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Abstract. Along with the evolution of Physically Unclonable Functions
(PUFs) as a remedy for the shortcomings of conventional key storage
and generation methods, numerous successful attacks against PUFs have
been proposed in the literature. Among these are machine learning (ML)
attacks, ranging from heuristic approaches to provable algorithms, that
have attracted great attention. Nevertheless, the issue of dealing with
noise has so far not been addressed in this context. Thus, it is not clear to
what extent ML attacks can be launched on real-world, noisy PUFs. This
paper aims to clarify this issue by focusing on provable ML algorithms,
i.e., Probably Approximately Correct (PAC) learning algorithms. We
prove that PAC learning algorithms for known PUF families are effective
and applicable even in the presence of noise. Our proof relies heavily
on the intrinsic properties of these PUF families, namely arbiter, Ring
Oscillator (RO), and Bistable Ring (BR) PUF families. In addition to this
proof, we introduce a new style of ML algorithms taking advantage of the
Fourier analysis principle. We believe that this type of ML algorithms,
and the notions related to it can broaden our understanding of PUFs by
offering better measures of security.

Keywords: Physically Unclonable Functions, Boolean Analysis, Noise Sensitivity, Low

Degree Algorithm, Machine Learning, PAC Learning.

1 Introduction

The design of PUFs relies on inherent manufacturing process variations, be-
ing uncontrollable, but exploitable by a circuitry to generate either a source of
randomness or an instance-specific fingerprint [15]. The growing need for using
PUFs in IC security stems from two main issues. On the one hand, the ineffec-
tiveness of traditional security measures, e.g., secure key generation/storage, has
been widely accepted. On the other hand, the inevitable fact that overbuilt and
counterfeit ICs can be used in various important applications further contribute
to this need for robust security measures [23]. Since the notion of PUFs has been
introduced to address the aforementioned issues, several studies have focused on
the advantages and disadvantages of this concept. Designing such circuits and



their respective security assessments, more particularly, cryptanalysis of PUFs
are within two ends of the wide spectrum of these studies.

In addition to invasive and semi-invasive attacks, e.g., [17,33,40–42], a broad
range of cryptanalysis of PUFs is covered by non-invasive attacks, for instance [38].
A great variety of these frameworks and numerous models have been devel-
oped around the principles of linear algebra [9], stochastic optimization [4], and
machine learning (ML) [10–13, 20, 38]. When launching the latter attacks, the
adversary observes only a small subset of challenges and their corresponding re-
sponses (i.e., the inputs and the outputs of the PUF) in order to build a model
of the challenge-response behavior of the PUF. Therefore, when compared with
invasive and semi-invasive attacks, these attacks are cost-effective and nonde-
structive, and consequently, attractive for adversaries.

Applying empirical ML algorithms (e.g., [38]) in the assessment of the secu-
rity of PUFs marked the beginning of an era, after which the well-established
concepts and existing algorithms in the field of ML were applied to analyze the
security of these primitives. Beyond the early heuristic methods, probably ap-
proximately correct (PAC) learning frameworks have been developed to prove
vulnerabilities for the known families of intrinsic PUFs to ML attacks [10–13,16].
The results of these studies have been acknowledged, and form now a solid basis
for the design of PUFs, c.f. [44]. Albeit being useful for this purpose, the ques-
tion remains open whether practical aspects of the design of PUFs have been
adequately reflected by the PAC learning frameworks. More specifically, except
the proof provided for XOR-arbiter PUFs [12], PAC learning in the presence of
noise has not been discussed in the literature so far.

This issue is of twofold importance. First, the term “noise” in the PUF-
related literature refers to the observation that applying the same challenge may
result in obtaining different responses due to the environmental changes, see,
e.g. [27]. These noisy responses reveal some information about the challenge-
response behavior of the PUF, in a similar way to side channel information,
which can be beneficial to model the PUF [4, 7, 8]. Understanding the mecha-
nisms of generating noisy responses is therefore essential for designing a PUF
that is robust against such hybrid attacks. Secondly, the gap between the ex-
isting noise models in the ML- and PUF-related literature should be bridged
primarily by a thorough understanding of differences and similarities between
these models. Accordingly, a refined model of noisy PUFs should be established,
which provides a firm basis for analyzing the security of these primitives against
ML attacks. This paper aims at addressing the above issues by providing the
following contributions.

