combination: Upon receiving a message (1inear, {(k, o) }iex » 3, k') for oy, 3 € F" from all parties, if actual[k] =
x;, # L for all k € K and raw[k’] = actual[k’] = L then store actuallk’] = B + XYk o * X and send
(linear, {(k, cx) ek » B, k') to all parties and A.

Open: Upon receiving a message (open, k) from all parties, if actual[k] = x, # L then send (opened, k, x;) to A. A may then
abort the protocol, otherwise send (opened, &, x;) to the honest parties.

Partial Open: Upon receiving a message (open, i, k) from all parties, if actual[k] = x;, # L then send (opened, i, k, X;) to
party P; and (opened, i, k) to all other parties and A.

Fig. 8. Ideal Functionality Fycom-p»

Linear operations. From the linearity of the underlying two-party homomorphic commitment functionality it follows
that performing linear combinations over a multiparty commitments can be done locally by every party. We describe
the notation in the natural way as follows: Given multiparty commitments [x] and [[y] and a constant public vector
ce ™

— Addition For every party P;:
i i_ Vb oiNis] 1 oD

I+ Iyl = {1 o)+ {1 )

= (P Iy Y+ ()

= (¥ + Y/ (x o+ )

JElpINi

JelpINi

= [x+yl'

JElpINi

— Constant addition The parties obtain [¢ + x] by having P; perform x’ = x’ + ¢, then, party P; computes:

c+ [[x]]i =c+ {[xj]j’i, (xi)i’j} = {[xj]j’i, c+ (xi)i’j} =[e+ x]]i

Jel2.p] Jel2.p]

and all other parties P; compute:

e+ Ixl = e+ {1,V = (X, () U {le+x'1M, )

JelpINj JEL2.pINj

= [c + x]’
— Constant multiplication For every party P;:

e x [x]' = e x {[x/]7, (x)"/} ex WP e ()] = e x]

Jelpini { jelpini

Notice that public addition is carried out by only adding the constant ¢ to one commitment (we arbitrarily chose
Py’s commitment). This is so, since the true value committed to in a multiparty commitment is additively shared
between p parties. Thus, if ¢ was added to each share, then what would actually be committed to would be p - ¢! On
the other hand, for public multiplication we need to multiply the constant ¢ with each commitment, so that the sum of
the shares will all be multiplied with c.

10



Commit. As the parties produce a batch of commitments rather than a single one at a time, assume the parties wish
to produce y commitments, each party picks y + s uniformly random messages from F”. Each party commit to each
of these y + s messages towards each other party using different instances of the Commit command from Fopcom-pr,
and thus different randomness.

Note that a malicious party might use the two-party commitment scheme to commit to different messages toward
different parties, which leads to an incorrect multiparty commitment. To thwart this, we have the parties execute
random linear combination checks as done for batch-opening of commitments in [FINT16]: The parties invoke the
coin-tossing protocol to agree on a s Xy matrix, R with elements in F. In the following we denote the element in the gth
row of the kth column of R by R, . Every party computes s random linear combinations of the opening information
that it holds toward every other party. Similarly, every party computes s combinations of the commitments that it
obtained from every other party. The coefficients of the gth combination are determined by the ¢’th row R and the gth
vector from the s “extra” committed messages added to the combination. That is, let the y + s messages committed
by party P; toward P; be x'i’j e xfy’iY and see that the gth combination computed by P; is (Zkey Ry - [xf{’j ]) + [xiy’iq]
;iq). Then P; open the result to P;, who checks that it is
correct. If P; was honest it committed to the same values towards all parties and so x;'{ = xj{’j = X;{'j/ for all k € [y + s]
and j # j/ € [p] \ {i}. Likewise for the other parties, so if everyone is honest they all obtain the same result from the
opening of the combination. Thus, a secure equality check would be correct in this case. However, if P; cheated, and
committed to different values toward different parties than this is detected with overwhelming probability, since the
parties perform s such combinations.

and the combination computed by P; is (Z key Rgk - (xi’j )) +(x

Input. Each party does a partial opening (see below) of a raw, unused commitment towards the party that is supposed
to give input. Based on the opened message the inputting party computes a correction value. That is, if the raw
commitment, before issuing the input command, is a shared commitment to the value x and the inputting party wish
to input y, then it computes the value € = y — x and sends this value to all parties. All parties then add [x]] + € to the
dictionary actual and remove it from the dictionary raw. Since the party giving input is the only one who knows the
value x, and it is random, this does not leak.

We prove the following theorem in Appendix B.

Theorem 3.1. Protocol Ilycomen (of Fig. 9 and Fig. 10) UC-securely realizes functionality Frcomen (of Fig. 8) in
the Forcomsen, Fet, and Feq-hybrid model, against a static and malicious adversary corrupting any majority of the
parties.

4 Committed Multiparty Computation

4.1 Augmented Commitments

In the malicious, dishonest majority setting, our protocol, as other protocols, works in the offline-online model. The
offline phase consists of constructing sufficiently many multiplication triples which are later used in the online phase
to carry out a secure multiplications over committed, secret shared values’. To this end, we augment functionality
Frcom-p» With the instruction Mult that uses the multiparty raw-commitments that were created by the Commit
instruction of Fig. 8 and produces multiplication triples of the form ([x], [y], [z]) such that x = y = z. Note that a
single multiplication triple is actually three multiparty commitments to values from F” such that z is the result of a
componentwise multiplication of x and y. That actually means that z, = X, - y, for every g € [m]. Hence, this features
the ability to securely evaluate up to m instances of the circuit at the same cost of evaluation of a single instance (i.e.
in case the parties want to evaluate some circuit m times but with different inputs each time) where all m instances are
being evaluated simultaneously. If the parties wish to evaluate only m’ < m instances of the circuit, say m’ = 1, they
do so by using only the values stored in the first component of the vectors, while ignoring the rest of the components.
However, using a multiplication triple wastes all components of X,y and z even if the parties wish to use only their
first component. To avoid such a loss we augment Fycom.p» With the instruction ReOrg. The ReOrg instruction
preprocesses reorganization pairs which are used to compute a linear operator over a multiparty commitment. For

3 Typically a secure addition can be carried out locally by each party.

11



Protocol /Iycom-s=. Interacts between p parties.

Init: On input (init) from all parties each pair of parties P; and P; invoke the command (init) of functionality Foncome» to
initialize an instances denoted by ﬂdcom-pvr'
Commit: To obtain a multiparty commitment to y random values from F":
1. The parties agree on a set I’ of y + s freshly new identifiers.
2. Every party P; engages in 7—'2";]"COMEW for all j # i by sending the message (commit,/”) and receiving the message
(committed, {(k, ij)}kew)’ As a result, P; receives the message (committed,/’) from ?‘;;COM_F," forall j #i.
3. Every party P; chooses x; € " for every k € I'. This is the value that is going to be committed from P; toward all
other parties.
4. Every party P; engages in ggoomw for all j # i by sending the message (Input, k, X;{) for every k € I'. As a result,
P; obtains [x]' = {[xi]-“, (x;'()"*j}je[p]\m forevery ke I'.
5. The parties agree on / and S such that [I| =y, |S|=s,INS =0and /US =1".
6. The parties issue the command (toss, F*?) to functionality Fcr, by which they receive (random, R) where R € F*,
We denote the element of the gth row of the kth column by R, ;.
7. Forevery g € S every party P; computes (s))"/ = (X )"/ + Yy Ry - (X)) = (X}, + Yy Ry - X} and sends (s}, )"/ to
P;.
P; then computes [s}]"/ = [x[]"/ + Ye; Ryu - [X[]" = [?(; + Yer Ry - X1/ and reveals s
8. For every g € I every party P; computes c; = Y, je1p) S5 and inputs (equal, ¢ ) to Feq. If Feq responds with abort
or (equal, sjl, . ,sf;, reject) in any of these calls then abort, otherwise output (committed, /). For every k € I store
raw'[k] = [x]'.
Input: Upon input (Input,i, k,y) from party i and (Input,i, k) from all other parties:
1. Party P; (for j # i) aborts if raw/[k] = L. Otherwise P; sends (x,’;)j‘f" to P; (using (open, k)), who learns xi
2. Party P; computes X; = 3 (] x,{ and broadcasts €, =y — x; to all other parties.
3. Party P; updates [x.]' by setting the opening values to (x' + &)"/ = (x;)"/ + & for all j € [p]. Similarly, party P; (for
J # i) updates [x;] by setting the ith commitment information to be [x, + ]/ = [X;]"/ + &.
4. Party P; (for all j € [p]) assigns raw/[k] = L and actual’ = [x,]’.
Rand: The parties agree on an arbitrary k such that raw’[k] = [x,]’ # L for all i € [p], set raw'[k] = L and actual’[k] = [x;]'.
Linear Combination: The parties agree on a set of indices K and the public vectors {oy ek such that actual[k] # L and
oy € F" for every k € K. In addition, the parties agree on a public vector 3 € F" and an index &’ such that raw[k’'] =
actual[k’] = L. Finally, every party P; stores actuall, k'] = 8 + Yk . * [x:]'.

Fig. 9. Protocol ITycomen - Part 1

Protocol /Iycom-p». Interacts between p parties.

Open: To open [x,]], every party P; sends (x;)"/ to P; for all j # i. Then, party P; obtains x,’{ from the commitment and the
opening information [x;]*" and (x;)* respectively. Finally P; computes X, = 3 ;c;,; X

Partial Open: To open [x;] to party P;, every pgfty P; (for Jj # i) sends <x£>j”' to P;. Then, party P; obtgins xi from the
commitment and the opening information [x; ]/ and (x])*' respectively. Finally P; computes X; = Y ic(,; X;-

Fig. 10. Protocol ITycopmen - Part 2

example this enable the parties to “copy” the first component to another, new, multiparty commitment, such that all
components of the new multiparty commitment are equal to the first component of the old one. For instance, the
linear operator ¢ € F™™ guch that its first column is all 1 and all other columns are all 0, transforms the vector x
to X’ = Xy,...,X; (m times). Applying ¢ to y and z as well results in a new multiplication triple (x’,y’,z") where
only the first component of (X,y,z) got used (rather than all their m components). We note that the construction
of reorganization pairs are done in a batch for each function ¢ resulting in the additive destruction of s extra raw
commitments (i.e. an additive overhead). In the ReOrg command, described in Fig. 11, the linear operator ¢ is applied
to L raw commitments in a batch manner. The inputs to ¢ are the messages stored by the functionality under identifiers

12



from the set X and the outputs override the messages stored by the functionality under identifiers from the set Y.
The messages stored under identifiers from the set R are being destroyed (this reflects the additive overhead of that
command).

Adding instructions Mult and ReOrg to the Fcom.p» functionality, we get the augmented functionality FaHcom-en
formally presented in Fig. 11.

Functionality #ancom-r». Interacts with p parties and an adversary A:

Init: Asin Fig. 8, in addition, initialize two additional empty dictionaries ReOrg and mult.

Commit, Input, Rand, Linear Combination, Open, Partial Open: As in Fig. 8.

Mult: Upon receiving a message (mult, C) from all parties where raw[c] # L for every ¢ € C, do as follow: Partition C into
four sets X, Y, Z, R where |X| = |Y| = |Z| = T for some T and |R| = 3(t; + (11(12)*> = 1) - T). The values of 7; and 7, are
explained below). Forevery i = 1,...,T:

1. Set mult[i] = (X;, Yi, Z;).
2. Sample x,y € F" and set actual[X;] = x, actuall¥;] = y and actual[Z;] = x = y.
Finally, for every ¢ € C set raw[c] = L. Output (mult, (X;, Y;, Z)ier)) to all parties and A.

ReOrg: Upon receiving a message (reOrg, ¢, C) from all parties where ¢ € F™ is a linear operator and raw[c] # L for
every ¢ € C, do as follow: Partition C into three sets X, ¥,R where |X| = |Y| = L for some L and |R| = s. For every
i € [L] set ReOrgli] = (X;, Y;), actual[X;] = xy, and actual[Y;] = ¢(xy,). Finally, for every ¢ € C set raw[c] = L. Output
(reOrg, {(X;, Y;)}ie) to all parties and A.

Fig. 11. Ideal Functionality Fancom-g»

Realizing Fancom-r» The protocol ITapcom-pr is formally presented in Fig. 13 and Fig. 14. In the following we
describe the techniques used in I7apcom-e» and show the analysis that implies the number of multiplication triples
that should be constructed in one batch for the protocol to be secure. Specifically, in Section 4.2 we describe how to
implement the Mult command and in Section 4.3 we describe how to implement the ReOrg command.

4.2 Generating Multiplication Triples

Secure multiplication in our online phase, similar to previous works in the field, is performed using multiplication
triples (AKA Beaver triples). In our work a multiplication triple is of the form ([x], [y] , [z]) where [x], [y] and
[z]] are multiparty commitments of messages X,y and z respectively as defined in Section 3.3 and z = x = y. The
construction of triples is done in a batch and consists of four parts briefly described below (and further explained and
analyzed soon afterward):

1. Construction. The parties first construct multiplication triples that might be “malformed” and “leaky” in case of
a malicious adversary (the terms “malformed” and “leaky” will be described soon). Construction of the triples is
based on the arithmetic OT procedure formalized in Section 2.3 and is further described below.

2. Cut-and-Choose The parties select 7, triples at random which they check for correctness. If any of these triples
are incorrect then they abort. Otherwise, when mapping the remaining triples into buckets, with overwhelming
probability all buckets will contain at least one correct triple.

3. Sacrificing. The remaining triples (from the cut-and-choose) are mapped to buckets, 7, triples in each bucket such
that at least one of the triples is correct. Each bucket is then tested to check its correctness where by this check
only a single multiplication is being output while the other 7; — 1 are being discarded. This step guarantees that
either the output triple is correct or a malformed triple is detected, in which case the protocol aborts.

4. Combining. As some of the triples might be “leaky”, which means that the adversary has guessed the value of
the share of an honest party (the term is further explained below), this allows the adversary to carry a selective
attack, that is, to probe whether its guess was correct or not. If the guess is affected by the input of an honest party
then it means that the adversary learns that input. Thus, as the name suggests, the goal of this step is to produce

13



a non-leaky triple by combining 7, triples, which are the result of the sacrificing step (and thus are guaranteed
to be correct), where at least one of the 7, is non-leaky. As we will see later, this condition is satisfied with
overwhelming probability.

We hereby further explain each of these steps:

Construction. The triples are generated in a batch, that is, sufficiently many triples are generated at once. However,
the construction of each triple is independent of the others. Thus, we may proceed by describing how to generate a
single triple. The parties select three raw-commitments, denoted [x], [y] , [z'], that were generated by Frcom-g=. The
goal of this step is to change [z'] to [z] such that [z] = [x = y].

