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Abstract. The evolution of crypto ransomware has increasingly influ-
enced real-life systems and lead to fatal threats to data security of
individuals and enterprises. A crypto ransomware basically encrypts files
of victims using either standard or their own customized crypto functions
and request ransom from users to retrieve them again. In this paper,
we propose a new detection and analyzing approach, called ExpMon-
itor, which basically targets ransomware’s public key cryptographic
algorithms carried out on victim’s computer. ExpMonitor is based on
observing public key encryption running on the CPU. Monitoring integer
multiplication instructions can detect large integer arithmetic operations,
which constitute the backbone of public key encryption. While existing
detection mechanisms can only targets particular cryptographic functions
our technique complements the state-of-the-art.

Keywords: Crypto Ransomware, Malware Analysis, Public Key Encryption,
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1 Introduction

Nearly two decades ago, Young and Yung [1] first drafted the frames of a malicious
software which encrypts victim’s files and as a result, prevents access. In that time,
the threat was not considered important, due to the lack of completeness in the
infrastructure that would allow a successful and meaningful attack. However, with
the appearance of last pieces of the puzzle, TOR network [2] and cryptocurrency,
cybercriminals enlarged the attack surface by preventing access to user’s files
and asking a ransom. Community of information security gave a special name to
that kind of malware as ransomware.

Ransomware is basically classified into two sets: 1) Locker ransomware, 2)
Crypto ransomware. In brief, locker ransomware locks the victim device (or
computer) in such a way that it only locks the device not to be usable anymore
[3–5]. The good thing about this scenario is that the plain data is never touched.



Namely, the data can be recoverable once the malware is removed or the storage
hardware device is moved to a clean device.

On the other hand, due to its easy development and high earning profit,
cryptographic ransomware has been very popular amongst cybercriminals. Secure
communication over the internet is achieved via a key exchange protocol by
generating a fresh session key which is only known to participating parties.
Without loss of generality, a fresh session key (between the two participating
party Alice and Bob) is either generated through Diffie-Hellman key agreement
protocol or the session key is first generated by Alice, then encrypted with the
public key of Bob, and finally it is sent to Bob. Once the session key is obtained,
data is then securely transmitted through the network. We note that once the
key is encrypted using a public key, it can only be decrypted by the owner of
the private key corresponding to that particular public key. Therefore, even
though entire information flows through the network openly, only the owner
of the key that was used to encrypt it can decipher the actual information.
Until recently, this protocol worked wonders for the security of data over the
internet. Cybercriminals realized the power of this protocol and started to use
it for encrypting data in a way that only themselves can decrypt it [6–9]. Via
vulnerabilities in the operating systems and phishing attacks, they are able to
get their public key and their encryption software into personal computers. Once
infected, the crypto ransomware encrypts files and alerts user with a ransom
notice. At this point, only the cybercriminals can decrypt any data that has been
encrypted. However, paying ransom does not guarantee decryption, as there were
many cases where users could not decrypt their files although they successfully
paid ransoms.

CryptoLocker, distributed through infected email attachments, was the first
well-known cryptographic ransomware which appeared at the end of 2013. Ac-
cording to ZDNet [6], the adversaries received about $27 million by tracing its
four bitcoin addresses used by the ransomware. Unfortunately, we have now quite
sophisticated threats affecting many users in many regions worldwide, especially
developed countries which have high-tech economies [9]. Because new currency
technologies like bitcoins are easily transferable between countries and are more
difficult to track than conventional payments (due to bypassing banking systems),
the criminal rates of ransomware has recently been evolving very rapidly by re-
leasing new versions frequently. Although most of their targets are Windows, they
appear recently on Linux and macOS machines. For example, in 2016 KillDisk
affects Linux and KeRanger affects OSX. In fact, according to Symantec [7], while
there is a decline in traditional ransomware in 2015, cryptographic ransomware
now becomes the majority of all ransomware types. However, the existing mech-
anisms are still behind the expected security guarantees, and preventive and
reactive defenses are unfortunately not also sufficient to mitigate the risks of
data loss caused by sophisticated ransomware attacks.
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1.1 Our Contributions

In this paper, we propose a new detection and analyzing mechanism, called
ExpMonitor, based on monitoring asymmetric cryptographic operations which
must be carried out by modern ransomware. Our technique leverages the features
that exist on a large set of hardwares which yields a cross platform defense
mechanism.