Establishing a refined model of noisy PUFs that is in line with
models widely accepted in ML theory. In our model, we take into consid-
eration the impact of noise on the final response of a PUF and as well at the
inter-stage behavior of a PUF. We demonstrate that this model agrees with the
noise models in ML theory, namely, attribute and classification noise.

Introducing a new style of ML algorithms, gaining an advantage
by leveraging Fourier analysis. Thanks to the representation of PUFs as



Boolean functions, we explore the properties of PUFs from the Fourier analy-
sis perspective. We introduce the notion of noise sensitivity of Boolean func-
tions representing PUFs as a powerful analysis tool. Moreover, for known and
widely-used PUFs a so-called low degree algorithm approximating the Fourier
coefficients of the corresponding Boolean functions is presented in this paper.

PAC learning of PUFs in the presence of attribute and classifica-
tion noise. Eventually, we prove that for known families of noisy PUFs there
exist individual PAC learning algorithms that can learn their challenge-response
behavior, with prescribed levels of accuracy and confidence.

2 Notation and preliminaries

2.1 PUFs

First, we stress that our paper does not cover the topics of formalization and
formal definitions of the PUFs. For more details on these topics see, e.g., [2,3].
Note that hereafter the term “PUF” refers to the most popular, and known
families of standalone PUFs: arbiter PUFs, Ring Oscillator (RO) PUFs, and
Bistable Ring (BR) PUFs. Here, a standalone PUF means a PUF that is not
composed of a combination of some PUFs (e.g., XOR arbiter PUFs) or other
means. Generally speaking, PUFs are physical mappings from the inputs to
the outputs, i.e., from the given challenges to the respective responses. These
mappings are characterized by physical properties of the platform, on which the
PUF is implemented. From among several security properties of PUFs, here we
consider solely unclonability. Let the mapping fPUF : C → Y, where fPUF(c) = y,
describes a PUF. Ideally, for a given PUF fPUF unclonability reflects the fact that
creating a clone, i.e., a (physical) mapping gPUF 6= fPUF, is virtually impossible,
where the challenge-response behavior of gPUF is similar to fPUF [2].

2.2 Boolean Functions as representations of PUFs

Similar to the most relevant studies on PUFs, we adopt the above mentioned,
general definition of PUFs that is the physical mappings (see Section 2.1). This
enables us to represent PUFs as Boolean functions over the finite field F2. To
this end, consider Vn = {c1, c2, . . . , cn} that is the set of Boolean attributes
or variables, being either true or false denoted by “1” and “0”, respectively.
Moreover, let Cn = {0, 1}n be the set of all binary strings with n bits, and an
assignment be a mapping from Vn to {0, 1}. Therefore, an assignment can be

thought of as an n-bits string, where the ith bit associated with the value of ci
(i.e., “0” or “1”).

A Boolean formula is a mapping that assigns values from the set {0, 1} to an
assignment. In this regard, each Boolean attribute is also a formula, i.e., ci is a
possible formula. If the Boolean formula assigns “1” to a Boolean assignment,
it is a a positive example of the concept, otherwise a negative example. Further-
more, a Boolean function f : Cn → {0, 1} can be defined by a Boolean formula
respectively.



In general, Boolean functions can be represented by several different classes
of functions, e.g., juntas, Linear Threshold functions (LTFs), and Decision Lists
(DLs), cf. [34, 37]. A k-junta is a Boolean function, whose output is deter-
mined solely by an unknown set of k variables. A list L containing r pairs
(f1, v1), . . . , (fr, vr) is called a DL, where the Boolean formula fi is a conjunc-
tion of Boolean attributes, and vi ∈ {0, 1} with 1 ≤ i ≤ r − 1. For i = r, we
have vr = 1. When representing a Boolean function by a decision list, L(c) = vj ,
where c ∈ Cn and j is the smallest index in L so that fj(c) = 1. Let k-DL denote
the set of DLs, where each fi is a conjunction of at most k Boolean attributes.

Before defining linear threshold functions, we define the encoding scheme
χ(0F2

) := +1, and χ(1F2
) := −1. Hence, the Boolean function f can be defined

as f : {−1,+1}n → {−1, + 1}. Such a function is called a linear threshold
function, if there are coefficients ω1, ω2, · · · ,ωn ∈ R and θ ∈ R such that

f(c) = sgn

(( n∑
i=1

ωici

)
− θ

)
.

Without loss of generality, we assume that
∑n

i=1 ωici 6= θ for every c ∈ Cn.