Recall that for a message x that is committed to by all parties we have that each party P; knows x’ such that
X = Yierp) x'. Thus, the product x * y equals (Z,»EU,J xi) * (Z[E[I,] yf) = Yietpl X! % (X et y/). In order to have each
party P; hold the value z' such that ielp) z' = x =y we let party P; use the arithmetic OT procedure (as describe in
Section 2.3) to have a share of the multiplication x' » y/ for every j € [p] where P; inputs X' and P; inputs y/. After
P; multiplied its share x' with all other parties’ shares y/ the sum of all the shares is X' * (3 ;) ¥/) (assuming honest
behavior). If all parties do the same, then every party ends up holding a share of x * y as required. Remember that we
want P; to hold a share to [[x * y]| and not just a share to x = y (i.e. we want all shares to be committed). To this end,
every party broadcasts the difference t between the new share and the old share, that is, P; broadcasts t' = z’' —z"/, then,
the parties perform a constant addition to the old commitments, that is, they compute [z]] = [2'] + (Xcp th).

Discussion. As described above, party P; (for i € [p]) participates in p — 1 instantiations of the arithmetic OT function-
ality with every other party P; (for j # i). The arithmetic OT functionality is of the form (x', (y/, r/)) > (x'xy’/+1/, L),
that is, P; inputs its share x' of x, party P; inputs its share y/ of y and a random value r/. The functionality outputs
x'xy/ +1/ to P; and nothing to P;. Then, to get a sharing of X' xy/ we instruct P; to store X' xy/ + r/ and P; to store —r/
(see Section 2.3). Even if this arithmetic OT subprotocol is maliciously secure, it will only give semi-honest security
in our setting when composed with the rest of the scheme. Specifically, there are two possible attacks that might be
carried out by a malicious adversary:

1. Party P; may input §/ # y/ such that e = §/ — y/, in the instantiation of the arithmetic OT with every other P;,
where y/ is the value it is committed to. This results with the parties obtaining a committed share of the triple
([xT, IyD. [x = (y + e)])). We call such a triple a “malformed” triple.

2. In the arithmetic OT procedure party P; may impact the output of P; such that P; obtains x' * y/ + r/ only if the
k’th value of X' is equal to some value “guessed” by P;, otherwise P; obtains some garbage X' = §' € F". A similar
attack can be carried out by P; on y/ when computing over a “small” field (see the description of the malicious
behavior in Section 2.3). In both cases, the parties obtain committed shares of the triple ([x], [y] , [x * y])) only if
the malicious party made a correct guess on an honest party’s share, and an incorrect triple otherwise. Thus, when
using this triple later on, the malicious party learns if it guessed correctly depending on whether the honest parties
abort, thus, it is vulnerable to a “selective attack®. We call such a triple “leaky”, since it might leak privates bits
from the input of an honest party.

We take three countermeasures (described in the next items) to produce correct and non-leaky triples:

1. In the Cut-and-Choose step we verify that a few (7;) randomly selected triples have been constructed correctly.
This is done, by having each party open his committed shares associated with these triples and all parties verifying
that the triples has been constructed according to the protocol. This step is required to ensure that not all triples
were malformed as a preliminary for the sacrificing step (below) in which the triples are mapped to buckets. When
working over F = GF(2), this step is strictly needed to eliminate the case that all triples are malformed. For other
fields, this step improves the amount of triples to be constructed in the batch.

2. In the Sacrificing step we make sure that a triple is correct (i.e. not malformed) by “sacrificing” 71 — 1 other
triples which are being used as a “one-time-pads” of the correct triple. As we treat a bunch of triples at once, the
probability of an incorrect triple to pass this step without being detected is negligible in s (analysis is presented
below). Having the parties committed (in the construction step) to 7| - T triples, by the end of this step there will
be T correct triples.

14



3. In the Combining step we partition the constructed (correct but possibly leaky) triples into buckets of 7, triples
each, and show that for a sufficiently big number of triples that are the outcome of the sacrificing step, the prob-
ability that there exist a bucket in which all triples are leaky in a specific component is negligible in s. We show
how to combine the 7, triples in a bucket and produce a new triple which is non-leaky. This is done twice, first to
remove leakage on the x component and second to remove leakage on the y component.

Cut-and-Choose. The parties use F¢1 to randomly pick 7 triples to check. Note that 7, is the bucket-size used in
Sacrificing below and in practice could be as low as 3 or 4. It was shown in [FLNW17] that when partitioning the
triples into buckets of size 7| (where many of them may be malformed) then by sampling and checking only 7, triples,
the probability that there exist a bucket full of malformed triples is negligible. Formally:

Corollary 4.1 (Corollary 6.4 in [FLNW17]). Let N = 7 + T1(12)? - T be the number of constructed triples where
s < log, (%), then, by opening 7, triples it holds that every bucket contains at least one correct triple with

overwhelming probability.

Hence, it is sufficient to open (and discard) 7; triples out of the triples from the Construction step and hand the
remaining to the Sacrificing step below.

Sacrificing. In the following we describe how to produce (15)*- T correct triples out of 7y - (12)> - T that were remained
from the cut-and-choose step, and analyze what should 7 and 7, be in order to have all produced (1,)? - T triples
correct with overwhelming probability. We have the (15)* - T triples be uniformly assigned to buckets where each
bucket contains 7 triples, denoted {#;}ic[r,]. For simplicity, in the following we assume that 7; = 3. For every bucket,
the parties apply the procedure CorrectnessTest (see Fig. 12) to triples #; and f,. If the procedure returns successfully
(i.e. the parties do not abort) they run the procedure again, this time with triples #; and #3. Finally, if the procedure
returns successfully from the second invocation as well then the withs consider #; as a correct triple, otherwise they
abort the protocol.

Procedure CorrectnessTest(t, ).
Given the two triples #; = ([a], [b], [c]) and 7, = ([x], [y], [z]) the parties do as follows:

1. Invoke F¢r with the command (toss, 1, F \ {0}) to produce a uniformly random scalar r €¢ F \ {0}.
2. Locally compute [€] = r- [x] — [a]l and [p]] = [[y]] — [b]l and publicly open € and p, both in F™.
3. Locally compute [[e] = r - [z] — [c]] — € = [b] — p = [a]]l — p = € and publicly open e € F™.

4. If e # 0 then abort. Otherwise output #,.

Fig. 12. Procedure CorrectnessTest(, 1)

Correctness. To see that the CorrectnessTest is correct, let 1, = ([a], [b], [c]) and #, = ([x], [y], [z]) be two
correct triples, then the following holds:

lel r-fz] - [c] —e=[b] —px*[all —p*e€ (D
r-[[z] = [e]l = (- [x] - [al) = [b] = ([y]] - [b]) = [al

~([yll - [b) * (r - [x] - [al)

r-[[z] - [e]l - r - [x] = [b] + [a]l * [b] — [yl = [al + [b] * [a]

—r-[ly] * [xI + r - [b] * [xI + [y] * [all — [b] * [al

r-lzll - el + [all = [b] - r - [[y] = [xI

which is opened to 0 since z = x *y and ¢ = a * b.

15



Security. First see that because the r picked is never 0, then the values opened, € and p, will not leak anything on a,
respectively b, as these values will be one-time padded by x, respective y. Furthermore, if e # 0, then the protocol will
abort. This is in the preprocessing phase, thus before any private data is in play, and thus any leakage is acceptable. If
instead e = 0, then clearly nothing is leaked as 0 is constant.

We prove the following lemma in Appendix C, which states that after the sacrificing step all produced triples are
correct with overwhelming probability:

— I-7 . 2> o o 2. B . . .
Lemma 4.2. When 2~ < E=D ;Tfr(zr)z)zr;TT(lT)z,) DT gll the (t2)% - T triples that are produced by the sacrificing step

are correct except with probability at most 27°.

Combining. The goal of this step is to produce T non-leaky triples out of the (75) - T triples remained from the
sacrificing step above. We do this in two sub-steps: First to remove the leakage (with regard to the arithmetic OT) of
the sender and then to remove the leakage from the receiver. In each of the sub-steps we map the triples to buckets of
size 7, and produce a single non-leaky triple out of it. In the following we first show how to produce one triple from
each bucket with the apriori knowledge that at least one of the triples in the bucket is non-leaky (but we do not know
which one is it) and later we show how to obtain such buckets. Denote the set of 7, triples by {(IX¢], [¥«] > [Ze])}kegra)-
We produce the triple ([(x)], [y']], (Iz)']) out of that set in the following way: The parties compute

[x1= HZkE[Tz] Xk]] and [[y'] = [y:] and [Z'] = II(Zke[-rz] Xk) * YI]]

which constitute the triple ([x'], [y’], [z']). It is easy to see that [x'] can be computed locally since it requires
additions and constant multiplications only. Furthermore, X’ is completely hidden since at least one of X, ..., X; was
not leaked (and it is guaranteed from the construction step that it is chosen uniformly at random from F"). However,
notice that [z’] cannot be computed locally, since it is required to multiply two multiparty commitments I[(Z kelrs)] xk)]]
and [[y,]. Thus, to obtain [z'] the parties first compute [e;] = [[y1 — y«] and open € for every k = 2,...,7;. Then
compute [[z'] = IIZ] + 2, €k X + Zk]] by a local computation only.

Correctness. We show that for the triple ([x'],[y’]],[z']) produced above it holds that z = x’ =y’ (given that
Z; = Xg * Yy for k € [1,]) by the following:

2 =X kY1 + 20, €k X + 7
=X x Y1+ 20, (V1 — YO * X+ %
= X1 %Y1+ D, VX = Vi ok X + 7
=X| %Y1+ 20, V1 kX — Yiok Xg + Xk Y

=X Y N,V RXe = 20 YR = X kY
We prove the following lemma in Appendix D:

Lemma 4.3. Having a batch of at least ’2}'/%?'2“

contains at least one non-leaky triple with overwhelming probability in s in the component that has been combined
on.

triples as input to a combining step, every bucket of T, triples

For instance, when F = GF(2) having s = 40, 7; = 3 7, = 4 it is required to construct T ~ 8.4 - 10° correct and
non-leaky triples in a batch. Instead, having 7, = 3 means that ~ 2.29 - 10? triples are required.

Working Over Non-binary Extension fields. When F is a field with odd characteristic then there is a gap between
the maximal field element and the maximal value that is possible to choose which can fit in the same number of bits.
For instance, when working over F;; then the maximal element possible is 10,9 = 0101, while the maximal value
possible to fit in 4 bits is 15y = 11115, i.e. there is a gap of 5 elements. That means that an adversary could input a
value that is not in the field and might harm the security.

16



We observe that the only place where this type of attack matters is in the ArithmeticOT procedure, since in all
other steps the values that the adversary inputs percolate to the underlying homomorphic commitment scheme. In the
following we analyze this case: To multiply x' and y/ with x',y/ € Fp and  prime the parties P; and P; participate in a
protocol of [log P17 steps. In the g-th step, where g € [ﬂog P11, party P; inputs xi and P, inputs so = ryand s1 =r 4y
to the For functionality. The functionality outputs s% to Py which updates the sum of the result. In the end of this
process the parties hold shares to the multlphcatlon z=x -yl

We first examine the cases in which either sq or sq are not in the prime field, i.e. they belong to the gap gap =
[2Me?1] \ Fyp. We first note that if both of them are in gap then this is certainly detected by P; (since P; receives one
of them as the Fo1’s output). If only one of s s is in gap then one of two cases occurs:

1. If the value that P; received from For is in gap then it is detected immediately as before (since Py clearly sees that
the value is not in Fp) and can abort. Since this is the preprocessing phase it is independent of any secret input.

2. If the value that P, received from For is in Fp but the other value is not, then it is guaranteed that the value P
obtains is a correct share. That the dishonest P, obtains a share in the gap is actually the same case as if P, adds
an incorrect value to the sum s.t. it lands in the gap. This leads to two cases
(a) If the incorrect value is s2 # r, then this is equivalent to add s2 mod P, which leads to an incorrect share of

z. This case is detected in the sacrificing step.
(b) If the incorrect value is s}l * 7g+ y/ then this is equivalent to add s; mod P. As above, this leads to an
incorrect share of z which is being detected in the sacrificing step.

The last case is when either r, or y/ (or both) are not in Fp but the sum s}] does. Then this is equivalent to choosing
y/ € Fp and r; = stll —y/ mod P such that the value that P, adds to its sum is incorrect (since it is different than r;),
and thus, this is being detected in the sacrificing step as before.

Similarly, consider a corrupted receiver who organizes its bits of x/ to represent an element in gap. We observe
that this is equivalent to a receiver who inputs an incorrect value (value that is not committed before) for the following
reason: The adversary knows nothing about the sender’s (honest party) share y/, let the value that P; inputs be ¥, thus
the ArithmeticOT procedure outputs shares to #y/ mod P = (# mod P)(y/ mod P). Now, if ¥ mod P = 0 (i.e.
% = P) then this is detected by the sacrificing procedure (since 0 € Fp is not in the field). Otherwise, if ¥ mod P # 0
then the result #y/ mod # is a random element in the field Fp and the same analysis from the proof of Lemma 4.2
follows.

We prove the following theorem in Appendix E.

Theorem 4.4. The method Mult in [Iapcome (Fig. 14) UC-securely implements the method Mult in functionality
Farcomen (Fig. 11) in the For-, Feq- and Feor-hybrid model against a static and malicious adversary corrupting a
majority of the parties.

4.3 Reorganization of Components of a Commitment

The parties might want to move elements of F around or duplicate elements of F within a message. In general we
might want to apply a linear function ¢ to a vector in F” resulting in another vector in F”. To do so, they need to pre-
process pairs of the form ([x] , [¢(x)]]) where x is random. This is done by first having a pair of random commitments
(IxI, [[y]) (as the output of the Commit instruction of Frcom.z»), then, party P; broadcasts € = ¢(x') — y' (i.e. by
first applying ¢ on its own share). Note that from linearity of ¢ it follows that e[, ¢(x' ) = A (Xiep) x') = ¢(x), thus
Sictp € = Yietp1 $(x) = ¥' = ¢(x) — y. Then, the parties compute [y'] = [¥] + Xictp € = [¥] + 60 ~y = 9(x).
For security reasons this is done simultaneously for a batch of v + s pairs. Finally, the parties complete s random
linear combination tests over the batch by producing a uniformly random matrix R € F** (using Fcr). Let R, be the
element in the gth row and kth column of R. To perform the test, divide the v + s pairs into two sets A, B of v and s
pairs respectively. For each pair ([[zq]l , [[Zq’]l) in B for g € s compute and open

[s.] =[] + D Rosx-xadand [s,] = [z ]+ 3 Ry Il
kelv]

ke[v]

Each party now verifies that ¢ (sq) = §,. If this is so, they accept. Otherwise they abort.
Based on this we state the following theorem, which we prove in Appendix F.

