
Fast Secure Two-Party ECDSA Signing?

Yehuda Lindell??

Dept. of Computer Science
Bar-Ilan University, Israel

lindell@biu.ac.il

Abstract. ECDSA is a standard digital signature schemes that is widely
used in TLS, Bitcoin and elsewhere. Unlike other schemes like RSA,
Schnorr signatures and more, it is particularly hard to construct efficient
threshold signature protocols for ECDSA (and DSA). As a result, the
best-known protocols today for secure distributed ECDSA require run-
ning heavy zero-knowledge proofs and computing many large-modulus
exponentiations for every signing operation. In this paper, we consider
the specific case of two parties (and thus no honest majority) and con-
struct a protocol that is approximately two orders of magnitude faster
than the previous best. Concretely, our protocol achieves good perfor-
mance, with a single signing operation for curve P-256 taking approx-
imately 37ms between two standard machine types in Azure (utilizing
a single core only). Our protocol is proven secure under standard as-
sumptions using a game-based definition. In addition, we prove security
by simulation under a plausible yet non-standard assumption regarding
Paillier.

1 Introduction

1.1 Background

In the late 1980s and the 1990s, a large body of research emerged around the
problem of threshold cryptography ; cf. [3,8,10,11,14,26,25,22]. In its most general
form, this problem considers the setting of a private key shared between n parties
with the property that any subset of t parties may be able to decrypt or sign,
but any set of less than t parties can do nothing. This is a specific example
of secure multiparty computation, where the functionality being computed is
either decryption or signing. Note that trivial solutions like secret sharing the
private key and reconstructing to decrypt or sign do not work since after the
first operation the key is reconstructed, and any single party can decrypt or sign
by itself from that point on. Rather, the requirement is that a subset of t parties
is needed for every private-key operation.

Threshold cryptography can be used in applications where multiple signators
are needed to generate a signature, and likewise where highly confidential docu-
ments should only be decrypted and viewed by a quorum. Furthermore, thresh-
old cryptography can be used to provide a high level of key protection. This is

? An extended abstract of this work appeared at CRYPTO 2017. This version contains
a faster and much simpler zero-knowledge proof for the key-generation phase.

?? Much of this work was done for Dyadic Security Ltd.

1

achieved by sharing the key on multiple devices (or between multiple users) and
carrying out private-key operations via a secure protocol that reveals nothing
but the output. This provides key protection since an adversary needs to breach
multiple devices in order to obtain the key. After intensive research on the topic
in the 1990s and early 2000s, threshold cryptography received considerably less
interest in the past decade. However, interest has recently been renewed. This
can be seen by the fact that a number of startup companies are now deploying
threshold cryptography for the purpose of key protection [27,28,29]. Another
reason is due to the fact that ECDSA signing is used in bitcoin, and the theft of
a signing key can immediately be translated into concrete financial loss. Bitcoin
has a multisignature solution built in, which is based on using multiple distinct
signing keys rather than a threshold signing scheme. Nevertheless, a more gen-
eral solution may be obtained via threshold cryptography (for the more general
t-out-of-n threshold case).

Fast threshold cryptography protocols exist for a wide variety of problems,
including RSA signing and decryption, ElGamal and ECIES encryption, Schnorr
signatures, Cramer-Shoup, and more. Despite the above successes, and despite
the fact that DSA/ECDSA is a widely-used standard, DSA/ECDSA has resisted
attempts at constructing efficient protocols for threshold signing. This seems to
be due to the need to compute k and k−1 without knowing k. We explain this
by comparing ECDSA signing to EC-Schnorr signing. In both cases, the public
verification key is an elliptic curve point Q and the private signing key is x such
that Q = x ·G, where G is the generator point of an EC group of order q.

EC-Schnorr signing ECDSA signing
Choose a random k ← Zq Choose a random k ← Zq

Compute R = k ·G Compute R = k ·G
Compute e = H(m‖R) Compute r = rx mod q where R = (rx, ry)

Compute s = k − x · e mod q Compute s = k−1 · (H(m) + r · x) mod q
Output (s, e) Output (r, s)

Observe that Schnorr signing can be easily distributed since the private key x
and the value k are both used in a linear equation. Thus, two parties with
shares x1, x2 such that Q = (x1 + x2) · G can each locally choose k1, k2, and
set R = k1 · G + k2 · G = (k1 + k2) · G. Then, each can locally compute e
and si = ki − xi · e mod q and send to each other, and each party can sum
s = s1 + s2 mod q and output a valid signature (s, e). In the case of malicious
adversaries, some zero knowledge proofs are needed to ensure that R is uniformly
distributed, but these are highly efficient proofs of knowledge of discrete log. In
contrast, in ECDSA signing, the equation for computing s includes k−1. Now,
given shares k1, k2 such that k1 + k2 = k mod q it is very difficult to compute
k′1, k

′
2 such that k′1 + k′2 = k−1 mod q.

As a result, beginning with [22] and more lately in [15], two-party proto-
cols for ECDSA signing use multiplicative sharing of x and of k. That is, the
parties hold x1, x2 such that x1 · x2 = x mod q, and in each signing operation
they generate k1, k2 such that k1 · k2 = k mod q. This enables them to easily

2

compute k−1 since each party can locally compute k′i = k−1i mod q, and then
k′1, k

′
2 are multiplicative shares of k−1. The parties can then use additively homo-

morphic encryption – specifically Paillier encryption [23] – in order to combine
their equations. For example, P1 can compute c1 = Encpk((k1)−1 · H(m)) and
c2 = Encpk(k−11 · x1 · r). Then, using scalar multiplication (denoted �) and ho-
momorphic addition (denoted ⊕), P2 can compute (k−12 � c1)⊕ [(k−12 · x2)� c2]
which will be an encryption of

k−12 · (k
−1
1 ·H(m)) + k−12 · x2 · (k

−1
1 · x1 · r) = k−1 · (H(m) + r · x),

as required. However, proving that each party worked correctly is extremely
difficult. For example, the first party must prove that the Paillier encryption
includes k−11 when the second party only has R1 = k1 ·G, it must prove that the
Paillier encryptions are to values in the expected range, and more. This can be
done, but it results in a protocol that is very expensive.

1.2 Our Results

As in previous protocols, we use Paillier homomorphic encryption (with a key
generated by P1), and multiplicative sharing of both the private key x and the
random value k. However, we make the novel observation that if P2 already
holds a Paillier encryption ckey of P1’s share of the private key x1, then P1 need
not do anything except participate in the generation of R = k · G. Specifically,
assume that the parties P1 and P2 begin by generating R = k1 · k2 · G (this
is essentially accomplished by just running a Diffie-Hellman key exchange with
basic knowledge-of-discrete-log proofs which are highly efficient). Then, given
ckey = Encpk(x1), R and k2, x2, party P2 can singlehandedly compute an en-
cryption of k−12 · H(m) + k−12 · r · x2 · x1 using the homomorphic properties of
Paillier encryption. This ciphertext can be sent to P1 who decrypts and multi-
plies the result by k−11 . If P2 is honest, then the result is a valid signature.

The crucial issue that must be dealt with is what happens when P1 or P2

is corrupted. If P1 is corrupted, it cannot do anything since the only message
that it sends P2 is in the generation of R which is protected by an efficient zero-
knowledge proof. Thus, no expensive proofs are needed. Furthermore, if P2 is
corrupted, then the only way it can cheat is by encrypting something incorrect
and sending it to P1. However, here we can utilize the fact that we are specifically
computing a digital signature that can be publicly verified. That is, since all P1

does is locally decrypt the ciphertext received from P2 and multiply by k−11 , it
can locally check if the signature obtained is valid. If yes, it outputs it, and if
not it detects P2 cheating. Thus, no zero-knowledge proofs are required for P2

either (again, beyond the zero-knowledge proof in the generation of R).
As a result, we obtain a signing protocol that is extremely simple and effi-

cient. As we show, our protocol is approximately two orders of magnitude faster
than the previous best. Before proceeding, we remark that there are additional
elements needed in the protocol (like P2 adding random noise in the ciphertext
it sends), but these have little effect on the efficiency.

We remark that since the security of the signing protocol rests upon the
assumption that P2 holds an encryption of x1, which is P1’s share of the key,

3

this must be proven in the key generation phase. Thus, the key generation phase
of our protocol is more complicated than the signing phase, and includes a proof
that P1 generated the Paillier key correctly and that ckey is an encryption of x1,
given R1 = x1 ·G. This latter proof is of interest since it connects between Paillier
encryption and discrete log, and we present a novel efficient proof in the paper.
We remark that since key generation is run only once, having a more expensive
key-generation phase is a worthwhile tradeoff. This is especially the case since it
is still quite reasonable (concretely taking about 2.5 seconds between standard
machines in Azure and running with a single thread, which is much faster than
the key-generation phase of [15]). Furthermore, it can easily be parallelized to
further bring down the cost.

DSA vs ECDSA. In this paper, we refer to ECDSA throughout and we use
Elliptic curve (additive group) notation. However, our entire protocol translates
easily to the DSA case, since we do nothing but standard group operations.

Caveat. The only caveat of our work is that it focuses specifically on the two-
party case, whereas prior works considered general thresholds as well. The two-
party case is in some ways the most difficult case (since there is no honest
majority), and we therefore believe that our techniques may be useful for the
general case as well. We leave this for future research.

1.3 Related Work and a Comparison of Efficiency

The first specific protocol for threshold DSA signing with proven security was
presented in [14]. Their protocol works as long as more than 1/3 of the parties are
honest. The two party case (where there is no honest majority) was later dealt
with by [22]. The most recent protocol by [15] contains efficiency improvements
for the two-party case, and improvements regarding the thresholds for the case
of an honest majority.

Efficiency comparison with [15]. The previous best DSA/ECDSA threshold sign-
ing protocol is due to [15]. Their signing protocol requires the following opera-
tions by each party: 1 Paillier encryption, 5 Paillier homomorphic scalar multi-
plications, 5 Paillier homomorphic additions, and 46 exponentiations (the vast
majority of these modulo N or N2 for the Paillier modulus). Furthermore, they
require the Paillier modulus to be greater than q8 where q is the group order.
Now, for P-256, this makes no difference since anyway a 2048-bit modulus is
minimal. However, for P-384 and P-521 respectively, this requires a modulus
of size 3072 and 4168 respectively, which severely slows down the computation.
Regarding the key generation phase, [15] need to run a protocol for distributed
key generation for Paillier. This outweighs all other computations and is very
expensive for the case of malicious adversaries. (They did not implement this
phase in their prototype, but the method they refer to [19] has a reported time
of 15 minutes for generating a 2048-bit modulus for the semi-honest case alone.)

In contrast, the cost of our key-generation protocol is dominated by approx-
imately 350 Paillier encryptions/exponentiations by each party; see Section 3.4

4

for an exact count. Furthermore, as described in Section 3.4, in the signing proto-
col, party P1 computes 7 Elliptic curve multiplications and 1 Paillier decryption,
and party P2 computes 5 Elliptic curve multiplications and 1 Paillier encryption,
1 homomorphic scalar multiplication and 1 Paillier homomorphic addition. Fur-
thermore, the Paillier modulus needs only to be greater than 2q4 +q3, where q is
the ECDSA group order. Thus, a 2048-bit modulus can be taken for P-256 and
P-384, and a 2086-bit modulus only is needed for P-521. We therefore conclude
that the cost of our signing protocol is approximately two orders of magnitude
faster than their protocol.1 This theoretical estimate is validated by our experi-
mental results.

Experimental results and comparison. The running-time reported for the pro-
tocol of [15] for curve P-256 is approximately 12 seconds per signing operation
between a mobile and PC. An improved optimized implementation using paral-
lelism and 4 cores on a 2.4GHz machine achieves approximately 1 second per
signing operation (these measurements are only for the computation time and do
not include communication). In contrast, as we describe in Section 3.4, for curve
P-256 our signing protocol takes approximately 37ms, using a single core (mea-
suring the actual full running time, including communication). This validates the
theoretical analysis of approximately two orders of magnitude difference, when
taking into account the use of multiple cores. Specifically, on 4 cores, we can
achieve a throughput of over 100 signatures per second, in contrast to a single
signing operation for [15]. Full details of our experiments, for curves P-256, P-384
and P-521 appear in Section 3.4.