Noise Sensitivity of Boolean Functions This section describes the notion
of noise sensitivity of a Boolean function. This should not be mistaken as the
notion of noise discussed in the PUF-related literature. The noise sensitivity of
the Boolean function f : {−1,+1}n → {−1, + 1} can be defined as follows (see
Section 2.2 for more details on the encoding scheme required to define the noise
sensitivity). Let c be a string chosen randomly at uniform. By flipping each bit
of this string independently with probability ε (0 ≤ ε ≤ 1) we obtain the string
c′. The noise sensitivity of f at ε is

NSε(f) := Pr[f(c) 6= f(c′)].

When studying the noise sensitivity of Boolean functions, applying method-
ologies developed for the spectral analysis of Boolean functions can provide a
better understanding of this notion. The Fourier expansion of a Boolean function
can be written as

f(c) =
∑
S⊆[n]

f̂(S)χS(c),

where [n] := {1, . . . , n}, χS(c) :=
∏

i∈S ci, and f̂(S) := Ec∈U [f(c)χS(c)]. Note
that Ec∈U [·] indicates the expectation over examples chosen uniformly at ran-
dom.

2.3 PAC Learning Model

PAC learning algorithms have attracted a considerable attention since they can
guarantee the delivery of the outcome (i.e., the final model) as well as the ac-
curacy of that for prescribed, desired levels of confidence and accuracy. Here we



briefly summarize the remarkable facts about this model, and refer the reader
to [21] for more information.

Consider a PAC learner that is a learning algorithm, which is given access
to a set of examples to generate an approximately correct hypothesis, with high
probability. More formally, suppose that F = ∪n≥1Fn denotes a target concept
class, i.e., a set of Boolean functions over the instance space Cn = {0, 1}n. In
this paper, we are interested in a useful extension of the PAC model, in which
each example is drawn from the instance space Cn with regard to the uniform
distribution U . The hypothesis h ∈ Fn that is a Boolean function over Cn is an
ε-approximator for f ∈ Fn, if

Pr
c∈UCn

[f(c) = h(c)] ≥ 1− ε.

The complexity of a target concept f ∈ F is assessed by measuring the size of
that under a target representation. In order to define the size of a target concept
f ∈ F , size(f), we define the mapping size : {0,1}n → N, relating a natural
number size(f) with a target concept f ∈ F . A polynomial-time algorithm A,
i.e., our learner, is provided with labeled examples (c, f(c)), where f ∈ Fn, and
c is chosen uniformly at random from Cn. Here we concentrate on the strong
uniform PAC learning algorithms, defined as follows.

Definition 1 A strong uniform PAC learning algorithm A for the target con-
cept class F is given a polynomial number of labeled examples to generate an
ε-approximator for f under the uniform distribution U , with probability at least
1− δ. In this regard, for any n ≥ 1, any 0 < ε, δ < 1, and any f ∈ Fn, the run-
ning time of the algorithm A is poly(n, 1/ε, size(f), 1/δ), where poly(·) denotes
a polynomial function.

3 Noise: its Origin and Models

In this section we aim to come up with a model for PUFs enabling us to un-
derstand, how the noise can affect the functionality of a PUF. As mentioned
in Section 1, in the PUF-related literature the response to a challenge is noisy,
if repeated evaluations of the PUF with the respective challenge results in dif-
ferent responses. This is due to environmental variations and their impact on
the functionality of physical components forming the PUF, e.g., the stages in
an arbiter PUF. Environmental variations cover a wide range of uncontrollable
random noise, e.g., thermal noise, uncertainties in measurement, cross talk, and
power supply noise [2, 43]. According to the lessons from performance specifi-
cations of circuits, these random variations can be conventionally modeled as
random variables following Gaussian distributions [1, 32,39].

3.1 Impact of the Noise on a Single Stage

To provide a better understanding of the impact of the environmental variations
on the internal functionality of a PUF, we focus on a single constitutive physical
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Fig. 1: The Gaussian random variable Xi that corresponds to the ith physical
component of the PUF, and its two realizations xi,1 and xi,0. In a meta-stable
state these two realizations will be very close together.

component of the PUF, hereafter called a stage. As carefully formulated in [26],
although the consideration of low-level physical details is a tedious task, (mea-
surable) physical processes can be approximated by “hidden variables”, namely
the process variable and the noise variable. The latter variable corresponds to
the effect of random noise on a single stage of the PUF. This variable follows a
Gaussian distribution Ni, whose realization ni differs for each evaluation of the
PUF.