17



Protocol /7ppcom-r=. Describes the implementation of Fapcomrn in the For, Feq- Fer-hybrid model. The protocol is an inter-
action between p parties, if For, Feq or Fcr outputs abort at any point, so does this protocol. The parties begin the protocol
with an empty dictionary ReOrg.

Init, Commit, Input, Rand, Linear Combination, Open, Partial Open:
Do exactly as in protocol /Iycom-p» in Fig. 9 and Fig. 10.
ReOrg: The parties wish to construct reorganization pairs based on the linear function ¢ using the raw commitments with
identifiers set C where |C| = 2v + 2s for some v. If raw’[c] # L for each ¢ € C and i € [p] then partition C into the sets
X, Y, A, B where |X| = |Y| = v and |A| = |B| = s and proceed as follows:
1. For each of the v pairs {(x,y)} € (X,Y) each party i broadcasts the value €| , = ¢(x,) - x;.
2. For each of the s pairs {(a, b)} € (A, B) each party i broadcasts the value 6;,;; = ¢(x,) — X,,.
3. For every pair (x,y) € (X, Y) and every pair (a,b) € (A, B) the parties pick freshly new indexes y" and 4" and compute
[[X>"]l = [[x)]l + X jerp) €y and [Xp ] = [%p1 + 3 iy eib. Meaning that I[X«‘"]l = [¢(x,)] and [xy 1 = [¢(x.)]- Let Y’ be
the set of y" and likewise let B be the set of b'.
4. All parties input (toss, s - v, F) to F¢r and thus learn (random, R) (when viewing the output as a matrix R € F™>").
5. The parties now compute and open the linear combination for each g € [s], letting R, denote the element in the gth
row of the kth column of R:

-l Sl e fs]- el s 2o

6. Each party now verifies that ¢(s,) = §,. If not, they abort.

7. The parties set ReOrg'[k] = (X;. ¥). actual[X] = [xx, | . actual'[¥{] = [¢(xx,)| for every k € [v] and raw'[c] = 1
for every ¢ € C. Output (reOrg, (X, Y”)) to all parties.

Fig. 13. Protocol I1apcom.zn - Part 1

Theorem 4.5. The method ReOrg in Ilaycoms of Fig. 13 UC-securely implements the method ReOrg in function-
ality Farncomsn of figure Fig. 11 in the For-, Feq- and For-hybrid model against a static and malicious adversary
corrupting a majority of the parties.

5 Protocol for Multiparty Computation

In Fig. 15 we show how to realize a fully fledged arithmetic MPC protocol secure against a static and malicious
adversary, with the possibility of corrupting a majority of the parties. This protocol is very similar to the one used in
MiniMAC [DZ13] and thus we will not dwell on its details.

Theorem 5.1. The protocol in Fig. 15 UC-securely implements the functionality Fypcrn of figure Fig. 11 in the
FaHcomEn-hybrid model against a static and malicious adversary corrupting a majority of the parties.

Proof. Consider the following simulator S:

Init, Input, Rand, Add, Public Add, Public Multiply: Simulate the protocol trivially by simply passing on mes-
sages from A to the ideal functionality and vice versa, while internally simulating Fancom-r» in accordance with
its ideal functionality.

Multiply: Pick €, p € F” uniformly at random and open towards these to (A by trivially simulating Fancom-g» -

Reorganize: Pick € € F” uniformly at random and open towards these to (A by trivially simulating Fapcom-g»-

Output: Receive x from the ideal functionality and send this to A. If it does not abort then allow the ideal function-
ality to output this to the honest parties.

The outputs of the real world and simulation is the same by correctness of Fapcom-r» and multiplication using Beaver
triples. Furthermore, we see that € and p are indistinguishable from random in the protocol since they are one-time
padded with the values a, respectively b from a multiplication triple. These are random by the Fancom-g» functionality
and are never used again. Thus the real world and simulation are indistinguishable.

18



Protocol /7ppcom-r=. Describes the implementation of Fapcomrn in the For, Feq- Fer-hybrid model. The protocol is an inter-
action between p parties, if For, Feq or Fer output abort at any point, so does this protocol. The parties begin the protocol
with an empty dictionary mult.

Mult: Upon receiving a message (mult, C) from all parties where raw[c] # L for every ¢ € C, let |C| = 3(7; + 7y - (1) T),
assign the raw-commitments C’ indexed by C (i.e. C’ = {[X.]}ccc) into 7, +7, -(72)?- T triples. For each triple [x], [[y] , [z]
do as follows:

1. Construction.
(a) Party P; (for every i € [p]) executes the arithmetic OT procedure ArithmeticOT(x’, y/) of Fig. 6 together with
every party P; # P; where P; inputs x' and P; inputs y/ and k is the raw-commitment ID of [[x].. Let s]_; be the

output for P; and s{;j be the output for P;.
(b) Every party P; computes 8' = X' *y' + 3 .;8{_, + X8, and broadcasts t' = s' — 7.
(c) All parties compute and store
2] = (20 + X € = |2+ Sicip €] =[x+ ¥]
2. Cut-and-Choose. Assign 7| randomly picked triples, out of the 7| + (1,)* - T triples constructed above, into a bucket
using Fcr. For each triple in this bucket, ([x], [¥]l, [z]), proceed as follows:
(a) The parties publicly open [x], [y]] and [z].
(b) Every party locally verifies if x * y = z. If this is the case they discard the triple ([x], [[y], [z]), otherwise they
abort.
3. Sacrificing. Let 7, - (,)*T be the number of triples remaining, where each triple is of the form ([x], [y]], [z]). The
parties do as follows:
(a) Assign the triples uniformly into 7; buckets where each bucket contains exactly 7, triples, denoted #,.. ., (the
uniform assignment done via the use of the coin tossing functionality Fcr).
(b) Run CorrectnessTest(t,#) for k € {2, ..., 7} (see Fig. 12) where k is the raw-commitment ID of [x]. Note that
according to the procedure, if a malformed triple is detected then the parties abort.
(c) Consider ¢, as a correct triple.
4. Combining. Let (15)? - T be the number of correct triples produced by the above step.
(a) Combine on x: The parties assign the triples uniformly into 7,7 buckets of 7, triples each (as before, this is done
using Fcr). For every bucket, denote the triples it contain by {([Xc1, [y« , [Zc])}eir,) the parties do as follows:
i. Compute [X'] = || Xefr,) xk]] and [[y'] = [[y:]
ii. Compute [&] = [y] —y:]] and open ¢, forevery k = {2,...,75}.
iii. Compute [2'] = ||z + X2, € * X + zk]l =[x1=[y]
(b) Combine on y: The parties assign the triples uniformly into 7" buckets of 7, triples each (as before, this is done
using Fcr). For every bucket, denote the triples it contain by {([X]l, [y«] , [Z«])}keir,) the parties do as follows:
i. Compute [[y'] = | Xierr, Yk]] and [x']] = [x,]
ii. Compute [€.] = [x; — x,]] and open ¢, for every k = {2,...,7,}.
iii. Compute [2'] = ||z + 22, € * yx + zk]l =[x1*[y].

Fig. 14. Protocol I1apcom.en - Part 2

6 Efficiency Compared to Other Works

In this section we compare the practical efficiency of our protocol with the competition.

6.1 Practical Optimizations

Several significant optimizations can be applied to our protocol. We chose to describe the optimizations here rather
than earlier for the ease of presentation. In the following we present each of the optimizations and sketch out its

security.

1. As we mentioned before, the two-party homomorphic commitment scheme of [FINT16] (described in Appendix A)

can be used as an implementation of functionality Fopcom.gn. Briefly, in this two party commitment scheme the
committer holds a set of 2m vectors from F***, namely the vectors 80,5}, ...,8),,§), whereas the receiver choose

19



Init: The parties invoke (init) followed by (commit, I) on Fapcom-=n to get a sufficient amount of raw commitments. Next the
parties call (mult, -) and (reOrg, ¢, -) to get a sufficient amount of multiplication triples, ([x], [¥], [z]) and reorganization
pairs ([x], [6]).

Input: To share P;’s inputy € F”, party P; calls (Input, i, k,y) on Faqcome» With k being the identifier of a raw commitment.
All other parties P; call (Input, j, k). The parties obtain commitment [[y]].

Rand: All parties call (random, k) on Fancom-= With k being an identifier of a raw commitment. The parties obtain commit-
ment [x;].

Public Add: To add together a public value y and a commitment, [x]}, the parties simply compute y + [x]] = [y + x]| using
the Linear command on Fancomp .

Add: To add two commitments together, [x] and [y] the parties simply compute [x] + [y] = [x + y] using the Linear
command on Fancomn-

Public Multiply: To multiply together a public value y and a commitment, [x], the parties simply compute y = [x] = [y * x]]
using the Linear command on Fapcompn.

Multiply: To multiply together two commitments, [x] and [y], the parties select a preprocessed multiplication triple
([all, [b1, [cl) and proceed as follows:

1. The parties open € = [x]] — [a]] and p = [[y]] — [b] using the commands Linear and Open on Fapcom-»-
2. The parties compute [z] = [x = y] = [c] + € = [b] + p = [a] + € * p using the command Linear on Fapcom.zn-

Reorganize: To apply a linear operator ¢ to commitment [x]] the parties select a preprocessed reorganization pair ([a], [¢a]]).
They then proceed as follows:

1. The parties open € = [x]] — [a]] using the commands Linear and Open on #ancom-g= -
2. The parties then compute [¢(x)] = [¢(a)] + ¢(€) using the commands Linear on Fancom-r -
QOutput: The parties open the value [x] that should be output of the computation using the command Open on Fancom-g» -

Fig. 15. Protocol UC-realizing Fypc.pn in the Fapcom-pr model.

a set of m bits by, ..., b,,, denoted as “its choice of watch bits” and obtains the m vectors 511" s S,Z”’, denoted as
“the watchbits”.

Recall that in our multiparty homomorphic commitment scheme party P; participates as a receiver in p — 1 in-
stances of two-party commitment scheme with all other parties. This means that P; needs to remember its choice
of watchbits for every other party and this accordingly for every linear operation that is performed over the com-
mitments. For instance, let [x], [y] be two multiparty commitments between three parties, then party P; stores

Ix]' = {{[xz]z'l, [x2]3’1} , {(xl)l’z, (x1)1’3}}. To perform the operation [x]] + [y] then P; end up with

[[X+y]]1 — {{[X2]2,1 + [y2]2,1’ [X2]3,1 + [y2]3,1} , {<X1>1,2 + <y1>1,2’<xl>1,3 + <y1>1,3}}

To make it more efficient, P; can choose the bits by, ..., b,, only once and use them in all instances of two-party
commitments. This makes the process of linear operations over commitments simpler and does not requires from
P to store the commitments for p — 1 parties. Applying the optimization to the above example, we have that P;
stores only a single value for the commitment part, that is, now P; needs to store

|[X+y]]l — {[X2]2,l + [y2]2,1 + [X2]3,1 + [y2]3,1 , {<X1>l,2 + <y1>1’2,<X1>1’3 + <yl>l,3}}

Security follows from the underlying commitment scheme, since what we now do is simply equivalent to storing
a sum of commitments in a single instance of the two-party scheme.
In a bit more detail, we see that since Fopycom-r» is UC-secure, it is secure under composition. Furthermore,
considering the worst case where only a single party is honest and all other parties are malicious and colluding
we then notice that the above optimization is equivalent to executing p — 1 instances of the Fopcom-rn, but where
the same watchbits are chosen by the honest party. We see that this is almost the same as calling Commit p
times. The only exception is that the seeds of the committing party, Py, of the calls to For are different in our
optimized protocol. Thus it is equivalent to the adversary being able to select p potentially different seeds to the
calls to Commit. However, the output of the PRG calls are indistinguishable from random in both cases and so
the distributions in both cases are indistinguishable assuming p is polynomial in the security parameter.

20




2. Recall that in the sacrificing step of protocol I7ancom-r» (see Fig. 14) the parties perform two openings of com-

mitments for every bucket (the opening is described as part of the CorrecnessTest in Fig. 12). That is, beginning
the step with 7, - (2)? - T triples (which are assigned to (1,)* - T buckets) leads to the opening of (1) = 1)- (13)*>- T
triples.
Since we require that the results of all of these openings be 0, then any linear combination over these opening
would be 0 as well if they are correct. On the other hand, if one or more of the openings are not zero the result
of a linear combination over the openings might be 0 with probability ﬁ. Thus, agreeing on a s random linear
combinations over the openings would detect an incorrect triple with overwhelming probability.

3. In the online phase of our protocol, for every multiplication gate the parties need to open some random commit-
ments using the Open command. The implementation of the Open command requires interaction between every
pair of parties, thus, the communication complexity is (7T - p?) where T is the number of multiplication gates in
the circuit. Following the same idea as used in SPDZ and MiniMAC, we note that we can reduce the communi-
cation complexity for every gate to O(p) in the following way, to perform a “partial opening” of a commitment
[x: A
(a) Every party P; sends its share x' to P,

(b) Py computes X = 3’ e[ x/ and sends back x to everyone.

This incurs a communication complexity of O(p) rather than O(p?). In the end of the evaluation of the circuit, the
parties perform s random linear combinations over the commitment values that were “partially opened” earlier.
Then, they open the results of the linear combinations using the Open command. If one of the opened results with
a wrong value (i.e. that does not conform with the result of the linear combination of the values sent from P, in
the partial opening) then the parties abort.

Using this optimization leads to a communication complexity of (T - p + s - p?). Security follows by the same
arguments as used in SPDZ and MiniMAC. Particularly before opening the output nothing gets leaked during the
execution of the gates in the protocol and since the adversary does not know the random linear combinations he
cannot send manipulated values that pass this check.

4. If the field we compute in contains at least 2° elements, then the construction of multiplication triples becomes
much lighter. First see that in this case it is sufficient to only have two triples per bucket for sacrificing. This is
because the adversary’s success probability of getting an incorrect triple through the CorrectnessTest in Fig. 12
is less than [F|~! < 275, Next we see that it is possible to eliminate the combining step on the y components of the
triples. This follows since the party inputting x into the ArithmeticOT procedure in Fig. 6 can now only succeed
in a selective failure attack on the honest party’s input y if he manages to guess y. To see this notice that if the
adversary changes the ¢’th bit of his input x then the result of the computation will be different from the correct
result with a factor y - 297, But since y is in a field of at least 2° elements then y - 2""! = 0 with probability
at most 27 and thus its cheating attempt will be caught in the CorrectnessTest with overwhelming probability.
Furthermore the combining on X is now also overly conservative in the bucket size 7. To see this notice that the
adversary only gets to learn at most s — 1 bits in total over all triples. This means that it cannot fully learn the
value of a component of x for all triples in the bucket (since it is at least s bits long), which is what our proof,
bounding his success probability assumes. Instead we can now bound its success probability by considering a
different attack vectors and using the Leftover Hash Lemma to compute the maximum amount of leakage it can
learn when combining less than 7, triples in a bucket as done in [KOS16]. However, we leave the details of this as
future work. To conclude, even when using the very conservative bound on bucket size, we get that it now takes
only 6m log(|F|]) OTs, amortized, when constructing 2% triples instead of 27m log(|F|) when s = 40.