The contributions of this paper can be summarized as follows:

– We propose a novel technique that allows a robust detection of ransomware
which employs public key encryption in order to maintain its functionality.
Our proposal leverages the nature of large integer arithmetics which is an
essential part of public key encryption algorithms. All types of cryptographic
ransomware that utilize RSA or ECC is detected by ExpMonitor through
monitoring hardware instructions for multiplication of large integers.

– Existing ransomware defense systems are implemented as a software which
runs on an operating system (OS). These systems commonly assumes that
the host OSs do not have any zero-day vulnerability. Unfortunately, previous
experiences have shown that this assumption is not realistic. Namely, software
based mitigations can be bypassed by advanced ransomware exploiting a
zero-day vulnerability in OS kernel. On the contrary, ExpMonitor can be
implemented in hardware level and do not need such security assumptions.
To the best of our knowledge, ExpMonitor is the first ransomware defense
mechanism that is implementable on hardware level, providing a complete
mitigation to all ransomware that utilize public key operation. The ability to
run on hardware yields a generic solution i.e., OS/platform independence,
unlike existing systems.

– Key escrow like mitigation systems are based on monitoring and logging
crypto APIs [10]. These systems logs generated keys and random numbers
(of all running applications) to later recover the encrypted files. However,
if the asymmetric key pair is not generated on victim’s computer, i.e.,
generated on and downloaded from C&C center, then secret key will be
able to monitored and hence encrypted files cannot be recovered. Unlike
those systems, ExpMonitor can also mitigate ransomware families that
immediately encrypts files under the public key of ransomware authors’.

1.2 Organization

In Section 2, we give the necessary background of cryptographic ransomware,
present existing defense mechanisms (behavioral analysis, backup, monitoring
session keys and RNG, and automated identification of cryptographic primitives
in binary programming), and explain their drawbacks. In Section 3, we present
our main mechanism ExpMonitor and provide the inner details including dis-
secting public key algorithms, multi-precision arithmetic. Section 4 discusses the
symmetric and asymmetric encryption based ransomware families and limitations
of our mechanism ExpMonitor. Finally, Section 5 concludes the paper.
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2 Related Work

In this section, we will focus on the most promising defense mechanisms of crypto
ransomware.

We note that existing ransomware families use both customized and standard
cryptosystems. While cybercriminals utilize standard crypto libraries they can
also implement their own cryptosystems. For example, Cryptolocker, CryptoWall,
and WannaCry utilize standard Windows crypto libraries to encryption the
files [11–13]. The ransomware families has been encreased very significantly
because cybercriminals get money from their victims and it is being difficult to
trace the payment processes and being easy to exchange to preferred currency.

2.1 Background of Existing Defense Mechanisms of Crypto

Ransomware

Behavioral Analysis Based Remediation. Behavioral analysis detection
mechanisms (except sandbox-based) generally require the live monitoring of
all processes, in order to detect whether any of them behaves with suspicious
activities [14–17] Any untrusted (with possibly maliciously behaving) process
will be flagged as dangerous and terminated. More concretely, once a device or
system is infected, it typically first looks for local files and removable devices
such as USB sticks, and then looks network shares. A typical solution to slow
down the ransomware is to utilize a sacrificial network share, therefore it will
delay the ransomware to reach to the critical data. We note that the network
shares should be setup on old slow disks which contain many small random
files so that monitoring the networks can alert the suspicious activities (e.g.,
with Windows Defender Advanced Threat Protection). One of the method for
detecting suspicious activity is to utilize file activity monitoring (i.e., the changes
in Master File Table and the types of I/O Request Packets to the file system),
hence in this way, it is possible to get a real time and historical record of all files
and folder activities to detect abnormal file system activity. File renames are not
a common action when it comes to activity on network file shares. Usually, in a
day, only a few renames are performed even if there are hundreds of users on the
network. Whenever there is a ransomware, it will result in a massive increase in
file renames due to the encryption of the data. Therefore, it is possible to trigger
an alert in the case of this unexpected behavior. Namely, if the number of renames
are more than a certain threshold, then there is a potential Ransomware issue
with very high probability. We highlight here that crypto ransomware can behave
like a user (in order to bypass the file activity monitoring) where it encrypts files
slowly. To overcome such a scenario, one can just insert decoy files and actively
monitor the activity of these files [18–20]. We now give a brief overview of the
following most recently proposed and popular ransomware defense systems which
falls into this category.

In [5], Kharraz et al. proposed a dynamic analysis system, called Unveil,
which executes applications in an artificial environment and monitors files system
activities and desktop interactions to detect anomalies which could indicate
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presence of a ransomware. Unveil is the first defense system for ransomware
which achieved a high detection rate of 96.3%. However, Unveil can also falsely
identify high file system activity as a presence of ransomware.

