
Towards Doubly Efficient Private Information Retrieval∗

Ran Canetti†

BU & TAU
Justin Holmgren‡

MIT
Silas Richelson§

UC Riverside

September 25, 2017

Abstract

Private Information Retrieval (PIR) allows a client to obtain data from a public database without disclosing the
locations accessed. Traditionally, the stress is on preserving sublinear work for the client, while the server’s work is
taken to inevitably be at least linear in the database size. Beimel, Ishai and Malkin (JoC 2004) show PIR schemes
where, following a linear-work preprocessing stage, the server’s work per query is sublinear in the database size.
However, that work only addresses the case of multiple non-colluding servers; the existence of single-server PIR with
sublinear server work remained unaddressed.

We consider single-server PIR schemes where, following a preprocessing stage in which the server obtains an
encoded version of the database and the client obtains a short key, the per-query work of both server and client is
polylogarithmic in the database size. Concentrating on the case where the client’s key is secret, we show:

• A scheme, based on one-way functions, that works for a bounded number of queries, and where the server
storage is linear in the number of queries plus the database size.

• A family of schemes for an unbounded number of queries, whose security follows from a corresponding family
of new hardness assumption that are related to the hardness of solving a system of noisy linear equations.

We also show the insufficiency of a natural approach for obtaining doubly efficient PIR in the setting where the
preprocessing is public.

1 Introduction
Enabling clients to query remote databases while preserving privacy of the queries is a basic challenge in cryptography.
With the proliferation of huge databases stored and managed by powerful third parties, this challenge becomes ever
more relevant.

One of the more basic formulations of this multi-faceted problem is the concept of Private Information Retrieval
(PIR) [CKGS98]. Here the client is interested in learning the contents of specific addresses in the database, while
preventing the server controlling the database (or, simply, the database) from learning these addresses. The goal here
is to minimize communication and work for the client.

There are two general types of PIR schemes: Multi-server schemes whose security relies on the assumption that
servers do not collude, but are otherwise information theoretic (see e.g. [CKGS98, BI01]), and single-server schemes
which are based on computational assumptions, often of a structured nature (e.g., [KO97, CMS99]). Still, in both
cases, the per-query work of the server is traditionally taken to be at least linear in the database size — else the server
can “obviously” somewhat localize the requested address. Indeed, this linear server overhead is a main bottleneck for
deployment (see e.g. [CSP+16]).

Is this bottleneck really inevitable? A first indication that this might not be the case is the body of work on
oblivious RAM [GO96, Ajt10, DMN11, SCSL11]: Here a client can indeed access a database in a privacy preserving
∗Supported by the NSF MACS project.
†Member of CPIIS. Supported in addition by ISF Grant 1523/14.
‡Supported by NSF MACS - CNS-1413920, DARPA IBM - W911NF-15-C-0236, and SIMONS Investigator award Agreement Dated 6-5-12
§Work done while at MIT and Boston University.

manner, with polylogarithmic overhead for both client and database (following an initial poly-time preprocessing
stage). However, oblivious RAM schemes inherently require the client to (a) keep secret state and (b) be able to
update the database. This is so even if the client only wants to read from the database. Furthermore, if the database
is not trusted for correctness then the client needs to be able to continually update its local state. Consequently, a
database cannot serve multiple clients without having the clients continually coordinate with each other.

An indication that these restrictions might not be necessary either is the work of Beimel, Ishai and Malkin [BIM04].
They present PIR schemes where, following an initial polynomial-time preprocessing stage, the client and servers each
are stateless and incur a per-query overhead that is sublinear in the database size. However, that work considers only
the multi-server setting, and furthermore the number of servers is tied to the “level of sublinearity” of the scheme. This
leaves open the following question:

Can we construct a single-server PIR scheme where the client has no updatable state and where the per-
query work of both the client and the server is sublinear in the database size, potentially with a more
expensive preprocessing stage?

Paraphrasing [GR17], we call this primitive doubly efficient PIR (DEPIR).

1.1 Our contributions
We provide some positive answers to this question, along with some impossibility results and cryptanalysis of our
candidate schemes. Our DEPIR schemes start with an initial preprocessing stage which takes the database as input
and hands a preprocessed version of the database to the server and (short) key to the client. We distinguish between
the public preprocessing case, where the random choices made during preprocessing are public, the public client case,
where the preprocessing may use secret randomness but the client’s long-term key is public, and the designated client
case where the client’s key remains hidden from the server. In all cases the client maintains no state across queries
other than the long-term key, and the database is read-only.

We have no positive results for the first two cases. In fact, we demonstrate that a natural and general approach
towards a public preprocessing solution is doomed to fail. We leave progress on this fascinating question to future
research. We then concentrate on the designated client case. Here we show:

1. A designated-client scheme for a bounded number of queries, whose security can be based on any one way
function. Given a bound B on the number of client queries, the size of the preprocessed database is Õ(B +
poly(N)), where N is the database size. The client keeps a short secret key of size λ, the security parameter.
The per-query client and server overheads are λ · polylog(N,B) and polylog(N,B), respectively. (We compare
the performance of this scheme to that of the trivial stateful scheme where in preprocessing the client hands the
server B independently permuted copies of the database, and then uses a different copy for each query. Here
the online work is only logN , but the size of the preprocessed database is BN . This means that the amortized
space overhead in this scheme isN , whereas in our scheme it is polylog(N).) We then demonstrate the tightness
of the analysis in two ways:

(a) We demonstrate an efficient attack on this scheme which is applicable as soon as the number of queries
exceeds the designated bound B.

(b) We demonstrate the failure of a natural approach to extending the scheme while preserving its proof
structure1. Along the way, we also show a tight quantitative extension of the impossibility result from
[CKGS98] regarding the communication complexity in standard single-server PIR, and a tight bound on
the size of the key in an information-theoretic designated-client PIR with preprocessing.

2. A candidate extension of the scheme from (1) to the case of unbounded queries. The extended scheme provides
a natural tradeoff between complexity and potential security, where in the best case the complexity parameters
are comparable to those of the bounded scheme with B = 1. We are unable to prove security of this scheme
based on known assumptions. Instead, we introduce a new computational problem, which we call the hidden
permutation with noise (HPN) problem, and reduce the security of our scheme to the assumption that HPN

1Specifically, using pseudo-random functions and pseudo-random permutations to compress a long key for a statistically secure scheme.

2

is hard. HPN is a noisy learning problem and is thus superficially similar to other “standard” cryptographic
assumptions (e.g. LWE, LPN), but we do not know of any reduction to these assumptions.

3. We take first steps towards analyzing the hardness of HPN. Security of the candidate scheme from (2) can be
rephrased as the hardness of the adaptive, decision version of HPN. We then prove that the adaptive decision
version is no harder than the static (selective), search version. This allows future investigation of the hardness
of HPN to focus on the latter version, which is structurally simpler and more basic.

4. We also consider a number of other methods for extending the scheme from (1) to the case of unbounded
queries. However, while these other methods may well provide additional security on top of the HPN-based
scheme described above, we are unable to make significant headways either towards cryptanalysis of these
methods, or towards reducing security to a simpler problem.

In the rest of the introduction we describe our contributions in more detail.

Defining PIR security with preprocessing. We formulate the security of PIR schemes with preprocessing in a range
of settings, including the ones mentioned above and some variants. A PIR scheme with preprocessing consists of five
algorithms

(
Keygen,Process,Query,Resp,Dec

)
, as follows. Keygen takes the security parameter λ and samples a

key K. Process takes K and a database DB ∈ ΣN for some alphabet Σ and samples a preprocessed database D̃B to
be handed to the server. Query takes K and an address i ∈ {1, . . . , N}, and samples a query q and local state s. Resp

computes the server’s response d given q and RAM access to D̃B, and Dec outputs the decoded value given K, s, and
d. Giving Resp oracle (random-)access to D̃B enables it to be sublinear in N . It is stressed that the client is stateless,
apart from the long-term key K and the short-term state s between sending a query and obtaining its response.

The correctness requirement is obvious. Double efficiency means that Query, Resp, and Dec each run in time
o(N) · poly(λ) (ideally, they should be polylogarithmic in N), and additionally Process runs in time poly(N,λ). For
security, we consider three main cases (plus several variants).

In the designated cllient case, security is defined by requiring thatfor any polytime stteful adversaryA there exists
a polytime stateful simulator S such that A can distinguish between the following two games only with negligible
probability: In the real game, A chooses a database DB, obtains a preprocessed database D̃B ← Process(K,DB)
where K ← Keygen(λ), and then repeatedly and adaptively generates an index i ∈ [N] and obtains Query(K, i). In
the ideal game, A chooses a database DB, obtains a simulated preprocessed database S(DB), and then repeatedly and
adaptively generates an index i ∈ [N] and obtains S(). (If S gets only N rather than DB then we say that the scheme
guarantees also database privacy.)

In the public cllient case, the above real game is modified so that A obtains K ← Keygen(λ) before generating
DB; in the ideal game K is generated by S. In the public preprocessing case we assume, in addition, that Keygen
simply outputs its random input, and Process is deterministic. (Other variants are considered within.)

We remark that our definitional style is inspired by UC security. Indeed, our game-based definitions can be re-
formulated as realizing the appropriate “ideal PIR functionalities”.

Candidate constructions and analysis. For simplicity, we restrict attention to DEPIR schemes where the client’s
query consists of a list of addresses in the encoded database D̃, and the server answers with the contents of D̃ in these
addresses. (Since we are shooting for polylogarithmic communication complexity, not much generality is lost by this
simplification.)

When viewed this way, the encoding of a database bears resemblance to locally decodable codes: The ith symbol
ofD should be decodable by accessing only few locations of the encoded version D̃. Here however we have the added
requirement that the locations queried should be simulatable without knowing the original addresses i. On the other
hand, we do not have any error-correction requirements.

A natural approach, which we follow, is thus to start from an existing locally decodable code and try to modify it to
obtain privacy. Specifically, we start from the following variant of Reed-Muller codes: In order to encode a database
D ∈ {0, 1}N choose a field F of size polylog(N) and a subset H ⊂ F of size logN . The database is viewed as a
function D : Hm → {0, 1}, where m = logN/ log logN so that |Hm| = N . With this setup in place, D̃ is the truth
table of the low degree extension of D. That is, D̃ = {D̂(x) : x ∈ Fm}, where D̂ : Fm → F is the unique m-variate

3

polynomial of degree at most (|H| − 1) in each variable, such that D̂(i) = D(i) for all i ∈ Hm. The total degree
of D̂ is d = O(log2N). To query the database at i ∈ Hm (i.e., to decode D(i) from D̃), the client chooses a line
ϕ : F→ Fm such that ϕ(0) = i, and sets q =

(
ϕ(1), ..., ϕ(k)

)
where k = d+ 1. Upon receiving the server’s response

(x1, . . . ,xk), client recovers D(i) = ϕ(0) by interpolation (note that (x1, . . . ,xk) all lie on a curve of degree at most
d).