6.2 Efficiency and Comparison

The computationally heavy parts in our protocol are the usage of oblivious transfers and the use of the underly-
ing homomorphic two-party commitments. Both of these are rather efficient in practice having the state-of-the-art
constructions of Keller et al. ([KOS15] for OT) and of Frederiksen et al. ([FINT16], for two-party homomorphic com-
mitments). It should be noted that if one wish to use a binary field, or another small field, then it is necessary to use a
code based on algebraic geometry internally if using the commitment scheme of Frederiksen ef al. [FINT16]. These
are however not as efficient to compute as, for example, the BCH code used in the implementation of [FINT16] done
in [NST17].

21



Notice that the amount of OTs our protocol require is a factor of O(mlog(|F|)) greater than the amount of com-
mitments it require. Therefore, in Table 2 we try to compare our protocol with [FKOS15], [KOS16] and [BLN*15]
purely based on the amount of OT's needed. This gives a fair estimation on the efficiency of our protocol compared to
the current state-of-the-art protocols for the same settings (static, malicious majority in the secret sharing approach).

Furthermore, we note that both [KOS16] and [FKOS15] (which is used as the underlying preprocessing phase for
MiniMAC) require a factor of between O(m) and O(m?) more coin tosses than our protocol. The reason for this is that
in our protocol it is sufficient to perform the random linear combinations using a random scalar from F (i.e. scalar
multiplication) whereas [KOS16] and [FKOS15] requires a componentwise multiplication using a random vector from
™. Note that in the comparison in Table 2 we adjusted the complexity of [FKOS15] to fit what is needed to securely
fix the issue regarding the sacrificing which presented in Appendix G.

Scheme Arbitrary F | Rand, Input | Schur, ReOrg Mult

COTe COTe COTe oT
[FKOS15] v mlog(|F|) mlog(|F]) 24mlog(|F]) | 12mlog(|F|) + 65
[KOS16] X mlog(|F|) - Smlog(|F]) 3mlog(|F|)
[BLN*15] X mlog(|F|) - 12m log(|F|) 3mlog(|F|)
This work v 0 0 0 27mlog(|F)
This work* X 0 0 0 6m log(|F|)

Table 2. Comparison of the overhead of OTs needed, in the amortized sense. All values should be multiplied with p(p —1) to get the
true number of needed OTs. We differentiate between regular OTs and the more efficient correlated random OT with error (COTe)
[KOS16]. We assume that k > nlog(|F|) which is the best case for [FKOS15], otherwise their complexity increases. MASCOT
[KOS16] requires log(|F|) > 2s. However, increasing the amount of OTs needed per multiplication triple with mlog(|F|)p(p — 1)
allows log(|F|) > s. [BLN*15] only works with F =GF2. For [BLN*15,KOS16] m = 1 is possible. We assume at least 2%' triples
are generated which gives the smallest numbers to the protocols. * Using optimization 4. in 6.1, requiring |F| > 2°.

7 Applications

Practically all maliciously secure MPC protocols require some form of commitments. Some, e.g. the LEGO family of
protocols [NOO9,FIN*13,FINT16,NST17], also require these commitments to be additively homomorphic. Our MPC
protocol works directly on such commitments, we believe it makes it possible to use our protocol as a component in
a greater scheme with small overhead, as all private values are already committed to. Below we consider one such
specific case; when constructing committed OT from a general MPC protocol.

7.1 Bit Committed OT

The bit-OT two-party functionality (b, xg, x1) — (xp, L) can be realized using a secure evaluation of a circuit containing
a single AND gate and two XOR gates: Let b denote the choice bit and x, x; the bit messages, then x, = b A (xo ®
X1) ® Xo.

We notice that all shares in our protocol are based on two-party commitments. This means that constructing a
circuit similar to the description above will compute OT, based on shares which are committed to. Thus we can
efficiently realize an OT functionality working on commitments. Basically we use F =GF2 and compute a circuit with
one layer of AND gates computing the functionality above. In the end we only open towards the receiver. At any later
point in time it is possible for the sender to open the commitments to xy and x;, no matter what the receiver chose.
The sender can also open b towards the receiver. However we notice that we generally need to open m committed
OTs at a time (since we have m components in a message). However, if this is not possible in the given application
we can use reorganization pairs to open only specific OTs, by simply branching each output message (consisting of m
components) into m output messages each of which only opening a single component, and thus only a single actual
OT.

Furthermore, since we are in the two-party setting, and because of the specific topology of the circuit we do
not need to have each multiparty commitment be the sum of commitments between each pair of parties. Instead the

22



receiving party simply commits to b towards the sending party using a two-party commitment. Similarly the sending
party commits to xy and x; towards the receiving party using a two-party commitment. Now, when they construct a
multiplication triple they only need to do one OT per committed OT they construct; the receiver inputting his b and the
receiver inputting xo @ x;. Since the sender should not learn anything computed by the circuit the parties do no need
to complete the arithmetic OT in other direction.

In this setting we have F =GF2 (hence m > s), p = 2 and 1 multiplication gate when constructing a batch of m
committed OTs. Plugging these into the equations in Table 1 we see that the amortized cost for a single committed-OT
is 36 regular string OTs of « bits and 108/m < 108/s < 3 (for s = 40) commitments for batches of m committed-OTs.

It is also possible to achieve committed OT using other MPC protocols, in particular the TinyOT protocols
[NNOB12,BLN"15] have a notion of committed OT as part of its internal construction. However our construction
is quite different.

Acknowledgment The authors would like to thank Carsten Baum and Yehuda Lindell for useful discussions along
Peter Scholl and Marcel Keller for valuable feedback and discussions in relation to their SPDZ and MiniMAC prepro-
cessing papers.

References

ALSZ13. Gilad Asharov, Yehuda Lindell, Thomas Schneider, and Michael Zohner. More efficient oblivious transfer and exten-
sions for faster secure computation. In ACM CCS, pages 535-548, 2013.

ALSZ15. Gilad Asharov, Yehuda Lindell, Thomas Schneider, and Michael Zohner. More efficient oblivious transfer extensions
with security for malicious adversaries. In EUROCRYPT, pages 673-701, 2015.

Bea9l. Donald Beaver. Efficient multiparty protocols using circuit randomization. In Joan Feigenbaum, editor, CRYPTO,
volume 576 of Lecture Notes in Computer Science, pages 420—432. Springer, 1991.

Bea96. Donald Beaver. Correlated pseudorandomness and the complexity of private computations. In STOC, pages 479488,
1996.

BGW88. Michael Ben-Or, Shafi Goldwasser, and Avi Wigderson. Completeness theorems for non-cryptographic fault-tolerant
distributed computation (extended abstract). In STOC, pages 1-10, 1988.

BLN*15. Sai Sheshank Burra, Enrique Larraia, Jesper Buus Nielsen, Peter Sebastian Nordholt, Claudio Orlandi, Emmanuela
Orsini, Peter Scholl, and Nigel P. Smart. High performance multi-party computation for binary circuits based on
oblivious transfer. JACR Cryptology ePrint Archive, 2015:472, 2015.

Can01. Ran Canetti. Universally composable security: A new paradigm for cryptographic protocols. In FOCS, pages 136—-145.
IEEE Computer Society, 2001.

CDD*15a. Ignacio Cascudo, Ivan Damgard, Bernardo Machado David, Irene Giacomelli, Jesper Buus Nielsen, and Roberto Tri-
filetti. Additively homomorphic UC commitments with optimal amortized overhead. In Jonathan Katz, editor, Public-
Key Cryptography - PKC 2015 - 18th IACR International Conference on Practice and Theory in Public-Key Cryptog-
raphy, Gaithersburg, MD, USA, March 30 - April 1, 2015, Proceedings, volume 9020 of Lecture Notes in Computer
Science, pages 495-515. Springer, 2015.

CDD*15b. Ignacio Cascudo, Ivan Damgard, Bernardo Machado David, Irene Giacomelli, Jesper Buus Nielsen, and Roberto Tri-
filetti. Additively homomorphic UC commitments with optimal amortized overhead. In PKC, pages 495-515, 2015.

CDD"16. Ignacio Cascudo, Ivan Damgérd, Bernardo David, Nico Déttling, and Jesper Buus Nielsen. Rate-1, linear time and
additively homomorphic UC commitments. In Matthew Robshaw and Jonathan Katz, editors, CRYPTO, volume 9816
of Lecture Notes in Computer Science, pages 179-207. Springer, 2016.

DDGN14. Ivan Damgard, Bernardo Machado David, Irene Giacomelli, and Jesper Buus Nielsen. Compact VSS and efficient
homomorphic UC commitments. In ASIACRYPT, pages 213-232, 2014.

DLT14. Ivan Damgard, Rasmus Lauritsen, and Tomas Toft. An empirical study and some improvements of the minimac protocol
for secure computation. In SCN, pages 398—415, 2014.
DO10. Ivan Damgard and Claudio Orlandi. Multiparty computation for dishonest majority: From passive to active security at

low cost. In Tal Rabin, editor, Advances in Cryptology - CRYPTO 2010, 30th Annual Cryptology Conference, Santa
Barbara, CA, USA, August 15-19, 2010. Proceedings, volume 6223 of Lecture Notes in Computer Science, pages 558—
576. Springer, 2010.

DPSZ12. 1Ivan Damgard, Valerio Pastro, Nigel P. Smart, and Sarah Zakarias. Multiparty computation from somewhat homomor-
phic encryption. In CRYPTO, pages 643-662, 2012.

23



DZ13.

DZ16.

FIN*13.

FINT16.

FKOSI15.

FLNW17.

GIKW14.

Gil99.
GMW8&7.

IKNPO3.

IKOSO07.

IPS09.

KOS15.

KOS16.

LOS14.

LPO7.

LPSY15.

NNOB12.

NOO09.
NST17.

Yao86.

Ivan Damgard and Sarah Zakarias. Constant-overhead secure computation of boolean circuits using preprocessing. In
TCC, pages 621-641, 2013.

Ivan Damgard and Rasmus Winther Zakarias. Fast oblivious AES A dedicated application of the minimac protocol. In
AFRICACRYPT, pages 245-264, 2016.

Tore Kasper Frederiksen, Thomas Pelle Jakobsen, Jesper Buus Nielsen, Peter Sebastian Nordholt, and Claudio Orlandi.
Minilego: Efficient secure two-party computation from general assumptions. In EUROCRYPT, pages 537-556, 2013.
Tore Kasper Frederiksen, Thomas P. Jakobsen, Jesper Buus Nielsen, and Roberto Trifiletti. On the complexity of
additively homomorphic UC commitments. In TCC, pages 542-565, 2016.

Tore Kasper Frederiksen, Marcel Keller, Emmanuela Orsini, and Peter Scholl. A unified approach to MPC with pre-
processing using OT. In ASIACRYPT, pages 711-735, 2015.

Jun Furukawa, Yehuda Lindell, Ariel Nof, and Or Weinstein. High-throughput secure three-party computation for
malicious adversaries and an honest majority. In Jean-Sébastien Coron and Jesper Buus Nielsen, editors, Advances in
Cryptology - EUROCRYPT 2017 - 36th Annual International Conference on the Theory and Applications of Crypto-
graphic Techniques, Paris, France, April 30 - May 4, 2017, Proceedings, Part II, volume 10211 of Lecture Notes in
Computer Science, pages 225-255, 2017.

Juan A. Garay, Yuval Ishai, Ranjit Kumaresan, and Hoeteck Wee. On the complexity of UC commitments. In EURO-
CRYPT, pages 677-694, 2014.

Niv Gilboa. Two party RSA key generation. In CRYPTO, pages 116-129, 1999.

Oded Goldreich, Silvio Micali, and Avi Wigderson. How to play any mental game or A completeness theorem for
protocols with honest majority. In STOC, pages 218-229, 1987.

Yuval Ishai, Joe Kilian, Kobbi Nissim, and Erez Petrank. Extending oblivious transfers efficiently. In CRYPTO, pages
145-161, 2003.

Yuval Ishai, Eyal Kushilevitz, Rafail Ostrovsky, and Amit Sahai. Zero-knowledge from secure multiparty computation.
In STOC, pages 21-30, 2007.

Yuval Ishai, Manoj Prabhakaran, and Amit Sahai. Secure arithmetic computation with no honest majority. In TCC,
pages 294-314, 2009.

Marcel Keller, Emmanuela Orsini, and Peter Scholl. Actively secure OT extension with optimal overhead. In CRYPTO,
pages 724-741, 2015.

Marcel Keller, Emmanuela Orsini, and Peter Scholl. MASCOT: faster malicious arithmetic secure computation with
oblivious transfer. In ACM CCS, pages 830-842, 2016.

Enrique Larraia, Emmanuela Orsini, and Nigel P. Smart. Dishonest majority multi-party computation for binary circuits.
In CRYPTO, pages 495-512, 2014.

Yehuda Lindell and Benny Pinkas. An efficient protocol for secure two-party computation in the presence of malicious
adversaries. In EUROCRYPT, pages 5278, 2007.

Yehuda Lindell, Benny Pinkas, Nigel P. Smart, and Avishay Yanai. Efficient constant round multi-party computation
combining BMR and SPDZ. In CRYPTO, pages 319-338, 2015.

Jesper Buus Nielsen, Peter Sebastian Nordholt, Claudio Orlandi, and Sai Sheshank Burra. A new approach to practical
active-secure two-party computation. In CRYPTO, pages 681-700, 2012.

Jesper Buus Nielsen and Claudio Orlandi. LEGO for two-party secure computation. In T7CC, pages 368—386, 2009.
Jesper Buus Nielsen, Thomas Schneider, and Roberto Trifiletti. Constant round maliciously secure 2PC with function-
independent preprocessing using LEGO. In NDSS, 2017.

Andrew Chi-Chih Yao. How to generate and exchange secrets (extended abstract). In FOCS, pages 162-167, 1986.

24



A  Two-Party Additively Homomorphic Commitments of [FJNT16]

For completeness we overview the two-party additively homomorphic commitment scheme of [FINT16]. Furthermore,
we show how to extend it to allow multiplication of public vectors rather than just public scalar values. The protocol
is formally presented in Fig. 16, Fig. 17 and Fig. 18.