The definition of process variable determines the effect of manufacturing
process variations on a single stage of the PUF [26]. As discussed before, this
variable dented by Xi follows a Gaussian distribution. Similarly and indepen-
dently, X1, · · · , Xn can be defined, where n denotes the number of stages. In
this manner, the mean value of the respective distribution (µ) is reported by
manufactures as the nominal value, and the standard deviation σi is the result
of the process variations, cf. [7, 13, 30]. Two realizations of the random variable
Xi, namely xi,1 and xi,0, are generated during manufacturing. Without loss of

generality, suppose that the following holds. When ci = 1 is applied to the ith

stage, the realization xi,1 is chosen to be involved in generating the final re-
sponse of the PUF, whereas xi,0 corresponds to ci = 0. Moreover, suppose that
the order relation between these realizations is xi,1 > xi,0. Now, the total impact
of hidden variables on a stage can be formulated as Zi = Xi + Ni (1 ≤ i ≤ n),
where Z is clearly a Gaussian random variable. In addition, the realizations of
this random variable are zi,1 = xi,1 + ni,1 and zi,0 = xi,0 + ni,0, relating to the
challenge bit applied to the PUF. Since the realizations zi,1 and zi,0 are related
to two different evaluations of the PUF (with ci = 1 and ci = 0, respectively),
the noise realizations vary, as indicated by different indices. As defined in [26],
the final response of the PUF is determined by these realizations. Obviously,
the difference between zi,1 and zi,0 is the main factor contributing to the final
response of the PUF.



s0 s1

(z0 = x1) [ε](z0 ≠ x1) [1-ε]

ci=0

s1 s0

(z1 = x0) [ε](z1 ≠ x0) [1-ε]

ci=1

Fig. 2: Our simple Probabilistic (labeled) Transition Systems (PTS) describing
how the noise can affect each stage in a PUF. The expressions included in paren-
theses denote the labels, whereas the information given in brackets refers to the
probability of the transition between the states.

Now consider the ith stage that is a meta-stable state, see Fig. 1. Here by
meta-stable condition we refer to the fact that the realizations of the random
variable Xi, i.e., xi,1 and xi,0 can be very close together so that under the effect
of environmental noise one realization can be equal to another: zi,0 = xi,1 or
zi,1 = xi,0, depending on the value of the challenge bit ci [6]. To explain this,
a simple Probabilistic (labeled) Transition Systems (PTS) can be defined as
follows [36].

– There are two processes (i.e., sequences of events) corresponding to the value

of the challenge bit applied to the ith stage: ci = 1 and ci = 0, see Fig. 2.
– In both processes, the set of states S contains two states denoted by s0 and
s1. The state s0 represented the case that the challenge bit ci = 0 is applied
and in an ordinary condition (i.e., not meta-stable) we expect that xi,0 would
be involved in generating the final response of the PUF. Similarly, the state
s1 can be defined.

– sint ∈ S is the initial state in each process, shown by dashed circles in each
process.

– A transition probability function T : S × L× S → [0,1] represents, under
which circumstances and what degree of probability the system transits from
one state to another. Clearly,∑

(li,sj)∈L×S

T (sint, li, sj) = 1.

Precisely defining our PTS, the tuple Ai represents the process related to the
case, when the challenge bit ci is applied:

Ai = (S,L, T ).



In each of the processes, as illustrated in Fig. 2, the PTS may transit from
one state to another with probability ε, otherwise it remains in its initial state.
For instance, applying the challenge bit ci = 0, the initial state s0 indicates
that xi,0 would contribute to the final response of the PUF. However, if this

stage (the ith stage) is in a meta-stable state, i.e., zi,0 = xi,1, it is not possible to
differentiate whether xi,1 or zi,0 would be involved to generate the final response

of the PUF1. In other words, it can be thought that ci = 1 is applied and the
final response is under the influence of xi,1, i.e., the PTS is in s1 state. More
precisely, we define a discrete random variable A corresponding to the event of
a transition between s0 and s1. Formally, let Ω := {transition, stay} denote the
sample space of the random variable A defined as follows.

A(ω) =

{
1, if ω = transition,

0, otherwise.
(1)

Obviously, this random variable follows a Bernoulli distribution with the success
probability ε, i.e., A ∼ Bern (ε).

Furthermore, as described above, we have translated the impact of noise on
a single stage to a transition from one state to another state. Consequently, this
change in the states can be seen as a probabilistic change of a challenge bit,
e.g., the challenge bit ci = 0 is flipped to challenge bit ci = 1 or vice versa. To
precisely summarize, with regard to our model, when applying the challenge c
that is a Boolean string, the input to the PUF fPUF can be written as c ⊕ a,
where ⊕ denotes the bit-wise XOR operator and a is a random string composed
of bits generated independently from the distribution Bern (ε).