Scaife et al. in [21] designed a detection system, called CryptoDrop, which
monitors common indicators of ransomware and terminates if a process performs
suspicious activity. In the experiments, the authors show that CryptoDrop
could detect all of the ransomware families, though, the detection happened after
a number of files are encrypted, the median loss is about 10 files (out of nearly
5100 available files).

In [22], Continella et al. proposed a file system driver, called ShieldFS, which
detects malicious activity at runtime and allows rollback of modifications made
by ransomware. ShieldFS detects an abnormal activity based on monitoring
I/O operations of huge number of benign applications and analyzing the collected
data to characterize I/O activity of ransomware. While being able to recover
100% of encrypted files, ShieldFS brings a runtime overhead by 26%.

Backup Systems. Regular backups are usually the first step to mitigate both
all zero-day attacks and ransomware. Unfortunately, there is a misbelief about the
reliability of backup systems: according to Barkly [23], only 42% of users could
fully recover their files from backups after a ransomware attack. On the other
hand, assuming that all users are expected to be able to follow the complicated
rules is also not realistic. In any case, we still believe that backups are a good
approach to provide for zero-day attacks.

Monitoring Session Keys and RNG for Remediation. To the best our
knowledge, Kolodenker et al.’s mechanism, called PayBreak, is the first and only
ransomware defense mechanism which monitors calls to crypto APIs and collects
the parameters such as encryption keys and type of algorithm [10]. Collected
information is then stored in a key vault and retrieved to recover the encrypted
files after a ransomware attack. Only the legitimate user is authorized to access
key vault. In cryptographic literature, storing session keys is called key escrow
and that concept has been debated since decades. The authors of PayBreak
claims that their proposal is essentially different from government mandated
key escrow systems by arguing that there is exactly one entity who can access
PayBreak’s key vault.

One of the major drawback of PayBreak is that it logs session keys of all
running applications in a key vault acting as a key escrow (key recovery) agent.
It would be reasonable to expect that key vault would be a valuable target for
adversaries and may lead to fatal security or privacy issues once it is disclosed.
We believe that such a single point of failure would constitute a big risk for
enterprises. For instance, TLS, SSH and VPN protocols (which run in Application
Level of OSI Model) promise forward secrecy which is contributed by ephemeral
keys. Such a key escrow system would diminish that feature.

Another shortcoming for PayBreak will arise when a ransomware downloads
a public key from its C&C center and encrypts files directly under that public key
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instead of a hybrid encryption scheme. Although this approach requires heavy
computations and there is no known ransomware that uses this technique, nothing
can stop cybercriminals from creating such a malware. Finally, PayBreak needs
to know the signature of the third party crpyto libraries to detect and log the
parameters, otherwise PayBreak cannot recover any encrypted files. As the
authors of [10] acknowledges, signature based mitigation can be bypassed by using
advanced packers and obfuscation methods. In brief, the authors experimented
PayBreak for twenty real-world ransomware and could recover the files from
twelve of them. Also, Paybreak cannot hook if ransomware families utilize their
own cryptosystems as it only hooks standard API functions like CryptoAPI of
Windows.

We would like to stress that we do not share the same opinion with Paybreak
about the assumptions on the key vault. We believe that zero-day attacks can
also be used by ransomware authors as in the Wannacry case [13]. For example,
a ransomware can encrypt the files and then destroy the key vault in order to
make recovery impossible. Also, the authors also mention that the size of the
key vault could be very large (like 1 TB) with privileged access to prevent being
filled with garbage data and alert the user in case of an attack. To make their
scheme more practical they also discuss to minimize the size the key vault by,
for example, having a secure rotation for the key vault. We highlight that the
practicality of minimizing the key fault is not an easy task, for example in such
a secure rotation, a ransomware can still encrypt files and then fill garbage data
into the key vault to run over the keys again.

Automated Identification of Cryptographic Primitives in Binary Pro-

grams. This approach aims to detect a particular cryptographic algorithm
for a given binary software in order to learn which algorithms and keys are
used [24–26]. In [24], the authors propose a mechanism which can precisely iden-
tify cryptographic code in a given binary. However, the authors deal with only
symmetric encryption algorithms by monitoring bitwise arithmetic instructions
and claim that they can successfully extract the cryptographic parameters from
a given malware binary. One of the drawback of this system is that it cannot
detect a ransomware having its own proprietary cryptographic algorithm. For
each instance of an executed function, the authors compute the ratio of bitwise
arithmetic instructions. If the functions is executed for at least 20 times and the
ratio is higher than 55%, then the function is flagged as an encryption/decryption
function. Their experiments detected 94.6% of AES encryptions including the
corresponding parameters where the missed 5.4% of AES instances were due to
the memory reconstruction method. One other drawback of this mechanism also
cannot detect if a ransomware implements his own cryptographic algorithm.