We point out that the ideal functionality Fopcom-p» We described in Fig. 7 is slightly different from the functionality
described in [FINT16] and implemented by the protocol in Fig. 16, Fig. 17 and Fig. 18. Disregarding the methods
Pair and Public Multiplication the difference is purely based on meta-data and is there solely to make the usage of
Foncom-p» simpler and the presentation of our main results easier. Specifically the difference is that the functionality
implemented by /licom-r» and described in [FINT16] allows openings of linear combinations instead of constructing
linear combinations internally, which can then be opened later. We denote the actual functionality implemented in
Fig. 16, Fig. 17 and Fig. 18 by ¥,z This functionality is exactly Foncom-=» when removing Rand and linear
Linear Combination and using the following Open and Input commands:

Open: Upon receiving a message (open, ({(k, @) }rek,B)) from Py if raw[k] # L for every k € K then send opened,
({(k, @)kek B) s B+ Zkek @k - Xk to Prand S

Input: Upon receiving a message (Input,k,y) from Py, if raw[k] # L then set raw[, k] = y and output (Input, k) to
P,and S.

It is easy to see that Foncom-p» can be perfectly implemented in the 7—'2’HCOM_F,7, hybrid model by simply storing all
Linear Combination, Input and Rand and then internally construct the actual dictionary and simply open the correct
linear combinations when receiving an open command. This works without issues since only public info, such as
indexes and confirmation of the command is sent to parties when issuing Rand and Linear Combination. Regarding
Input the only difference is that -5y, Only keeps track of a single structure, raw instead of both raw and actual.
This can clearly be perfectly simulated by simply keeping track of actual internally.

The only remaining discrepancy between the functionalities is if any a; € F” for k € K. We discuss how to
overcome this in the following by the additional methods Pair and Public Multiplication. To do so we us first fix
some notations regarding linear codes.

Codes. In our construction we use a systematic linear error correction code C = [n, m, d] over F, that is, a code with
dimension m, length n and minimum distance d, where messages are from F”. We assume that C cyclic is a MDS
code®, that is, it holds that m + d = n + 1. We require that m - [log,([FD] > s

Let C(x) denote the encoding of a vector x as a codeword in a linear code C. The Schur transform of C (as described
in [DZ13]), denoted C*, is a linear [n, k*, d*] code, defined as the span of the set of vectors {x *y | X,y € C}. It holds
that k* > k and d* < d, but we require that d* > (s + log(v))/ log,(|F|). It should be noted that for small fields such as
the binary field, an algebraic geometry code is needed in order to ensure the required distance in the Schur transform.

Linear Operations. Following the notation introduced in Section 3.1 we show how the linear operations are reflected
when using the base commitment scheme in Fig. 16 and Fig. 17. The computation of these linear operations in
Frcom-rr is thus done for each pair of parties, using the underlying two-party commitment scheme.

Addition
[xe] + X ] = Xk + Xp]

is equivalent to P, computing
Wi = Wi + Wy

and
Xr + (X = (X + Xpr

is equivalent to Py computing:
(.6, ¢) == (1) + ).t} + t,,¢) + )

5 For concreteness one might just assume that C is a Reed-Solomon code.

25



Constant addition

Y+ X)) =(y+x)

is equivalent to P, computing
%, t,¢% =t e y)

and

y+[xI=I[y+x]
is equivalent to P, storing

w = (W,y)

The public vector y is added to the message after it has been opened verified.
Scalar multiplication

re0 = (rox)

is equivalent to P; computing
€t ) = O r-thr e

and
r-[x] =[r-x]

is equivalent to P, computing
Wi=r-w

We notice that for constant addition we do not modify the commitment or verification bits, but simply say that the
public message y should be added after opening [x]. This may seem insecure since we open something else than the
actual message. However, since y is already known to the receiver then it learns x + y in any case and can isolate x on
its own. However, there is an issue if we wish to use x + y as input to another operation; if it is addition, we simply
keep y “in the head” as part of the commitment resulting from the multiplication. In case of public multiplication of a
either a scalar or message vector, we simply must also multiply y with the public scalar/message and keep this in the
head. The problems occur in case of multiplication of two commitments, which we show how to handle below.

A.1 Schur Pairs

Multiplying two codewords together results in a codeword in the Schur transform which has low minimum distance.
Notice that this also happens even when we multiply a commitment with public message. We need to convert such a
commitment to a commitment in the code C to be able to multiply again. To do so we need to processes commitments
to a Schur Pair of a random message. Basically a Schur pair is a pair of commitments to the same random message
where one is encoded using C and one is encoded using C*, i.e. (C(x), C*(x)) for a random message x € F”. Remember
that we assume that C is a MSD and cyclic code. This means that the message space of C* is at least of size 2m — 1.
This means that we must fill the m — 1 remaining components computing C*(x). In order to avoid leakage in the online
phase these 2m — 1 extra elements must also be random. Thus, to construct a commitment to X using C* we require
constructing a new instance of the commitment scheme using the [n,m*,d*] code C* instead of C. This is done by
calling the Commit procedure, using the same seed OTs as we did when constructing the commitments in C. This is
done to ensure that P, gets the same choice of watchbits, b. Because of this overhead we require the construction of
Schur Pairs to be done in a batch. The idea is that we then have P; adjust the value of the commitments in C*, basically
using the Input procedure, to ensure that these commit to the same values as the commitments done using C. Then to
ensure correctness a linear combination procedure is executed, along with a check that ensures that when subtracting
the message of the C commitments from the C* commitments, the first m components are O (this verifies that they are
equal). To ensure that not too much info is leaked we construct s extra commitments, both in C and C* which will be
used as padding in the linear combination check and discarded afterwards.

Notice that we unfortunately cannot just use C to encode the same message twice even though C € C*. The reason
being that in the online phase the elements in position m to m* might leak info on the message if we do this.

26



Protocol between a sender P, and a receiver P,. We let Fprg : {0, 1}¥ — FPOW® be a pseudorandom generator with arbitrary
polynomial stretch.

Init:
1. On common input (init, m) we assume the parties agree on a linear code C in systematic form over F with parameters
[n, m, d] along with its Schur code, C* with parameters [n, m", d"]. The parties also initialize an internal set of unique
identifiers ID = ( and another initially empty set U.
2. For | € [m*], P picks r?,r,1 er {0,1} and inputs (transfer,«) to For and P, picks b, € {0,1} and inputs
(receive, b)) to For. The functionality replies with (deliver, rf’) to P, and (deliver, 1) to P;.
Commit:
1. On common input (commit,y), for / € [m], both parties use Fprg to extend the first m of their received seeds for For
into vectors of length y + 2s. These are denoted 87,5, € F'*** where P, knows both and P, knows 521, Next define the
matrices S°,S' € F"™0*+29 such that for / € [m] the I’th row of S is §? for b € {0, 1}.
2. Pickaset I s.t. J NID =0 and |[J| =y + 2s. We assume w.l.0.g. that the elements of J are [y + 2s]. For k € J let
the column vector of S°, S! be s, respectively s;. For b € {0,1}, P, lets t2 = n(s?) and lets t;, = t) + t,. Also P, lets
we = (w,w2,...,wh)and b = (by, bs,...,b,) where w} = sfl[l] for I € [n].
3. For 7, P, lets c0 =TTy, ,1(s0) and c' = M a(C(t)) — cO It then computes the correction value ¢, = c - 7rm,,,(s£).
4. Finally P, sends the set {€;},eq to P,. For/ € [n— m] if by = 1, P, updates wit! = &[1] + wit.
Consistency Check
5. For each g € [2s] P, samples r4,...,r; € F and sends these to P,.
6. P, then computes

Y Y
_t2+g+2n to i;:t}l/Jrg-f—Zrk't/{, 7+g+Zrk Cg
k=1 k=1
and sends (), t}, &) to P, for each g € [2s].
7. For each g € [25] P, computes W, = Wy.o + 21 1y - Wi It lets €& = 71,,,,(C(E) + £})) and €, = & — &. Finally for
u € [m] and v € [n — m], P, verifies that ©*[u] = W,[u] and &"" [v] = W[m + v] .
If the above check fails P, outputs abort and halts.
Output
8. Both parties let ID = ID U J\{y + gleens) and U = U U J\{y + glee25- Py now holds opening information
{1, t, €)}lkes and P, holds the verifying information {Wy}les\(y+g)-gel2s- Py and P, outputs (random, J\{y +

.
g}ge[Zs {ti ke T\ iv+gleetan))-

Fig. 16. Protocol UC-realizing ,,,.q.z« i the For-hybrid model - part 1.

Online Usage To use the Schur pairs to facilitate multiplication of a public message vector some interaction is required.
We describe the protocol for achieving this in Fig. 18. Basically if we wish to multiply the public constant r € F" with a
commitment to X, using a Schur Pair (C(x), C*(x|[x")), we use the linearity of the code and the fact that the commitment
consists of an additive secret sharing and let Py compute C(r) * C(y) by doing component wise multiplication of C(r)
onto the shares committing to y, resulting in an element in C*. We then hide the result of this by subtracting C*(x||x"),
using the fact that C* has message length m* and thus that X’ will be used to hide any info on r * y which might
otherwise be leaked by the last m* — m message components of C*(r *y). Thus P, will open the message € = r *y — X.
P, verifies that the opening is correct and then adjusts the commitment C(x) by adding € s.t. the values x from C and
C* cancel out and what remains is a commitment r * y using C.

Security As we have augmented the protocol with the procedure Pair we need to prove that this augmentation is secure.
To do so we first define the ideal functionality of the extra commands Pair command and then Public Multiplication:

Pair: On input (pair, C) from all parties where C is a set of size v + s for some v and for each k € C a message
(raw, k, x;) is stored, partition C into two sets X and R where |X| = v and |R| = s. Store the tuple (pair, k) and
delete the tuple (raw, k, X;). Finally output (pair, X) to P, and P,.

27



Input:
1. On input (Input, £, X) from P; let P, compute X = X — t; and send (chosen, &, X) to P,. Else ignore the message.
. P, stores (chosen, k, X) and set U = U\{k}.
Open:
1. On input (open, {(c, @.)}.ec) Where each e, € F and for all ¢ € C, P, holds (t?, tL',, c?) then it computes

Eozzac-t?, t! :Zac-ti, EOZZGC'C?

ceC ceC ceC

and sends (opening, {(c, @.)}cec, (£, t', ¢°)) to P,. Else it ignores the input message.

2. Upon receiving the message (opening, {(c, a.)}cec, (t°, t', €)) from P, if for all ¢ € C, P, holds w, it lets t = t© + t!
and computes W = ) ..c @, - W,. It lets ¢ = 7, ,(C(t)) and computes ¢l =c-c
Finally for u € [m] and v € [n — m], P, verifies that

" [u] = wlul, ¢ = wlm+v].

3. If all checks are valid set U = U\C and output (opened, {(c, @c)}cec, t + Drex @ - ¥i) where K € ID\U s.t. for each
k € K P, has stored a message (chosen, sid, k, ¥). Else it aborts and halts.
Public Multiplication:
1. On input (mult,{(c,a.)}.ec) Where each @, € F and for all ¢ € C, P, holds (t%,t!,¢c°) and it has an unused pair
(8, t],¢)), %, 61, ¢;°), ) and P, has the pair (w;, w}). P, computes

60 = "+ D 1 (C(@) * (e n(c)),
ceC

' = ="+ > me (C@) * (Kl n(el)),
ceC

&0 = ="+ D T a(C(@)) # T n(c2)
ceC

and sends (£°,&',&°) to P,.

2. Upon receiving (£°,t:!,&°) from P, P, then defines t; = £/ + t/! and lets & =, ,(C*(f))) and &' = & — &*°.

3. P, then verifies for u € [m*] and v € [n — m*] that f}‘b“ [u] = —W*[u]; + 3 ec Cla)[u] - w.[u] and & [v] = —w*[m* +
V] + Yeee Cla)[m* +v] - w.[m* +v].

4. P, computes r; = n,,l(f,* - f;’) and stores the message (chosen, /, ;).

Fig. 17. Protocol UC-realizing oz in the For-hybrid model — part 2.

Public Multiplication: On input (mult, k, r) from P, where a message (chosen, k, y;) and (pair, k) are stored and
r € F" then send (mult, &, r) to P, and delete (chosen, k, y;) and (pair, k') and store (chosen, k, r * y;).

Theorem A.1. The methods Pair and Public Multiplication in Fig. 17 and Fig. 18 UC-securely realizes the Pair and
Public Multiplication functionalities described above against a static and malicious adversary.

Proof. Since the two methods are simply extensions to the functionality F,,,~qy.zn> a0d F5 ooy 18 Tealized exactly
as in [FJNT16] we will piggyback a lot the security proof in this paper and assume the reader is very familiar with that
proof.

We start by showing correctness. This is straight forward, but we write it out for completeness: Pair: We show
that after steps 1-7 have been completed, if both parties were honest, then the three checks in step 8 should pass and
it should also hold (in order to make the whole protocol work) that tg + t,i = 7rm(t;§0 + tzl + f;) for k € [v + s]. For the
first two parts of 8 we see that these follow directly from correctness of opening of linear commitments, since this is

28



Pair: Upon receiving a message (pair, C) from all parties where C C U of size v + s for some v. Then partition this into the
sets X, R where |X| = v and |R| = s. Proceed as follows:
1. The parties execute (commit, v + s) but using the code C*, and all the m* seed OT's from Init, instead of just the first
m.
2. Based on the result of the Commit phase with C*, denote the tuple of opening information held by P, as
{(t“ﬁo,t,ﬁ‘,czo Ykerv+s)- Similarly denote the verification info held by P, as {W;}ic[,+s. Partition [v + s] into two sets
X’ and R’ where |X’| = v and |[R’| = s.
3. For each of the k € [v] party P, computes t}, W= txp 0~ "=t} using the opening information for the commitments
based on both C* and C. P, then sends {t: Y k]}ke to P,.
4. For each ¢ € [s] party P; computef rm = trall0” o th using the opening information for the commitments
based on both C* and C and sends {t;,[kj}kqx] to P,.
5. P, and P, input (toss, v, F) to Fcr for each g € [s] and thus learn (random, r;) (when viewing the output as a vector
r, € ).
6. P, now opens the linear combination for each g € [s] by sending the following values to P,:

70 0 0 il 1 1
6 = thyy + D TlK - ) T = thyy + > rglk] - (),
kelv] kel[v]

=y, + Z K] () B0 =t + Z r [kl - (605

kelv] kelv

Zx1 x1 *1

6= th + )l (G, =+ Z r [kl (¢,
ke[v] kel[v]

7. For each g € [s] P, now computes W, = Wgig + Xyepy) Fglk] - Wxpg and W, = w;,[q + Zke Y] alk] - Wi 1t lets
¢ = Tua(CE) + 1)) and € = 7,,,(CE + ;). It then computes t, = § + ¢, & = & +¢,. & =’ + ' and
¢ = EZO + é;',
8. P, verifies the following:
— That for each u € [m] and v € [n — m] it is the case fb“ [u] = W,[u] and EZ’”*" [v] = w,[m +v].
— That for each u € [m*] and v € [n — m*] it is the case t*b“ [u] = W(’;[u] and é;b”’**" [v] = W;[m* +v].
= That &, — 7 (&) + Ty, + Siep Tglk] - Ty = 07
If any check fails then P, aborts.
9. Store the messages  {(pair, (X[k], X'[k])}ey and  set U = U\C. Thus P, holds

*

+0 +0 es * e
((tx[k]v X[k]° X[k]) (tX’[k]’ X' [k]° X’[k])’tX’[kJ)}ke["] and Pr holds {(WX[k]’ WX’[k]’tX’[kJ)}kE[V]

Fig. 18. Protocol UC-realizing ¥, ooz in the For-hybrid model — part 3.

basically what is done and thus proved in [FINT16]. For the third part we see the following:

e Tk g s _ 50, {1 2+0 | Fx1 | 7= %
i - n[tq g+ | Tglkl - tx[k]] =0+ - n[tq 8 Ty + D Tlk] .tx[k]]

kel[v] ke[v]

_ 70 71
=00+ - ﬂ(tR,[q] gt (Z rolkl - (62, + [k])] + Ty + Z r,[K] - tx[k]]

ke[v] ke[v]

0 1 0 1
= trpg) + trig + [Z rglk] - (typy + tX[k])] -

kelv]
n(t;;,[q] - [Z rylk] -t},[kl] g+ D Tglk] -i;;,[k]]
kelv] kelv]
= trig) + {Z ry[k]- tx[k]] -
kel[v]
n(t;;,[q] + [Z r,[k] .t;;,[,d] + tig) = g + Y Tglk] - (b — t;,lk])]
kelv] ke[v]

=" 29



To verify that £ + t} = m,, (£ + t;! + ;) for k € [v + s] observe the following:

o (6 + 6"+ 8) = (8 + 607" - 1)
= 7 (8107 ") = &
Finally we observe that by definition t; = tg + t}( and correctness follows.
Public Multiplication: The values verified in step 3 are trivially true by correctness of opening of commitments.