3.2 Impact of the Noise on the Measuring Element of the PUF

In the second phase, we should take into consideration the impact of uncertainty
on the generation of the final response. In the literature this issue has been al-
ready explored, when discussing the precision of the measuring element (e.g.,
the arbiter in the case of arbiter PUFs), which makes a decision whether the
response of the PUF to the respective challenge is “0” or “1” [7,13,28]. Clearly,
being limited in the precision, such component may change the output of the
PUF. For the purpose of this paper, we are not interested in the real-world
distribution of this noise, but in how the effect of this noise on the responses
can be precisely described. A useful interpretation of this effect is given in [12],
namely that after generating the response of the PUF an unfair coin (Head with
probability 1 − η) is flipped. Depending on the outcome, the final response is
determined: when the outcome is Head, the response generated by the PUF
remains unchanged, or otherwise, the response of the PUF is flipped. Here we
follow the same principle to model the uncertainty with regard to the final re-
sponse. Let a random variable B represent the impact of a limited precision

1
Note that such transition does not always lead to a change in the response of the
PUF.
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Fig. 3: Schematic of an arbiter PUF composed of n stages and an arbiter termi-
nating the chain. When applying a challenge bit to a respective stage, either the
realizations xi,1 or the realization xi,0 is chosen to be involved in generating the
response of the PUF. For instance, we have xi,1 = δia − δid and xi,0 = δib − δic .

of the physical component that makes the decision about the final answer. As
explained above, this random variable also follows a Bernoulli distribution with
the success probability 1 − η, i.e., B ∼ Bern (1− η). For the sake of readabil-
ity hereafter we denote Bern (1− η) by R, and Bern (ε) by D. We have already
defined the random string a containing independent random bits drawn accord-
ing to the distribution D (see Section 3.1), and the random bit b drawn from
the distribution R. Hence, the final response of the PUF can be formalized as
y = fPUF(c⊕ a)⊕ b.

3.3 Practical Implications of the Noise Model

In this section, we explain, how a relation between the parameters introduced in
the previous sections (Section 3.1 and 3.2) and real-world PUFs can be estab-
lished.

Arbiter PUFs: First we consider the impact of the noise on a single stage
of an arbiter PUF. For the arbiter PUF family, the realizations xi,0 and xi,1 are
associated with the difference between the delays of crossed and straight signal
paths, namely, δia−δid = xi,1 and δib−δic = xi,0, see Fig. 3. When the difference
between these variables is small and the challenge bit ci is applied to the stage,
in the presence of the noise it is not possible to make a decision whether xi,0 or
xi,1 has impacted the final response of the PUF.

Moreover, the impact of the noise on the response of the PUF can be ex-
plained by considering the limited precision of the arbiter terminating the chain,
see Fig. 3 [13]. In this case, if after the final stage the delay difference between
the upper and the lower paths is smaller than the precision of the arbiter, the
arbiter could enter a metasable state and thus generate a wrong response.

Ring Oscillator (RO) PUFs: The response of this PUF is generated ac-
cording to the difference between the frequencies of two ROs selected by the chal-
lenge. In other words, the challenge determines a pair of ROs that contributes
to the final response of the PUF, see Fig. 4. When the frequency differences of
ROs in two pairs vary insignificantly, under noisy conditions one of those RO
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Fig. 4: An RO PUF with n ring-oscillators. By applying a challenge to a n-to-2
multiplexer, two ring-oscillators are selected and their outputs are connected to
the clock inputs of 2 binary counters. The counters count the number of the
rising edges during a predefined time period. Finally, the state of the counters is
compared by the comparator placed at the end of the PUF to generate a binary
response.

pairs can mimic another one. Therefore, it can be thought that some of the bits
of the challenge applied to the PUF are flipped so that another RO pair makes
impact on the final response of the PUF.

Furthermore, the limited precision of the counters measuring the frequencies
of the ROs can affect the response of the PUF, see Fig. 4. More precisely, if the
difference in the oscillation frequencies of a selected RO pair is not significant,
the counters cannot measure the frequencies with high precision. Comparison
of uncertain frequency measurements can lead to the generation of a wrong
response.