Finally, the key generation phase of our protocol for curve P-256 takes ap-
proximately 2.5 seconds, using a single core. In contrast, [15] requires distributed
Paillier key generation which is extremely expensive, as described above.

2 Preliminaries

The ECDSA signing algorithm. The ECDSA signing algorithm is defined as
follows. Let G be an Elliptic curve group of order q with base point (generator)
G. The private key is a random value x← Zq and the public key is Q = x ·G.

The ECDSA signing operation on a message m ∈ {0, 1}∗ is defined as follows:

1. Compute m′ to be the |q| leftmost bits of SHA256(m), where |q| is the
bit-length of q

2. Choose a random k ← Z∗q
3. Compute R← k ·G. Let R = (rx, ry).

1 We base this estimate on an OpenSSL speed test that puts the speed of the entire
ECDSA signing operation for P-256 (which consists of one EC multiplication and
more) at more than 10 times faster than a single RSA2048 private-key exponen-
tiation. Note that for P-521 and RSA4096 the gap is even larger with the entire
ECDSA signing operation being more than 30 times faster than a single RSA4096
private-key exponentiation.

5

4. Compute r = rx mod q. If r = 0, go back to Step 2.
5. Compute s← k−1 · (m′ + r · x) mod q.
6. Output (r, s)

It is a well-known fact that for every valid signature (r, s), the pair (r,−s) is also
a valid signature. In order to make (r, s) unique (which will help in formalizing
security), we mandate that the “smaller” of s,−s is always output (where the
smaller is the value between 0 and q−1

2 .)

The ideal commitment functionality Fcom. In one of our subprotocols, we assume
an ideal commitment functionality Fcom, formally defined in Functionality 2.1.
Any UC-secure commitment scheme fulfills Fcom; e.g., [20,1,13]. In the random-
oracle model, Fcom can be trivially realized with static security by simply defining
Com(x) = H(x, r) where r ← {0, 1}n is random.

FIGURE 2.1 (The Commitment Functionality Fcom)

Functionality Fcom works with parties P1 and P2, as follows:

– Upon receiving (commit, sid, x) from party Pi (for i ∈ {1, 2}), record
(sid, i, x) and send (receipt, sid) to party P3−i. If some (commit, sid, ∗)
is already stored, then ignore the message.

– Upon receiving (decommit, sid) from party Pi, if (sid, i, x) is recorded then
send (decommit, sid, x) to party P3−i.

The ideal zero knowledge functionality Fzk. We use the standard ideal zero-
knowledge functionality defined by ((x,w), λ) → (λ, (x,R(x,w))), where λ de-
notes the empty string. For a relation R, the functionality is denoted by FRzk. Note
that any zero-knowledge proof of knowledge fulfills the Fzk functionality [18, Sec-
tion 6.5.3]; non-interactive versions can be achieved in the random-oracle model
via the Fiat-Shamir paradigm; see Functionality 2.2 for the formal definition.

FIGURE 2.2 (The Zero-Knowledge Functionality FRzk for Relation R)

Upon receiving (prove, sid, x, w) from a party Pi (for i ∈ {1, 2}): if (x,w) /∈ R
or sid has been previously used then ignore the message. Otherwise, send
(proof, sid, x) to party P3−i.

The committed non-interactive zero knowledge functionality Fcom-zk. In our pro-
tocol, we will have parties send commitments to non-interactive zero-knowledge
proofs. We model this formally via a commit-zk functionality, denoted Fcom-zk,
defined in Functionality 2.3. Given non-interactive zero-knowledge proofs of
knowledge, this functionality is securely realized by just having the prover com-
mit to such a proof using the ideal commitment functionality Fcom.

Paillier encryption. Denote the public/private key pair by (pk, sk), and denote
encryption and decryption under these keys by Encpk(·) and Decsk(·), respec-
tively. We denote by c1 ⊕ c2 the “addition” of the plaintexts in c1, c2, and by
a� c the multiplication of the plaintext in c by scalar a.

6

FIGURE 2.3 (The Committed NIZK Functionality FRcom-zk for R)

Functionality Fcom-zk works with parties P1 and P2, as follows:

– Upon receiving (com-prove, sid, x, w) from a party Pi (for i ∈ {1, 2}):
if (x,w) /∈ R or sid has been previously used then ignore the message.
Otherwise, store (sid, i, x) and send (proof-receipt, sid) to P3−i.

– Upon receiving (decom-proof, sid) from a party Pi (for i ∈ {1, 2}): if
(sid, i, x) has been stored then send (decom-proof, sid, x) to P3−i.

Security, the hybrid model and composition. We prove the security of our pro-
tocol under a game-based definition with standard assumptions (in Section 4),
and under the simulation-based ideal/real model definition with a non-standard
ad-hoc assumption (in Section 5). In all cases, we prove our protocols secure in a
hybrid model with ideal functionalities that securely compute Fcom,Fzk,Fcom-zk.
The soundness of working in this model is justified in [5] (for stand-alone secu-
rity) and in [6] (for security under composition). Specifically, as long as subpro-
tocols that securely compute the functionalities are used (under the definition
of [5] or [6], respectively), it is guaranteed that the output of the honest and cor-
rupted parties when using real subprotocols is computationally indistinguishable
to when calling a trusted party that computes the ideal functionalities.

3 Two-Party ECDSA

In this section, we present our protocol for distributed ECDSA signing. We
separately describe the key generation phase (which is run once) and the signing
phase (which is run multiple times).

3.1 Zero-Knowledge Proofs

Our protocol is presented in the Fzk and Fcom-zk hybrid model. We use the zero-

knowledge functionalities FRP

zk and FRDL

zk for the following two relations:

1. Proof that a Paillier public-key was generated correctly: define the relation

RP = {(N,φ(N)) | gcd(N,φ(N)) = 1}

of valid Paillier public keys. We remark that standard Paillier is defined for
N = p · q with p, q prime. However, all that we require is that N defines
a public key for which the additive homomorphic operations are correct,
and this holds as long as gcd(N,φ(N)) = 1. This proof can be generated as
described in Section 3.3 in the full version of [19]. The cost of this protocol
is 3t Paillier exponentiations by each of the prover and verifier for statistical
error 2−t, as well as 3t GCD computations by the prover.

2. Proof of knowledge of the discrete log of an Elliptic-curve point: define the
relation

RDL = {(G, G, q, P, w) | P = w ·G}
of discrete log values (relative to the given group). We use the standard
Schnorr proof for this [24].

7

In addition, we also need to prove in zero-knowledge that a value encrypted in
a given Paillier ciphertext is the discrete log of a given Elliptic curve point. Our
zero-knowledge proof for this statement is not a proof of knowledge, and we
therefore define the language and not its associated relation:

LPDL = {(c, pk,Q1,G, G, q) | ∃(x1, sk) such that

x1 = Decsk(c) and Q1 = x1 ·G and x1 ∈ Zq},

where pk is a given Paillier public key and sk is its associated private key. We
will actually prove a slightly relaxed variant which is that completeness holds
for x1 ∈ Zq/3. This suffices for our needs. Note that since our proof for this
statement is not a proof of knowledge, we cannot use the Fzk-hybrid model;
rather we will use the zero-knowledge properties directly in our proof.

We present a highly efficient zero-knowledge proof for the language LPDL;
this proof by itself is a novel contribution and of interest since it bridges between
two completely different worlds (Paillier encryption and Elliptic curve groups).
The proof appears in Section 6.

For the sake of clarity of notation, we omit the group description (G, G, q)
within calls to the Fzk functionalities and when referring to LPDL, since this
is implicit. In addition, throughout, we assume that all values (Elliptic curve
points) received are not equal to 0, and if zero is received then the party receiving
the value aborts immediately.

3.2 Distributed Key Generation

The idea behind the distributed key generation protocol is as follows. The parties
run a type of “simulatable coin tossing” in order to generate a random group
element Q. This coin tossing protocol works by P1 choosing a random x1 and
computing Q1 = x1 ·G, and then committing to Q1 along with a zero-knowledge
proof of knowledge of x1, the discrete log of Q1 (for technical reasons that will
become apparent in Section 6, P1 actually chooses x ∈ Zq/3, but this makes no
difference). Then, P2 chooses a random x2 and sends Q2 = x2 ·G along with a
zero-knowledge proof of knowledge to P1. Finally, P1 decommits and P2 verifies
the proof. The output is the point Q = x1 ·Q2 = x2 ·Q1. This is fully simulatable
due to the extractability and equivocality of the proof and commitment. In
particular, assume that P1 is corrupted. Then, a simulator receiving Q from the
trusted party can cause the output of the coin-toss to equal Q. This is because it
receives Q1, x1 from P1 (who sends these values to the proof functionality) and
can define the value sent by P2 to be Q2 = (x1)−1 ·Q. Noting that x1 ·Q2 = Q,
we have the desired property. Likewise, if P2 is corrupted, then the simulator
can commit to anything and then after seeing (Q2, x2) as sent to the proof
functionality, it can define Q1 = (x2)−1 · Q. The fact that the P1 is supposed
to already be committed is solved by using an equivocal commitment scheme
(modeled here via the Fcom-zk ideal functionality). Beyond generating Q, the
protocol concludes with P2 holding a Paillier encryption of x1, where Q1 = x1 ·G.

8

As described, this is used to obtain higher efficiency in the signing protocol, and
is guaranteed via a zero-knowledge proof. See Protocol 3.1 for a full description.

PROTOCOL 3.1 (Key Generation Subprotocol KeyGen(G, g, q))

Upon joint input (G, G, q) and security parameter 1n, the parties work as
follows:

1. P1’s first message:
(a) P1 chooses a random x1 ← Zq/3, and computes Q1 = x1 ·G.

(b) P1 sends (com-prove, 1, Q1, x1) to FRDL
com-zk (i.e., P1 sends a commitment

to Q1 and a proof of knowledge of its discrete log).
2. P2’s first message:

(a) P2 receives (proof-receipt, 1) from FRDL
com-zk.

(b) P2 chooses a random x2 ← Zq and computes Q2 = x2 ·G.
(c) P2 sends (prove, 2, Q2, x2) to FRDL

zk .
3. P1’s second message:

(a) P1 receives (proof, 2, Q2) from FRDL
zk . If not, it aborts.

(b) P1 sends (decom-proof, 1) to FRDL
com-zk.

(c) P1 generates a Paillier key-pair (pk, sk) of length min(4 log |q| + 2, n)
and computes ckey = Encpk(x1).

(d) P1 sends (prove, 1, N, (p1, p2)) to FRP
zk , where pk = N = p1 · p2.

4. ZK proof: P1 proves to P2 in zero knowledge that (ckey, pk,Q1) ∈ LPDL.
5. P2’s verification: P2 aborts unless all the following hold: (a) it received

(decom-proof, 1, Q1) from FRDL
zk and (proof, 1, N) from FRP

zk , (b) it ac-
cepted the proof that (ckey, pk,Q1) ∈ LPDL, and (c) the key pk = N is of
length at least min(4 log |q|+ 2, n).

6. Output:
(a) P1 computes Q = x1 ·Q2 and stores (x1, Q).
(b) P2 computes Q = x2 ·Q1 and stores (x2, Q, ckey).

3.3 Distributed Signing

The idea behind the signing protocol is as follows. First, the parties run a similar
“coin tossing protocol” as in the key generation phase in order to obtain a
random point R that will be used in generating the signature; after this, the
parties P1 and P2 hold k1 and k2, respectively, where R = k1 · k2 · G. Then,
since P2 already holds a Paillier encryption of x1 (under a key known only to
P1), it is possible for P1 to singlehandedly compute r from R = (rx, ry) and an
encryption of s′ = (k2)−1 ·m′ + (k2)−1 · r · x2 · x1; this can be carried out by P2

since it knows all the values involved directly except for x1 which is encrypted
under Paillier. Observe that this is “almost” a valid signature since in a valid
signature s = k−1 ·m′+k−1 · r ·x (and here x = x1 ·x2). Indeed, P2 can send the
encryption of this value to P1, who can then decrypt and just multiply by (k1)−1.
Since k = k1 · k2 we have that the result is a valid ECDSA signature. The only
problem with this method is that the encryption of (k2)−1 ·m′+(k2)−1 ·r ·x2 ·x1
may reveal information to P1 since no reduction modulo q is carried out on the

9

values (because Paillier works over a different modulus). In order to prevent
this, we have P2 add ρ · q to the value inside the encryption, where ρ is random
and “large enough”; in the proof, we show that if ρ ← Zq2 , then this value is
statistically close to k1 · s, where s is the final signature. Thus, P1 can learn
nothing more than the result (and in fact its view can be simulated). Note that
since s = k−11 · s′, it holds that s′ = k1 · s and so s′ reveals no more information
to P1 than the signature s itself (this is is due to the fact that P1 can compute
s′ from the signature s and from its share k1).