Similarly, in [25], the authors propose a mechanism to automatically target
only symmetric encryption algorithms and their parameters inside binary code.
Their system uses Data Flow Graph (DFG) isomorphisms of to identify symmetric
cryptographic algorithms. However, the proposed system does not handle code-
obfuscation techniques which is commonly used by malware to hide malicious

6



functions, hence cannot mitigate ransomware. Very recently, [26] proposed another
technique called bit-precise symbolic loop mapping to identify cryptographic
functions in obfuscated binary code. Their approach basically is based on the
comparison with known reference implementations. Namely, their scheme first
captures the semantics of possible cryptographic algorithms with bit-precise
symbolic execution in a loop. Then they perform guided fuzzing to efficiently
match Boolean formulas with the reference implementations. While their solution
can detect obfuscated malwares, it is again limited to referenced implementations
because their mechanism cannot detect if cybercriminals do not utilize referenced
implementations. Also, their technique could easily be circumvented by an attacker
via replacement of Boolean functions and even simple instruction reordering or
via function stitching [27].

3 Our Proposed Mechanism: ExpMonitor

3.1 Overview

While symmetric encryption requires high percentage of bitwise arithmetic instruc-
tions, asymmetric encryption requires high percentage of large integer arithmetic
instructions. ExpMonitor basically aims to detect a ransomware which utilize
public key operations (see Figure 1). It is a complement of existing malware de-
fense and forensics including automated identification schemes for cryptographic
primitives in binary programs. Before we proceed, we fist note that public key
cryptographic operations have various mathematical constructs. As it is very
crucial for us to be able to detect if a CPU is running a public key operation, it
is imperative for us to determine common properties of these various constructs.
We can summarize these common properties and provide an overview of the
identification methodology as follows:

Machine
Code

Find
mul/mux
instruction

Detect loops
around these
instructions

Trace data
rooted

towards these
instructions

Save the
address of
the large
number

Public key
detected

Large integer
detected

Detected 𝑘
times

Detected < 𝑘
times

Fig. 1. Overview of ExpMonitor

1. Public key cryptographic operations make excessive use of arithmetic of
large integers (which is widely used in practice such as in SSL/TLS, web
servers, Certificate Authorities). The most common public key operations
utilize very large parameters and cryptographic keys. These mathematically
complex operations utilize algorithms that work on very large integers. Thus,
we can state that large-integer arithmetic is one of the common criteria to
be examined in a system that is trying to detect ransomware.

7



2. Code of public key cryptography contains loops. Modern CPU architectures
have various sizes of core multipliers. A 64-bit CPU usually has a 64-bit
multiplier and a 32-bit CPU has a 32-bit multiplier. Since the ratio of operand
size to core multiplier is too high, public key cryptographic operations need to
perform excessive integer multiplication operations. In order to be able to have
scalable code, these operations are looped over small pieces of multiplication
codes. For example, a 512x64 bit multiplication code could be written as a
function and a 512x512 bit integer multiplication will be calling this function
8 times.

3. Input and output to code of public key cryptography have a predefined,
verifiable relation. We can also determine what cryptographic parameters
have been used. Since the encrypted value for ransomware applications is
usually the session key, the input operands for large-integer arithmetic have
very high entropy.

3.2 Dissecting Public Key Algorithms

For most of the ransomware attacks, RSA is being used for public key encryption.
Therefore, we will here focus on the RSA setting but we highlight the procedures
described below can also be applicable to elliptic curve setting. Before we proceed,
we present below some background information on the RSA Encryption and
Decryption Algorithms [28]. Let 𝑝 and 𝑞 be prime numbers, 𝑁 = 𝑝𝑞 and 1 ≡ 𝑒𝑑
( mod (𝑝 − 1)(𝑞 − 1)). RSA encryption algorithm is explained in Algorithm 1
and decryption algorithm is explained in Algorithm 2.

Algorithm 1 RSA Encryption
1: procedure Enc(𝑀, (𝑒, 𝑁))
2: 𝐶 ←𝑀𝑒 ( mod 𝑁)
3: return 𝐶
4: end procedure

Algorithm 2 RSA Decryption
1: procedure Dec(𝐶, (𝑑, 𝑁))
2: 𝑀 ← 𝐶𝑑 ( mod 𝑁)
3: return 𝐶
4: end procedure

Fig. 2. RSA Algorithm.