Bistable Ring (BR) PUFs: Although a precise analytical model of the
BR PUF is missing in the literature [10], we can still describe the impact of the
noise on individual stages. For a given challenge in the BR PUF, n inverters
are selected (see Fig. 5), and upon setting the reset signal to low, the created
inverter ring starts to oscillate until it settles down to a valid logical state. In
this case, the process variables can be intrinsic differences in the propagation de-
lays and electrical gains of each inverter. Therefore, based on the environmental
conditions, the noise can be added to the realization of the process variables.

However, in contrast to the arbiter and RO PUFs, there is no explicit mea-
suring element in this PUF architecture. But the required additional measure-
ment element which introduces noise for this type of PUF is explicitly discussed
in [10,18,19].
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Fig. 5: The schematic of a BR PUF composed of n stages. From between two
arbitrary stages, the response of the PUF can be read. When applying a chal-
lenge, the reset signal can be set low to activate the PUF. The BR PUF might
be settled to an allowed logical state after a transient period.

3.4 Modeling the Noise from the Perspective of Machine Learning

With regard to the discussion from the previous sections 3.1- 3.3, PUFs can
be thought of as Boolean functions, whose input-output behavior is determined
by random process variations as well as the inevitable impact of random noise.
In line with this view, a model of PUFs as illustrated in Fig. 6 can be es-
tablished. This model can be seen as an extension of a model introduced and
evaluated practically in [26]. Our model is composed of two components: random
and deterministic components. The random component represents the random
environmental noise, whereas the deterministic component accounts for the de-
terministic Boolean function realized in the chip. In other words, in the absence
of noise, the response of the PUF to a challenge applied repeatedly remains the
same. The building blocks as well as the parameters related to the model have
been introduced previously, although their interpretations in the machine learn-
ing context have not yet been considered. As the next step in our framework,
this section elaborates on how the functionality of a noisy PUF, as shown in
Fig. 6, can be described from the point of view of machine learning. To this end,
the following Lemma plays an important role, cf. [5].

Lemma 1 Consider U , D and R that are a uniform, and two arbitrary distribu-
tions2 over the space {0, 1}, respectively. Moreover, let the function f : Fn

2 → F2

be an arbitrary Boolean function. Let C ∈U Fn
2 , A ∈D Fn

2 and B ∈R F2 be
independent random strings and a random variable, respectively. The random
variables (C,f(C ⊕A)⊕B) and (C ⊕A,f(C)⊕B) follow identical distribution.

2
Although regarding the physical properties of noisy PUFs we have defined the dis-
tribution D and R precisely (see Section 3.2), in general these distribution can be
arbitrary.



Fig. 6: Our model composed of blocks representing a noisy PUF. The random
string a contains independent random bits drawn according to the distribution
D (see Section 3.1), and the random bit b is drawn from the distribution R (see
Section 3.2). From the machine learning point of view, they refer to attribute
noise and classification noise, respectively.

For the proof of this Lemma, we refer to [5]. The conclusions drawn from it
are of great importance for us. First, from the machine learning point of view,
the noise represented by the random variable A is called the “attribute noise”,
whereas the random variable B corresponds to the “classification noise”. The
issue of attribute and classification noise learnability has been well addressed in
the relevant literature, see, e.g., [5, 45]. Secondly, thanks to the seminal paper
published by Bshouty et al. [5], a relationship between machine learning under
noisy conditions and the noise sensitivity of Boolean functions has been estab-
lished. The consequence of this relation is that efficient algorithms developed to
estimate the Fourier coefficients of an unknown function can be applied to learn
the respective function even under noisy conditions.

4 PAC Learning in the Presence of Noise

In this section, we elaborate on our PAC learning framework relying primarily on
the concept introduced in Section 3. First, we introduce an algorithm proposed
by Linial, Mansour, and Nisan [25] to estimate the Fourier coefficients of an
unknown function (i.e., so-called LMN-style algorithm). The rationale behind
the LMN-style algorithm, originally called “low degree” algorithm [31], is that
some classes of Boolean functions can be approximated by taking into account
solely a small number of their Fourier coefficients (called “low” coefficients),
corresponding to small subsets of [n] (see Section 2.2).

Theorem 1. (Low degree algorithm) [25, 31, 35] Assume that an algorithm

can determine a set S ⊆ 2[n] containing subsets of [n] so that
∑

S∈S f̂(S)2 ≥ 1−ε.
The algorithm is given a pre-defined confidence level δ and access to a polynomial
number of input-output pairs of the Boolean function f that are chosen uniformly
at random. With probability 1 − δ the algorithm delivers a Boolean function h
that is an ε-approximator of the Boolean function f such that∑

S⊆[n]

(
f̂(S)− ĥ(S)

)2
≤ ε.