The only problem that remains is that P2 may send an incorrect s′ value
to P1. However, since we are dealing specifically with digital signatures, P1 can
verify that the result is correct before outputting it. Thus, a corrupt P2 cannot
cause P1 to output incorrect values. However, it is conceivable that P2 may
be able to learn something from the fact that P1 output a value or aborted.
Consider, hypothetically, that P2 could generate an encryption of a value s′ so
that (k1)−1 · s′ is a valid signature if LSB(x1) = 0 and (k1)−1 · s′ is not a valid
signature if LSB(x1) = 1. In such a case, the mere fact that P1 aborts or not can
leak a single bit about P1’s private share of the key. In the proof(s) of security
below, we show how we deal with this issue. See the formal definition of the
signing phase in Protocol 3.2 (and a graphical representation in Figure 1).

P1 P2

m,x1, Q m, x2, Q, ckey

Choose random k1

Compute R1 ← k1 ·G
Compute DLOG proof π1

Compute commit to R1, π1

commit -
Choose random k2

Compute R2 ← k2 ·G
Compute DLOG proof π2

R2, π2�
Verify proof π2

Decommit to R1, π1-
Verify proof π1

Compute R← k2 · R1

Compute r from R

c3 ← Enc
(
(k2)

−1 · r · x2 · x1 + (k2)
−1 ·m′ + ρ · q

)
c3�

Compute R← k1 · R2

Compute r from R

Decrypt c3 to get s′

Compute s← (k1)
−1 · s′ mod q

Verify signature

Fig. 1. The 2-Party ECDSA Signing Protocol

Offline/Online. Observe that the message to be signed is only used in P2’s second
message and by P1 to verify that the signature is valid. Thus, it is possible to
run the first three steps in an offline phase. Then, when m is received, all that
is required to generate a signature is for P2 to send a single message to P1.

10

Output to both parties. Observe that since the validity of the signature can be
checked by P2, it is possible for P1 to send P2 the signature if it verifies it and
it’s valid. This will not affect security at all.

Correctness. Denoting k = k1 ·k2 and x = x1 ·x2, we have that c3 is an encryption
of s′ = ρ ·q+(k2)−1 ·m′+(k2)−1 ·r ·x2 ·x1 = ρ ·q+(k2)−1 · (m′+r ·x) (assuming
that all is done correctly). Thus, s = (k1)−1 · s′ = k−1 · (m′ + rx) mod q.

PROTOCOL 3.2 (Signing Subprotocol Sign(sid,m))

A graphical representation of the protocol appears in Figure 1.

Inputs:

1. Party P1 has (x1, Q) as output from Protocol 3.1, the message m, and a
unique session id sid.

2. Party P2 has (x2, Q, ckey) as output from Protocol 3.1, the message m and
the session id sid.

3. P1 and P2 both locally compute m′ ← Hq(m) and verify that sid has not
been used before (if it has been, the protocol is not executed).

The Protocol:

1. P1’s first message:
(a) P1 chooses a random k1 ← Zq and computes R1 = k1 ·G.
(b) P1 sends (com-prove, sid‖1, R1, k1) to FRDL

com-zk.
2. P2’s first message:

(a) P2 receives (proof-receipt, sid‖1) from FRDL
com-zk.

(b) P2 chooses a random k2 ← Zq and computes R2 = k2 ·G.
(c) P2 sends (prove, sid‖2, R2, k2) to FRDL

zk .
3. P1’s second message:

(a) P1 receives (proof, sid‖2, R2) from FRDL
zk ; if not, it aborts.

(b) P1 sends (decom-proof, sid‖1) to Fcom-zk.
4. P2’s second message:

(a) P2 receives (decom-proof, sid‖1, R1) from FRDL
com-zk; if not, it aborts.

(b) P2 computes R = k2 · R1. Denote R = (rx, ry). Then, P2 computes
r = rx mod q.

(c) P2 chooses a random ρ ← Zq2 and computes c1 =
Encpk

(
ρ · q +

[
(k2)−1 ·m′ mod q

])
. Then, P2 computes v =

(k2)−1 · r · x2 mod q, c2 = v � ckey and c3 = c1 ⊕ c2.
(d) P2 sends c3 to P1.

5. P1 generates output:
(a) P1 computes R = k1 · R2. Denote R = (rx, ry). Then, P1 computes

r = rx mod q.
(b) P1 computes s′ = Decsk(c3) and s′′ = (k1)−1 · s′ mod q. P1 sets s =

min{s′′, q − s′′} (this ensures that the signature is always the smaller
of the two possible values).

(c) P1 verifies that (r, s) is a valid signature with public key Q. If yes it
outputs the signature (r, s); otherwise, it aborts.

If a party aborts at any point, then it does not participate in any future Sign(sid,m)
executions.

11

3.4 Efficiency and Experimental Results

We now analyze the theoretical complexity of our protocol, and describe its
concrete running time based on our implementation.

Theoretical complexity – key-distribution protocol. Leaving aside the ZK proofs
for now, P1 carries out 2 Elliptic curve multiplications, 1 Paillier public-key
generation and 1 Paillier encryption, and P2 carries out two Elliptic curve mul-
tiplications. In addition, the parties run two discrete log proofs (each playing as
prover once and as verifier once), and P1 proves that N is a valid Paillier public
key and runs the PDL proof described in Section 3.2. The cost of these proofs
is as follows:

– Discrete log: the standard Schnorr zero-knowledge proof of knowledge for dis-
crete log requires a single multiplication by the prover and two by the verifier.

– Paillier public-key validity [19]: For a statistical error of 2−40 this costs 120
Paillier exponentiations by each of the prover and the verifier (but 40 of these
are “short”). In addition, the prover P1 carries out 120 GCD computations.

– PDL proof (Section 6): This proof, described in Protocol 6.1, also involves
running one executions of a range proof, and carrying out a small constant
number of operations. The cost of the proof overall is as follows:
• The instructions within Protocol 6.1 for the prover P1 are 1 Paillier de-

cryption and 1 Elliptic curve multiplication. The cost for the verifier P2

is 1 Paillier scalar multiplication and scalar addition, and 2 Elliptic curve
multiplications.

• As described in Section A, the range proof is dominated by 2t Paillier
encryptions for a statistical soundness error of 2−t. Setting t = 40, we
have 80 Paillier encryptions each.

Theoretical complexity – signing protocol. We now count the complexity of the
signing protocol. We count the number of Elliptic curve multiplications and
Paillier operations since this dominates the computation. As above, the zero-
knowledge proof of knowledge for discrete log requires a single multiplication by
the prover and two by the verifier, and ECDSA signature verification requires two
multiplications. Thus, P1 computes 7 Elliptic curve multiplications and a single
Paillier decryption. In contrast, P2 computes 5 Elliptic curve multiplications,
1 Paillier encryptions, 1 Paillier homomorphic scalar multiplication (which is a
single “short” exponentiation) and one Paillier homomorphic addition (which is
a single multiplication). Observe that unlike previous work, the length of the
Paillier key need only be 5 times the length of the order of the Elliptic curve
group (and not 8 times). Regarding rounds of communication, the protocol has
only four rounds of communication (two in each direction). Thus, the protocol
is very fast even on a slow network.

Implementation and running times. We implemented our protocol in C++ and
ran it on Azure between two Standard_DS3_v2 instances. Although these in-
stances have 4 cores each, we utilized a single core only with a single-thread
implementation (note that key generation can be easily parallelized, if desired).

12

We ran our implementation on the standard NIST curves P-256, P-384 and
P-521; the times for key generation and signing appear in Tables 1 and 2.

Curve Mean time Standard deviation

P-256 2435ms 142
P-384 2440ms 124
P-521 3535ms 166

Table 1. Running times for key generation (average over 20 executions)

Curve Mean time Standard deviation

P-256 36.8ms 7.30
P-384 47.11ms 1.96
P-521 78.19ms 1.45

Table 2. Running times for signing (average over 1,000 executions)

We remark that the size of the Paillier key has a great influence on the
running time. We know this since when running our initial experiments, our
analysis of the protocol required setting N > q5 (instead of N > 2q4 + q3). This
seemingly small difference meant that for P-521, the Paillier key needed to be
of size 2560 (instead of 2086). For this mildly larger key, the running time was
110ms for signing, which is 40% longer. This is explained by the fact that Paillier
operations have cubic cost, and thus the cost doubles when the key size increases
by just 25%.

4 Proof of Security – Game-Based Definition

4.1 Definition of Security

We begin by presenting a game-based definition for the security of a digital
signature scheme π = (Gen,Sign,Verify). This will be used when proving the
security of our protocol and thus is presented for the sake of completeness and
a concrete reference.

EXPERIMENT 4.1 (Expt-SignA,π(1n))

1. (vk, sk)← Gen(1n).
2. (m∗, σ∗)← ASignsk(·)(1n, vk).
3. Let Q be the set of all m queried by A to its oracle. Then, the output of

the experiment equals 1 if and only if m∗ /∈ Q and Verifyvk(m∗, σ∗) = 1.

Standard security of digital signatures

Definition 4.2. A signature scheme π is existentially unforgeable under chosen-
message attacks if for every probabilistic polynomial-time oracle machine A there
exists a negligible function µ such that for every n,

Pr[Expt-SignA,π(1n) = 1] ≤ µ(n).

13

We now proceed to define security for a distributed signing protocol. In the
experiment Expt-DistSignbA,Π , we consider A controlling party Pb in protocol Π
for two-party signature generation. Let Πb(·, ·) be a stateful oracle that runs the
instructions of honest party P3−b in protocol Π. The adversary A can choose
which messages will be signed, and can interact with multiple instances of party
P3−b to concurrently generate signatures. Note that the oracle is defined so that
distributed key generation is first run once, and then multiple signing protocols
can be executed concurrently.

Formally, A receives access to an oracle that receives two inputs: the first
input is a session identifier and the second is either an input or a next incoming
message. The oracle works as follows:

– Upon receiving a query of the form (0, 0) for the first time, the oracle initial-
izes a machine M running the instructions of party P3−b in the distributed
key generation part of protocol Π. If party P3−b sends the first message in
the key generation protocol, then this message is the oracle reply.

– Upon receiving a query of the form (0,m), if the key generation phase has
not been completed, then the oracle hands the machine M the message m
as its next incoming message and returns M ’s reply. (If the key generation
phase has completed, then the oracle returns ⊥.)

– If a query of the form (sid,m) is received where sid 6= 0, but the key gener-
ation phase with M has not completed, then the oracle returns ⊥.

– If a query (sid,m) is received and the key generation phase has completed
and this is the first oracle query with this identifier sid, then the oracle in-
vokes a new machine Msid running the instructions of party P3−b in protocol
Π with session identifier sid and input message m to be signed. The machine
Msid is initialized with the key share and any state stored by M at the end
of the key generation phase. If party P3−b sends the first message in the
signing protocol, then this message is the oracle reply.

– If a query (sid,m) is received and the key generation phase has completed
and this is not the first oracle query with this identifier sid, then the oracle
hands Msid the incoming message m and returns the next message sent
by Msid. If Msid concludes, then the output obtained by Msid is returned.