As can be seen from Algorithm 1, the most computationally heavy part of
RSA encryption operation is modular exponentiation. As it is our goal to figure
out when public key operations are queued to be executed on a CPU, we decided
to examine the modular exponentiation operations.

Modular exponentiation operation can be realized in many ways. Algorithm 3
shows left–to–right binary exponentiation algorithm, which is also known as
square–and–multiply algorithm. Algorithm 4 shows right–to–left binary expo-
nentiation algorithm. Algorithm 5 shows left–to–right binary exponentiation
algorithm with a fixed–window length of 2 bits.
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Algorithm 3 Left-to-right binary exponentiation with square-and-multiply
method
1: procedure LeftToRight(𝑔, 𝑛, 𝑒 = (𝑒𝑚𝑒𝑚−1 . . . 𝑒1𝑒0)2)
2: 𝐴← 1
3: for 𝑖← 𝑚𝑡𝑜0 do

4: 𝐴← 𝐴2 mod 𝑛
5: If 𝑒𝑖 = 1 then 𝐴← 𝐴𝑔 mod 𝑛
6: end for

7: return 𝐴 ◁ 𝐴 := 𝑔𝑒 mod 𝑛
8: end procedure

Algorithm 4 Right-to-left binary exponentiation
1: procedure RightToLeft(𝑔, 𝑛, 𝑒 = (𝑒𝑚𝑒𝑚−1 . . . 𝑒1𝑒0)2)
2: 𝐴← 1
3: for 𝑖← 0, 𝑚 do

4: If 𝑒𝑖 = 1 then 𝐴← 𝐴𝑔 mod 𝑛
5: 𝐴← 𝐴2 mod 𝑛
6: end for

7: return 𝐴 ◁ 𝐴 := 𝑔𝑒 mod 𝑛
8: end procedure

Algorithm 5 Left-to-right 𝑘-ary modular exponentiation with 𝑘-bit fixed win-
dowing
1: procedure Precomputation(𝑔, 𝑛, 𝑘)
2: 𝑔0 = 1
3: for 𝑖← 1, (2𝑘 − 1) do

4: 𝑔𝑖 ← 𝑔𝑖−1𝑔 mod 𝑛
5: end for

6: end procedure

7: procedure LeftToRightWindowing(𝑔, 𝑛, 𝑒 = (𝑒𝑚𝑒𝑚−1 . . . 𝑒1𝑒0)2, where 𝑏 = 2𝑘

for some 𝑘 ≥ 1)
8: 𝐴← 1
9: for 𝑖← 𝑛, 0 do

10: for 𝑗 ← 0, 𝑘 − 1 do

11: 𝐴← 𝐴2 mod 𝑛
12: end for

13: 𝐴← 𝐴𝑔𝑒𝑖 mod 𝑛
14: end for

15: return 𝐴 ◁ 𝐴 := 𝑔𝑒 mod 𝑛
16: end procedure
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Although there are many other binary exponentiation algorithms, we can
easily state with information at hand that the essential building blocks of a binary
exponentiation operation are large–integer arithmetic operations. Although there
are several methods for implementing modular exponentiation, these methods
have a very important operation in common: modular multiplication of large
integers.

We highlight that elliptic curve cryptography (ECC) is also another commonly
used approach for public key operations. There are several protocols involving
ECC which can be considered as public key cryptography. However, the most
compute-intensive part of ECC operations is common for all these protocols, i.e.,
scalar point multiplication. As for modular exponentiation, there are various
methods for realizing scalar point multiplication. And as for modular exponenti-
ation, these methods consist mostly of one operation: modular multiplication of
large integers. We can conclude that modular multiplication of large integers is
the most time–consuming component of public key cryptography.

As above statement is true for prime field ECC operations, it can be modified
slightly to be valid for binary field ECC applications. Binary field ECC operations
involve polynomial arithmetic rather than integer arithmetic. High level operations
look very similar to prime field operations. However, low-level building blocks
are very different. Multiplication of two large polynomials could be utilized
using bitwise arithmetic operations, which can be detected using methods stated
in [24]. Also, in 2011, Intel added a Carry-Less Multiplication Instruction into
their Westmere architecture. This instruction is called PCLMULDQ and it
multiplies two 63-degree polynomials (which are represented as 64-bit binary
numbers) and results in a 127-degree polynomial (which is represented as a 128-bit
binary number). This instruction could be utilized to realize ECC operations and
characteristics of this instruction could be utilized to detect ECC operations.