The above scheme is clearly insecure as the server can easily interpolate i = ϕ(0) from the client’s query(
ϕ(1), . . . , ϕ(k)

)
. In this work we study three natural and orthogonal alterations to this basic scheme which at-

tempt to prevent the server from interpolating, while still allowing the client to do so. As a preliminary step to all
alterations, we let ϕ be a random degree-d′ polynomial, where d′ = polylog(N), rather than a random line. (Still, we
let D(i) = ϕ(0).) This means that, in order to allow the client to interpolate D̃(ϕ(0)), we should set k ≥ dd′ + 1. As
we’ll see, setting d′ to be super-constant will be important for the security of our schemes in various ways. The three
alterations are:

1. The client uses secret evaluation points (α1, . . . , αk) rather than (1, . . . , k). The evaluation points can be chosen
randomly once and remain fixed throughout, or alternatively chosen anew for each query.

2. The client introduces noise by adding some random points in Fm to the query, at random locations. (There are
a number of different variants here, depending on the noise structure.)

3. At preprocessing, the client first encrypts all elements of the database using symmetric encryption. Next it
encodes the database to obtain D̃. Finally, it secretly and pseudorandomly permutes the elements of D̃ before
handing it to the server. The client keeps the encryption key, as well as the key of the pseudorandom permutation.

That is, let π ∈ Perm(Fm) be a pseudorandom permutation. (Since the domain is polynomial in size, use
e.g. [MRS09].) The precomputed database D̃ is now the truth table of the function D̂ ◦ π−1 : Fm → F. To
query address i, client draws ϕ and computes (x1, . . . ,xk) as before, but sends the query (x′1, . . . ,x

′
k) where

x′i = π(xi). The client uses the responses (a1, . . . , ak) to interpolate the encrypted D(i), and then decrypts to
obtain the actual value.

The various combinations of these three ideas suggest several possible DEPIR schemes. Note that a scheme based
on either of the first two ideas (or both) but not the third would be public preprocessing. The third idea results in a
designated client scheme. We briefly review how our main results are mapped to these three ideas.

No Public-Client DEPIR via Linear Codes: In Section 3, we prove that any combination of the first two ideas alone
is insecure. More generally, we show that any scheme where the preprocessed database D̃ is obtained just by
encoding D via some explicit linear code cannot be secure. This holds regardless of which query and response
mechanism is used.

Bounded Security, Unbounded Insecurity via (3): In Section 4, we show that alteration (3) by itself suffices to
obtain our bounded-query result stated above. In fact, we show that security holds even if, instead of starting
from Reed-Muller codes, we start from any locally decodable code in a rather general class of codes.

On the other hand, we demonstrate an explicit attack on the scheme, for the case of Reed-Muller codes, if the
client asks even slightly more queries than the bound allows.

Candidate Schemes via other combinations: We observe that the previous attack is thwarted by using either (1) and
(3) together, or using (2) and (3) together. In fact, we were unable to break either one of these two candidates,
with any non-trivial level of noise in (2). We thus suggest them as target for further cryptanalysis. In fact it is
reasonable to also propose the scheme that combines all three ideas.

We note however that, while it is tempting to assume that adding alterations (e.g., adding noise or moving
from fixed evaluation points to hidden or random evaluation points) increases security, or at least does not harm
security, we cannot always back this intuition by actual reductions. For instance we do not currently see a way
to argue that, a scheme that uses all three alterations is always no less secure than a scheme that uses only
alterations (2) and (3).

4

Security reduction: We concentrate on the following “minimal” variant of a scheme that combines ideas (2) and (3):
We choose a random set T of l indices in [k + l]. We then run alteration (3) with k + l evaluation points, obtain
a query q1, ..., qk+l, and then for each j ∈ T we replace qj with a random point in the domain. In Section 5, we
reduce the security of this scheme to the computational hardness of a search problem that is roughly sketched
as follows. As already mentioned, we call this the hidden permutation with noise (HPN) problem:

In the HPN problem, a random permutation π ∈ Perm(Fm) is chosen, where |F| = polylog(N) and |Fm| =
poly(N). The problem is to compute π given samples chosen as follows: First a random set T of l indices out
of [k + l] is chosen. Next, draw poly(N) samples from the following distribution Hπ,T : Choose z ← F, a
degree-d polynomial ϕ : F→ Fm with ϕ(z) = 0. Now, for i ∈ T choose yi randomly from Fm. For i /∈ T , let
yi = ϕ(i). The sample is (π(z), π(y1), . . . , π(yk+l)). The parameters are set so that k ≈ d2; however l can be
significantly larger, so a sample may not uniquely determine ϕ even if π is known.

Note that a sample from Hπ,T directly corresponds to a query in the scheme. In other words, security of the
scheme corresponds directly to a decisional variant of HPN with adaptively chosen free coefficients for ϕ. In
contrast, the HPN problem as formulated above is a search problem with non-adaptive input.

One may of course consider also another variant of this scheme, where the client chooses a new set T for each
query. While this variant indeed appears to be harder to cryptanalyze, we are not able to argue that it is no less
secure than the above, fixed-T variant. Furthermore, we were unable to extend the decision-to-search reduction
to this variant.

Finally, we note that only the first alteration above (namely, using random evaluation points) is specific to Reed-
Muller codes. The other two are generic and apply to any locally decodable code, opening other potential routes to
DEPIR schemes. In fact our bounded-query scheme in Section 4 is stated (and proved secure) generically in terms of
any locally decodable code whose decoding queries are t-wise uniform for sufficiently large t.

Related Work. There are several existing hardness assumptions about polynomials in the literature, which do not
appear to be related to ours. In particular, we point out the “noisy polynomial interpolation” problem, introduced by
Naor and Pinkas [NP06] and (somewhat) cryptanalyzed by Bleichenbacher and Nguyen [BN00]. Two main differ-
ences between this assumption and our HPN assumption are that (i) we completely hide the algebraic structure of the
underlying field by permuting the polynomial’s domain, and (ii) we work with multivariate polynomials rather than
univariate polynomials, which can sometimes make reconstruction problems much more difficult [GKS10].

Coppersmith and Sudan [CS03] show how to remove noise from codes based on multi-variate polynomials. How-
ever, their techniques do not appear to extend to our case of codes concatenated with a hidden permutation.

1.2 Independent Work
The problem we consider has been independently studied by Boyle, Ishai, Pass and Wootters [BIPW17]. The two
works consider the same problem of sublinear-time PIR with preprocessing and propose similar candidate solutions
based on secretly permuted Reed-Muller codes.

The notions of designated-client (resp., public-client) doubly-efficient PIR from the present work correspond to
the notions of OLDC (resp., pk-PIR) from [BIPW17] (with the exception that they make the additional restriction of
non-adaptive queries). We provide an overview of the main differences between the two works below.

The main contributions of [BIPW17] beyond those of this work include:

1. A general transformation from (designated-client) OLDC to (public-client) pk-PIR by applying VBB obfusca-
tion to the query generation algorithm and an authenticated version of the decoding algorithm. This yields an
explicit candidate construction of pk-PIR.

2. Two types of barriers: A “data structures barrier,” suggesting that even a very strong form of pk-PIR, with
deterministic encoder and non-adaptive queries, would be difficult to unconditionally rule out; and an “LDC
barrier,” showing that OLDC implies traditional LDC, effectively imposing a limitation on the space of possible
candidates.

5

3. Ruling out (under standard assumptions) a natural “learning” approach for generically breaking constructions
based on secret linear codes, by using the power of span programs.

4. A proof that any OLDC (or, DEPIR scheme) implies a one-way function.

The main contributions of this work beyond those of [BIPW17] include:

1. A different variant of the designated-client (OLDC) candidate in which the curve evaluation points used by
the decoder are fixed (or made public) but some of the points on the curve are replaced by random noise. A
combination of random noise with secret evaluation points is also proposed as a potentially more conservative
candidate.

2. A search-to-decision reduction for a restricted case of the above fixed-evaluation-point variant, where the loca-
tion of the noise elements is the same for all queries.

3. An efficient variant of the designated client scheme, that is secure in the bounded-query case assuming one way
functions.

2 Defining Doubly Efficient PIR
We define doubly-efficient PIR (DEPIR) schemes within a number of settings. While we only construct DEPIR
schemes in few of these settings, we hope that the definitions will be useful as a basis for future work. In all settings,
we consider information retrieval schemes with preprocessing that consist of the following five algorithms:

• Keygen takes the security parameter 1λ and samples a key k.

• Process takes k and a database DB ∈ ΣN and outputs a preprocessed database D̃B.

• Query takes k and index i ∈ {1, . . . , N} and outputs a query q and local state st.

• Resp takes q and D̃B and returns the server answer a.

• Dec takes k, st, a and returns a data element in Σ.

The correctness and efficiency requirements are obvious:

Definition 1 (Correct & Doubly Efficient Information Retrieval). An information retrieval scheme with prepro-
cessing Π =

(
Keygen,Process,Query,Resp,Dec

)
, is correct if the correctness error of Π is negligible in λ, where Π

has correctness error ε if for all DB ∈ ΣN and i ∈ [N] we have:

Pr
[
Dec(st, a) 6= DBi

]
≤ ε

in the probability space defined by sampling

K ← Keygen(1λ), D̃B← Process(K,DB), (q, st)← Query(K, i), a← RespD̃B(q)

If ε = 0, then Π is perfectly correct.
Π is doubly efficient if all algorithms are polynomial in λ, |D̃B| = poly(λ,N), and Query,Resp,Dec are sublin-

ear in N , where Resp is given RAM access to D̃B. (Ideally, these algorithms are polylogarithmic in N .)

We consider several levels of security. In all levels, the database and the indices to be read by the client are assumed
to be chosen adversarially (“by the environment”). Also, in all levels we only consider honest-but-curious database
servers, i.e. we trust the database server to run Resp (and sometimes also Process) as specified. We then consider three
main levels with some variants:

6

Designated client: Here the key k is known only to the client. We consider two variants: One where the server does
not even learn the database itself, and the other where the server may learn the database but does not learn the
queried locations. We also consider the case of security for only a bounded number of queries.

Public client: Here k is assumed to be public (and honestly generated); however, the randomness used to generate
k is assumed to remain hidden. Since Query is stateless, this means that many clients may query the database
concurrently. The server learns the database but not the queried locations. Here (and in the next variant) we
consider two cases, depending on whether the database is chosen before k is known, or adaptively, depending
on k. We also consider the case where Keygen generates an additional secret key that is used only by Process.

Public preprocessing: This is the same as public client, except that the randomness used by Keygen is public (or,
equivalently, Keygen simply outputs is random input.)

Our formal notions of security are inspired by UC security, and can be formulated via realizing appropriate variants
of an “ideal PIR functionality”. However, for self-containment we present them directly via the following games.
(To simplify presentation the notation below considers adversaries and simulators that are stateful throughout the
interaction.)

Definition 2 (Designated-Client & bounded-query DEPIR). A DEPIR scheme Π =
(
Keygen,Process,Query,Resp,Dec

)
is Designated Client if for any PPT A there exists a polytime simulator S such that REALA,Π ≈ IDEALA,S , where:

REALA,Π is the output of A in the following interaction:

1. A → DB ∈ ΣN and obtains D̃B← Process
(
K,DB

)
, where K ← Keygen

(
λ,N).

2. Repeat until A generates final output:

(a) A generates an index i ∈ [N] and obtains q ← Query(K, i).

IDEALA,S is defined as the output of A in the following interaction:

1. A outputs a database DB ∈ ΣN and obtains D̃B← S(λ,DB);

2. Repeat until A generates final output:

(a) A generates an index i ∈ [N] and obtains q ← S().