The experiment for defining security is formalized by simply providing A who
controls party Pb with oracle access to Πb. Adversary A “wins” if it can forge
a signature on a message not queried in the oracle queries. Observe that A can
run multiple executions of the signing protocol concurrently. We remark that
we have considered only a single signing key; the extension to multiple different
signing keys is straightforward and we therefore omit it. (This is due to the fact
since signing keys are independent, one case easily simulate all executions with
other keys.)

14

EXPERIMENT 4.3 (Expt-DistSignbA,Π(1n))

Let π = (Gen, Sign,Verify) be a digital signature scheme.

1. (m∗, σ∗)← AΠb(·,·)(1n).
2. Let Q be the set of all inputs m such that (sid,m) was queried by A to

its oracle as the first query with identifier sid. Then, the output of the
experiment equals 1 if and only if m∗ /∈ Q and Verifyvk(m∗, σ∗) = 1, where
vk is the verification key output by P3−b from the key generation phase,
and Verify is as specified in π.

Security experiment for secure digital signature protocol

Definition 4.4. A protocol Π is a secure two-party protocol for distributed sig-
nature generation for π if for every probabilistic polynomial-time oracle machine
A and every b ∈ {1, 2}, there exists a negligible function µ such that for every n,
Pr[Expt-DistSignbA,Π(1n) = 1] ≤ µ(n).

4.2 Proof of Security

In this section, we prove that Π comprised of Protocols 3.1 and 3.2 for key
generation and signing, respectively, constitutes a secure two-party protocol for
distributed signature generation of ECDSA.

Theorem 4.5. Assume that the Paillier encryption scheme is indistinguishable
under chosen-plaintext attacks, that ECDSA is existentially-unforgeable under a
chosen message attack, and that the zero-knowledge proofs and commitments are
as described. Then, Protocols 3.1 and 3.2 constitute a secure two-party protocol
for distributed signature generation of ECDSA.

Proof. We prove the security of the protocol in the Fcom-zk,Fzk hybrid model
for relations RDL and RP . Note that if the commitment and zero-knowledge
protocols are UC-secure, then this means that the output in the hybrid and real
protocols is computationally indistinguishable. In particular, if A can break the
protocol with some probability ε in the hybrid model, then it can break the
protocol with probability ε ± µ(n) for some negligible function µ. Thus, this
suffices.

We separately prove security for the case of a corrupted P1 and a cor-
rupted P2. Our proof works by showing that, for any adversary A attacking
the protocol, we construct an adversary S who forges an ECDSA signature in
Experiment 4.1 with probability that is negligibly close to the probability that A
forges a signature in Experiment 4.3. Formally, we prove that if Paillier has in-
distinguishable encryptions under chosen-plaintext attacks, then for every PPT
algorithm A and every b ∈ {1, 2} there exists a PPT algorithm S and a negligible
function µ such that for every n,∣∣∣Pr[Expt-SignS,π(1n) = 1]− Pr[Expt-DistSignbA,Π(1n) = 1]

∣∣∣ ≤ µ(n), (1)

15

where Π denotes Protocols 3.1 and 3.2, and π denotes the ECDSA signature
scheme. Proving Eq. (1) suffices, since by the assumption in the theorem that
ECDSA is secure, we have that there exists a negligible function µ′ such that
for every n, Pr[Expt-SignS,π(1n) = 1] ≤ µ′(n). Combining this with Eq. (1), we

conclude that Pr[Expt-DistSignbA,Π(1n) = 1] ≤ µ(n)+µ′(n) and thus Π is secure
by Definition 4.4. We prove Eq. (1) separately for b = 1 and b = 2.

Proof of Eq. (1) for b = 1 – corrupted P1: Let A be a probabilistic polynomial-
time adversary in Expt-DistSign1A,Π(n); we construct a probabilistic polynomial-
time adversary S for Expt-SignS,π(n). The adversary S essentially simulates the
execution for A, as described in the intuition behind the security of the protocol.
Formally:

1. In Expt-Sign, adversary S receives (1n, Q), where Q is the public verification
key for ECDSA.

2. S invokes A on input 1n and simulates oracle Π for A in Expt-DistSign,
answering as described in the following steps:
(a) S replies ⊥ to all queries (sid, ·) to Π by A before the key-generation

subprotocol is concluded. S replies ⊥ to all queries from A before it
queries (0, 0).

(b) After A sends (0, 0) to Π, adversary S receives (0,m1) which is P1’s first
message in the key generation subprotocol (any other query is ignored).
S computes the oracle reply as follows:

i. S parses m1 into the form (com-prove, 1, Q1, x1) that P1 sends to
FRDL

com-zk in the hybrid model.
ii. S verifies that Q1 = x1 ·G. If yes, then it computes Q2 = (x1)−1 ·Q

(using the value Q received as the verification key in experiment
Expt-Sign and the value x1 from A’s prove message); if no, then S
just chooses a random Q2.

iii. S sets the oracle reply of Π to be (proof, 2, Q2) and internally hands
this to A (as if sent by FRDL

zk).
(c) The next message of the form (0,m2) received by S is processed as

follows:
i. S parsesm2 into the following two messages: (1) (decom-proof, sid‖1)

as A intends to send to FRDL

com-zk, and (2) (proof, 1, N, (p1, p2)) as A
intends to send to FRP

zk .
ii. S verifies that pk = N = p1 · p2 and that the length of pk = N is

as specified, and generates the oracle response to be P2 aborting if
they are not correct.

iii. Likewise, S generates the oracle response to be P2 aborting if Q1 6=
x1 · G or ckey 6= Encpk(x1; r) or x1 /∈ Zq. (It can check this since it
knows x1 and can compute the Paillier private key from the prime
factors p1, p2.)

iv. If S simulates an abort, then the experiment concludes (since the
honest P2 no longer participates in the protocol and so all calls to
Πb are ignored). S does not output anything in this case since no
verification key vk is output by P2 in this case.

16

v. The next messages of the form (0,mi) received by S are processed
as part of the zero-knowledge proof that (ckey, pk,Q1) ∈ LPDL. S
verifies this proof running the honest verifier. (Any message of the
form (0,m∗) received following the number of messages in the zero-
knowledge proof is ignored.)

vi. If S did not abort, then it stores (x1, Q, ckey) and the distributed
key generation phase is completed.

(d) Upon receiving a query of the form (sid,m) where sid is a new session
identifier, S queries its signing oracle in experiment Expt-Sign with m
and receives back a signature (r, s). Using the ECDSA verification pro-
cedure, S computes the Elliptic curve point R. (Observe that the ECDSA
verification works by constructing a point R and then verifying that this
defines the same r as in the signature.) Then, queries received by S from
A with identifier sid are processed as follows:

i. The first message (sid,m1) is processed by first parsing the message
m1 as (com-prove, sid‖1, R1, k1). If R1 = k1 · G then S sets R2 =
(k1)−1 ·R; else it chooses R2 at random. S sets the oracle reply to A
to be the message (proof, sid‖2, R2) that A expects to receive. (Note
that the value R2 is computed using R from the ECDSA signature
and k1 as sent by A.)

ii. The second message (sid,m2) is processed by parsing the message
m2 as (decom-proof, sid‖1) from A. If R1 6= k1 ·G then S simulates
P2 aborting and the experiment concludes (since the honest P2 no
longer participates in any executions of the protocol and so all calls
to Πb are ignored).
Otherwise, S chooses a random ρ ← Zq2 , computes the ciphertext
c3 ← Encpk([k1 · s mod q] + ρ · q), where s is the value from the
signature received from Fecdsa, and sets the oracle reply to A to
be c3.

3. Whenever A halts and outputs a pair (m∗, σ∗), adversary S outputs (m∗, σ∗)
and halts.

We proceed to prove that Eq. (1) holds. First, observe that the public-key gen-
erated by S in the simulation with A equals the public-key Q that it received
in experiment Expt-Sign. This is due to the fact that S defines Q2 = (x1)−1 ·Q
when A is committed to Q1 = x1 · G. Thus, the public key is defined to be
x1 · Q2 = x1 · (x1)−1 · Q = Q, as required. We now proceed to show that A’s
view in the simulation by S is statistically close to its view in a real execution of
Protocols 3.1 and 3.2. (Note that the view is statistically close when taking Fzk

and Fcom-zk as ideal functionalities; the real protocol is computationally indistin-
guishable.) This suffices since it implies that A outputs a pair (m∗, σ∗) that is a
valid signature with the same probability in the simulation and in Expt-DistSign
(otherwise, the views can be distinguished by just verifying if the output signa-
ture is correct relative to the public key). Since the public key in the simulation
is the same public key that S receives in Expt-Sign, a valid forgery generated by
A in Expt-DistSign constitutes a valid forgery by S in Expt-Sign. Thus, Eq. (1)
follows.

17

In order to see that the view of A in the simulation of the key generation
phase is statistically close to its view in a real execution of Protocol 3.1 (as in
Expt-DistSign), note that the only difference between the simulation by A and a
real execution with an honest P2 is the way that Q2 is generated: P2 chooses a
random x2 and computes Q2 ← x2 · G, whereas S computes Q2 ← (x1)−1 · Q,
where Q is the public verification key received by S in Expt-Sign. We stress
that in all other messages and checks, S behaves exactly as P2 (note that the
zero-knowledge proof of knowledge of the discrete log of Q2 is simulated by S,
but in the Fzk,Fcom-zk-hybrid model this is identical). Now, since Q is chosen
randomly, it follows that the distributions over x2 ·G and (x1)−1 ·Q are identical.
Observe finally that if P2 does not abort then the public-key defined in both a
real execution and the simulation by S equals x1 · Q2 = Q. In addition, if
Q1 6= x1 · G or ckey 6= Encpk(x1; r) or x1 /∈ Zq then S simulates P2 aborting.
In contrast, in a real execution, P2 aborts in such a case if the zero-knowledge
proof of LPDL fails. However, if Q1 6= x1 ·G or ckey 6= Encpk(x1; r) or x1 /∈ Zq,
then by the soundness of the proof, P2 aborts in a real execution except with
negligible probability. Thus, the view of A in the simulation is statistically close
to a real execution, and the output public key is Q.

In order to see that the view of A in the simulation of the signing phase is
computationally indistinguishable to its view in a real execution of Protocol 3.2
(as in Expt-DistSign), note that the only difference between the view of A in a
real execution and in the simulation is the way that c3 is chosen. Specifically,
R2 is distributed identically in both cases due to the fact that R is randomly
generated by Fecdsa in the signature generation and thus (k1)−1 · R has the
same distribution as k2 · G (this is exactly the same as in the key generation
phase with Q). The zero-knowledge proofs and verifications are also identically
distributed in the Fzk,Fcom-zk-hybrid model. Thus, the only difference is c3: in
the simulation it is an encryption of [k1 · s mod q] + ρ · q, whereas in a real
execution it is an encryption of s′ = (k2)−1 · (m′ + rx) + ρ · q, where ρ ∈ Zq2 is
random (we stress that all additions here are over the integers and not mod q,
except for where it is explicitly stated in the protocol description). We stress that
the distribution of s′ in a real execution is as above, as long as the Paillier key
is valid and as long as ckey = Encpk(x1) where Q1 = x1 ·G. These properties are
guaranteed by the soundness of the zero-knowledge proofs in the key-generation
phase, and thus the probability that this doesn’t hold is negligible.

We therefore prove that A’s view is indistinguishable by showing that despite
this difference, the values are actually statistically close. In order to see this, first
observe that by the definition of ECDSA signing, s = k−1 · (m′ + rx) = (k1)−1 ·
(k2)−1·(m+rx) mod q. Thus, (k2)−1·(m′+rx) = k1·s mod q, implying that there
exists some ` ∈ N with 0 ≤ ` < q such that (k2)−1 · (m′+ rx) = k1 · s+ ` · q. The
reason that ` is bound between 0 and q is that in the protocol the only operations
without a modular reduction are the multiplication of [(k2)−1 ·r·x2 mod q] by x1,
and the addition of [(k2)−1 ·m′ mod q]. This cannot increase the result by more
than q2. Therefore, the difference between the real execution and simulation with
S is:

18

1. Real: the ciphertext c3 encrypts [k1 · s mod q] + ` · q + ρ · q
2. Simulated: the ciphertext c3 encrypts [k1 · s mod q] + ρ · q

We show that for all k1, s, ` with k1, s, ` ∈ Zq, the above values are statistically
close (for a random choice of ρ ∈ Zq2). In order to see this, fix k1, s, `, and let
v be a value. If v 6= [k1 · s mod q] + ζ · q for some ζ, then neither the real or
simulated values can equal v. Else, if v = [k1 · s mod q] + ζ · q for some ζ, then
there are three cases:

1. Case ζ < `: in this case, v can be obtained in the simulated execution for
ρ < `, but can never be obtained in a real execution.