The running time of the algorithm is poly (|S|, n, 1/ε, log2(1/δ)).



For the proof of this theorem, we refer the reader to [25, 31], in which the
mechanism for determining the set S, and the lower bound on the number of
input-output pairs required by the algorithm has been discussed extensively.

Now, in order to prove the PAC learnability of PUFs under noisy conditions,
the following steps are executed.

1. On the basis of certain properties of representations of arbiter PUFs, RO
PUFs, and BR PUFs, we prove the existence of LMN-style algorithms for
them.

2. Finally, we demonstrate that the existence of an LMN-style algorithm for
an unknown Boolean function is sufficient and necessary to PAC learn that
function under the uniform challenge distribution even in the presence of
noise.

4.1 An LMN-style Algorithm for RO PUFs

Although the security of these PUFs can be easily broken by simply reading out
all CRPs, launching a machine learning attack in the specific circumstance of
having limited access to the CRPs (e.g., eavesdropping them) has been addressed
in the literature, see for instance [11, 38]. In the present case, learning of noisy
RO PUFs has not been discussed.

Our proof of the existence of an LMN-style algorithm for RO PUFs heavily
relies on the key result presented in [11], i.e., RO PUFs can be represented by
k-DLs.

Theorem 2. [24, 31] An LMN-style algorithm can be employed that with
probability 1 − δ delivers a Boolean function h approximating a decision list
L, which represents an RO PUF. The running time of this algorithm is
poly (n, log2(1/ε), log2(1/δ)).

The proof sketch can be summarized as follows. According to results pre-
sented in [11], an RO PUF can be represented by a DL. Furthermore, Mansour
proved that a DL could be approximated by a Boolean function h, whose Fourier
coefficients concentrate only on a small set of variables, namely, log2(1/ε) vari-
ables [31]3. To find this set of variables, the low degree algorithm can be applied
to deliver h and the running time of that is poly (n, log2(1/ε), log2(1/δ)).

4.2 An LMN-style Algorithm for Arbiter PUFs

To prove the existence of an LMN-style algorithm for arbiter PUFs we argue as
follows. It is known that if a Boolean function exhibits a bounded, small noise
sensitivity, its Fourier coefficients are mainly low coefficients. More precisely, the
following Corollary can be proved (for the proof see Corollary 2.3.3 in [35]).

3
Here we do not discuss the details of the proof and refer the reader to [31] for more
information.



Corollary 1 [35] Consider α : [0,1/2] → [0,1] that is a strictly increasing
continuous function so that NSε(f) ≤ α(ε). We have∑

|S|≥m

f̂(S)2 ≤ ε,

where m = α(ε/2.32)).

It is clear that before proving the existence of an LMN-style algorithm for
arbiter PUFs, we must elaborate on the noise sensitivity of Boolean functions
representing these PUFs. Thanks to the results reported in [15, 29, 38], LTFs
are appropriate representations of arbiter PUFs. Moreover, Corollary 2 has been
proved by Klivans et al. [22].

Corollary 2 For any LTF f its noise sensitivity is a bounded, small value de-
pending only on ε. Precisely, we have:

NSε(f) ≤ 8.54
√
ε.

Corollary 3 states how Corollary 1 in conjunction with Corollary 2 can be
applied to prove the existence of an LMN-style algorithm for arbiter PUFs.

Corollary 3 Representing an arbiter PUF by an LTF, a Boolean function h ap-
proximating this LTF can be delivered by an LMN-style algorithm, whose running
time is polynomial in n, 1/ε2, and log2(1/δ).

Proof: Fix α(ε) =
√
ε. The running time of the LMN-style algorithm is

polynomial in O(nm), where m = 1/α−1(ε/2.32) (note that α−1(·) denotes the
inverse of the function α(·)). �

4.3 An LMN-style Algorithm for BR PUFs

Similar to the proof of the existence of an LMN-style algorithm for arbiter PUFs,
we take advantage of the properties of the Boolean functions representing BR
PUFs. More specifically, we rely on the fact that a BR PUF can be represented
by k-junta, where k is a (relatively) small constant value for practical values of
n, as demonstrated in [10]. We first show that the noise sensitivity of BR PUFs
is a bounded, small value.

Theorem 3. For any Boolean function f represented by a k-junta the noise
sensitivity is

NSε(f) ≤ kε/2.