If in the above interaction S obtains only N rather than the entire DB then we say that the scheme has also
database privacy.

If Keygen obtains an additional inputB, and the privacy requirement is modified so thatA can generate at mostB
queries, then we say that the scheme is B-bounded DEPIR. In this case we define the amortized storage overhead
of the scheme to be |D̃B|/B.

Definition 3 (Public-Client & Public-Preprocessing DEPIR). A DEPIR scheme Π =
(
Keygen,Process,Query,Resp,Dec

)
is Public-Client if for any polytime A there exists a polytime simulator S such that REALA,Π ≈ IDEALA,S , where:

REALA,Π is the output of A in the following interaction:

1. A(K)→ DB ∈ ΣN , where K ← Keygen
(
λ,N); A obtains D̃B← Process

(
K,DB

)
.

2. Repeat until A generates final output:

(a) A generates an index i ∈ [N] and obtains q ← Query(K, i).

IDEALA,S is defined as the output of A in the following interaction:

1. A(K)→ DB ∈ ΣN , where K ← S(λ,N); A obtains D̃B← S(DB).

2. Repeat until A generates final output:

7

(a) A generates an index i ∈ [N] and obtains q ← S().

If in the above interaction Keygen outputs its random input, and Process uses no additional randomness other
than K then we say that the scheme is public preprocessing.

If in the above interaction A obtains K only after generating DB then we say that the scheeme has non-adaptive
database generation.

If in the above interaction S obtains K = Keygen
(
λ,N) rather than generating it, then we say that the scheme

has global key generation. If in the above interaction Keygen generates an additional key that is used by Process
and otherwise remains unknown, then we say that the scheme is public client with secret preprocesing key.

3 Failure of A Natural Approach for Public-Preprocessing DEPIR
We present an approach for constructing public-preprocessing DEPIR, and demonstrate its failure. Whether public-
preprocessing doubly efficient PIR schemes exist is left as a fascinating open question.

As sketched in the introduction, a natural approach to constructing public-preprocessing DEPIR is to view the
database DB ∈ {0, 1}N as a function DB : Hm → {0, 1}, where H ⊂ F with |H| = logN , F is a finite field
of order polylog(N), and m = logN

log logN . The encoding of DB is done by extending it to an m-variate polynomial

D̂B : Fm → F of degree |H| − 1, where D̂B(x) = DB(x) for all x ∈ Hm.
One may hope to construct query distributions {Qi}i∈Hm such that

1. (Interpolability) When sampling Q ← Qi, it holds that D̂B|Q determines DB(i). That is, any m-variate
polynomial g of degree |H| − 1 which agrees with D̂B on Q also agrees with D̂B (and therefore DB) on i.

2. (Privacy)Qi computationally hides i. That is, for any i 6= i′,Qi andQi′ are computationally indistinguishable.

Such a construction would immediately give a (public-client) PIR scheme. The server just stores the truth table of
D̂B, and the client makes queries to i by sampling Q← Qi, asking the server for D̂BQ, and interpolating the returned
values to obtain DB(i).

For example, one may suggest to construct Qi by sampling a uniformly random curve γ : F → Fm of degree
t = log2 k such that γ(0) = i. That is, Qi is defined as {γ(xi)}di=0, where {xi}di=0 are uniformly random distinct
points in F \ {0}, and d = t ·m · (|H| − 1) is the degree of D̂B ◦ γ; A natural justification here is that interpolating
{γ(xi)} to find γ(0) seems to require knowledge of the evaluation points {xi}. One can also include in the query
some number of random points in Fm to make interpolation look even harder.

This template can be further generalized by replacing D̂B with any locally decodable code (LDC) encoding of DB,
and appropriately adapting the notion of interpolability.

However, we show that even this general template fails, as long as the LDC in use is linear — which rules out the
vast majority of the LDCs studied in the literature. We are inspired by a recent work of Kalai and Raz [KR17], which
shows (among other things) the insecurity of the Reed-Muller instantiation of this template.

Definition 4. Let C : ΣN → ΣM be a code, and let Q be a subset of [M]. We say that Q determines i ∈ [N] if for
every m,m′ ∈ ΣN for which C(m)|Q = C(m)|Q, it holds that mi = m′i.

Proposition 1. Let C : FN → FM be a linear code. Then there is a poly(M)-time algorithm which takes as input a
set of queries Q ⊆ [M], and outputs all indices i ∈ [N] which are determined by Q. Furthermore, there are at most
|Q| such indices.

Proof. Let G ∈ FM×N be the generator matrix for C. Then Q determines i iff the ith standard basis vector ei ∈ FN
is spanned by the rows of G which are indexed by Q. This criterion is efficiently checkable by Gaussian elimination.

To see the “furthermore” part of the proposition, let A denote the set of i ∈ [N] which are determined by Q. If
|A| were larger than |Q|, then (Gm)Q would be a compressed encoding of mA, which is impossible since mA was
arbitrary.

8

4 Bounded-Query Designated-Client DEPIR
We consider the case of bounded-query, designated-client DEPIR. We first present a trivial scheme with minimal
online work but with large space overhead for the server which also requires a stateful client. Next we present our
main bounded-query scheme, which is based on any family of locally decodable codes. When instantiated with the
Reed-Muller family of codes (with a generalized decoding procedure), we obtain the following parameters, for a
database of size N and query bound B:

• The prover and verifier both do polylog(N) online work

• The processed database size and secret key size are both |D̃B| = Õ(B + poly(N)).

We emphasize this holds with a stateless client. Our construction improves significantly on the trivial scheme, which
only supports a single query and cannot be simply scaled up by repetition without having the client maintain updatable
long-term state.

Database encryption. In both schemes the first step in the preprocessing of the database is to encrypt each entry,
using some semantically secure symmetric encryption, with a key that’s part of the clients secret key. Notice that
this step makes the encrypted database computationally independent from the plaintext database. For simplicity of
presentation, we omit the encryption step from the description of both schemes, and instead assume that the adversary
does not see the plaintext database. Instead, it sees only the preprocessed database and the queries. (It is also possible
to obtain statistical independence between the plaintext databases and the preprocessed one by using perfectly secure
encryption such as one time pad, at the cost of a longer client secret key.)

Organization. The trivial, stateful scheme is presented in Section 4.1). The main scheme is presented and analyzed
in Section 4.2. Optimality of the analysis is demonstrated in Sections 4.3 and 4.4. Section 4.3 presents an efficient
attack that kicks in as soon as the number of queries exceeds |Fm|. The attack is specific for the Reed-Muller instan-
tiation of the scheme. Section 4.4 provides a more general bound on the key size and communication complexity of
any statistically-secure designated client DEPIR.

4.1 A trivial scheme
We note that it is trivial to construct a one-round designated-client PIR scheme with perfect correctness and perfect
1-query security, with server storage Õ(N) and server work O(1):

• Keygen(1λ, N) samples a uniformly random permutation π : [N]→ [N], and outputs K = π.

• Process(K,DB) outputs D̃B, where
D̃B : [N]→ {0, 1}

D̃B(i) = DB(π(i)).

• Query(K, i) outputs (q, st), where q = π(i) and st is the empty string.

• Resp(D̃B, q) outputs D̃B(q).

• Dec(st, a) outputs a.

Extensions and Shortcomings. If the client is allowed to keep long-term state (i.e. remember how many queries
it has made), then one can obtain a B-query scheme by concatenating B single-query schemes, resulting in server
(and client) storage which is Θ̃(BN). With a stateless client however, it is not even clear how to support 2 queries.
Furthermore, the storage cost of Θ̃(BN) leaves much to be desired.

9

4.2 A scheme based on LDCs and random permutations
We show a scheme with a stateless client, parameterized by a query bound B, which achieves B-bounded security
and server storage of B · poly(λ) (for sufficiently large B). By using pseudo-randomness, the client storage in our
schemes can be reduced to poly(λ), where λ is a security parameter for computational hardness. We present our
scheme generally based on a weak type of locally decodable code, which we now define.2 However, we encourage
readers to keep in mind the Reed-Muller based scheme mentioned in the intro. Several remarks throughout this section
are designed to help in this endeavor.

Definition 5 (Locally Decodable Codes). A locally decodable code is a tuple (Enc,Query,Dec) where:

• Enc : ΣN → ΣM is a deterministic “encoding” procedure which maps a message m to a codeword c. N is
called the message length, and M is called the block length.

• Query is a p.p.t. algorithm which on input i ∈ [N] outputs k indices j1, . . . , jk ∈ [M] along with some decoding
state st.

• Dec is a p.p.t. algorithm which on input st and cj1 , . . . , cjk outputs mi.

The locally decodable code is said to be t-smooth if when sampling (st, (j1, . . . , jk)) ← Query(i), (js1 , . . . , jst) is
uniformly distributed on [M]t for every distinct s1, . . . , st.

The secret key is q i.i.d. uniform permutations π1, . . . , πq : [M] → [M], so a lower key size can be achieved
at the cost of computational security by using (small-domain) pseudo-random permutations [MRS09]. A processed
database D̃B is the tuple (Enc(DB) ◦ π1, . . . ,Enc(DB) ◦ πq), where composition of Enc(DB) ∈ ΣM with πi denotes
rearrangement of the elements of Enc(DB), as if Enc(DB) were a function mapping [M] to Σ and ◦ denoted function
composition.

More formally, we define a scheme template as follows.

Keygen
(
1λ, N,B

)
: Pick a t-smooth locally decodable code LDC with message length N and a k-query decoding

procedure, with parameters chosen so that Bkt−1
(
B
M

) t
2−1 ≤ 2−λ−1. See further discussion below on the choice of

parameters.
Sample i.i.d. uniform permutations π1, . . . , πk : [M] → [M]. Output (π1, . . . , πk) as the secret key. (If LDC has

additional parameters then they should be output as well.)

Process
(
sk,DB

)
: If necessary, encode each entry of DB as an element of Σ, so DB lies in ΣN . Output D̃B =

(D̃B
(1)
, . . . , D̃B

(k)
), where D̃B

(i)
is defined by permuting the coordinates of LDC.Enc(DB) by πi. That is, D̃B

(i)

πi(j) =
LDC.Enc(DB)j .

Query
(
sk, i

)
: Output ((π1(j1), . . . , πk(jk)), st), where ((j1, . . . , jk), st) is sampled according to LDC.Query(i).

RespD̃B((j̃1, . . . , j̃k)): Output (D̃B
(1)

j̃1 , . . . , D̃B
(k)

j̃k
).

Dec
(
st, (y1, . . . ,yk)

)
: Output LDC.Dec(st, (y1, . . . ,yk))

The perfect correctness of this scheme follows from the correctness of the underlying LDC.

2Our definition differs from the standard definition of locally decodable codes in that it does not require any robustness against codeword errors,
and we assume that the decoding queries are non-adaptive.

10

The Reed-Muller Based Scheme The following polynomial-based code is a natural choice for instantiating our
scheme. It is t-smooth because of the t-wise independence of degree t polynomials. Choose a finite field F, integer m
and a subset H ⊂ F such that |H|m = N and |F|m = M . For correctness, we require that |F| ≥ m · t · (|H| − 1) + 1.

Enc: Identify DB ∈ {0, 1}N with a map Hm → {0, 1} and let D̃B : Fm → F be the low degree extension. Output
D̃B ∈ FFm .