2. Case ζ > q2 − 1): in this case, v can be obtained in the real execution for
ρ ≥ q2 − 1− `, but can never be obtained in a simulated execution.

3. Case ` ≤ ζ < q2 − 1: in this case, v can be obtained in both the real and
simulated executions, with identical probability (observe that in both the
real and simulated executions, ρ is chosen uniformly in Zq2).

Recall that the statistical distance between two distributions X and Y over a
domain D is defined to be:

∆(X,Y) = max
T⊆D

∣∣∣Pr[X ∈ T]− Pr[Y ∈ T]
∣∣∣

Let X be the values generated in a real execution of the protocol and let Y be the
values generated in the simulation with S. Then, taking T to be set of values v
for which ζ < `, we have that Pr[X ∈ T] = 0 whereas Pr[Y ∈ T] ≤ q

q2 = 1
q (this

holds since 0 ≤ ` < q and ρ ∈ Zq2). Thus, ∆(X,Y) = 1
q , which is negligible.

(Taking T to be the set of values v for which ζ > q2 − 1 would give the same
result and are both the maximum since any other values add no difference.)
We therefore conclude that the distributions over c3 in the real and simulated
executions are statistically close. This proves that Eq. (1) holds for the case
that b = 1.

Proof of Eq. (1) for b = 2 – corrupted P2: We follow the same strategy as for
the case that P1 is corrupted, which is to construct a simulator S that simulates
the view of A while interacting in experiment Expt-Sign. This simulation is easy
to construct and similar to the case that P1 is corrupted, with one difference.
Recall that the last message from P2 to P1 is an encryption c3. This ciphertext
may be maliciously constructed by A, and the simulator cannot detect this.
(Formally, there is no problem for S to decrypt, since as will be apparent below, it
generates the Paillier public key. However, this strategy will fail since in order to
prove computational indistinguishability it is necessary to carry out a reduction
to the security of Paillier, meaning that the simulation must be designed to
work without knowing the corresponding private key.) We solve this problem
by simply having S simulate P1 aborting at some random point. That is, S
chooses a random i ∈ {1, . . . , p(n) + 1} where p(n) is an upper bound on the
number of queries made by A to Π. If S chose correctly, then the simulation
is fine. Now, since S’s choice of i is correct with probability 1

p(n)+1 , this means

19

that S simulates A’s view with probability 1
p(n)+1 (note that S can also choose

i = p(n) + 1, which is correct if c3 is always constructed correctly). Thus, S
can forge a signature in Expt-Sign with probability at least 1

p(n)+1 times the

probability that A forges a signature in Expt-DistSign.

Let A be a probabilistic polynomial-time adversary; S proceeds as follows:

1. In Expt-Sign, adversary S receives (1n, Q), where Q is the public verification
key for ECDSA.

2. Let p(·) denote an upper bound on the number of queries that A makes to Π
in experiment Expt-DistSign. Then, S chooses a random i ∈ {1, . . . , p(n)+1}.

3. S invokes A on input 1n and simulates oracle Π for A in Expt-DistSign,
answering as described in the following steps:

(a) S replies ⊥ to all queries (sid, ·) to Π by A before the key-generation
subprotocol is concluded. S replies ⊥ to all queries from A before it
queries (0, 0).

(b) After A sends (0, 0) to Π, adversary S computes the oracle reply to be
(proof-receipt, 1) as A expects to receive.

(c) The next message of the form (0,m1) received by S (any other query is
ignored) is processed as follows:

i. S parses m1 into the form (prove, 2, Q2, x2) that P2 sends to FRDL

com-zk

in the hybrid model.
ii. S verifies that Q2 is a non-zero point on the curve and that Q2 =

x2 · G; if not, it simulates P1 aborting, and halts (there is no point
outputting anything since no verification key is output by P1 in this
case and so the output of Expt-DistSign is always 0).

iii. S generates a valid Paillier key-pair (pk, sk), computes ckey = Encpk(x̃1)
for a random x̃1 ∈ Zq/3.

iv. S sets the oracle response toA to be the messages (decom-proof, 1, Q1)
and (proof, 1, N), where Q1 = (x2)−1 · Q with Q as received by S
initially.

v. S runs the simulator for the zero-knowledge proof for language LPDL,
with the residual A as verifier.

S stores (x2, Q, ckey) and the key distribution phase is completed.

(d) Upon receiving a query of the form (sid,m) where sid is a new session
identifier, S computes the oracle reply to be (proof-receipt, sid‖1) as A
expects to receive, and hands it to A.

Next, S queries its signing oracle in experiment Expt-Sign with m and
receives back a signature (r, s). Using the ECDSA verification procedure,
S computes the Elliptic curve point R. Then, queries received by S from
A with identifier sid are processed as follows:

i. The first message (sid,m1) is processed by first parsing the message
m1 as (prove, sid‖2, R2, k2) that A sends to FRDL

zk . S verifies that
R2 = k2 ·G and that R2 is a non-zero point on the curve; otherwise,
it simulates P1 aborting. S computes R1 = (k2)−1 · R and sets the
oracle reply to be (decom-proof, sid‖, R1) as if coming from FRDL

com-zk.

20

ii. The second message (sid,m2) is processed by parsing m2 as c3. If
this is the ith call by A to the oracle Π, then S simulates P1 aborting
(and not answering any further oracle calls). Otherwise, it continues.

4. Whenever A halts and outputs a pair (m∗, σ∗), adversary S outputs (m∗, σ∗)
and halts.

As in the case that P1 is corrupted, the public-key generated by S in the simu-
lation with A equals the public-key Q that it received in experiment Expt-Sign.
Now, let j be the first call to oracle Π with (sid, c3) where c3 is such that P1

does not obtain a valid signature (r, s) with respect to Q. Then, we argue that
if j = i, then the only difference between the distribution over A’s view in a real
execution and in the simulated execution by S is the ciphertext ckey. Specifi-
cally, in a real execution ckey = Encpk(x1) where Q1 = x1 · G, whereas in the
simulation ckey = Encpk(x̃1) for a random x̃1 and is independent of Q1 = x1 ·G.2

Observe, however, that S does not use the private-key for Paillier at all in the
simulation. Thus, indistinguishability of this simulation follows from a straight-
forward reduction to the indistinguishability of the encryption scheme, under
chosen-plaintext attacks.

This proves that∣∣Pr[Expt-SignS,π(1n) = 1 | i = j]− Pr[Expt-DistSign2A,Π(1n) = 1]
∣∣ ≤ µ(n),

and so

Pr[Expt-DistSign2A,Π(1n) = 1] ≤
Pr[Expt-SignS,π(1n) = 1 ∧ i = j]

Pr[i = j]
+ µ(n)

≤
Pr[Expt-SignS,π(1n) = 1]

1/(p(n) + 1)
+ µ(n)

and so

Pr[Expt-SignS,π(1n) = 1] ≥
Pr[Expt-DistSign2A,Π(1n) = 1]

p(n) + 1
− µ(n).

This implies that if A forges a signature in Expt-DistSign2A,Π with non-negligible
probability, then S forges a signature in Expt-SignS,π with non-negligible prob-
ability, in contradiction to the assumed security of ECDSA.

5 Simulation Proof of Security (With a New Assumption)

There are advantages to full simulation based proofs of security (via the real/ideal
paradigm). Observe that we proved the security of our protocol in Section 4 by

2 As before, this is true in the Fzk,Fcom-zk-hybrid model; by using UC-secure proto-
cols for Fzk,Fcom-zk the result is computationally indistinguishable. There is also a
difference due to the fact that the zero-knowledge proof for LPDL is simulated and
not real; however, this is computationally indistinguishable.

21

simulating the view of A in a real execution. In fact, our simulation can be used
to prove the security of our protocol under the real/ideal world paradigm except
for exactly one place. Recall that when P2 is corrupted, S cannot determine if
c3 is correctly constructed or not. Thus, S simply chooses a random point and
“hopes” that the jth value c3 generated is the first badly constructed c3. This
suffices for a game-based definition, but it does not suffice for simulation-based
security definitions. Thus, in order to be able to prove our protocol using simula-
tion, we need to be able to determine if c3 was constructed correctly. Of course,
we could add zero-knowledge proofs to the protocol, but these would be very
expensive. Alternatively, we consider a rather ad-hoc but plausible assumption
that suffices. The assumption is formalized below, along with a full proof of
security under this assumption.

5.1 Definition of Security

We show how to securely compute the functionality Fecdsa. The functionality
is defined with two functions: key generation and signing. The key generation is
called once, and then any arbitrary number of signing operations can be carried
out with the generated key. The functionality is defined in Figure 5.1.

FIGURE 5.1 (The ECDSA Functionality Fecdsa)

Functionality Fecdsa works with parties P1 and P2, as follows:

– Upon receiving KeyGen(G, G, q) from both P1 and P2, where G is an
Elliptic-curve group of order q with generator G:
1. Generate an ECDSA key pair (Q, x) by choosing a random x ← Z∗q

and computing Q = x · G. Choose a hash function Hq : {0, 1}∗ →
{0, 1}blog |q|c, and store (G, g, q,Hq, x).

2. Send Q (and Hq) to both P1 and P2.
3. Ignore future calls to KeyGen.

– Upon receiving Sign(sid,m) from both P1 and P2, if KeyGen was already
called and sid has not been previously used, compute an ECDSA signature
(r, s) on m, and send it to both P1 and P2. (Specifically, choose a random
k ← Z∗q , compute (rx, ry) = k · G and r = rx mod q. Finally, compute
s← k−1(Hq(m) + rx) and output (r, s).)

We defined Fecdsa using Elliptic curve (additive) group notation, although
all of our protocols work for any prime-order group.

Security in the presence of malicious adversaries. We prove security according
to the standard simulation paradigm with the real/ideal model [5,17]. We prove
security in the presence of malicious adversaries and static corruptions. As is
standard for the case of no honest majority, we consider security with abort
meaning that a corrupted party can learn output while the honest party does

22

not. In our definition of functionalities, we describe the instructions of the trusted
party. Since we consider security with abort, the corrupted party receives output
first and then sends either continue or abort to the trusted party to determine
whether or not the honest party also receives output.

We remark that when all of the zero-knowledge proofs are UC secure [6],
then our protocol can also be proven secure in this framework.

5.2 Background and New Assumption

In Section 4 , we proved the security of our protocol under a game-based defini-
tion. In some sense, proving security via simulation-based definitions (following
the ideal/real model paradigm) is preferable. In particular, it guarantees security
under composition. Following our proof in Section 4.2 closely, one may observe
that S is essentially a simulator for an ideal functionality that securely com-
putes ECDSA. Indeed, S is invoked with a public-key, and can use its oracle in
Expt-Sign to obtain a signature on any value it wishes. This is very similar to
an ideal functionality that generates a public key and can be used to generate
signatures. The only problem with the simulation strategy used in Section 4.2
is that in the case that P2 is corrupted, S just guesses if c3 is correctly con-
structed. Needless to say, this is not allowed in a simulation-based proof. One
may be tempted to solve this problem by saying that since S generates the Pail-
lier key-pair (pk, sk) when playing P1, it can decrypt c3 and check if the value is
generated as expected. However, when trying to formally prove this, one needs
to show a reduction to the indistinguishability of the encryption scheme (since
the simulator does not know x1 and so cannot provide ckey = Encpk(x1)). In
this reduction, the simulator is given pk externally and does not know sk (see
the proof of the key generation subprotocol in Section 4.2). Thus, in this reduc-
tion, it is not possible to decrypt c3 and the appropriate distributions cannot be
generated.