The proof is straightforward; for more details see, e.g., [14]. Now the following
corollary of Theorem 3 and Corollary 1 can be formulated as follows.

Corollary 4 An LMN-style algorithm can be applied to deliver an ε-
approximator for a k-junta representing a BR PUF. The running time is poly-
nomial in n, 1/ε, and log2(1/δ).



4.4 Existence of PAC Learning Algorithms in the Presence of Noise

The low degree algorithm mainly aims to provide an approximator of a Boolean
function with a given probability, when it is given a polynomial number of input-
output pairs of the Boolean function that are chosen uniformly at random. How-
ever, its existence has a serious consequence. More specifically, if the set S is
composed of all the subsets of low degree, Theorem 1 introduces a PAC learning
algorithm under the uniform distribution [35]. Before formulating this precisely,
we first shift our focus to the issue of dealing with noise.

As explored in Section 3.4, we take the attribute and the classification noise
into account. The question is how these processes affect the functionality and the
efficiency of an LMN-style algorithm. This issue is well addressed by Bshouty et
al., [5], and here we briefly summarize their results. They have shown that the
attribute and the classification noise attenuate the Fourier coefficients, which the
LMN-style algorithm aims to estimate from the uniformly random examples. To
be exact, assume that an LMN-style algorithm attempts to estimate the Fourier
coefficient f̂(S). Under the noisy conditions, it delivers f̂(S)(1 − 2η)αS , where
(1 − 2η) and αS are attenuation factors corresponding to the classification and
attribute noise, respectively. While the former factor is known, see e.g., [12], the
latter requires more attention. The attenuation factor αS is the defined as follow.

αS := Ea∈D[χS(a)],

where Ea∈D[·] denotes the expectation over random examples drawn from the
known distribution D. As discussed in Section 3.4, here we consider a that is
a random string, whose bits are independently generated following a Bernouli
distribution Bern (2ε) with ε ∈ (0,1/2]. Hence,

|αS | =
∏
i∈S

(1− 2ε) = (1− 2ε)|S|.

Note that the practical implication of the attenuation factors ((1 − 2η) and
αS) is that after running the LMN-style algorithm each Fourier coefficient deliv-
ered by the algorithm should be multiplied by (1− 2η)−1 and α−1S to eliminate
the impact of the noise.

The existence of an LMN-style algorithm for a PUF, in conjunction with
this discussion on the estimation of the Fourier coefficients in the presence of
noise implies the existence of a PAC learning algorithm for this PUF under this
condition. The following Corollary concludes this section by summarizing the
above discussion (for more details, cf. [5, 35]).

Corollary 5 Consider a given PUF that is represented by a Boolean func-
tion fPUF which allows for an LMN-style learning algorithm. Then the PUF
is PAC learnable under the uniform challenge distribution in the presence of
known4 attribute and classification noise. The running time of the PAC learner
is poly (|S|, n, 1/ε, log2(1/δ), (1/1− 2η)).

4
Although we assume that the distributions D and R are known, this assumption can
be eliminated as discussed in [5].



5 Conclusion

The main aim of this paper is to address the issue of machine learning of noisy
PUFs. To fulfil this aim, at the first stage we provide an in-depth discussion of
noise origins and its impact on each and every component of a PUF, which leads
to the development of a refined model of PUFs. This model enables us to bridge
the gap between the models of noise proposed in machine learning- and PUF-
related literature, and consequently, reflects the physical characteristics of PUFs
appropriately. Furthermore, looking at this model from the angle of machine
learning, we relate the issue of learning a noisy PUF to the well-known problem
in this field that is learning in the presence of the attribute and the classifica-
tion noise. As the next step in our approach, we explore the noise sensitivity of
Boolean functions representing known families of PUFs. This step is extremely
delicate since it implies the existence of a so-called Linial-Mansour-Nisan algo-
rithm relying on the spectral properties of the Boolean functions associated with
the respective PUFs. Moreover, we show how these spectral properties can be
slightly changed under the noisy conditions. Accordingly and finally, the last
step allows proving the PAC learnability of commonly used and known families
of PUF in the presence of noise.

We believe that in addition to the proof of PAC learnability in the presence
of noise, each and every step mentioned above provides many interesting insights
into not only the assessment of the security of PUFs, but also the design of PUFs
with better security-related characteristics. A prime example of these insights is
the concept of noise sensitivity of a Boolean function corresponding to a PUF
as a measure of learning complexity.
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