Thus we see that it suffices to show that t; + 1, = ¥ cc @, * (2 + t!) as this is the value that will be opened and learned
by P,. We do this as follows:

t+r=t+ ﬂm(if - f?) =t + ﬂ,n(i;o + f;l - i?)

=t + 7 (—t;‘o -+ (Z T (C(2e)) # (M1 m(€) + tinnm*_m(ci))] - i;‘]

ceC

=t D e (0 + t})] + 1 (40 -t - )
ceC

=t + Z @, * tc) + (=t — 1))

ceC

=t+| ) o th + (=t — 0™ " + £)
ceC

:Zac*tc

ceC

Which verifies that the protocol is correct.

Security: First notice that the elements preprocessed in the Pair method can only used in Public Multiplication,
and thus not be opened individually or reused. Keeping this in mind, we now prove security in two steps, first assuming
a corrupt receiver, P, and next assuming a corrupt sender, P;. If both parties are corrupt there is nothing to show.

We use A to denote the corrupted receiver. For Init, Commit we do simulation as in [FINT16]. In this simulation
we have that S simulated the For functionality in Init and so it learns A’s choicebits b; for [ € [m*] along with its
watchbits w; and the simulated openings (9, t,i, cg) for k € [y].

For execution of Pair we have the simulator S passing on the input (pair, C) to 7:2'H00M-1Fm and receives back
(pair, X). It then simulates Init, Commit as in [FINT16], but using the code C*. Thus it learns the watchbits w; and
the simulated openings (t°, t,’:l , czo) for k € [v + s5]. Using these simulated opening it proceeds with the rest of the steps
like an honest P, would.

Once the Pair method has been executed, for each call to Public Multiplication S computes the message (chosen,
I,x;) A is supposed to store. It does so trivially since it knows w; for all / € [v] along with w; for k € [y] along with
the messages we send to (A from the simulation of Pair.

We see the simulation is indistinguishable from the real world since everything sent to A will be one-time padded
with a value based on a random commitment of m* components only used once. Furthermore if A acts correctly it will
accept the checks in step 8 of Pair because of the correctness of the underlying protocol.

For calls to Input we pick a random value X € F” and sends the message (chosen, k, X). For both Input and
Public Multiplication the value X of (chosen, &, X) is indistinguishable with what is sent in the real protocol. To see
this first notice that real protocol this value is indistinguishable from random since for each / € [m] the value t,i_b’ [1]
will be unknown to S because the For used is ideal and thus he will have no knowledge of the seed used in the PRG
to compute t,i_bk [/]. Meaning t,lc_bk [/] is indistinguishable from a random element in F. Thus the value sent in the real
protocol from P to P, is indistinguishable from a random element in F". So the real and ideal world are clearly
indistinguishable.

When opening linear combinations we do almost the same as in the proof in [FINT16]. However, since we now
might have a message (chosen, ¢, r,) to add to the opening we need to make some slight changes in the simulation:

30



When receiving (opened, {(c, @.)}.ec, X) from the ideal functionality we must simulate the triple 0, ¢!, ") sent to
A. We use the fact that in the real protocol P, can recompute all the values received from P, given just the value x
and the values w,, which it already knows. Specifically we compute W = Y .cc @ - W and t = C (X — Y, .cc @, - T¢) and
¢ = m,,,(t) where the values r, are retrieved from the messages (chosen, c,r.). Then for u € [m] and v € [n — m] we
define t?[u] = wlu], e [v] = w.[m + v], t' % [u] = t[u] — [u] and ! ~b»~[v] = ¢[v] — &’ [v]. Which follows from
the fact t = t° + t! and ¢ = ¢ + ¢'. We then sent the triple (£°, t', &) just computed to A.

The argument of indistinguishably is the same as in [FINT16]; basically because A will be oblivious of one value
in each component, and this value is indistinguishable from random in the real world (because we use an ideal OT and
a PRG and thus he will learn nothing of the choice he does not make). This is also the case in our simulation since
the value x will be a linear combination of at least one uniformly random value, which is also uniformly random. Or
it will be a linear combination of a chosen value, in this case what we send to A will be in correspondence with the
actual chosen value so that if A is honest, it will learn the same value as in the real world. Furthermore, following the
arguments above the other values sent to A will be indistinguishable from what is sent in the real world.

Now we consider a malicious P, and denote this by A and thus S will simulate an honest P,. For the methods
Init, Commit and Open we basically piggyback on the proof of [FINT16]. For Input we notice that we can simulate
this perfectly since we can extract the random commitments ‘A is uniquely defined to be able to open (by the proof in
[FINT16]) and then simply compute the true commitment by adding to this the correction value it sends.

Next we see that for the methods Pair and Public Multiplication P, never sends anything, thus we can trivially
simulate this. Since P, does not have any input to the protocol, what is left to show is that the ideal output is equal to
the real output in the case of public multiplication. For random commitments this is done by extracting the “actual”
values committed to by A and use them as input to the ideal functionality. In case of public multiplication this means
that we must ensure that the value opened in the ideal functionality is the same as the one opened in the real execution.
Specifically, we show that A can only succeed in opening a wrong public multiplication commitment if it can guess
at least s uniformly random bits.

First see that we can extract all the random messages P, commits to using the proof in [FINT16]. This is the case
for both the messages using C and C*. Based on these messages we can compute which values an honest P, should
send. So far we don’t abort if A sends something wrong and we compute everything like an honest P, would. Now,
when we reach step 8 we must argue that if A send something different than it was supposed to, an honest P, will catch
him. If it sent all the right things, then by the correctness of the protocol and the element we extracted (and passed on
to the ideal functionality) the openings in the real and ideal worlds will be consistent.

We notice that step 6, 7, and the first two parts of 8 is exactly the same as opening linear combinations of com-
mitments, which by the proof of security of the underlying commitment scheme means that whatever is the simulator
accepts as opening will be the same as in the ideal functionality, had we issued opening commands. Thus what is left
to show is the third part of step 8 which verifies that the commitments in C and C* commits to the same value. To show
this proceed as follows:

Denote the values A is supposed to send as in the protocol and denote those he actual sent in the same way but
concatenated with a ’. After the first two checks in 8 we know that

(S T T (U L L Y
Since the code has minimum distance s, if the above was not true, at least s positions must have been changed.
However, if that was the case then A would know at least s choicebits of P,. It cannot do that with probability greater
than 27° because these are only used in the ideal #or. From the last check in 8 we have that

70 71 70 Tl e e
8+ 8 — a0+ ) = 7 [Ty + D 1K - By
ke[v]
Remember that if A acts honestly it is the case that f; = )]0 " — t; and similarly ﬂm(f;:) = t; — mu(t}). This means

that for the adversary to succeed it must come up with values x,, (fz/) # t — my(ty) for at least one k € X s.t. the last
check in 8 still holds, before he learns the values r, for g € [s]. We can describe this such that f;‘;/ = & + t; — mu ().

31



Again, since we have by assumption that the check in step 8 pass we have that the following must be true:

trig)+ [Z rylk] - tX[k]] ~ (t;’[q] + {Z rylk] - tj{[k]]] = T (i;’[q] + Z rylk]- fﬁf/[kl]

ke[v] kelv] kelv]
tR[q]+ [Z rq[k] . tX[k]] — Ty (t;,[q] + {Z rq[k] . t}[k]]]
kelv] kelv]

=TTy (ER’[q] + trig) — Tn(tppyy) + Z rylk] - (& + txp — 7Tm(t§/[k]))]
ke[v)

0= €R'[q) T Z rq[k]  EX[k]
ke[v]

So there must be at least one ex-[x] # 0, otherwise P; is acting honestly (or no incorrect pair will be constructed) and
there is nothing to show.® It is easy to see the best strategy for the adversary is to pick one value eyz) and then values
€r[q) TOr g € [s] s.t. eprg) +14[k] - €x11y = 0. Since r,[k] is unknown to Py when he makes his choice, and it is uniformly
random and x4y # 0, we see that each value in F is equally likely to be hit. Thus he has [F|~! probability of guessing
€r[q) Tor each g € [s]. So his advantage is clearly at most 27°.

We notice that for Public Multiplication, we are basically just performing an Open and and Input of the com-
mitments based on C* and thus security follows from the base proof of [FINT16].

B Proof of Theorem 3.1

We prove security in the presence of an adversary A who corrupts A C {Py,...,P,}. We denote the honest parties
by A = {Py,..., Py} \ A. The simulator S participates in the ideal execution, corrupts the same set of parties A and
simulates the messages from the honest parties when the adversary is in the ideal world. The simulator S does as
follows:

Init. For every i € A return the message (init) and pass on the call to Fycom.p»-
Commit. The following simulation steps (and step numbers) are equivalent to the steps in the protocol.
1. Let I’ be the agreed set of y + s new identifiers.
2. To simulate step 2 the simulator S (who acts as in functionality FoHcom-=») chooses p(p—1) sets of |/’| random
messages from F”. That is, S uniformly picks XZJ for every k € I, every i € [p] and every j € [p] \ {i}. For

for
kel')

S returns the message

Téi-JICOM-]F'"’ S returns the messages (commit, I’) and (committed, {(k, x;(”)}
every j # i to the adversary. In addition, for every i € A in the instance
(committed,I’) for every j # i to the adversary.

3. At this point every party P; chooses a message x}( for every k € I’ to be committed to toward all other parties.

However, we need to consider an adversary who chooses different values to input toward different parties.

every i € A in the instance

)l
7TZHCOM—]F’” ’

That is, we denote by xj{’j ’ the value that party P; chooses to input (in the next step) toward party j.
4. To complete the simulation up to Step 4, for every k € I, every j € A and every i € A send the message
(Input, k) to P;. That is, return these messages to the adversary. In addition, as the corrupted parties sends the

ﬂﬁCOM_F,, for every k € I’ and every j € A, the simulator (who acts

as the trusted party) extracts those messages X;(] ' (which might be non-equal for every j € A).

Let 7 and S be the agreed partitioning of I’ as in Step 5 of the protocol.

6. To simulate Step 6 the simulator S chooses a random matrix R € F*, sends the message (random, R) (as the
output of F¢r) to the adversary.

7. Forevery g € S, every j € A and every i € A the simulator returns the message (linear, ({(k, Ry )}ker U
{(g, D}, B, k') (for a freshly new identifier k’) to the adversary, by emulating the Linear Combination instruc-

s i
tion in F5/,cop.mm-

message (Input, k, X;(] ’> to the instances

e

8 It is not sufficient to pick one €, since these will not be used in an online pair and thus will have not effect on the openings.

32



The results of the random linear combinations are then opened to the adversary: For every g € S, every i € A
and every j € A choose a uniformly random value s;, and returns to the adversary the message (opened sq)
It remains to check consistency on the adversary’s inputs: For every ¢ € S, every j € A and every i € A
compute s’ = x;/ "+ Sier Ry X;(J
8. For every g € S and every j € A compute cq DlicA sq In addition, receive the input of the corrupted
parties to functionality Fgq, that is, for every g € S and every i € A receive {cq} jerp)- If all cq are equal for
all j € [p] then output the message (equal accept) as the output of Feq. Otherwise output the message
(equel,cq - c ,reject) where cq = for j € A and cq is uniformly random sampled from F” for
j € A If the reject message was given as output then make Frcom-» abort. Otherwise pass on the message
(commit, ) to Frcom-gn-
Input. If an honest party gives input, then the simulator simply pass on the message (Input,i, k) to Fycom-p on
behalf of the corrupted parties. It then returns the messages it received from the ideal functionality back to the
adversary. If a corrupted party gives input, S receives (Input, i, k,y) from A and picks xi’ uniformly at random

and sends (opened, xi') to P; on behalf of each honest party j. It then receives ¢ from the corrupt party and sets

y =€+ (ZieA x}{) + (Z]-EA xi ) and inputs (Input, i, k,y’) to Fucom-g»-
Rand Extract the messages from P; € A and pass on the call from P; to Fcom-r». Furthermore define x‘,?/ = DpcA x;(’" '
Linear Combination Extract the messages from P; € A and pass on the call from P; to Frcom-p».
Open When opening commitment k S inputs (open, k) to the ideal functionality on behalf of each corrupted party and

receives back (opened, k, x;). Then S computes the honest partles share of the kth commitment xk =Xy — x’,‘? R

chooses |A| uniformly random elements that sum up to xk , i.e. the elements {x/ X, } jea such that xk = DjeA xk
If any honest shares of commitment x; have already been sent to a corrupt party previously (through the Input,
Open or Partial Open commands) then use the same values. Finally S sends the messages {(opened, k, x/ ’)} A
on every instance ?~2i’HjCOM-]Fm with i € A to the adversary. If A aborts or don’t opens its shares towards the honest
party then input abort to the ideal functionality so the honest parties don’t receive the opened value.