We introduce a new assumption under which it is possible to prove the full
simulation-based security of Protocol 3.2 without any modifications. The as-
sumption is non-standard, but very plausible. Consider an adversary who is given
a Paillier encryption of a (high-entropy) secret value w; denote c = Encpk(w).
Then, the adversary can always randomize c to generate an encryption c′ of the
same w, but without anyone but itself and the secret-key owner knowing whether
c and c′ encrypt the same value. In addition, the adversary can always generate
an encryption c′ of a plaintext value that it knows but without knowing whether
c and c′ encrypt the same value. Now, consider a setting where an adversary is
given an oracle Oc(c′) that outputs 1 if and only if Decsk(c′) = Decsk(c), where
c = Encpk(w) is the challenge ciphertext, and the adversary’s task is to learn w.
Clearly, the adversary can use this oracle to try and guess the value encrypted in
c one at a time (just guess x′, compute c′ = Encpk(x′) and query Oc(c′)). How-
ever, since w has high entropy, this seems to be futile. Furthermore, it seems
that the oracle Oc cannot help in any other way.

Extending the above a further step, the adversary can generate any affine
function of w by choosing scalars α and β and computing c′ = α�(Encpk(β)⊕c)

23

= Encpk(α+β·x). Then, as before,A tries to output w given an oracleOc(c′, α, β)
that outputs 1 if and only if Decsk(c′) = α+β ·Decsk(c). The adversary can use
this oracle to try to guess w one value at a time, but it does not seem that it
can help beyond this.

In order to formally define a security experiment including such an oracle, one
must consider the task of the adversary. Since w must be a high-entropy random
value one cannot consider the standard indistinguishability game. Rather, one
could formalize a simple task where some w is randomly chosen and the adversary
is given (pk,Encpk(w)) and oracle access to O above, and its task is to output w
(in entirety). This is very plausible since without the oracle it is clearly hard, and
the oracle only answers queries (c′, α, β) by determining if “c′ encrypts α+β ·x”,
which essentially gives a single guess on the value of w. However, requiring that
the adversary output the entire w turns out to not be very helpful for us. This
is due to the fact that w must maintain some property of secrecy. We therefore
extend this experiment by giving the adversary either (pk, f(w0),Encpk(w0)) or
(pk, f(w0),Encpk(w1)), where w0, w1 are random and f is a one-way function.
The adversary’s task is to guess which input type it received (with the input to
the one-way function equal to what is encrypted or independent of it), and it is
given the oracle O above to help it. Note that f may reveal some information
about w0 (since it is only a one-way function), but if f is somehow unrelated of
the encryption scheme, then it still seems that this should not help very much.

For our actual experiment, we will define the one-way function to be the
computation w0 ·G in a group where the discrete log is hard. Observe that here
the one-way function is related to the discrete log problem over Elliptic curve
groups, whereas the encryption is Paillier and thus seems completely unrelated.
Thus, we conjecture that this problem is hard. Since we consider a group, the
equality that is actually checked by the oracle is modulo q, where q is the order
of the group.

Formal assumption definition. The above description leads to the following ex-
periment. Let G be a generator of a group G of order q. Consider the following
experiment with an adversary A, denoted ExptA(1n):

1. Generate a Paillier key pair (pk, sk).
2. Choose random w0, w1 ∈ Zq and compute Q = w0 ·G.
3. Choose a random bit b ∈ {0, 1} and compute c = Encpk(wb).
4. Let b′ = AOc(·,·,·)(pk, c,Q), where Oc(c′, α, β) = 1 if and only if Decsk(c′) =
α+ β · wb mod q.

5. The output of the experiment is 1 if and only if b′ = b.

We define the following:

Definition 5.2. We say that the Paillier-EC assumption is hard if for every prob-
abilistic polynomial-time adversary A there exists a negligible function µ such
that Pr[ExptA(1n) = 1] ≤ 1

2 + µ(n).

The assumption in Definition 5.2 is rather ad-hoc and tailored to the problem
at hand. However, it is very plausible and enables us prove full simulation without
modifying the protocol.

24

5.3 Proof of Security

Under the above assumption, we are able to prove full simulation-based security
of our protocol. We show this now. We assume only that the Paillier-EC as-
sumption is hard, since this trivially implies that the Paillier encryption scheme
is indistinguishable under chosen-plaintext attacks.

Theorem 5.3. Assume that the Paillier-EC assumption is hard. Then, Pro-
tocol 3.2 securely computes Fecdsa in the (Fzk,Fcom-zk)-hybrid model in the
presence of a malicious static adversary (under the full ideal/real definition).

Proof. We separately prove security for the case of a corrupted P1 and a cor-
rupted P2. Let A be an adversary who has corrupted P1; we construct a simu-
lator S. We separately show how to simulate the key generation and sign sub-
protocols.

Simulating key generation – corrupted P1: The intuition behind the simulation
of the key generation was already provided above; we therefore proceed directly
to the details.

1. Upon input KeyGen(G, G, q), simulator S sends KeyGen(G, G, q) to Fecdsa
and receives back Q.

2. S invokes A upon input KeyGen(G, G, q) and receives (com-prove, 1, Q1, x1)
as A intends to send to FRDL

zk .
3. S verifies that Q1 = x1 ·G. If yes, then it computes Q2 = (x1)−1 ·Q (using

the value Q received from Fecdsa and x1 from A’s prove message); if no,
then S just chooses a random Q2.

4. S internally hands (proof, 2, Q2) to A as if sent by FRDL

zk .

5. S receives (decom-proof, sid‖1) as A intends to send to FRDL

com-zk, receives

(proof, 1, N, (p1, p2)) as A intends to send to FRP

zk , and honestly verifies the
zero-knowledge proof of language LPDL.

6. S verifies that pk = N = p1 · p2 and the length of pk = N , and simulates P2

aborting if they are not correct.
7. S simulates P2 aborting if Q1 6= x1 ·G or ckey 6= Encpk(x1; r) or x1 /∈ Zq. (S

can check this since it knows x1 and it can compute the Paillier private key
from the prime factors p1, p2.)

8. S sends continue to Fecdsa for P2 to receive output, and stores x1, Q, ckey.

We prove that the joint distribution of A’s view and P2’s output in the ideal
simulation is identically distributed to in a real protocol execution. The main
difference between the simulation by A and a real execution with an honest
P2 is the way that Q2 is generated: P2 chooses a random x2 and computes
Q2 ← x2 ·G, whereas S computes Q2 ← (x1)−1 ·Q. However, as we have already
seen, since Q is chosen randomly, the distributions over x2 ·G and (x1)−1 ·Q are
identical. Another difference is that S simulates P2 aborting if Q1 6= x1 · G or
ckey 6= Encpk(x1; r) or x1 /∈ Zq, whereas in a real execution P2 aborts in this case
only if the zero-knowledge proof of LPDL is not accepted. By the soundess of this

25

proof, this difference is at most negligible. We stress that in all other messages
and checks, S behaves in the same way as P2 (note that the zero-knowledge
proofs of Q2 is simulated by S, but in the Fzk,Fcom-zk-hybrid model these is
identical). Now, Observe finally that if P2 does not abort then the public-key
defined in both the ideal and real executions equals x1 ·Q2 = Q. Thus, the joint
distributions over A’s view and P2’s output are statistically close.

We remark that ckey is guaranteed to be an encryption of x1 where Q1 =
x1 ·G. This is guaranteed by the zero-knowledge proof for the language LPDL;
we will use this fact below.

Simulating signing – corrupted P1: The idea behind the security of the sign-
ing subprotocol is that a corrupted P1 cannot do anything since all it does is
participate in a “coin tossing” protocol to generate R and receives a ciphertext
c3 from P2. Since the coin-tossing subprotocol is simulatable, a simulator can
make the result equal the R using in a signature received from the trusted party
computing Fecdsa. Thus, the main challenge is in proving that a simulator can
generate the corrupted P1’s view of the decryption of c3, given only the signature
(r, s) from Fecdsa.

1. Upon input Sign(sid,m), simulator S sends Sign(sid,m) to Fecdsa and
receives back a signature (r, s).

2. Using the ECDSA verification procedure, S computes the point R.
3. S invokes A with input Sign(sid,m) and simulates the first three messages so

that the result is R. This follows the exact strategy as used in the simulation
of the key generation phase, as follows (in brief):
(a) S receives (com-prove, sid‖1, R1, k1) from A.
(b) If R1 = k1 ·G then S sets R2 = (k1)−1 ·R; else it chooses R2 at random.
S hands A the message (proof, sid‖2, R2).

(c) S receives (decom-proof, sid‖1) from A. If R1 6= k1 ·G then A simulates
P2 aborting and sends abort to the trusted party computing Fecdsa.
Otherwise, it continues.

4. S chooses a random ρ ← Zq2 , computes c3 ← Encpk([k1 · s mod q] + ρ · q),
where s is the value from the signature received from Fecdsa, and internally
hands c3 to A.

The only difference between the view of A in a real execution and in the sim-
ulation is the way that c3 is chosen. Specifically, R2 is distributed identically
in both cases due to the fact that R is randomly generated by Fecdsa in the
signature generation and thus (k1)−1 · R has the same distribution as k2 · G.
The zero-knowledge proofs and verifications are also identically distributed in
the Fzk,Fcom-zk-hybrid model. Thus, the only difference is c3: in the simulation
it is an encryption of [k1 · s mod q] + ρ · q, whereas in a real execution it is an
encryption of s′ = (k2)−1 · (m′ + rx) + ρ · q, where ρ ∈ Zq2 is random (we stress
that all additions here are over the integers and not modq, except for where it
is explicitly stated in the protocol description). The fact that this is statistically
close has already been shown in the proof of Theorem 4.5. This completes the
proof of this simulation case.

26

Simulating key generation – corrupted P2: We now consider the case of a mali-
cious S2.

1. Upon input KeyGen(G, G, q), simulator S sends KeyGen(G, G, q) to Fecdsa
and receives back Q.

2. S generates a valid Paillier key-pair (pk, sk), computes ckey = Encpk(x̃1) for
a random x̃1 ∈ Zq, and internally hands A the message (proof-receipt, 1) as

if sent by FRDL

com-zk, and the pair (pk, ckey) as if sent by P1.
3. S receives Q2 as A intends to send to P1, and (prove, 2, Q2, x2) as A intends

to send to FRDL

zk .
4. S verifies that Q2 is a non-zero point on the curve and that Q2 = x2 ·G; if

not, it simulates P1 aborting and halts.
5. S computes Q1 = (x2)−1 ·Q and hands A the message (decom-proof, 1, Q1)

as if sent by FRDL

com-zk.
6. S runs the simulator for the zero-knowledge proof of language LPDL for

common statement (ckey, pk,Q1) and with the residual A as verifier.
7. S sends continue to Fecdsa for P1 to receive output, and stores Q.

It is immediate that the distributions of A’s view in a real and ideal execution are
identical, except for ckey which equals Encpk(x1) where Q1 = x1 ·G in a real exe-
cution but equals Encpk(x̃1) for a random x̃1 in the ideal simulation, and except
for the simulation of the zero-knowledge proof of LPDL. The latter is indistin-
guishable from the zero-knowledge property of the proof. Regarding the former,
observe that S does not use the private-key at all. Thus, indistinguishability of
this simulation follows from a straightforward reduction to the indistinguisha-
bility of the encryption scheme, under chosen-plaintext attacks. The fact that
the joint view of the adversary A and the honest party P1 is indistinguishable
follows from the fact that the honest party always outputs Q = x1 ·Q2 = x2 ·Q1

in a real protocol execution, where Q1 = x1 ·G. In the simulation, we have that
Q1 = (x2)−1 · Q and thus x2 · Q1 = x2 · (x2)−1 · Q = Q, exactly as in the real
protocol execution.