Multi-Precision Arithmetic. Multiplication of two integers that are smaller
than the machine word size is trivial for any machine that includes a core
multiplier. Usually, the core multiplier that is included in the machine can
multiply two word-sized integers with a 1 cycle/multiply throughput. However,
multiplication of integers that are larger than the machine word size becomes a
challenge for any programmer, as the size of the operands grow. Multi-precision
arithmetic involves operations on integers that are larger than the machine word
size. Since the most time-consuming and challenging arithmetic operation is
multiplication, we only deal with multi-precision multiplication operation in this
section. For the remainder of the paper, we use the term large integer for any
integer that is larger than the machine word size.

Multi-Precision Multiplication. There are multiple methods of efficiently mul-
tiplying two large integers. Karatsuba-Ofman Algorithm [29], FFT-Based Mul-
tiplication Algorithm [30] are examples that can be listed among the classical
school-book multiplication algorithm. Even though these complicated algorithms
have a potential for more efficient implementations, we will examine and utilize
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the classical school-book multiplication algorithm for the scope and purpose of
this paper.

We assume that the integers to be multiplied are of the same size, which
is a more realistic case for public key applications. However, the methods that
we discuss here can be applied to multiplication of different-sized integers. For
simplicity, we pick our word size as 64 bits, as it is recently the most common
case for processors. It should also be noted that our methods can be applied to
multiplications with different word sizes. Assume we multiply two 𝑛-word integers
𝐴 and 𝐵 where 𝐴 = (𝐴𝑛−1𝐴𝑛−2 . . . 𝐴1𝐴0)𝑏 and 𝐵 = (𝐵𝑛−1𝐵𝑛−2 . . . 𝐵1𝐵0)𝑏 and
𝑏 = 264. Algorithm 6 is detailing how to realize the multiplication of these two
integers.

Algorithm 6 Classical school-book multiplication algorithm
1: procedure MontMul((𝐴, 𝐵, 𝑁)) ◁ 𝑛-bit integers 𝐴 = (𝐴𝑛−1...𝐴1𝐴0)𝑏,

𝐵 = (𝐵𝑛−1...𝐵1𝐵0)𝑏, 𝑏 = 264

2: for 𝑡← 0, 𝑛− 1 do ◁ 𝑡 = (𝑡2𝑛−1...𝑡1𝑡0)𝑏

3: (𝑡𝑖+𝑛𝑡𝑖+𝑛−1...𝑡𝑖+1𝑡𝑖)𝑏 ← (0𝑡𝑖+𝑛−1...𝑡𝑖+1𝑡𝑖)𝑏 + 𝐴𝑖𝐵𝑏𝑖

4: end for

5: return 𝑡2𝑛−1...𝑡1𝑡0 ◁ 𝐴𝐵 = 𝑡2𝑛−1...𝑡1𝑡0
6: end procedure

Algorithm 6 is illustrated in Figure 3 for the multiplication of two 512-bit
integers. In this figure, we call each 𝐴𝑖𝐵 multiplication a diagonal, as the detailed
multiplication figure looks like a diagonal as can be seen in Figure 4.

Software Implementations. In this section, we will present detailed informa-
tion about implementations of modular multiplication on software.

Figure 3 shows only a breakdown of multiplication of large integers. Each
𝐴𝑖𝐵 multiplication needs to be examined more closely, as they are multiplication
of a large integer with a single word. It should be noted that first diagonal is
treated differently than the rest of the diagonals, as the result of the first diagonal
does not need to be accumulated but the results of the rest of the diagonals need
to be accumulated with the previous results. Figure 4 gives detailed explanation
of multiplication of the first diagonal of a 512x64 bit multiplication operation.

Here, each multiplication is a 64x64 core multiplication and each result is a
128-bit integer. Low 64 bits of each result is stored in rax ad high 64 bits of each
result is stored in rdx. A code snippet for the first diagonal is given below.

mov rbp , [A + 8∗0 ]
mov rax , [B + 8∗0 ]
mul rbp

mov [C + 8∗0 ] , rax
mov R0 , rdx

mov rax , [B + 8∗ 1 ]
mul rbp
add R0 , rax
adc rdx , 0
mov R1 , rdx
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B
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A0xB
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A5xB

A6xB

A7xB

Fig. 3. Classical Multiplication of two 512-bit integers.

. . .