Query: Identify i ∈ [N] with z ∈ Hm and choose a random degree-t curve ϕ : F→ Fm such that ϕ(0) = z. For k at
least m · t · (|H| − 1), output the query (x1, . . . ,xk) ∈ Fmk where xi = ϕ(i).

Dec: Given responses (a1, . . . , ak) ∈ Fk, let ϕ̃ : F→ F be the unique univariate polynomial of degree at most k − 1
such that ϕ̃(i) = ai. Output ϕ̃(0).

Let us see how the LDC constraints are satisfiable by a concrete code, and with what parameters.

Example Parameters: Low Work For (relative) simplicity, assume that N4 ≤ B ≤ 2λ

λ3 . Then one can set |H| = λ,
m = logN

log λ (≤ λ
4), and |F| = (2λ6B)1/m. With this choice of parameters M = 2λ6B, and there is a t-smooth,

k-query decoding procedure (via curves) with t = 2(λ + log(2Bk) + 1) and k = λ3 (as required for correctness of
decoding, |F| ≥ B1/m ≥ λ4 ≥ k, and k = λ3 ≥ (λ− 1)4(λ+ 1)λ4 ≥ (|H| − 1) ·m · t).

2Bkt−1

(
B

M

)t/2−1

= 2Bk

(
Bk2

M

)t/2−1

= 2Bk2−t/2+1 = 2−λ

Thus we obtain an amortized storage overhead (defined in Section 2), server overhead, and client overheads which are
all poly(λ) (respectively λ6, λ3, and λ3).

Example Parameters: Low Server Storage. Let ε > 0 be any constant. Let |H| = max(λ,N ε) and m = logN
log |H|

(≤ 1
ε). Suppose for simplicity that λ ≤ N ε ≤ 2λ and B ≤ 2λ. Let t and k be such that t ≥ 2(λ+ log(2Bk) + 1) and

k ≥ m · t · (|H|−1), which can be achieved by setting k = O(λ ·N ε) and t = O(λ). Let |F| = max
(
k, (2k2B)1/m

)
.

With this choice of parameters M = max(N · λ1/ε, 2k2B), which in particular is N · poly(λ) whenever B =

o
(
N1−2ε

λ2

)
. This yields

2Bkt−1

(
B

M

)t/2−1

= 2Bk

(
Bk2

M

)t/2−1

≤ 2−λ

We leave further optimization of parameters (or instantiation with different locally decodable codes) to future
work.

4.2.1 Proving Security

Theorem 1. For any database size, any boundB on the number of queries, and any value λ for the security parameter,
the above SSPIR scheme is a B-bounded designated client DEPIR scheme with statistical 2−λ-security. Furthermore,
the scheme provides database privacy.

Proof. We show that every query (for the first B queries) is statistically close to a distribution that is simulatable
given the adversary’s view thus far. First, by the principle of deferred decision, we can think of the random per-
mutations π1, . . . , πk as being lazily defined, input-by-input as needed. Thus the adversary’s view of the `th query
(π1(j1), . . . , πk(jk)) only reveals, for every i ∈ [k], the subset of prior queries which also had πi(ji) as their ith

coordinate. Let S1, . . . , Sk ⊆ [`− 1] denote these subsets.
Next, we observe that S1, . . . , Sk inherit t-wise independence from the underlying t-smooth LDC. Furthermore,

we have for each i that Si = ∅ with probability at least 1 − B
M . Our main lemma, which at this point directly

implies security of our scheme, says that all such distributions are within a total variational distance ball of diameter
ε = 2kt−1

(
B
M

)t/2−1
. The advantage of an unbounded adversary is then Bε.

11

Lemma 1. Let X̄ = (X1, . . . , Xk) and Ȳ = (Y1, . . . , Yk) be t-wise independent random variables with the same
marginals (i.e. for each i, Xi and Yi are identically distributed), such that for each i ∈ [k], there is a value ? such that
Pr[Xi = ?] ≥ 1− ε. Then dTV(X̄, Ȳ) ≤ (kε)t/2 + kt−1εt/2−1 ≤ 2kt−1εt/2−1

Proof. We first show that X̄ and Ȳ each have only t/2 non-? values, except with probability at most (kε)t/2.

Claim 1. Pr
[
|{i : Xi 6= ?}| ≥ t/2

]
≤
(
kε)t/2, and the same holds with Yi in place of Xi.

Proof. For any I ⊂ [k] with |I| < t, the probability that Xi 6= ? for all i ∈ I is at most ε|I| by t-wise independence.
The number of i for which Xi 6= ? is at least t/2 iff for some I ⊂ [k] with |I| ≥ t/2, it holds that for every i ∈ I ,
Xi 6= ?. So by a union bound,

Pr
[
|{i : Xi 6= ?}| ≥ t/2

]
≤
(
k

t/2

)
· εt/2 ≤ (kε)t/2.

With this claim in hand, define G as the set of z1, . . . , zk for which |{i : zi 6= ?}| < t/2. The above claim then
says that Pr[X̄ /∈ G] and Pr[Ȳ /∈ G] are each at most (kε)t/2. We then have

dTV(X̄, Ȳ) =
1

2

∑
z̄=z1,...,zk

∣∣∣Pr[X̄ = z̄]− Pr[Ȳ = z̄]
∣∣∣

≤ 1

2

(
Pr[X̄ /∈ G] + Pr[Ȳ /∈ G] +

∑
z̄∈G

∣∣∣Pr[X̄ = z̄]− Pr[Ȳ = z̄]
∣∣∣)

≤ (kε)t/2 +
1

2

∑
z̄∈G

∣∣∣Pr[X̄ = z̄]− Pr[Ȳ = z̄]
∣∣∣. (1)

We now bound the second term of Eq. (1). We begin by rewriting, for any z̄ ∈ G, the event X̄ = z̄ as the
conjunction of two not necessarily independent events. Let I denote the set of coordinates where z̄ is not ?, i.e.
I

def
= {i : zi 6= ?}. Then X̄ = z̄ iff both

1. X̄ and z̄ agree on their restrictions to I , i.e. X̄I = z̄I .

2. Xi = ? for every i /∈ I . As short-hand, we write this event as X̄∼I = ?.

We can therefore profitably rewrite Pr[X̄ = z̄] = Pr[X̄I = z̄I] · Pr[X̄∼I = ?|X̄I = z̄I] and similarly Pr[Ȳ =
z̄] = Pr[ȲI = z̄I] · Pr[Ȳ∼I = ?|ȲI = z̄I]. By t-wise independence, the probability that X̄I = z̄I is exactly the same
as the probability that Ȳi = z̄I (since |I| < t/2). Hence the difference of these probabilities has a common factor
Pr[X̄I = z̄I] = Pr[ȲI = z̄I] ≤ ε|I|, which can be factored out to yield

Pr[X̄I = z̄I] ·
∣∣∣Pr[X̄∼I = ?|X̄I = z̄I]− Pr[Ȳ∼I = ?|ȲI = z̄I]

∣∣∣ (2)

Claim 2. For all I ⊂ [k] such that |I| < t/2, and all z̄I , it holds that∣∣Pr
[
X∼I = ?|XI = z̄I

]
− Pr

[
Y∼I = ?|YI = z̄I

]∣∣ ≤ 2(k − |I|)t−1εt/2−1

≤ 2kt−1εt/2−1.

Proof. All we really need about the conditional distributions X∼I |XI = z̄I and Y∼I |YI = z̄I are that they are t/2-
wise independent. This t/2-wise independence follows from the fact that X̄ and Ȳ are t-wise independent, and the
events XI = z̄I and YI = z̄I depend on fewer than t/2 coordinates of X̄ and Ȳ , respectively. We also only need, for
each i /∈ I , the single bit of whether or not Xi = ?.

So it suffices for us to prove the following slightly more abstract lemma. This lemma can be viewed as a spe-
cial case of a natural generalization of Braverman’s celebrated result that poly-logarithmic independence fools AC0

[Bra09]. Instead of AC0 our predicate is a single conjunction (with fan-in n = k− |I|), but the lemma does not follow
directly from [Bra09] because any individual X ′i might not be uniformly distributed on {0, 1}.

12

Lemma 2. If (X ′1, . . . , X
′
n) are t′-wise independent {0, 1}-valued random variables such that E[X ′i] = Pr[X ′i =

1] ≥ 1− ε for all i, then ∣∣∣∣∣E
[
n∏
i=1

X ′i

]
−

n∏
i=1

E[X ′i]

∣∣∣∣∣ ≤ 2n(n2ε)t
′−1

Proof. For any subset S ⊆ [n], write X ′S to denote the product
∏
i∈S X

′
i . Let εi denote 1− E[X ′i] With this notation,

we want to bound
∣∣∣E[X ′[n]]−

∏n
i=1(1− εi)

∣∣∣. By the binomial expansion of X ′[n] =
∏
i∈[n](1− (1−X ′i)), we have

E[X ′[n]] = 1 +
∑

∅6=S⊆[n]

E

[∏
i∈S

(X ′i − 1)

]

= 1 +
∑

0<|S|≤t′
E

[∏
i∈S

(X ′i − 1)

]
+

∑
t′<|S|≤n

E

[∏
i∈S

(X ′i − 1)

]

= 1 +
∑

0<|S|≤t′

∏
i∈S

(−εi) +
∑

t′<|S|≤n

E

[∏
i∈S

(X ′i − 1)

]
, (3)

where the last equality is by t′-wise independence. Comparing Eq. (3) to the binomial expansion
n∏
i=1

(1− εi) = 1 +
∑

0<|S|≤n

∏
i∈S

(−εi), (4)

we just need to bound the last term of Eq. (3) (If we generically bound the absolute value of this term, say by C, then
the same bound must also apply to

∑
t′<|S|≤n

∏
i∈S(−εi). As a result we will have |E[X ′[n]]−

∏n
i=1(1− εi)| ≤ 2C).

We bound ∣∣∣∣∣∣
∑

t′<|S|≤n

E

[∏
i∈S

(X ′i − 1)

]∣∣∣∣∣∣ =

∣∣∣∣∣∣E
 ∑
t′<|S|≤n

∏
i∈S

(X ′i − 1)

∣∣∣∣∣∣
≤ E

∣∣∣∣∣∣
∑

t′<|S|≤n

∏
i∈S

(X ′i − 1)

∣∣∣∣∣∣

= E

∣∣∣∣∣∣∣∣∣

∑
S⊆{i:X′i=0}
|S|>t′

(−1)|S|

∣∣∣∣∣∣∣∣∣

 (5)

We bound Eq. (5) via the basic fact that for any B-bounded random variable Z, we have E[Z] ≤ B · Pr[Z > 0].
We apply this fact with

Z =

∣∣∣∣∣∣∣∣∣
∑

S⊆{i:X′i=0}
|S|>t′

(−1)|S|

∣∣∣∣∣∣∣∣∣ .
Z is 0 if

∣∣{i : X ′i = 0}
∣∣ ≤ t′, which happens with probability at least 1 − (nε)t

′−1 by Claim 1, so Pr[Z >

0] ≤ (nε)t
′−1. When this is not the case, we bound Z via the elementary combinatorial identity

∑
S⊆[n](−1)|S| =∑n

i=0(−1)i
(
n
i

)
= 0 (this follows from the binomial expansion of (1− 1)n), obtaining

Z =

∣∣∣∣∣∣∣∣∣
∑

S⊆{i:X′i=0}
|S|≤t′

(−1)|S|

∣∣∣∣∣∣∣∣∣ ≤
(
n

t′

)
≤ nt

′
.