Simulating signing – corrupted P2: The simulator for the signing phase works
as follows:

1. Upon input Sign(sid,m), simulator S sends Sign(sid,m) to Fecdsa and
receives back a signature (r, s).

2. Using the ECDSA verification procedure, S computes the point R.
3. S invokes A with input Sign(sid,m) and internally hands A the message

(proof-receipt, sid‖1) as if sent by FRDL

com-zk.
4. S receives R2 as A intends to send to P1, and (prove, sid||2, R2, k2) as A

intends to send to FRDL

zk .
5. S verifies that R2 = k2 · G and that R2 is a non-zero point on the curve;

otherwise, it simulates P1 aborting.
6. S computes R1 ← (k2)−1 · R and internally hands (decom-proof, sid‖1, R1)

to A as if coming from FRDL

com-zk.

27

7. S receives c3 from P1, decrypts it using sk and reduces the result modulo q.
S checks if the result equals

(
(k2)−1 ·m′

)
+
(
(k2)−1 · r · x2

)
· x̃1 mod q, where

ckey = Encpk(x̃1) was as generated by P1 in the key-generation simulation.
If the result is equal, then S instructs the trusted party to provide the output
to the honest party (by sending continue). Otherwise, it instructs it to abort
(by sending abort).

It is clear that the distribution over the messages seen by P2 is identical, except
for the encryption of ckey which is computationally indistinguishable. Further-
more, there is exactly one value modulo q that P2 can use to generate c3, and
this is validated by S.3 Formally, we need to show that the output distributions
in the ideal model of both the key generation and signing phases are computa-
tionally indistinguishable from a real execution. In order to do this, we need to
reduce the security to that of Paillier encryption since this is the only difference.
However, in the simulation, S must have the private key sk in order to decrypt
c3 and verify that A (controlling P2) computed the correct value. Thus, it is not
possible to prove this via a standard reduction to the indistinguishability of the
encryption scheme. We therefore prove this under the Paillier-EC assumption.

We modify S to a simulator S ′ who is given an oracle Oc(c′, α, β) that out-
puts 1 if and only if Decsk(c′, α, β) = α + β · x̃1 mod q. Observe that S ′ can
complete the simulation exactly as S as follows:

1. Compute α = (k2)−1 ·m′ mod q.
2. Compute β = (k2)−1 · r · x2 mod q.
3. Query Oc(c3, α, β) and denote the response by b.
4. If b = 1 then S ′ continues like S when Decsk(c3) =

(
(k2)−1 ·m′

)
+
(
(k2)−1 · r · x2

)
·

x̃1 mod q.

It is immediate that these checks by S and S ′ are equivalent. In order to see this,
observe that Decsk(c3) =

(
(k2)−1 ·m′

)
+
(
(k2)−1 · r · x2

)
· x̃1 mod q is equivalent

to Decsk(c3) = α+ β · x̃1 mod q which is equivalent to Oc(c3, α, β) = 1. Thus, S
accepts if and only if S ′ accepts.

We now construct a distinguisher D for the Paillier-EC experiment ExptD,
such that if b = 0 then the distribution generated by D is exactly that generated
in a real execution whereas if b = 1 then the distribution is that generated by S ′.
D receives (pk, c,Q) and runs the simulation of the key generation (as described
above) with the given pk and Q. In addition, D sets ckey = c as received. Recall
that the simulation of this phase doesn’t require sk and so this works. Next,
D proceeds to simulate the signing phase, following the instructions of S ′. In
particular, it uses its oracle O in order to determine whether to send continue
or abort for P1 to receive output.

Observe that if b = 0 in the experiment then ckey = Encpk(w0) andQ = w0·G.
Setting x1 = w0, these values are distributed exactly as in a real execution.
Furthermore, P1 outputs a signature if and only if c3 encrypts s′ = (k2)−1 ·
(m′ + r · x1) mod q which is equivalent to (r, s) being a valid signature where

3 Note that for every valid ECDSA signature (r, s), the pair (r,−s) is also a valid sig-
nature. Nevertheless, since the “smaller” of s,−s is always taken, the value is unique.

28

s = (k1)−1 · s′ mod q. Thus, this is exactly a real execution. In contrast, if b = 1
in the experiment then ckey = Encpk(w1) and Q = w0 ·G. Setting x1 = w0 and
x̃1 = w1, we have that this is exactly the distribution generated by S ′. Thus,
by the Paillier-EC assumption, we have that the output distribution generated
by S ′ in the ideal model is computationally indistinguishable from the output
distribution in a real execution.

Since the output distributions of S and S ′ in the ideal model are identical,
as described, we conclude that the output distribution generated by S in the
ideal model is computationally indistinguishable from the output distribution in
a real execution, thus concluding the proof.

6 Zero-Knowledge Proof for the Language LPDL

In this section, we present an efficient construction of a zero-knowledge proof for
the language LPDL, defined by:

LPDL = {(c, pk,Q1,G, G, q) | ∃(x1, r)) : c = Encpk(x1; r) and Q1 = x1·G and x1 ∈ Zq}.

Intuitively, this relation means that c is a valid Paillier encryption of the discrete
log of Q1. The idea behind the proof is as follows. First, the prover P proves that
the value encrypted inside c is in Zq; this is a “range proof”. For simplicity of
implementation, we use a proof that guarantees that Decsk(c) ∈ Zq, but is only
complete if Decsk(c) ∈ Zq/3. This suffices since P1 can choose x1 ∈ Zq/3 and
this does not affect security, as discussed in Section 3.2. In addition, V chooses
random values a and b, and computes an encryption of α = a · x1 + b using
the homomorphic properties of Paillier encryption on the input ciphertext c,
and sends it to P . In addition, V locally computes Q′ = a ·Q1 + b ·G. The key
observation is that if Q1 = x1 ·G where x1 = Decsk(c), then Q′ = (a ·x1+b) ·G =
α ·G, and so P can decrypt the Paillier encryption sent by V to get α and can
compute Q′ = α·G. However, if c is not an encryption of x1 where x1 = Decsk(c),
then P will obtain α = a · x̃ + b for some x̃ 6= x1, since that will be the value
encrypted in the Paillier encryption that V sends to P . In this case, V will only
accept if P can send the correct Q′ = a · x1 + b. However, f(x) = a · x + b
is an information-theoretic MAC, and thus P can only guess a · x1 + b given
a · x̃+ b with negligible probability. (Note that the computation of f is over the
integers, unlike standard information-theoretic MACs which are computed over
a finite field. However, by taking large enough a, b, this is good enough. For this
reason, we take a ∈ Zq and b ∈ Zq2 .) Zero knowledge is achieved by having V
first commit to a, b, enabling the simulator to extract these values before sending
Q′. Clearly, given a, b, the simulator can generate the correct Q′, even without
knowing x1 or the Paillier secret key.

Theorem 6.2. Let N > 2q2+q. Then, Protocol 6.1 is a zero-knowledge proof for
the language LPDL in the Fcom-hybrid model, with completeness 1 for x1 ∈ Zq/3
and with soundness error 2/q + 2−t.

29

PROTOCOL 6.1 (Zero-Knowledge Proof for the Language LPDL)

Inputs: The joint statement is (c, pk,Q1,G, G, q), and the prover has a wit-
ness (x1, sk) with x1 ∈ Zq/3. (Recall that the proof is that x1 = Decsk(c)
and Q1 = x1 ·G and x1 ∈ Zq.)

The Protocol:
1. V chooses a random a← Zq and b← Zq2 and computes c′ = (a�c)⊕b

and c′′ = commit(a, b). V sends (c′, c′′) to P . Meanwhile, V computes
Q′ = a ·Q1 + b ·G.

2. P receives (c′, c′′) from V , decrypts it to obtain α = Decsk(c′), and
computes Q̂ = α ·G. P sends ĉ = commit(Q̂) to V .

3. V decommits c′′, revealing (a, b).
4. P checks that α = a ·x1 + b (over the integers). If not, it aborts. Else,

it decommits ĉ revealing Q̂.
5. Range-ZK proof: In parallel to the above, P proves in zero knowledge

that x1 ∈ Zq, using the proof described in Appendix A.

V ’s output: V accepts if and only if it accepts the range proof and Q̂ = Q′.

Proof. We prove completeness, soundness and zero knowledge. Completeness
follows from the fact that when N > 2q2 + q there is no reduction modulo N in
the Paillier computation and thus P obtains the correct value when decrypting c′.
Furthermore, the range zero-knowledge proof has completeness 1 as long as x1 ∈
Zq/3. We now proceed to the other properties.

Soundness. Let x1 = Decsk(c). We consider two cases:

1. Case 1 – x1 /∈ Zq: The soundness of the range proof of Step 5 guarantees
that V will reject in this case except with probability 2−t.

2. Case 2 – x1 ∈ Zq but Q1 6= x1 · G: We claim that even an all-powerful
cheating P ∗ cannot cause V to accept with probability greater than 2/q, in
the Fcom-hybrid model. In order to see this, observe that V accepts only if
P ∗ commits to Q̂ = a ·Q1 + b ·G in Step 2.
P ∗ receives c′ and can decrypt to obtain α = a · x1 + b. Let y ∈ Zq be
such that Q1 = y ·G; for this case, y 6= x1. Then, V only accepts if P ∗ can
compute β = a · y + b mod q; to be more exact, P must have committed to
Q̂ = a · Q1 + b · G = a · (y · G) + b · G = [a · y + b mod q] · G. (Note that
although P commits to Q̂, since it is all-powerful it can compute its discrete
log. Thus, if Q̂ = Q′ then P can obtain β = a · y + b mod q.)
Intuitively, P ∗ cannot succeed since V computes a type of information-
theoretic MAC; it is not standard since the computation is over the integers.
Formally, assume that P ∗ succeeds. This implies that it obtains α = a ·x1+b
and β = a · y + b mod q. Now, P can compute a = α−β

x1−y mod q in order to
obtain a. Since a ∈ Zq, we have that this is the same value as a over the
integers. Next, P ∗ can compute b = α− a · x1. Thus, if P ∗ succeeds, then it
obtains (a, b) ∈ Zq × Zq2 .

Consider the following experiment, denoted Expt1:

30

(a) P ∗ outputs x1, y
(b) Values a ← Zq and b ← Zq2 are chosen uniformly, and α =

a · x1 + b is computed.
(c) P ∗ is given α and outputs (a′, b′).
(d) P ∗ succeeds if and only if a′ = a and b′ = b.

By what we have seen above, if P ∗ succeeds in computing β that causes V
to accept, then P ∗ succeeds in this experiment. Thus, it suffices to show that
P ∗ can succeed in this experiment with probability at most 2/q. We denote
Expt1P∗ = 1 if P ∗ succeeds; using this notation, we wish to prove that

Pr
[
Expt1P∗ = 1

]
≤ 2

q
.

We now modify the experiment to the following one, denoted Expt2:
(a) P ∗ outputs x1, y
(b) Values a ← Zq and b ← Zq2 are chosen uniformly, and a value

α← Z2q2 is chosen uniformly.
(c) P ∗ is given α and outputs (a′, b′).
(d) P ∗ succeeds if and only if a′ = a and b′ = b.

Observe that in Expt1, it holds that α ∈ Z2q2 , because a, x1 ∈ Zq and b ∈ Zq2
(we know that x1 ∈ Zq by this case). Thus, the values α in both experiments
are from the same range.
Now, we claim that

Pr
[
Expt2P∗ = 1

]
≥ 1

2q2
· Pr

[
Expt1P∗ = 1

]
.

This holds because with probability 1/2q2 the value α received by P ∗ in
Expt2 is such that α = a · x1 + b. Noting now that

Pr
[
Expt2P∗ = 1

]
≤ 1

q3

because P ∗ receives no information whatsoever on (a, b) in Expt2. Combining
the above, we have

Pr
[
Expt1P∗ = 1

]
≤ 2q2 · Pr

[
Expt2P∗ = 1

]
≤ 2q2

q3
=

2

q
,

as required.

Zero knowledge. We construct a simulator S for a cheating verifier V ∗ in the
Fcom-hybrid model. S works as follows:

1. S invokes V ∗ and obtains (c′, c′′).
2. S sends a simulated commitment value ĉ to V ∗ (a receipt value from Fcom).
3. S receives the decommitment (a, b) from V ∗. S verifies that c′ = (a� c)⊕ b.

If no, then it aborts. If yes, then it sends a decommitment of ĉ to Q̂ =
a ·Q1 + b ·G.