. . .
mov rax , [B + 8∗6 ]
mul rbp
add R5 , rax
adc rdx , 0
mov R6 , rdx

mov rax , [B + 8∗7 ]
mul rbp
add R6 , rax
adc rdx , 0
mov R7 , rdx

In Figure 4, it can be seen that the result C0 is stored in memory, as it will
not change after this diagonal is finished. Results C1 through C8 are stored in
registers R0 through R7, to avoid load-store operations. 𝑚𝑢𝑙 instruction operates
on two 64-bit integers. One of these integers are implicitly stored in register 𝑟𝑎𝑥
and the other is stored in any register that will be given as input to the mul
instruction. The output of mul instruction is stored in registers rdx and rax.
mul s r c
{rdx , rax} = s r c ∗ rax

defines the multiply operation. This instruction has two main flaws:

– Requires the outputs to be moved to other registers once the multiplication
is completed, as the next multiplication will destroy the current result

– It destroys all of the flags.

Intel introduced a new instruction mulx [31] (formerly known as Haswell), which
operates as follows:

mulx dest_hi , dest_lo , s r c 1
dest_hi : dest_lo = s r c 1 ∗ rdx .

This mulx instruction was introduced to 4𝑡ℎ generation Intel cores and in addition
to being able to define the destination registers, it does not destroy the carry
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Fig. 4. First diagonal of a 512x64 bit multiplication operation

flag, which allows a better code sequence as shown below for the first diagonal of
the multiplication.

mov rdx , [A + 8∗0 ]

mulx R0 , rax , [B + 8∗0 ]
mov [C + 8∗0 ] , rax

mulx R1 , rax , [B + 8∗ 1 ]
add R0 , rax

mulx R2 , rax , [B + 8∗2 ]

adc R1 , rax
. . .
. . .
mulx R6 , rax , [B + 8∗6 ]
adc R5 , rax

mulx R7 , rax , [B + 8∗7 ]
adc R6 , rax
adc R7 , 0

After the first diagonal, we have an intermediate result and next results of
diagonal multiplication need to be accumulated onto this intermediate result.
Figure 5 gives detailed explanation of multiplication of the second diagonal of a
512x64 bit multiplication operation. The rest of the diagonals behave exactly
the same way. It should be noted that after each multiplication operation, there
are three 64-bit integers to be added: high part of the previous result, low part
of the current result and corresponding intermediate result. This is realized with
code sequence below.

mov rbp , [A + 8∗0 ]
mov rax , [B + 8∗0 ]
mul rbp
add R0 , rax
adc rdx , 0

mov [C + 8∗0 ] , R0
mov rbx , rdx

mov rax , [B + 8∗ 1 ]
mul rbp

13
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mov R0 , rdx
add R1 , rax
adc R0 , 0
add R1 , rbx
adc R0 , 0
. . .
. . .

mov rax , [B + 8∗7 ]
mul rbp
mov R0 , rdx
add R7 , rax
adc R0 , 0
add R7 , rbx
adc R0 , 0

It can be seen from Figure 5 is that there are actually two seperate carry chains.
In order to be able to run these two carry chains in parallel, Intel introduced two
more instructions: adcx and adox. These instructions are described as follows:

adcx dest / s r c 1 , s r c2
adox dest / s rc 1 , s r c2

Here, adcx instruction operates exactly same way as adc instruction, but does
not alter the overflow flag (OF). On the otherhand, adox instruction operates
exactly same way as adc instruction, but uses the OF as its carry flag and does
not change the carry flag (CF). This allows parallel execution of two seperate
carry chains. This is realized with code sequence below.

xor rax , rax

mov rdx , [A + 8∗0 ]

mulx rbx , rbp , [B + 8∗0 ]
adox R0 , rbp
adcx R1 , rbx

mov [C + 8∗0 ] , R0

mulx rbx , R0 , [B + 8∗ 1 ]
adox R0 , R1
adcx R2 , rbx
. . .
. . .

14



mulx rbx , R5 , [B + 8∗6 ]
adox R5 , R6
adcx R7 , rbx

mulx rbx , R6 , [B + 8∗7 ]

adox R6 , R7
adcx rbx , rax
adox rbx , rax
mov R7 , rbx

Algorithm Analysis for Achieving ExpMonitor. As stated above, the most
compute–intensive operation for RSA is modular exponentiaton and analysis of
modular exponentiation algoritm shows that the most time–consuming operation
is multi–precision multiplication. Therefore, if we are able to detect if code for
multiplication of large integers is included in some piece of software that will
be run on the CPU, we will be able to detect if the CPU will be running RSA
operations and take necessary measures.