13

This implies E[Z] ≤ (nε)t
′−1nt

′ ≤ n(n2ε)t
′−1. Substituting into Eq. (5) concludes the proof of Lemma 2.

Claim 2 follows by applying Lemma 2 with n = k − |I| and t′ = t/2.

Substituting Eq. (2) into Eq. (1) and applying the following claim concludes the proof of Lemma 1.

Theorem 1 follows from the discussion preceding the statement of Lemma 1, and from the fact that we chose an
LDC for which 2Bkt−1

(
B
M

)t/2−1
= 2−λ.

4.3 A Linear Attack if Too Many Queries are Asked
In this section we describe a technique for analyzing the query data which arises when the number of queries ex-
ceeds B. Our technique gives an attack which, in some situations, breaks the (unbounded-query) security of the
(bounded-query secure) scheme from Section 4.2. Our attack utilizes extra properties of the underlying LDC which
are not without loss of generality, but are nevertheless natural and satisfied by the Reed-Muller based LDC, as well as
other choices based on polynomials. Roughly speaking, our attack exploits extra linear structure in the LDC.Query
and LDC.Dec procedures. Readers familiar with polynomial-based codes will recognize the properties we use as
abstractions of properties commonly used in those settings.

4.3.1 Intuition and Overview

Extra Properties of LDC. Recall LDC = (LDC.Enc,LDC.Query,LDC.Dec). The encode and query procedures
are randomized maps

LDC.Enc : {0, 1}N → Σ[M]; and LDC.Query : [N]→ [M]k;

we assume LDC.Dec is a public operation and so LDC.Query outputs no decoding state st. We assume that [M] is
a vector space over some finite field F, and that [N] ⊂ [M] (not necessarily a subspace). Note in our Reed-Muller
example, we had [N] = Hm ⊂ Fm = [M]. Moreover, we assume there exists some subspace V ⊂ [M]k such
that for each i ∈ [N], LDC.Query(i) outputs a random element from an affine coset of V, denoted Vi ⊂ [M]k. In
the Reed-Muller case, V is the set of (x1, . . . ,xk) for which there exists a curve ϕ : F → Fm of degree at most t
satisfying ϕ(0) = 0 and such that xs = ϕ(s) for s = 1, . . . , k. The affine shift Vi for i ∈ Hm is the set of ~x which
lie on a low degree curve satisfying ϕ(0) = i instead of ϕ(0) = 0. We furthermore assume that for any distinct
s1, . . . , st+1 ∈ [k] ∪ {index}, there exists a linear map ψ~s : [M]t+1 → [M] such that ψ~s(Vi|~s) = i for all i ∈ [N],
where Vi

∣∣
~s

denotes the projection of Vi onto the coordinates ~s (if s = index then Vi|s = i). For Reed-Muller, these
linear maps are interpolation. Note this last property implies that LDC.Query : [N] → [M]k is an error-correcting
code with good distance since queries to distinct i, i′ ∈ [N] can agree in at most t places. This last property also
means that dim(V) ≤ t · dim([M]). Our scheme requires LDC to be t−smooth so dim(V) ≥ t · dim([M]), thus
dim(V) = t · dim([M]). Finally, we require that LDC is locally correctable rather than just decodeable. This
means that LDC.Query supports queries to any codeword symbol, rather than only message symbols i.e., LDC.Query
supports any i ∈ [M] rather than just i ∈ [N]. This means that the |M | different affine planes {Vi}i∈[M], together
form a subspace V̂ ⊂ [M]k of dimension (t+ 1) · dim([M]). Note that the following distributions are identical:

1. draw i← [M], (j1, . . . , jk)← Vi, output (i, j1, . . . , jk);

2. draw (j1, . . . , jk)← V̂ and output (i, j1, . . . , jk) where (j1, . . . , jk) ∈ Vi.

This will be useful moving forward.

Our Attack. Concretely, we describe an attack which, given B = M1+o(1) queries {(jα,1, . . . , jα,k)}Bα=1 from
either: 1) all from Vi for a fixed i ∈ [M]; or 2) from Viα for random iα ← [M], distinguishes between (1) and (2). We
emphasize that this is an attack on the LDC but not exactly an attack on the DEPIR scheme, because the distinguisher
in the DEPIR security game only gets to see queries from Vi for i ∈ [N] and not i ∈ [M] − [N]. This assumption
is mainly to simplify the analysis; we show in Section 5.4 how to analyze the attack (in a different context) without
making this assumption (but using more queries).

14

Notation. Since we are assuming that the query spaces, Vi, are affine planes, membership in the Vi is decided by the
linear equation: ~v ∈ Vi iff ψ~s(~v) = i for any ~s ⊂ [k]. From now on, however, we will not be explicit about the ~s or
the linear maps ψ~s, we will just talk about the linear equation “~v ∈ Vi”. (For the specific case of Reed-Muller codes,
the coefficients of the linear equation are the Lagrange coefficients that correspond to the points where ϕ is evaluated.)

Intuition. The high-level idea of the attack is the following. First, initialize variables {vs,j′s}(s,js)∈[k]×[M] which
take values in [M]. The intention is that vs,j′s = js if πs(js) = j′s. For each query (j′α,1, . . . , j

′
α,k), add the constraint

~vj′α ∈ Vi to a list L of linear constraints on the {vs,js} where ~vj′α is shorthand for (v1,j′α,1
, . . .vk,j′α,k). After enough

constraints have been added to L, we will be in one of two cases depending on whether the queries (j′α,1, . . . , j
′
α,k) are

all to the same index or are to random indices. In the first case, there will exist non-constant assignments to the vs,j′s
which satisfy all constraints in L; in the second case all satisfying assignments are constant. This distinction allows
the two cases to be efficiently distinguished.

The QueryDist Algorithm. Set B = kλM1+o(1).

Input: {(j′α,1, . . . , j′α,k)}α

1. Initialize variables {vs,j′s}(s,j′s)∈[k]×[M] taking values in [M], and a list L of linear constraints on the vs,j′s to ∅.
Also fix i ∈ [N] arbitrarily.

2. For α ∈ {1, . . . , B}, add ~vj′α ∈ Vi to L, where ~vj′α is short for (v1,j′α,1
, . . . ,vk,j′α,k).

3. Checks whether there is a non-constant assignment to the {vs,j′s} which satisfies the constraints in L. If so,
output fixed, if not output random. An assignment is constant if for all (s, j′s, j

′′
s), vs,j′s = vs,j′′s .

Note that QueryDist runs in time poly(λ,B,M). Step 3 involves checking whether the space of satisfying assignments
is contained in the space of constant assignments; this is possible to do efficiently using Gaussian elimination. All
other steps are clearly polytime.

Lemma 3. Assume k > 2t, |F|−t = 2−Ω(λ), and all of the assumptions mentioned in the previous paragraph. If
QueryDist is given inputs {(jα,1, . . . , jα,k)} which are all queries for the same index, it outputs fixed with probability
1. If given {(jα,1, . . . , jα,k)} which are queries to random indices, it outputs random with probability 1−2−Ω(λ) over
the queries.

Proof. If the {(jα,1, . . . , jα,k)} are all queries to i, then the assignment vs,j′s = π−1
s (j′s) is non-constant and satisfies

every constraint in L since
(
π−1

1 (j′α,1), . . . , π−1
k (j′α,k)

)
∈ Vi for all α. If they are all queries to some other i′ 6= i,

then L can be satisfied by setting vs,j′s = (π′s)
−1(j′s) where π′s = πs ◦ τs and the τs are any permutations such that

(τ1, . . . , τk)(Vi) = Vi′ . Therefore, QueryDist outputs fixed with probability 1. We complete the proof by showing
that if the {(j′α,1, . . . , j′α,k)} are queries for random indices then with overwhelming probability, any assignment to
the vs,j′s which satisfies all constraints in L must be constant.

Fix any assignment to the vs,j′s satisfying L and for s = 1, . . . , k let σs : [M] → [M] be the map which sends
j′s to the vector assigned to vs,j′s . We will show that each σs is constant. Since the assignment satisfies L, for every
(j′α,1, . . . , j

′
α,k), for all α,

(
σ1(j′α,1), . . . , σk(j′α,k)

)
∈ Vi. Recall that drawing (j′α,1, . . . , j

′
α,k) consists of drawing

iα ← [N] = [M] and (jα,1, . . . , jα,k)← Viα . Therefore, every (jα,1, . . . , jα,k)← Viα drawn to produce the input to
QueryDist satisfies ~σ ◦ ~π(~jα) ∈ Vi, where ~σ ◦ ~π(~j) is shorthand for

(
σ1 ◦ π1(jα,1), . . . , σk ◦ πk(jα,k)

)
.

Say an assignment to {vs,j′s} is BAD if Pr(j1,...,jk)←V̂

[
~σ ◦ ~π(~j) ∈ Vi

]
<
(
1− 1/|F|

)
. Note,

Pr{~jα}
[
∃ BAD satisfying assignment

]
< MkM ·

(
1− 1

|F|

)B
= 2−Ω(λ),

when B = kλM1+o(1), so we can assume that the assignment underlying σ is not BAD.
Now, fix (j1, . . . , jt) ∈ [M]t such that Pr~j←V̂

[
~σ(~j) ∈ Vi

∣∣(j1, . . . , jt)] ≥ (1 − 1/|F|
)
. Note drawing ~j ← V̂

conditioned on fixed (j1, . . . , jt) requires drawing just one more coordinate, say jt+1, randomly from [M] (using

15

the extra property as well as interpolation). Now, having fixed (j1, . . . , jt), for s ∈ [k], let js = σs ◦ πs(js). Let
j∗t+1 ∈ [M] be the unique value such that (j1, . . . , jt, j

∗
t+1) is consistent with Vi. It follows that

Prjt+1←[M]

[
jt+1 = j∗t+1

]
≥ 1− 1

|F|

and so σt+1 ◦ πt+1 (hence σt+1) takes a constant value on a
(
1 − 1/|F|

)
−fraction of its inputs. The same is true for

all of the σs. For each s, let j′s ∈ [M] be the most likely value of σs. We show that either σs(js) = j′s with probability
1 for all s, in which case the assignment is constant; or else with high probability, ~σ ◦ ~π(~jα) /∈ Vi for some α, so the
assignment does not satisfy L.

By the t−smoothness of LDC, Claim 1 implies

Pr~j←V̂

[
#{s ∈ [k] : js 6= j′s} > t

]
≤
(
k/|F|

)t
= 2−Ω(λ).

It follows that with high probability, for any α, α′,

∆
(
~σ ◦ ~π(~jα), ~σ ◦ ~π(~jα′)

)
≤ ∆

(
~σ ◦ ~π(~jα), j)

)
+ ∆

(
j, ~σ ◦ ~π(~jα′)

)
≤ 2t,

where ∆ is Hamming distance. Therefore, ~σ ◦ ~π(~jα) and ~σ ◦ ~π(jα′) share at least k − 2t > t of their coordinates.
The interpolation assumption implies ~σ ◦ ~π(~jα) = ~σ ◦ ~π(~jα′) for all α, α′. Therefore, σ is constant and the result
follows.