Partial Open When partially opening commitment k towards a malicious party P;, S inputs (open, i, k) to the ideal
functionality on behalf of each corrupted parties and receives back (opened, i, k, X;). Proceed like the simulation
of the Open command.

To argue indistinguishability between the real and ideal world we show the following:

1. The simulation aborts during Commit with the same probability as it aborts in the real execution, which is negli-
gible in s.

2. All values sent to A in the simulation are indistinguishable from the values sent by the honest parties in the real
execution.

In the following we go through the two items.

1. We see that the simulation aborts in Step 8 with exactly the same probability and cases as in the real execution.
The protocol aborts in one of two cases:

— If the corrupted parties input different values toward different honest parties notice that the simulation aborts
with exactly the same probability as it aborts in the real execution since the simulator executes exactly the
same check (on behalf of the honest parties) using random coins that were chosen from exactly the same
distribution, thus, the simulation and real execution abort in this case in the same probability.

— Even though the simulation aborts with the same probability as the real protocol we must still argue that
this happens if the adversary is inconsistent in any input between two honest parties. If not then the multi-
party commitment is not well-defined as it can be opened to different values towards the two different honest
parties. To succeed the adversary must pass the linear combination check. However, since a random linear
combination is a universal hash function and it is sampled after he commits towards the parties, then the
probability of a collision in a single linear combination is at most [F|~!, since the linear combination is based
on component-wise multiplication of a single element in F. However, since we do s independent random linear
combinations we get that the adversary succeeds in finding a collision with probability at most [F|™*.

33



In regards to the equality test functionality Feq, we notice that the simulator sees the inputs of the corrupted
parties to this functionality. Regarding the honest parties we see that since s{l of j € A is uniformly random
and completely unknown to the adversary (because Xé is a random one time pad constructed by Foncom-g» and
only used here) the values c,j; for j € A are indistinguishable from uniformly random values which is exactly
the same in the real protocol. This means that the simulation outputs reject in the same cases as in the real
protocol along with inputs of the parties which are indistinguishable from the real protocol.

2. We go over the protocol instructions one-by-one:

Commit. The first step where non-trivial information is sent to A is in Step 7 of Commit. Specifically, the

openings {sé,} jea to A. We notice that in the real protocol these values will be uniformly random for all honest
parties because the value x;, is used to hide 3 e; Ry - X| since this is the only place x; is used. Thus simply
picking a random value as S does is indistinguishable from the real world.

Input. We notice that in the real execution a corrupt party giving an input with index k receives an opening
to each honest party’s share of commitment k. Observe that in both the real execution and the simulation
the share is uniformly random. However, in the real execution it depends on the values sent in Step 7 of
Commit, whereas in the simulation it is independent. Even though, as we have discussed, the values sent in
Step 7 are one-time padded with another uniformly random value and thus the real and simulated worlds are
indistinguishable. To ensure that the input of the corrupt party gets correctly used in the rest of the protocol
the simulator computes the value y’, which is the value that would be opened to in the real protocol and inputs
this on behalf of the corrupted party to the ideal functionality. To see that this is in fact that value that would
be opened in the real execution, notice that the corrupt party is free to pick €, in any way, but that once it is
broadcast to the honest parties it defines exactly what the sum of the underlying Fopcom-p» commitments will
open to.

Rand, Linear Combination. No information is sent in these steps, so the simulation is perfect.

Open, Partial Open. The simulator receive the message (opened, k, x;) from the ideal functionality. First see
that by the computation of xf/ we ensure that that the opened shares A receives, summed with the shares
he committed to, will always be the same in the real and simulated world. To see that the opened values by
each honest party are distributed similarly in the real and simulated world. Consider the case where there
is only a single honest party. In this case its share is completely defined from the shares A is committed to
along with the value opened to by the ideal functionality. Thus it is clearly distributed similarly in the real
and simulated world. Next see that if there are more honest parties the simulator picks their shares randomly
under the constraint that they sum to the well-defined value xf/. This is also the way the shares are picked
in the real world and thus they are indistinguishable. In particular we notice that since the simulator uses any
randomly picked shares xi for a random party j € A it has already sent to the adversary, there will be no
inconsistency. Finally, see that the values will always be well defined since consistency between the opened
values will be ensured by Frcom-z» and that since S has extracted the shares of the corrupted parties (which
cannot be changed because of the consistency check except with probability at most |F|™ < 27° as explained
previously) and the honest parties shares are defined from these, once and for all.

C Proof of Lemma 4.2

Let us examine the possible outcomes of procedure CorrectnessTest when the assumption that they are both correct
does not hold. That is, if #, is malformed then we have z = x * y + A, for some A, € F”, thus the result of Eq. 1 is
e = r- A,. If #; is malformed then we have ¢ = a = b + A; for some A; € F” and the result of Eq. 1 ise = —A;.
Finally if both are incorrect than we have e = r - A, — A;. Thus, after applying procedure CorrectnessTest to two
triples we end up in one of the following cases:

1. Both triples are correct. From the correctness shown above the result of the procedure is a correct triple.

2. Exactly one triple is malformed. Note that either A; = 0 or A, = 0 (but not both). If A, = 0 then the result is
e = —A; # 0 and the parties abort. If A; = 0 then e = rA; # 0 (since r # 0) and the parties also abort. Thus,
either we will abort or we accept a correct triple 7.

34



3. Both are malformed. In this case we have A}, A, # 0. Notice that we have e = r- Ay — A = 0 if and only if
r-A; = A, which means that r = A; * (A,)"! (i.e. A; multiplied with the multiplicative inverse of A,). Since r
is chosen uniformly at random from F\{0} we have that the parties will not abort with probability of at most =— |JF| I-

From the above analysis it follows that an incorrect triple from the 7; - (r2)*T triples will end up being considered
as one of the (15)? - T correct triples if and only if it was assigned to a bucket with 7, — 1 triples and pass the
CorrectnessTests applied to it. Notice that an incorrect triple can only pass an instance of CorrectnessTest if it gets
paired with another incorrect triple and r = A * (A,)~'. Thus we wish to bound the probability that there exists a
bucket consisting entirely of incorrect triples and all the 7| — 1 checks done in this bucket pass. We have from Corollary

NT1+T1)

4.1 that the first event only happens with probability at most N| ( and the probability of the second event is at

most (|F| — 1)~! for each CorrectnessTest. Since CorrectnessTest will be carried out 7; — 1 independent times (using
a new triple each time), we get the probability of the second event is at most (JF| — 1)~"*!. Thus the probability that a
specific incorrect triple gets accepted is at most M| (N T‘”‘) ([F| = )™+,

Furthermore, let 0 < ¢ < (12)® - T be the amount of buckets the adversary choose to corrupt. Then we have
from [FLNW17] that the probability of ¢ bad buckets remaining after Cus-and-Choose is at most ((TZ)t T)((TZ)Z TT‘”‘) 1

1T
Thus for the adversary to succeed in the sacrificing without abort, it must be the case that the checks in all ¢ buckets

pass. Thus this happens with probability (|F| — 1)~ 71+1’ Thus the overall success probability of the adversary is at most:

((7'2)2 . T)(Tl (1)? T+ Tl)_l - (JF| = 1)
t 1Ty

It was already shown in [FLNW17] that the first term is maximized for t = 1. Now see that this is also true for the
second term ((JF]— 1)™™*") as 7; > 2 and so —¢7| + ¢ is maximized for as small ¢ as possible, which in our case is ¢ = 1.
Thus we wish to have

I R (- (@2 -T+1)!\ "
(F - )™ = (12) T((Tl.(Tz)z_T)w
C(Fl- DT ()2 T (- (1) -7y
- (- ()2 T +1)!

275> (1)* T C(JF| = 1y

T (1) T+1)
T1

and the lemma follows directly.
]

D Proof of Lemma 4.3

Before proving Lemma 4.3, we present the following helper lemma:

Lemma D.1. Given a bucket of T, triples where at least one is non-leaky on x (resp. on y) then the combining produces
a triple that is non-leaky on x (resp. on y).

Proof. We now show that combining 7, triples where at least one of them is non-leaky is enough for generating a
new non-leaky triple. Thus, by combining s + 1 triples it is guaranteed that the result triple is non-leaky. However,
this would incur a multiplicative overhead of O(s) on the number of multiplication triples that the parties are required
to generate. Instead, in the batch model, it is possible to generate sufficiently many multiplication triples, then divide
them into buckets, where each buckets contains 7, triples, where 7, is significantly less than s. If we combine the
T, triples contained in some bucket, we get that the new triple is non-leaky if at least one of the 7, is non-leaky as
well. For a given statistical security parameter s and number of triples to be contained in each bucket 7,, we want to
know the amount of triples, denoted 7", the parties need to generate in order to have all combined triples (i.e. from all
buckets) to be non-leaky with overwhelming probability (in s). m

35



We now proceed with the proof of Lemma 4.3: By generating 7" triples and uniformly dividing them into buckets
of size 7, we note that the probability of having some bucket full of leaky triples equals the number of buckets times
the probability of choosing 7, leaky triples out of the 7’ generated such that s of them are leaky. That is, let bad-bucket
be the event of choosing 7, leaky triples out of 7” triples, where s of them are leaky. Then the probability that at least
one of the combined triples is leaky is Pr[bad-bucket] - T > (by the union bound), and we want this to be less than 27°.

The probability of choosing 7, leaky triples out of the 7" is ET; by a counting argument as there are ( ) possible ways
]

of choosing a combined triple and there are ( ) possible ways of choosing this consisting entirely of leaky triples.

n

k
Using the bounds on the binomial coefficient,i.e. (;) < (k

get:
(2) (=)
noE)"

T2
thus, it follows that the number of triples required is

I (CRErS
T2

) < (%) where e is the base of the natural logarithm, we

~—

<

T’ (s~e)72_ (s-e)m <1

s-e
= ( ) and we want — - ,
i T T’ T T/Tz—l 25

—
~—

E Proof of Theorem 4.4

Let A be the adversary and A C {Py,..., P,} the corrupted parties. Also denote by A ={P,,..., P,}\A the honest
parties. In the following we describe the simulator § who interacts in the ideal execution of the protocol and produces
a view statistically close to the adversary’s view in the real execution. We assume that before issuing the command
Mult the parties have raw multiparty commitments of 3(t, +7; - (12)? - T') uniformly random values in F", those values
are defined (from Appendix B) and for every [x] the simulator S already extracted the adversaries’ shares denoted by
xk = Dpea x " for any j € A. The simulation goes as follows:

1. Upon receiving a message (mult, C) from all parties where ¢ € C is a an index of a raw commitment, invoke
FaHcom-p» With the command (mult, C).
2. Construction:
(a) Choose random values as the honest parties’ shares of x, that is, for every raw commitment [x] choose x! for
every i € A.
(b) For every 3 raw multiparty commitments [x], [y], [z] with indexes x,y,z € C, for every execution of
ArithmeticOT(x', y/)) between P; (who inputs x') and P; (who inputs y/) simulate the procedure as follows:
i. If party P; is corrupted then S extracts its input x,, picks a random value r, € F and returns this to A on
behalf of P; as the output of For. S then defines 2/ = Y ¢ 7g - 297" € F
ii. If party P; is corrupted then S extracts s2, s}l from P;’s input to For. It defines z/ = — 3, o s‘l) .41 ¢ F.
(c) Receive the values t' from each i € A. The simulator check if it holds that

i _ i i i i i
PIUEDY AERES YIRS oH B

icA icA J#i J#I
where z' corresponds to P;’s share of commitment z defined in the Commit phase by S (the value which in
the simulation of Commit is denoted by x"/') and s]__ is the simulated output of ArithmeticOT when P; is the
receiver and s;(_i when P; is the sender. If it does not hold then S marks the triple ([x], [y] , [z]) as bad and
stores the difference § = 3,4t — (xi *y A+ N sﬁ{_j + X s s?(_l.) +7.
3. Cut-and-Choose: S emulates ¢t to sample a random grouping of 7; triples. For each of these it proceeds as
follows:

36



(a) Simulate the opening of commitments [x], [y] and [z] by picking the honest parties’ shares uniformly at
random and using these to emulate the opening of the underlying Fncom-» functionality under the constraint
that z = x * y. However, if z is marked as bad, then the simulator instead picks the honest parties shares under
the constraint that z = x * y + ¢. Furthermore, abort and make Fapcom-p» abort as well if any of the triples
opened are marked as bad.

4. Sacrificing:
S emulates F¢t to sample a random grouping of the constructed multiplication triples into buckets of 7; triples
each. § simulates 7; — 1 executions of CorrectnessTest (Fig. 12) using the extracted values of the corrupt
parties as follows:

(a) S emulates Fcr to select a random r € F\{0}.

(b) S picks the honest parties’ shares of [€] and [p] uniformly at random and emulate the opening of these
values based on the underlying FoHcom-p» functionality.

(c) Based on € and p it uses Fancom-p» to compute and open e. Note that this will be based on the original random
commitments to z and ¢ and not the adjusted values from the Construction phase. If [z] is marked as bad
then let ¢, be the difference associated with z, otherwise let 6, = 0. Similarly if [c] is marked as bad then
let 6. be the difference associated with ¢, otherwise let 6. = 0. S then checks if r - 6, — §. = 0. If this is so it
emulates the opening of [e] to 0, otherwise it emulates the opening to the value r - §, — J..

5. Combining: Continue the simulation with the values that the corrupted parties are committed to:

(a) Combine over x: S emulates F¢7 to sample a random grouping of the constructed multiplication triples into
buckets of 7, triples each.

— Emulate the opening to €, for k € {2, ..., 7,} by picking the honest parties’ shares uniformly at random.

(b) Combine over y is done similarly to the combining over x.

The above simulation produces a view with the same distribution as the view of the environment in the real
execution. To see this, first notice that in the real execution the honest parties’ shares of the multiparty commitments
are uniformly random sampled and for everything opened in the simulation above this is also the case (under the
constraint that things add up correctly). Next see that in the simulation above, whenever something is opened, there
always remain at least one random additive share of at least one honest party, which means that everything done in
the simulation can be explained during Open, no matter what the true shares of the honest parties were in the ideal
functionality. In addition, note that the opened triples in cut-and-choose along with the sacrificed triples and triples
that were used in the combining step are never used again in the protocol after those steps and thus could not be used
by the environment in an attempt to distinguish between the views.