There are multiple ways of handling large integer multiplications and various
software implementations are shown in Section 3.2. It is also possible to produce
different implementations. However, we can state that entire multiplication
operation is best and most commonly realized using the core multipliers in
the ALU of the processor core. Since unsigned multiplication is required for
large–integer arithmetic, number of possible instructions required to be examined
reduces down to two: mul and mulx.

If school–book multiplication algorithm is used, regardless of the imple-
mentation, to multiply two n–bit integers, we need to perform (𝑛/64)2 core
multiplication, which means that (𝑛/64)2 mul or mulx instructions need to be
issued. With this data in hand, it needs to be noted that these multiply instruc-
tions require consequtive data from the memory. Therefore, we can state that if
too many mul or mulx instructions are utilized in a piece of code, and if these
instructions are accessing consequtive memory locations, there is a strong chance
that the piece of code is realizing public key operations.

One family of algorithm that has a similar property is signal processing.
Signal processing algorithms also utilize many multiply and add operations,
which could cause a confusion. However, there is a major difference between
signal processing operations and large–integer multiplication operations. Signal
processing operations accumulate the results of the multiplications and large–
integer multiplication operations add the results of the multiplication operations
in consequtive addresses in memory or onto different registers. Therefore, in
addition to examining the number of mul or mulx instructions that are utilized
by a program, one needs to also examine where the results of these operations
are being sent to. Another property that could be examined is the entropy of the
data that is utilized for mul or mulx instructions. For public key operations, the
integers to be multiplied will be random integers and will have a large Hamming
distance. Therefore, if the analysis could be done in real time and if the memory
could be examined, this information could also be used to detect if public key
operations are performed on a CPU.

Knowing this countermeasure, an attacker can try to insert dummy mul/mulx
instructions and confuse the software protecting the CPU. However, if the

15



countermeasure is well-constructed and is able to follow the pointers and data that
is used by these instructions, it will be able to detect these dummy instructions.

Another important aspect of our countermeasure is that it has to incorporate
physical input from the user. Any countermeasure will run by the operating system
and if the operating system is compromised, attacker can bypass the outcome
of our countermeasure. In order to prevent this from happening, whenever the
system detects a public key operation, it will ask the user for keyboard input,
either to allow or block the public key operation. If this could be realized, the
attacker will be completely blocked.

4 Discussion & Limitations

ExpMonitor does not provide any detection mechanisms for ransomware that
utilize only symmetric algorithms. However, it would not be easy for ransomware
authors to manage the keys while utilizing only symmetric algorithms. Let’s
assume that a ransomware is utilizing only symmetric primitives. In this case,
once infected, ransomware needs to either obtain encryption keys from the C&C
server or generate the keys on the fly at the victim’s computer.
– In the former case, it would be required to exist an active connection between

the victims and the C&C server, and to maintain a table of victim ids and
corresponding encryption keys on the C&C server (in order to deliver the keys
to the corresponding victims). Obviously, as the ransomware gets spread, this
would complicate the key management and increase the burden of network
connections.

– In the latter case, ransomware needs to store encryption keys on the victim’s
computer using a master secret. However, this secret can be retrieved via
reverse engineering techniques.
Therefore, by the nature of public key cryptosystems, we highlight that

modern ransomware families need to employ hybrid encryption schemes that
utilize both symmetric and asymmetric primitives.

It is also interesting to consider multi-core systems since monitoring com-
putations require to trace which cores to be computed sequentially. We stress
that this requirement not only apply to ExpMonitor but also to the existing
mechanisms in [24–26]. Multi-core systems could be traced via monitoring high-
level common cache structures. For example, modern Intel processors utilize L1
and L2 cache structures for each core and a common L3 cache that is shared by
all the cores. Thus, any run-time monitoring could be realized via monitoring
the L3 cache structure. Furthermore, we would like to note that large integer
arithmetic could be realized without core multiply operations. Instead of a word-
level multiplication, one can choose to utilize a bit-level multiplication structure,
which requires a significant amount of and instructions. This approach is also
likely to be used, albeit very slow and unfeasible. Since and instructions replace
multiply instructions for this approach, large integer multiplication consists of
bitwise arithmetic instead of integer arithmetic. This could be detected via the
detection scheme utilized in [24].
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5 Conclusion

In this paper, we present a new enhanced approach, called ExpMonitor, which
helps to mitigate vast majority of crypto ransomware including several previously
undefeated ones such as [32,33]. ExpMonitor only deals with detection and
analyzing rather than prevention. Therefore, it is interesting to enhance our
system by adding the prevention mechanism. In the future, ransomware will
be believed to still remain a major and rapidly growing threat by the help by
anonymizing networks like TOR and payment methods like bitcoin.
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