4.4 Limits on statistical DEPIR
We show that in any B-bounded information-theoretically secure (designated client) PIR, either:

• The server’s responses are almost as long as the database, or

• The length of the secret key is almost B.

The bound holds even for schemes with only imperfect correctness and security. This in particular implies that the
bound holds even for schemes, like the one above, which provides information-theoretic security except for the use of
pseudorandom permutations for permuting the database.

4.4.1 Answer Size in Public Client PIR

First, we show that a public-client PIR cannot achieve both information theoretic security and non-trivial succinctness.
The intuition is that (by statistical security) a single query is indistinguishable from a query to any other index, so the
server’s answer contains almost all the information about the database. Let |a| denote the size of a server’s response –
i.e. the length of an output of Resp.

Theorem 2. In any statistically δ-secure public-client DEPIR with correctness error ε:

|a| ≥ (1−H(ε+ δ))N −O(logN).

In fact, this lower bound holds even if the PIR is only non-adaptively δ-secure.

Proof. Suppose the PIR is non-adaptively δ-secure. Then

Claim 3. There is an algorithm Reconstruct such that for any database DB,

E
[
∆(DB′,DB)

]
≥ (1− ε− δ)N

in the probability space defined by sampling

(pk, sk)← Keygen(1λ, N)

D̃B← Process(sk,DB)
(q, st)← Query(pk, 0)

a← Resp(q, D̃B)
DB′ ← Reconstruct(pk, q, a).

16

Proof. Reconstruct is an algorithm which does the following: Given (pk, q, a), it samples st1, . . . , stN , where each sti
is independently sampled from the distribution of the state st obtained by sampling (q′, st)← Query(pk, i) conditioned
on q′ = q. Finally Reconstruct outputs DB′ such that for each i, DB′i = Dec(sti, a). By linearity of expectation, it
suffices to show that for a uniformly random i, Pr [DBi = Dec(sti, a)] ≥ 1− ε− δ.

By the non-adaptive δ-security, if we instead sample (q, st)← Query(pk, i), this change modifies the distribution
of (D̃B, pk, q) by statistical distance at most δ. Since a is a function of (pk, q), and sti is a function of (pk, q, a), the
distribution of (D̃B, a, sti) and therefore the probability that DBi = Dec(sti, a) also changes by at most δ. However,
the modified experiment induces a distribution of (D̃B, pk, q, sti) which is exactly as if one had sampled (q, sti) ←
Query(pk, i). Thus in the modified experiment, Pr [DBi = Dec(sti, a)] ≥ 1 − ε, which means that in the original
experiment Pr [DBi = Dec(sti, a)] ≥ 1− ε− δ.

Claim 4. A random variable X ∈ {0, 1}N with expected Hamming weight is at most εN (with ε ≤ 1
2) has entropy at

most H(ε)N +O(logN).

Proof. We can partition the set of N -bit strings based on their Hamming weight. It is clear that the maximal entropy
of X is achieved only when the distribution of X is uniform within each class. In other words, an entropy-maximizing
distribution takes the form

∑N
i=0 wiUi, where Ui is the uniform distribution on strings with Hamming weight i and

{wi} are non-negative weights summing to 1. The entropy of this distribution is −
∑
i wi logwi +

∑
i wiH(Ui),

which is at most
∑
i wiH(Ui) + log(N + 1). So we want to maximize

∑
i wiH(Ui) =

∑
i wi log

(
N
i

)
subject to the

constraint that
∑
i wi · i ≤ εN .

We have the bound∑
i

wi log

(
N

i

)
= O(logN) +

∑
i

wiH

(
i

N

)
N by Stirling’s formula

≤ O(logN) +H

(∑
i

wi · i
N

)
N by Jensen’s inequality

≤ O(logN) +H(ε)N because
∑
i

wi · i
N
≤ ε ≤ 1

2
.

To prove the theorem, we use the following basic fact. If X and Y are random variables, then

0 ≤ H(X)−H(X|Y) ≤ H(Y).

We apply this where X = DB is uniformly random (i.e. has entropy N), and Y = a. Conditioning on the value of
a can reduce the entropy of DB by at most |a|. The fact that Reconstruct produces DB′ which agrees in expectation
with DB on at least (1− ε− δ)N locations implies that H(DB|a) ≤ H(ε+ δ)N +O(logN). Thus

|a| ≥ N − (H(ε+ δ)N +O(logN) = (1−H(ε+ δ))N −O(logN),

which concludes the proof of Theorem 2

4.4.2 Key Size for Designated Client PIR

The idea behind our lower bound on key size for a designated client scheme is that releasing the key turns the scheme
into a public client scheme, which by Theorem 2 must be insecure. Since the key is a piece of information which
causes a dramatic change in the entropy of a random variable, it must be long.

Theorem 3. In any B-bounded-query statistically δdc-secure, (1 − ε)-correct designated-client DEPIR, the key size
|skdc| satisfies:

|skdc| ≥
(

1− 2δdc −H
(

1− δpc
2

))
·B −O(logB)

where δpc is the smallest δ such that H(ε + δ) ≥ 1 − |a|+O(logN)
N . In particular, if |a| = o(N), ε = o(1), and

δdc = o(1), then |skdc| = Ω(B).

17

Proof. Given any designated client PIR scheme with correctness error ε, answer size |a|, and B-query δdc-security,
we can turn it into a public-client scheme with the same correctness probability and answer size |a| by just releasing
the secret key. By Theorem 2, this scheme can only be non-adaptively δ-secure if

H(ε+ δ) ≥ 1− |a|+O(logN)

N

Let δpc denote the minimum such δ. Note that if ε = o(1) and |a| = o(N), then δpc = 1
2 − o(1). By definition of δpc,

there exists a database DB and indices i0 and i1 such that the distributions (pk, D̃B, q0) and (pk, D̃B, q1) are δpc-far
(i.e. distinguishable with probability 1+δpc

2) in the probability space defined by sampling

(pkpc, skpc)← Keygen(1λ, N)

D̃B← Process(skpc,DB)
q0 ← Query(pk, i0)
q1 ← Query(pk, i1).

In particular, suppose a uniformly random stringM ∈ {0, 1}B is chosen, and an adversaryA is given (pkpc, D̃B, q1, . . . , qB),
where qj ← Query(pk, imi). Then it is possible for A to output M ′ such that in expectation, ∆(m,m′) ≥ 1+δpc

2 · B.
In other words,

H(M |(pkpc, D̃B, q1, . . . , qB)) ≤ H
(

1− δpc
2

)
B +O(logB).

On the other hand, we can use the following lemma, proved implicitly by Bellare et al. [BTV12] and explicitly
restated by Dodis [Dod12] to lower bound the entropy of M given only D̃B, q1, . . . , qB .

Lemma 4 ([BTV12]). For any (possibly correlated) distributions M,C over some spacesM and C, let

ε = SD((M,C);M × C)

where M × C is the product distribution of the independent marginal distributions M and C. Then,

2ε2 ≤ I(M ;C) ≤ 2ε · log(|M|/ε)

This lemma, together with the B-bounded δdc-security of our designated client PIR, implies that

H(M |D̃B, q1, . . . , qB) ≥ B − 2δdc(B − log δdc)

= (1− 2δdc)B + 2δdc log δdc

≥ (1− 2δdc)B − 2.

|pkpc| = |skdc| must be large as the difference between these two entropies, which proves the theorem.

5 A Candidate Designated Client Scheme and HPN

In this section we propose a candidate designated-client DEPIR scheme for unbounded number of queries. We prove
the security of the scheme based on the hardness of a new computational problem, called the hidden permutation
with noise problem (HPN).

Our candidate scheme is similar to the bounded secure scheme of Section 4, except that the client adds noise to each
of its queries by overwriting some of the coordinates with random values. This modification thwarts the linear attack
of last section; however, due to the impossibility of statistically secure designated client DEPIR (see Section 4.4),
the security of a scheme that follows these lines can only be computational even if the client uses perfectly random
permutations. Thus, an additional hardness assumption is necessary.

We formulate a number of variants of HPN. The strongest variant is essentially a restatement of the privacy
requirement from the scheme, as per Definition 1. It says that no PPT A can distinguish the queries generated by the

18

scheme from sequences of random values in Fm, even ifA has full adaptive control over which addresses are queried.
We then give reductions from the adaptive to static versions of HPN and from the decision version to a search version
where hidden random permutations are recovered in full. This implies that our scehme is secure as long as the static,
search problem remains hard.

The candidate scheme is presented in Section 5.1, the HPN assumption is defined in Section 5.2, and the reductions
are proved in Sections 5.3 and 5.4.

5.1 Candidate Scheme
Notation. Let P be a family of pseudorandom permutations with seed length λ. We use the same algebraic notation
as in the Introduction. So let (m, t, r, k,H,F) be such that m < t < r < k < |F| and H ⊂ F such that |H|m = N
and m(t− 1)(|H| − 1) < r. Also, |F|m = poly(n) while |F|t = nω(1).

Keygen
(
1λ, N

)
: Draw permutations τ ← P(Fm+1) and π ← P(Fm) and a subset T ⊂ [k] of size |T | = r. Output

k = (seedπ, seedτ , T).

Process
(
k,DB

)
: Interpret DB ∈ {0, 1}N as DB : Hm → {0, 1} using the identification of [N] with (a subset of)

Hm (DB is zero on any points in Hm not in the image of this identification) and let D̂B : Fm → F be the low degree
extension, so deg(D̂B) ≤ m(|H| − 1). Output

D̃B =
{(

x, τ
(
x, D̂B(π−1(x))

))}
x∈Fm

.

Query
(
k, i
)
: Let z ∈ Hm be the element corresponding to i ∈ [N]. Choose ~x = (x1, . . . ,xk) ← Vz. Output

~y = (y1, . . . ,yk) where yi = π(xi) if i ∈ T , and yi ← Fm is random otherwise. Set st = (seedτ , T).

RespD̃B(q): Upon receiving q = (y1, . . . ,yk), for each i = 1, . . . , k, find the row of D̃B with first coordinate yi:
(yi,y

′
i). Output a = (y′1, . . . ,y

′
k).

Dec
(
st, a

)
: Parse a = (y′1, . . . ,y

′
k) and st = (seedτ , T). For i ∈ T , set (xi, αi) = τ−1

i (y′i). Let ψ : F → F be the
unique univariate polynomial of degree at most m(t− 1)(|H| − 1) such that ψ(i) = αi for all i ∈ T . Output ⊥ if no
such polynomial exists; otherwise output ψ(0).

5.2 Variants of HPN
All variants of the HPN problem are defined in terms of the the HPN distribution, which is essentially a noisy version
of the distributions D

(
{πi}, z

)
from the previous section. Recall this distribution: ~x ← Vz is drawn and ~y is output

where yi = πi(xi). In this section we simplify notations and use the same permutation π for all coordinates i ∈ [k].
We add noise to the samples in the following way: at the beginning of the experiment a random subset T ⊂ [k] of size
r > t is chosen and yi = π(xi) only if i ∈ T ; otherwise yi is drawn randomly from Fm. Intuitively, HPN says that
no PPT adversary can either distinguish such samples from random (decision form) or recover the hidden permutation
π (search version).