More specifically, first see that in Construction if the sending party in ArithmeticOT is corrupt then it learns
nothing, but the simulator can extracts its input to For and thus compute which value t' it should broadcast in step
(b). On the other hand, if the receiving party is corrupt, see that what the corrupt party receives is a uniformly random
value in F no matter if it is executing in the real world or with the simulator. More specifically if it requests message 0
then it gets s) = r, €g F. If instead it requests message 1 it get s, = r, €g F in the simulation and s} = y + r, in the
real execution, which is also uniformly random since r, is uniformly distributed and thus acts as a one-time pad. In
particular this holds since the only other place where r, is only used, is to compute t', but the malicious party should
accordingly compute t/ such that it gets canceled out. If it does not do that then the protocol will abort according to
Lemma 4.2. However, the adversary could try to learn something of the honest parties’ input by a selective attack, and
thus be able to distinguish between the real execution and the simulation. However, Lemma 4.3 shows that such an
attempt is futile, since triple that is not leaky on [x] will act as a one-time pad and thus remove the leakage. Similarly
for [[y].

For the opening of z in Cut-and-Choose see that if a corrupt party did any sort of cheating in Construction
s.t. [z]l # [[x = y] then the simulator will know exactly how big the difference is, since it knows what each corrupt
party should send if they followed the protocol. In particular notice that this is the case, even when the simulator does
not know the honest parties shares of [z] as the error will be additive as can be seen from step Construction (c).
Thus picking any random share for each honest party obeying this constraint will yield the same distribution for an
incorrectly constructed triple.

The same argument goes for Sacrificing. In particular notice that when one or two incorrect triples are paired in a
bucket the simulator will ensure that it picks the honest parties shares s.t. the difference between the true value e from
the ideal functionality and the simulated output will be the same.

37



For the combining we simply simulate the honest parties’ shares using random values, since € will always be one-
time padded with a random commitment only used once. Furthermore, from Lemma 4.3 we see that even a selective
attack on an honest party’s input will not yield any further information.

F Proof of Theorem 4.5

We see that the methods Init, Commit, Rand, Linear Combination, Open and Partial Open are implemented like
in Ilycom-F» and that the ideal functionality of these methods, from Frcom-p», are the same. Thus we piggyback on
the proof of security of Frcomr» of 3.1. Specifically this means that after Commit has been executed without abort
the simulator has uniquely deﬁned values of each of P; € A shares of commitments (with overwhelming probability),
denoted by x = Dpea xkj for any j € A and commitment k where the adversary A corrupts A C {Py,...,P,}
and A = {Pl, ..., P,}\A. We start by defining a simulator S simulating the honest parties A ={Py,.. L PN A
As before, the simulator knows the values that the adversary is committed to and as proved above, the same values
are committed toward all honest parties with overwhelming probability. That is, the simulator knows X', x\, . Xb for
ieA,xeX,yeYacA,b e Band proceeds as follows:

ReOrg.

1. Simulate the honest parties by picking values ef;,y € F" uniformly at random for P; € A and broadcast these to A
like in the protocol. Receive ei,’y from the adversary for every i € A.

2. Simulate the honest parties by picking values ei » € F" uniformly at random for P; € A and broadcast these to A
like in the protocol.

3. Do nothing.

4. Sample R € ]F"XV uniformly at random. Pick s € F" uniformly at random and let sq = s "+ Z kepv) Rak* 2iea x
Then pick sq foreach j € A umformly random shares under the constraint that s =2jeA sq Use these values to
simulate an opening to sq + sq7 and ¢(sq + sfj) for each g € [s].

5. Perform the same random linear combination test on €, for i € A exactly as done in Step 5 of the protocol (but

only on the shares of the adversary). If the test fails then abort.
6. Input (reOrg, C) into the ideal functionality on behalf of the malicious parties.

Since there is no private output from ReOrg it is sufficient to prove that the values sent to A are indistinguishable
in the real world and the simulation and that the simulation aborts with the same probability as the real protocol. First
note that the simulation aborts with exactly the same probability as the real execution aborts since the randomness
(used as coeflicients) is taken from the same distribution in both cases and the same linear combination test is done. It
follows that the adversary pass the linear combination test with a negligible probability in s (as we abuse terminology,
that means less than 27%) because this basically reduces to guessing a collision of a randomly sampled universal hash
function, as discussed in the proof of Theorem 3.1. Next, we show indistinguishability between the simulation and the
real execution using a hybrid argument, on every incoming message to the adversary:

Let H; be as the real execution. Define hybrid H, where everything is the same as in H; (but using the simulator
for ITcom-p» for Init, Commit, Rand, Input, Linear Combination) except that in step 4 the value s’ for P; € Ais
uniformly random sampled on-the-fly and setting §, = qS(sq) Furthermore opening of these values is handled without
calling the Open method, but by H,. Specifically it ensures the adversary is giving correct openings in accordance
with the adversarial shares extracted by the simulator in Commit. It also computes the openings of the honest parties
to send to A. It does so by randomly selecting sfl for each j € A under the constraint that 3’ jeA sfj. Note that we do
not need to ensure that the values s, and §, opened towards the honest parties in the real world and the hybrid are
indistinguishable since these are not opened in the ideal functionality and are thus only internal parts of the ReOrg
method. This means that the ideal functionality does not perform any Open commands as part of ReOrg. This is
purely part of the real world implementation of ReOrg and simulated in the hybrid.

Now to see that H; is computationally indistinguishable from H, we see that in the real protocol Sf/ has one term,
xiq which is also uniformly random sampled. Furthermore we see that xiq is never used again (since it is removed
from the set of raw commitments). Thus s; is actually a random and independently sampled valued. Furthermore A
has at most negligible knowledge of it because of the security of the security of the Commit method as proved in

38



Theorem 3.1. This means that the opened commitments A learns in step 4 are indistinguishable between H; and H,.
Furthermore we see that the methods Init, Commit, Rand, Input, Linear Combination are indistinguishable from
H, and H, because of the proof of Theorem 3.1. Finally we see that the method Open and Partial Open are perfectly
indistinguishable between H; and H, by definition.
Next define the hybrid Hj to be the same as H, except that in step 1 the value €, , for P; € A is uniformly random
sampled on-the-fly. Now to see that H; is computationally indistinguishable from Hz we see that in H, the value
€., has one term, Xy which is also uniformly random sampled. First see that when executing ReOrg the adversary is
oblivious to x;', for each i € A because of the security of the Commit method as proved in Theorem 3.1. Next we see
that after step 1, xi is only used again to construct a new commitment:

[xv] = [x] + Zjerrr €y = [(Zieaxi + €,) + (Zieaxi, + €1,)]
= II(ZieA X; + Ef\c,y) + (ZieA ¢(X;))]]

This means that the new commitment is unrelated to X;, for i € A (since the x;', terms are canceled out for i € A). Thus
the adversary will not be able to tell the difference of whether we use the correct eim, as in the H,, or the random one

in Hs. A crucial part of this argument is that H3 does not actually construct the commitment I[Xy/]l but rely on the ideal
functionality to make this, thus when opening [[x}]] or a linear combination of this, H3 ensures that the honest parties

term is exactly (Z icA ¢(x;)) by definition.

Finally we argue that H3 is indistinguishable from the simulation we see that the only difference between the two
is that Open, Partial Open opens to the values x, and ¢(x,) in H3z and we must argue that this is the same in the
simulation. First see that x, is by definition random and is picked directly from a raw commitment, thus this is the
same as calling Rand. So we only need to show that Open will open the other value correctly, i.e. to ¢(x,). So what
we need to show is that 3 pc4 xi = Dpea #(x’). We only need to show this for the malicious shares since the honest
parties do everything correctly and the simulation ensure that the values used for the honest parties are consistent with
the actual values opened (by storing exactly the expected value to be opened when one value of the reorganization pair
is opened). We see that if 3 p.c4 x’y # Dp.eA #(x’) then we abort step 5 as this step uses uniquely defined shares of the
adversary using the same argument of step 3 of Theorem 3.1. m

G Issues With [FKOS15] When Used as the Preprocessing Phase of MiniMAC [DZ13]

In the following we point out an attack on the sacrificing step in the construction of MiniMAC multiplication triples in
[FKOS15]. The attack seems to be easily fixable with multiplicative overhead of 3 or 4, in the amount of unchecked
triples that must be sacrificed to construct a correct triple. However, more efficient fixes might exist.

The preprocessing of the multiplication triples [FKOS15] used in MiniMAC consists of a sacrificing step in which,
possibly malformed, triples are paired up and checked. One of the triples in the pair is multiplied with a random
value, thus ensuring that a potential error gets randomized. The triples are subtracted from each other and a 0-check is
performed (similar to the CorrectnessTest described in Fig. 12).

In the following we first describe their sacrificing method and then describe the issue and a possible fix. Let the
values contained in the two triples be denoted by (x,y,z) and (a, b, c) where x,y,z,a,b,c € F”" andz = x*y + A,
and ¢ = axb + A, for some errors Ay, A, € F". A correct triple is one with a zero error. The parties sample a public
random value r € F"* and then check thatr * (z —x*y)+c—a*b =r* A; + A, = ¢ = 0. If this is the case, the
parties conclude that (X, y, z) is a correct triple and discard (a, b, ¢). Otherwise the parties abort the protocol.

In the following we assume that an adversary can freely determine A; and A, (we show later that it can in fact
do so with high probability, even though the ideal functionalities in [FKOS15] does not exactly allow this). We now
describe how an adversary could affect these errors such that the parties end up with an incorrect triple with high
probability.

First notice that if the adversary determines A; = (¢, 0, ...,0) with ¢ # 0 (i.e. the first component of A is some
non zero value ¢ and the rest m — 1 components are zero) and A, = (0,...,0), then the check goes through whenever
r = 0, which happens with probability ﬁ. Thus, the parties use an incorrect triple.

39



Changing the sacrificing step in a way that the triple (a, b, ¢) will be considered as correct (rather than concluding
that (x,y,z) is correct) and discard (x,y,z) does not solve the problem since now the adversary can set A, = —A|.
Thatis Ay = (¢,0,...,0)and A, = (—¢,0,...,0). Thus, whenever r = 1 the checkr * A; + A, willbe 0, andr = 1
with high probability of I711:I for small fields (i.e. if [F| < 2%).

One might be tempted to fix this issue by picking r # 0 or r # 1. However, for F =GF(2) this actually means that r
is fixed and known to the adversary a priori, which makes the sacrificing step useless. Furthermore, even for a general
field F (which is not GF(2)), the adversary may pick A; and A, arbitrarily and hope that r + A; + A; = 0 which
actually means that r = (—A,)(A)~!, as before, this happen with high probability of ﬁ.

This problem in [FKOS15] seems to be fixable using the same approach as in our sacrificing step, by construct-
ing triples in a batch and pair them randomly two or three times. This incurs an overhead of a factor 3 or 4 in the
construction of a single correct triple.

Determining the errors Ay and A,. 1t is required to argue that the adversary may indeed add two distinctive errors in
a single component to z and ¢ for the above issue to occur.

The ideal functionality in [FKOS15] constructs multiplication triples and allows the adversary to add a random
error to them. However, that means that a random error is added to all components of z and ¢, in contrast to the above
attack which requires the adversary to add an error to the first component only.

In the following let x/,y’,a’, b’ be the additive shares of party P; for x,y, a, b respectively. We now notice that if
there are at least 2 honest parties, the functionality allows the adversary to set A = x'xs} +y'+s} and A, = a's},+b'xs]
where s’,s!, s}, s, € F" are the adversary’s choice. Since X', y', a’, b’ are random, the probability of the first component
of a’ be 0 is HIFT' The adversary picks s = s/, = (1,0,...,0) and s;', = s] = 0. This means that A; = (x,0,...,0) and
A, = (a',0,...,0). Let r be the first component of r. This means that r + A; + A, = 0 whenever rx’ + a’ = 0, which

happens if 7 # 0 and rx' = —a’ or if r = x' = @’ = 0. The first case happens with probability =1 . L and the second

B
case happens with probability (ﬁf which adds up to (ﬁ)z. Thus the adversary succeeds in the attack with probability
which is clearly not negligible for small F. For example, for F =GF(2%) his success probability is 27'® and for the
binary field it is 274,

The attentive reader might observe that the description above is oversimplified since all checks are based on
encodings of message vectors. In particular this means the potential error vectors A; and A, will be encoded in the
C, but by the construction of the unchecked triples we have that the encoding of ¢ and z will be in the Schur transform.
Specifically when all parties are honest we have C*(¢) = C(a) = C(b), C*(z) = C(x) * C(y). In case of the adversary
adding an error we have C*(c) + C*(A) = C(a) * C(b) + C(a') x C(s}), C*(z) + C*(A;) = C(x) * C(y) + C(x') * C(s.).
Thus the error is moved into the Schur space. This means that at least d* > s positions of C*(A;) and C*(A;)
will be non-zero (if A; # 0, respectively A, # 0. In particular since the message space of the Schur transform,
m*, is greater than the message space m of the C encoding we get that, even if the errors cancel out in the message
components of C chosen by the adversary, some remnants of the error might persist in the components [m; m*]. That
is, just because r = A; + A, = 0 it might be the case that C(r) * C*(A;) + C*(A,) # 0. This is so since there
are 2"~ valid encodings of the error vectors in C* and the encoding which will be used depends on the shares of
the honest party. However, this is unfortunately not clearly detectable by an honest party. The reason being that the
honest parties only get a share of the result of the sacrificing, C*({) thus they do not know whether the values in
components |m; m*] are part of the parity components coming from multiplying correct codewords, or if they are part
of remnants of an error in the components [m]. Specifically when they open C*({) by each party sending his/her share
and check that it is O in the first m components, they cannot simply extend this check to the first m* components,
since the components ]m;m*] are not expected to be 0. This is because the value checked, C*(¢) is the result of the
computation C(r) * C(z) + C*(¢) — C(x) = C(p) — C(b) = C(o), where all terms are independently computed products
in the Schur transform. Thus it is not possible to know what each of the terms contribute to the components |m; m*].
Furthermore, the parties cannot send their shares to each of the terms without leaking too much info on the triple that
would otherwise be kept after the sacrificing.

Ideal functionality We find it appropriate to note that [FKOS15] implements ideal preprocessing functionalities which

are different from the standard ones required by the MiniMAC online phase in [DZ13] or SPDZ [DPSZ12]. Specifically
the ideal functionalities in [FKOS15] give the adversary the power to manipulate an honest party’s private share based

40



on the private shares of other honest parties. It is discussed in [FKOS15] that the ideal preprocessing functionalities
can be used directly with the “standard” MiniMAC [DZ13] and SPDZ [DPSZ12] protocols. However, no proof is
provided for that. Furthermore, in [KOS16] it was insinuated that this is not the case for the input phase of SPDZ.
In any case, it does not seem trivial to prove that the preprocessing of [FKOS15] can work with the functionalities
required by the online phases in the literature. Thus we think that our protocol has an advantage over the MiniMAC
protocol of [FKOS15] as we both prove our protocol secure with a light and uncomplicated online phase and our ideal
preprocessing functionalities fit well with those required in the literature.

41



	Committed MPC