31

4. S simulates the range zero-knowledge proof.

V ∗’s view is identical to a real protocol execution, in the Fcom-hybrid model.
This is because if c′ = (a� c)⊕ b then P would send the same Q̂ as sent by S.
This is the only difference between a real execution and the simulated one.

Observe that we only need the commitment to be equivocal; extraction is
actually not needed.

Acknowledgements

We would like to than Valery Osheter from Dyadic Security for the implementa-
tion of ECDSA protocol and for running the experiments, and Claudio Orlandi
for pointing out some minor errors.

References

1. O. Blazy, C. Chevalier, D. Pointcheval and D. Vergnaud. Analysis and Improve-
ment of Lindell’s UC-Secure Commitment Schemes. In ACNS 2013, Springer
(LNCS 7954), pages 534–551, 2013.

2. F. Boudot: Efficient Proofs that a Committed Number Lies in an Interval. In
EUROCRYPT 2000, Springer (LNCS 1807), pages 431–444, 2000.

3. C. Boyd. Digital Multisignatures. In Cryptography and Coding, pages 241–246,
1986.

4. E. Brickell, D. Chaum, I. Damg̊ard,J. Van de Graaf. Gradual and Verifiable
Release of a Secret. In CRYPTO87, Springer (LNCS 293), pages 156-166, 1988.

5. R. Canetti. Security and Composition of Multiparty Cryptographic Protocols.
Journal of Cryptology, 13(1):143–202, 2000.

6. R. Canetti. Universally Composable Security: A New Paradigm for Crypto-
graphic Protocols. In 42nd FOCS, pages 136–145, 2001. Full version available
at http://eprint.iacr.org/2000/067.

7. A. Chan, Y. Frankel and Y. Tsiounis. Easy Come - Easy Go Divisible Cash. In
EUROCRYPT 1998, Springer (LNCS 1403), pages 561–575, 1998.

8. R.A. Croft and S.P. Harris. Public-Key Cryptography and Reusable Shared
Secrets. In Cryptography and Coding, pages 189–201, 1989.

9. I. Damg̊ard and M. Jurik. A Generalisation, a Simplification and Some Applica-
tions of Paillier’s Probabilistic Public-Key System. In Public Key Cryptography
2001, Springer (LNCS 1992), pages 119–136, 2001.

10. Y. Desmedt. Society and Group Oriented Cryptography: A New Concept. In
CRYPTO’87, Springer (LNCS 293), pages 120–127, 1988.

11. Y. Desmedt and Y. Frankel. Threshold Cryptosystems. In CRYPTO’89,
Springer (LNCS 435), pages 307–315, 1990.

12. A. Fiat and A. Shamir: How to Prove Yourself: Practical Solutions to Identifi-
cation and Signature Problems. In CRYPTO 1986, Springer (LNCS 263), pages
186–194, 1986.

13. E. Fujisaki. Improving Practical UC-Secure Commitments Based on the DDH
Assumption. In SCN 2016, Springer (LNCS 9841), pages 257–272, 2016.

14. R. Gennaro, S. Jarecki, H. Krawczyk and T. Rabin. Robust Threshold DSS
Signatures. In EUROCRYPT96, Springer (LNCS 1070), pages 354-371, 1996.

32

15. R. Gennaro, S. Goldfeder and A. Narayanan: Threshold-Optimal DSA/ECDSA
Signatures and an Application to Bitcoin Wallet Security. In ACNS 2016, pages
156–174, 2016.

16. S. Goldfeder. Personal communication, December 2016.
17. O. Goldreich. Foundations of Cryptography: Volume 2 – Basic Applications.

Cambridge University Press, 2004.
18. C. Hazay and Y. Lindell. Efficient Secure Two-Party Protocols: Techniques and

Constructions. Springer, November 2010.
19. C. Hazay, G.L. Mikkelsen, T. Rabin and T. Toft. Efficient RSA Key Generation

and Threshold Paillier in the Two-Party Setting. In CT-RSA 2012, Springer
(LNCS 7178), pages 313–331, 2012. See http://eprint.iacr.org/2011/494 for
the full version.

20. Y. Lindell: Highly-Efficient Universally-Composable Commitments Based on the
DDH Assumption. In EUROCRYPT 2011, Springer (LNCS 6632), pages 446–
466, 2011.

21. H. Lipmaa. On Diophantine Complexity and Statistical Zero-Knowledge Argu-
ments. In ASIACRYPT 2003, Springer (LNCS 2894), pages 398–415, 2003.

22. P.D. MacKenzie and M.K. Reiter. Two-party generation of DSA signatures. In-
ternational Journal of Information Security, 2(3-4):218–239, 2004. An extended
abstract appeared at CRYPTO 2001.

23. P. Paillier. Cryptosystems Based on Composite Degree Residuosity Classes. In
EUROCRYPT99, Springer (LNCS 1592), pages 223–238, 1999.

24. C.P. Schnorr. Efficient Identification and Signatures for Smart Cards. In
CRYPTO 1989, Springer (LNCS 435), pages 239–252, 1990.

25. V. Shoup. Practical Threshold Signatures. In EUROCRYPT 2000, Springer
(LNCS 1807), pages 207–220, 2000.

26. V. Shoup and R. Gennaro. Securing Threshold Cryptosystems against Chosen
Ciphertext Attack. In EUROCRYPT 1998, Springer (LNCS 1403), pages 1–16,
1998.

27. Porticor, www.porticor.com.
28. Dyadic Security, www.dyadicsec.com.
29. Sepior, www.sepior.com.

A Zero-Knowledge Range Proof

For the sake of completenesss, in this appendix we present the ZK-proof that
x ∈ Zq/3 where c = Encpk(x). The value sid is a unique session identifier ob-
tained from the application. Our proof is based on the proof described [2, Sec-
tion 1.2.2], with adaptations as required for our setting here. We will prove for
x ∈ {0, . . . , b q3c} that it is in the range [0, q). Let ` = b q3c. Stated differently, the
input is x ∈ {0, . . . , `} and the proof guarantees that x ∈ Zq.

– Input: The prover P has input (c, x, r) where c = Encpk(x; r) and the Paillier
key-pair (N,φ(N)); the verifier V has input c and the Paillier public key N .
Both parties have q and ` = b q3c.
Both parties have a parameter t = 40.

– The protocol:
1. V ’s first message: V chooses a random e← {0, 1}t, computes com =

commit(e, sid) and sends com to P . Denote e = e1, . . . , et.

33

www.porticor.com
www.dyadicsec.com
www.sepior.com

2. P ’s first message:
(a) P chooses random w1

1, . . . , w
t
1 ← {`, . . . , 2`} and computes wi2 =

wi1 − ` for every i = 1, . . . , t.
(b) For every i = 1, . . . , t, P switches the values of wi1 and wi2 with

probability 1/2 (independently for each i).
(c) For every i = 1, . . . , t, P computes ci1 = Encpk(wi1; ri1) and ci2 =

Encpk(wi2; ri2), where r1i , r
2
i ← ZN are the randomness used in Paillier

encryption.
(d) P sends c11, c

1
2 . . . , c

t
1, c

t
2 to V .

3. V ’s second message: Upon receiving c11, c
1
2 . . . , c

t
1, c

t
2, V decommits to

com, revealing (e, sid) to P .
4. P ’s second message: For i = 1, . . . , t:

(a) If ei = 0 then P sets zi = (wi1, r
i
1, w

i
2, r

i
2).

(b) If ei = 1 then P sets zi as follows. Let j ∈ {1, 2} be the unique value
of j such that x+ wij ∈ {`, . . . , 2`}. Then, S1 sets zi = (j, x+ wij , r ·
rij mod N).

(c) P sends z1, . . . , zt to V .
– V ’s output: V parses zi appropriately according to the value of ei. Then:

For i = 1, . . . , t:
1. If ei = 0 then V checks that ci1 = Encpk(wi1; ri1) and ci2 = Encpk(wi2; ri2)

and that one of ŵi1, ŵ
i
2 ∈ {`, . . . , 2`} while the other is in {0, . . . , `},

where zi = (wi1, r
i
1, w

i
2, r

i
2).

2. If ei = 1 then V checks that c⊕ cij = Encpk(wi; ri) and wi ∈ {`, . . . , 2`},
where zi = (j, wi, ri).

V outputs 1 if and only if all of the checks pass.

Security. We sketch the proof here:

– Completeness: As long as there exists a j ∈ {1, 2} such that x + wij ∈
{`, . . . , 2`}, for every i, it is clear that V will accept. In order to see why this
holds, observe that by the way w1

i and w2
i are chosen we have w1

i ∈ {`, . . . , 2`}
and w2

i ∈ {0, . . . , `}.
There are two cases. If x + w1

i < 2` then since x + w1
i ≥ w1

i ≥ ` we have
x + w1

i ∈ {`, . . . , 2`}. In contrast, if x + w1
i ≥ 2`, then w2

i = w1
i − ` ≥ `.

Since x + w2
i ≤ 2` (since both 0 ≤ x ≤ ` and 0 ≤ w2

i ≤ `), it follows that
x+ w2

i ∈ {`, . . . , 2`}, as required.
– Soundness: Let c = Encpk(x) and assume that x /∈ Zq and so in particular
x ≥ q (note that if x is negative then modulo q this is the same as x ≥ q).
We need to prove that V accepts with probability at most 2−t. Let P ∗ be
the cheating prover. We show that if P ∗ can provide an accepting answer
for both ei = 0 and ei = 1 for the ith ciphertext, then x ∈ Zq. This suffices
since it implies that P ∗ can answer at most one of the ei queries for each i,
and thus the probability that it answers all is at most 2−t.
Fix i and assume that P ∗ can provide an accepting answer for both ei = 0
and ei = 1. Since P ∗ can answer for ei = 0, this implies that ci1 = Encpk(wi1)
and ci2 = Encpk(wi2) and wi1 ∈ {`, . . . , 2`} and wi2 ∈ {0, . . . , `}. Furthermore,

34

since P ∗ can answer for ei = 1 this implies that for some j ∈ {1, 2} we have
that c⊕ cij = Encpk(wi) for some wi ∈ {`, . . . , 2`}. Note that by the perfect
decryption correctness of Paillier (under the assumption that the Paillier key
is valid, which is proven during key generation), it holds that wi ∈ {wi1, wi2}.
We consider two cases:
1. Case 1 – j = 1: In this case, we have that x + wi1 = wi where wi1 ∈
{`, . . . , 2`} and wi ∈ {`, . . . , 2`}. Since the minimal value of wi1 is ` and
the maximal value of wi is 2`, it follows that x ≤ `.

2. Case 2 – j = 2: In this case, we have that x + wi2 = wi where wi2 ∈
{0, . . . , `} and wi ∈ {`, . . . , 2`}. Since the minimal value of wi2 is 0 and
the maximal value of wi is 2`, it follows that x ≤ 2`.

– Zero knowledge: The simulator S extracts e from the commitment pro-
vided by the potentially cheating verifier V ∗. Then, for every i, if ei = 0
then S generates ci1, c

i
2 like the honest prover does. In contrast, if ei = 1,

then S chooses a random j ∈ {1, 2}, a random wi ∈ {`, . . . , 2`} and a ran-
dom ri ∈ ZN . Then, S sets cij = Encpk(wi; ri) 	 c and sets ci3−j to be an
encryption of 0. Finally, S hands V ∗ all of the encryptions, receives back the
decommitment, and provides the answers appropriately.
We argue that the view generated by S is computationally indistinguishable
from the view of V ∗ in a real proof. In order to see this, first observe that the
ciphertexts are given in random order in a real proof. Next, observe that for
every i for which ei = 1, the ciphertext opened is an encryption of a value
that is uniformly distributed in {`, . . . , 2`}. This holds because wi1 is uni-
formly distributed in {`, . . . , 2`} and wi2 is uniformly distributed in {0, . . . , `}.
This implies that x+ wi1 is uniformly distributed in {x+ `, . . . , x+ 2`} and
x+wi2 is uniformly distributed in {x, . . . , x+ `}. Thus, the distribution over
the subset of values between ` and 2` is uniform.

35

	Fast Secure Two-Party ECDSA Signing
	Yehuda Lindell