Definition 6 (HPN Distribution). Let (m, t, r, k,F) be such that m < t < r < k < |F|, |F|m = poly(n) and
|F|t = nω(1). For π ∈ Perm(Fm), z ∈ Fm and T ⊂ [k], let D

(
π, z, T

)
be the distribution which: draws ~x← Vz and

outputs ~y ∈ Fmk where yi = π(xi) if i ∈ T and yi ← Fm otherwise.

The static versions of the HPN assumption are formulated against a PPT adversary who gets polynomially many
samples (zα, ~yα) where ~yα ← D

(
π, zα, T

)
for random fixed π ∈ Perm(Fm) and T ⊂ [k] and random zα ← Fm.

In the adaptive versions of the assumption allow the adversary to choose the zα ∈ Fm adaptively as the experiment

19

progresses. The static versions of HPN imply the adaptive versions as |F|m = poly(n), and so a static adversary who
receives enough random samples, will be able to provide samples to an adaptive adversary. This idea is utilized in
the proof of Claim 5 below. In the definitions below we write {~yα} ← D

(
π, {zα}, T

)
for the samples; it is to be

understood that the indices {zα} are chosen randomly from Fm and made public to the adversary.

Definition 7 (The HPN Assumption). Let (m, t, r, k,F) be as above.

Search Version: For all PPT algorithms A and non-negligible δ > 0,

Prπ,T,{~yα}

[
A
(
{~yα}

)
= π

]
< δ.

The probability above is over π ← Perm(Fm), random subset T ⊂ [k] such that |T | = r, and {zα} ← Fm,
{~yα} ← D

(
π, {zα}, T

)
.

Decision Version: For all PPT A and non-negligible δ > 0,

Prπ,T

[∣∣∣Pr{~yα}←D(π,{zα},T)

[
A
(
{~yα}

)
= 1
]
− Pr{~yα}←Fkm

[
A
(
{~yα}

)
= 1
]∣∣∣ > δ

]
< δ,

where the outer probability is over π ← Perm(Fm) and random T ⊂ [k] such that |T | = r.

Claim 5. The candidate scheme is secure assuming decisional HPN.

Proof. The ideal world simulator for the candidate scheme simply sends a random ~yα ∈ Fkm anytime the adversary
A requests a query for some index zα. Note that decisional HPN says that the simulated transcript is indistinguishable
from valid queries to a random sequence of address vectors zα ∈ Fm. This doesn’t quite prove security since the
DEPIR chooses arbitrary addresses in Hm in an adaptive fashion. However, note that since |F|m = poly(n), arbitrary
adaptive address choice does not grant extra power to the adversary. Indeed, if A requests a query to a particular
address z ∈ Hm, a distinguisher who gets queries corresponding to random zα ∈ Fm simply asks for |F|m · n such
queries and forwards to A the first one for which zα = z. With high probability, some such α will exist.

5.3 Search to Decision Reduction
Theorem 4. If there exists a PPT A which breaks the decisional HPN−assumption, then there exists PPT B which
breaks search HPN.

Proof. Let A be any PPT algorithm and δ > 0 non-negligible such that

Prπ,T

[∣∣∣Pr{~yα}←D(π,{zα},T)

[
A
(
{~yα}

)
= 1
]
− Pr{~yα}←Fkm

[
A
(
{~yα}

)
= 1
]∣∣∣ > δ

]
≥ δ.

We construct B which recovers π given samples from D
(
π, {zα}, T

)
and oracle access to A. Our algorithm B will

proceed in two steps. First, it will use A to recover a large (size at least t + 1) subset T ′ ⊂ T . We call this the
“cleaning step” since B removes all noise from the queries: given ~y ← D

(
π, z, T

)
, (~y)T ′ consists entirely of correct

permuted evaluations of a curve. Then, B passes the cleaned samples to the RecoverPerm algorithm, described and
analyzed in Section 5.4. RecoverPerm outputs π given polynomially many noiseless samples, and is an extension of
the distinguishing attack on the bounded scheme from Section 4.3. We now describe the CLEAN algorithm.

The Distribution DS . For S ⊂ [k], let DS be the distribution which draws {~yα} ← D
(
π, {zα}, T

)
, and outputs

{~y′α} where

y′α,i =

{
yα,i, i ∈ S

y′′ ← Fm, i /∈ S

20

Remark. We make the following observations about DS .

1. Since B is given samples from D
(
π, {zα}, T

)
, it can efficiently obtain samples from DS for any S ⊂ [k]. Since

B additionally gets oracle access to A, it can approximate

pS := Pr{~yα}←DS
[
A
(
{~yα}

)
= 1
]

to within arbitrary inverse polynomial accuracy in polynomial time with probability 1− 2−n.

2. For all S ⊂ [k], DS is identically distributed to DS∩T . In particular, if i /∈ T then DS ≡ DS∪{i}.

3. If S = [k] then DS = D
(
π, {zα}, T

)
; if |S| ≤ t then DS is the uniform distribution on Fmk·poly by t−wise

independence of degree t curves.

Intuition. The main idea of CLEAN is the following. It samples {~yα} ← D
(
π, {zα}, T

)
, chooses i ∈ [k] and

replaces every yα,i with a random element of Fm. If i /∈ T , then the distribution of {~yα} has not changed, if i ∈ T ,
then each ~yα has one fewer correct coordinate. If CLEAN was lucky in the choice of i, A will change its decision
probability, and CLEAN decides that i ∈ T . A hybrid argument shows that if CLEAN will efficiently be able to find
enough “lucky” i ∈ T , to output T ′ ⊂ T of size at least t+ 1.

The CLEAN Algorithm. For a parameter δ > 0, set M = nk2/δ2 and let c be a universal constant.

1. Use M samples from D[k] and D∅ to compute p̂[k] and p̂∅, approximations of p[k] and p∅.

2. Initialize T ′ = ∅ ; While |T ′| ≤ t:

− Initialize S = T ′, p̂S = p̂∅ ; While S 6= [k]:
∗ Pick i /∈ S. Use M samples from DS∪{i} to compute p̂S∪{i}, an approximation of pS∪{i}.
∗ If

∣∣p̂S∪{i} − p̂S∣∣ > δ/2k, T ′ = T ′ ∪ {i}.
∗ Redefine S = S ∪ {i}, p̂S = p̂S∪{i}.

3. Output T ′.

4. Time Out Condition: If the total runtime ever reaches 2cn, abort and output T ′.

Lemma 5. Let (m, t, r, k, |F|) be as above. Suppose PPT A, non-negligible δ > 0 and π ∈ Perm(Fm), T ⊂ [k] of
size |T | = r are such that∣∣∣Pr{~yα}←D(π,{zα},T)

[
A
(
{~yα}

)
= 1
]
− Pr{~yα}←Fkm

[
A
(
{~yα}

)
= 1
]∣∣∣ > δ.

Then
Pr{~yα}←D(π,{zα},T)

[
CLEANA({~yα}) = T ′ st T ′ ⊂ T and |T ′| = t+ 1

]
≥ 1− 2−Ω(n).

Moreover, the expected running time of CLEAN is O(nk3t/δ2).

Proof. We show that if all approximations p̂ computed by CLEAN are within δ/4k of the true expectations p (in this
case we say that the approximations are good) then CLEAN runs in O(Mkt) time and outputs T ′ ⊂ T of size at least
t+ 1. This completes the proof since by the Chernoff-Hoeffding inequality, all of CLEAN’s approximations are good
with probability 1 − 2−Ω(n); the maximum runtime is 2cn because of the time-out condition, so events which occur
with probability 2−Ω(n) may be safely ignored. Note that when CLEAN’s approximations are good, the output T ′ is
a subset of T . Indeed, the only way i gets added to T ′ is if |p̂S∪{i} − p̂S | > δ/2k; if i /∈ T and approximations are
good:

|p̂S∪{i} − p̂S | ≤ |p̂S∪{i} − pS∪{i}|+ |pS∪{i} − pS |+ |p̂S − pS | ≤
δ

2k
+ |pS∪{i} − pS | =

δ

2k
,

21

by Observation 2. We show that if approximations are good then each time through the outer while loop at least one
i is added to T ′. This completes the proof since the time to run the inner while loop is O(Mk). The key point is
that throughout the course of the inner loop S goes from |S| ≤ t (so that pS = p∅ by Observation 3) to S = [k].
Since A distinguishes D

(
{πi}, {zα}, T

)
from uniform with probability at least δ > 0, |p[k] − p∅| ≥ δ. By a hybrid

argument, there must exist some (S, i) encountered during the course of the inner loop so that |pS∪{i} − pS | ≥ δ/k.
Since approximations are good, |p̂S∪{i} − p̂S | ≥ δ/2k and so i is added to T ′.

5.4 Recovering the Permutations
In this section we describe a protocol which is given samples fromD

(
π, {zα}

)
and recovers the permutation π used to

produce the samples. This attack extends to the case of many permutations {πi} instead of just one, and so constitutes
a strong break of the unbounded variant of the scheme from Section 4. We use the same notation as in that section.
This algorithm requires more samples than the one in the previous section (poly(|F|m) versus |F|m(1+o(1))).

The RecoverPerm Algorithm. Let (m, t, k, |F|) be such that m < t < k < |F| and |F|m = poly(λ). Set B =
mλ|F|3m+3. Let {zα} be any sequence of addresses such that every z ∈ Hm appears at least B times in {zα}.

Input: {~yα} drawn from D
(
π, {zα}

)
.

1. Initialize variables {vy}y∈×Fm taking values in Fm, and a list L of linear constraints to ∅.

2. For all α, add the constraint ~v~yα ∈ Vzα to L, where ~v~yα is shorthand for the vector (vyα,1 , ..,vyα,k).

3. If the constraints in L are inconsistent (i.e. no assignment to the vy satisfies all constraints), abort and output
⊥. Otherwise, choose an arbitrary assignment satisfying all constraints in L and let σ : Fm → Fm be the map
which sends y to the vector assigned to vy. If σ is not a permutation, abort and output ⊥. Otherwise, output
π′ ∈ Perm(Fm) where π′ = σ−1.

Note that RecoverPerm runs in time poly(B, |F|m, λ) since Step 3 involves solving a system of linear equations
and checking whether a functions with polysized domain is a permutation; all other steps are efficient. The next
Lemma states RecoverPerm recovers the correct π used to generate the samples with high probability.

Lemma 6. Set B = mλ|F|3m+3 and let {zα} be any sequence of addresses such that each z ∈ Hm appears at least
B times in {zα}. Let π ∈ Perm(Fm) be the permutation used to generate the input samples, and let π′ ∈ Perm(Fm)
the output. Then with overwhelming probability: π′ = π.

Proof. The first failure event in Step 3, that the linear constraints in L are inconsistent, never occurs as by definition
vy = π−1(y) satisfies every constraint. Fix any assignment to the vy satisfying the constraints in L, let σ : Fm → Fm
be the map which sends y to the vector assigned to vy. Since the assignment satisfies L, for every ~yα, we have
σ(~yα) ∈ Vzα , where σ(~yα) is shorthand for

(
σ(yα,1), . . . , σ(yα,k)

)
. Recall that drawing ~yα ← D

(
π, zα

)
consists

of drawing ~xα ← Vzα and then setting ~yα = π(~xα). Therefore, for every ~xα ← Vzα drawn to produce the input of
RecoverPerm: σ ◦ π(~xα) ∈ Vzα .

We say that an assignment to the vy is BAD if Pr~x←Vz

[
σ ◦ π(~x) ∈ Vz

]
< 1 − |F|−(2m+2), for some z ∈ Hm.

Note,

Pr
[
∃ BAD satisfying asst

]
< |F|m|F|

m

·
(

1− 1

|F|2m+2

)B
= 2−Ω(λ),

when B = mλ|F|3m+3. Therefore, it suffices to assume that the assignment is not BAD. Lemma 7 below shows that
in this case, σ ◦ π = 11. The result follows.

Lemma 7. Suppose f1, . . . , fk : Fm → Fm are such that Pr~x←Vz

[
~f(~x) ∈ Vz

]
≥ 1 − |F|−(2m+2) for all z ∈ Hm.

Then there exists a curve ϕ : F → Fm of degree at most t satisfying ϕ(0) = 0 such that fi(xi) = xi + ϕ(i) for all
i = 1, . . . , k. In particular, if all fi are equal then each fi is the identity function.

22

Proof. The second statement follows from the first since if ϕ(i) takes the same value for i = 1, . . . , k then ϕ must be
constant, hence identically zero.

The proof of the first statement consists of three steps, described momentarily. First however we define the fol-
lowing random variables. Let ~f be functions that satisfy the lemma hypotheses. For any ~c ∈ V0, define ~f~c(~x) :=
~f(~x+~c)− ~f(~c). Choose~c ∈ V0 so that ~f~c(0) = 0 and Pr~x←Vz

[
~f~c(~x) ∈ Vz

∣∣x4 = · · · = xt+1 = 0
]
≥ 1−1/(2|F|2m)

for all z ∈ Hm (random ~c← V0 satisfies these properties with probability at least 1− |F|−1).
In the first step we show that fc1,1 is linear, so fc1,1(x1) = A1x1 for a matrix A1 ∈ Fm×m; similarly, we have

fc2,2(x2) = A2x2.
In the second step we show that A1 and A2 are equal (so drop the subscripts). In particular, it follows that f1

and f2 are affine with the same linear component: fi(xi) = fci,i(xi − ci) + fi(ci) = Axi −
(
fci,i(ci) − fi(ci)

)
for i = 1, 2. This argument extends to all i ∈ [k]: there exists A ∈ Fm×m and b1, . . . ,bk ∈ Fm such that
~f(~x) =

(
Ax1 + b1, . . . ,Axk + bk

)
.

Finally, we complete the proof by showing that A = 11 and ~b ∈ V0.
To see that fc1,1 is linear, let us first set some notation. Write (x1,x2,x3) ∈ V′0 if there exists ~x′ ∈ V0 such that

(x′1,x
′
2,x
′
3) = (x1,x2,x3) and x′4 = · · · = x′t+1 = 0. Clearly (x1,x2,x3), (x′1,x2,x3) ∈ V′0 implies x′1 = x1

because of agreement considerations. Note that V′0 ⊂ F3m is a (2m)−dimensional subspace so is closed under
addition. By our choice of ~c ∈ V0,

(
fc1,1(x1), fc2,2(x2), fc3,3(x3)

)
∈ V′0 whenever (x1,x2,x3) ∈ V′0. Now, choose

arbitrary x1,x
′
1 ∈ Fm, we will show fc1,1(x1 + x′1) = x1 + x′1, where x1 = fc1,1(x1), x′1 = fc1,1(x′1). Let

x2,x3 ∈ Fm be so that (x1,x2,0), (x′1,0,x3) ∈ V′0 (such x2,x3 exist by interpolation). Let xi = fci,i(xi) for
i = 2, 3. We have (x1,x2,0), (x′1,0,x3) ∈ V′0 (using ~f~c(0) = 0), and so (x1 +x′1,x2,x3) ∈ V′0. On the other hand,
if we first add then apply ~f we get

(
fc1,1(x1 + x′1),x2,x3

)
∈ V′0; fc1,1(x1 + x′1) = x1 + x′1 follows.

Let A1 ∈ Fm×m be the matrix form of fc1,1. As mentioned before, the above argument also shows that fc2,2 is
linear with matrix A2 ∈ Fm×m. We show here that A1 = A2. To see this, consider the linear map Φ : Fm → Fm
which sends x1 to x2 such that (x1,x2,0) ∈ V′0. Note that Φ is actually just multiplication by some non-zero scalar
β ∈ F (this can be seen by writing Φ explicitly in terms of Lagrange interpolation coefficients). For any x1 ∈ Fm,
(x1, β · x1,0) ∈ V′0; the properties of ~f~c imply that (A1x1, β · A2x1,0) ∈ V′0; this means βA2x1 = βA1x1;
A1 = A2 follows.

We have shown so far that f1 and f2 are affine with the same linear component. This argument extends to any
fi, fj for i, j ∈ [k] so, as mentioned above, there exists a single matrix A ∈ Fm×m and vectors b1, . . . ,bk ∈ Fm

such that fi(xi) = Axi + bi for all i ∈ [k]. We show that A = 11 and ~b ∈ V0, which completes the proof. For
any z ∈ Hm, the affine map ~f : Fmk → Fmk maps the affine plane Vz ⊂ Fmk to an affine plane in Fmk. It follows
that either ~f(Vz) ⊂ Vz, or Pr~x←Vz

[
~f(~x) ∈ Vz

]
≤ |F|−1 since affine planes intersect in at most 1/|F| fraction of

their points unless there is containment. We are given that Pr~x←Vz

[
~f(~x) ∈ Vz

]
≥ 1− |F|−(2m+2), so it must be that

~f(Vz) ⊂ Vz for all z ∈ Hm. In particular, ~b = ~f(0) ∈ V0. Finally, note that ~x 7→ (Ax1, . . . ,Axk) + ~b maps Vz to
VAz. Therefore, we must have Az = z for all z ∈ Hm. As Hm spans Fm, this forces A = 11 as desired.

Acknowledgments
We thank Mariana Raykova for motivational discussions in the early stages of this project, and Madhu Sudan and Yael
Kalai for breaking some of our schemes.

References
[Ajt10] Miklós Ajtai. Oblivious rams without cryptographic assumptions. In STOC, pages 181–190. ACM, 2010.

[BI01] Amos Beimel and Yuval Ishai. Information-theoretic private information retrieval: A unified construction.
In ICALP, volume 2076 of Lecture Notes in Computer Science, pages 912–926. Springer, 2001.

[BIM04] Amos Beimel, Yuval Ishai, and Tal Malkin. Reducing the servers’ computation in private information
retrieval: PIR with preprocessing. J. Cryptology, 17(2):125–151, 2004.

23

[BIPW17] Elette Boyle, Yuval Ishai, Rafael Pass, and Mary Wootters. Can we access a database both locally and
privately? Cryptology ePrint Archive, Report 2017/567, 2017. http://eprint.iacr.org/2017/
567.

[BN00] Daniel Bleichenbacher and Phong Q. Nguyen. Noisy polynomial interpolation and noisy chinese remain-
dering. In EUROCRYPT, volume 1807 of Lecture Notes in Computer Science, pages 53–69. Springer,
2000.

[Bra09] Mark Braverman. Poly-logarithmic independence fools ac0 circuits. In IEEE Conference on Computa-
tional Complexity, pages 3–8. IEEE Computer Society, 2009.

[BTV12] Mihir Bellare, Stefano Tessaro, and Alexander Vardy. Semantic security for the wiretap channel. In
CRYPTO, volume 7417 of Lecture Notes in Computer Science, pages 294–311. Springer, 2012.

[CKGS98] Benny Chor, Eyal Kushilevitz, Oded Goldreich, and Madhu Sudan. Private information retrieval. J. ACM,
45(6):965–981, 1998.

[CMS99] Christian Cachin, Silvio Micali, and Markus Stadler. Computationally private information retrieval with
polylogarithmic communication. In EUROCRYPT, volume 1592 of Lecture Notes in Computer Science,
pages 402–414. Springer, 1999.

[CS03] Don Coppersmith and Madhu Sudan. Reconstructing curves in three (and higher) dimensional space from
noisy data. In Proceedings of the 35th Annual ACM Symposium on Theory of Computing, June 9-11, 2003,
San Diego, CA, USA, pages 136–142, 2003.

[CSP+16] Raymond Cheng, William Scott, Bryan Parno, Irene Zhang, Arvind Krishnamurthy, and Thomas Ander-
son. Talek: a private publish-subscribe protocol. 2016.

[DMN11] Ivan Damgård, Sigurd Meldgaard, and Jesper Buus Nielsen. Perfectly secure oblivious RAM without
random oracles. In TCC, volume 6597 of Lecture Notes in Computer Science, pages 144–163. Springer,
2011.

[Dod12] Yevgeniy Dodis. Shannon impossibility, revisited. In ICITS, volume 7412 of Lecture Notes in Computer
Science, pages 100–110. Springer, 2012.

[GKS10] Parikshit Gopalan, Subhash Khot, and Rishi Saket. Hardness of reconstructing multivariate polynomials
over finite fields. SIAM Journal on Computing, 39(6):2598–2621, 2010.

[GO96] Oded Goldreich and Rafail Ostrovsky. Software protection and simulation on oblivious rams. J. ACM,
43(3):431–473, 1996.

[GR17] Oded Goldreich and Guy N. Rothblum. Simple doubly-efficient interactive proof systems for locally-
characterizable sets. Electronic Colloquium on Computational Complexity (ECCC), 24:18, 2017.

[KO97] Eyal Kushilevitz and Rafail Ostrovsky. Replication is NOT needed: SINGLE database, computationally-
private information retrieval. In FOCS, pages 364–373. IEEE Computer Society, 1997.

[KR17] Yael Kalai and Ran Raz. personal communication. 2017.

[MRS09] Ben Morris, Phillip Rogaway, and Till Stegers. How to encipher messages on a small domain. In CRYPTO,
volume 5677 of Lecture Notes in Computer Science, pages 286–302. Springer, 2009.

[NP06] Moni Naor and Benny Pinkas. Oblivious polynomial evaluation. SIAM J. Comput., 35(5):1254–1281,
2006.

[SCSL11] Elaine Shi, T.-H. Hubert Chan, Emil Stefanov, and Mingfei Li. Oblivious RAM with o((logn)3) worst-case
cost. In Advances in Cryptology - ASIACRYPT 2011 - 17th International Conference on the Theory and
Application of Cryptology and Information Security, Seoul, South Korea, December 4-8, 2011. Proceed-
ings, pages 197–214, 2011.

24

http://eprint.iacr.org/2017/567
http://eprint.iacr.org/2017/567

	Introduction
	Our contributions
	Independent Work

	Defining Doubly Efficient PIR
	Failure of A Natural Approach for Public-Preprocessing DEPIR
	Bounded-Query Designated-Client DEPIR
	A trivial scheme
	A scheme based on LDCs and random permutations
	Proving Security

	A Linear Attack if Too Many Queries are Asked
	Intuition and Overview

	Limits on statistical DEPIR
	Answer Size in Public Client PIR
	Key Size for Designated Client PIR

	A Candidate Designated Client Scheme and HPN
	Candidate Scheme
	Variants of HPN
	Search to Decision Reduction
	Recovering the Permutations

