
Assessing the No-Knowledge Property of
SpiderOak ONE

Anders P. K. Dalskov, Claudio Orlandi
Aarhus University, Aarhus, Denmark

June 12, 2017

Abstract

This paper presents the findings of an independent security review of
SpiderOak ONE, a popular encrypted cloud storage application. In this
application, the storage provider claims that, since all the users’ data is
password encrypted and the password never leaves the client, even the
storage provider cannot learn any information about the users’ data. Af-
ter providing a formal description of the key design choices in the reviewed
application (e.g., how user’s accounts are registered, how new devices are
registered, how and what cryptographic keys are used, how file encryp-
tion is handled, etc.), we present a number of vulnerabilities that can be
exploited by a malicious storage server to break, to different degrees, the
confidentiality of the users’ password and therefore the users’ data.

Our findings have been communicated to SpiderOak in April 2017.
The vendor promptly replied to our concerns by releasing an updated
version of the application (v. 6.3.0, June 2017) which resolves most of the
issues described in this paper.

1 Introduction
More and more users worldwide choose to store their data using cloud storage
services such as Dropbox, Google Drive, Microsoft Azure, etc. (Dropbox alone
recently celebrated reaching half a billion users1). These services give users
a transparent way to share their data between multiple devices, they allow to
share files between users, and provide a relatively cheap way for keeping personal
backups in the cloud.

Unfortunately, “classic” cloud storage solutions provide little or no guarantee
about the confidentiality of the data that the users’ choose to store in the cloud.
While most of these services guarantee that the data is encrypted in transit
to protect against network eavesdropper, no mechanism prevents the storage
provider itself from accessing the users’ data. (In fact, the economic viability

1https://blogs.dropbox.com/dropbox/2016/03/500-million/ (all links last retrieved on
June 9th 2017)

1

https://blogs.dropbox.com/dropbox/2016/03/500-million/

of some of these systems relies on being able to identify multiple copies of
the same data being stored, and thus being able to implement de-duplication
techniques. However, using de-duplication might allow external attackers to
learn information about other users’s data. See [9] for a description of the
problem and [8, 12] for some cryptographic solutions which allow to perform
de-duplication in a secure way).

As a consequence of the Snowden revelations on the existence of mass-
surveillance program many users and companies have started questioning the
choice of storing their (potentially sensitive) data on unencrypted cloud storage,
especially on foreign soil (the legal controversy around the status of the EU-US
Privacy Shield is still ongoing).

All of these factors lead to an increased interest in encrypted cloud storages
e.g., services which offer to store the user’s data in an encrypted format, in such
a way that even the service provider themselves cannot access the users’ data.
This is a very useful property, which has an important impact against several
interesting threat models: if the cloud storage is technically unable to access the
user’s data, the provider cannot be coerced (e.g., by law enforcement) to reveal
the content of the user’s encrypted storage; also, since the users’ data is only
stored in encrypted format (and the password is unknown to the server), even if
someone could gain access to the cloud storage system (e.g., either a malicious
employee or an external attacker), this would not help in compromising the
users’ data.

SpiderOak2 is among the most popular encrypted cloud storage services
offering end-to-end encrypted cloud storage. SpiderOak received popular at-
tention after being endorsed by Edward Snowden as a secure alternative to
Dropbox3, and has received positive reviews by the EFF [6]. SpiderOak in par-
ticular marketed their product using the term zero-knowledge (now replaced by
no-knowledge4), capturing the property that even SpiderOak themselves have
no way of accessing the content of the encrypted users’ storage.

In a nutshell, virtually every encrypted cloud storage, including SpiderOak,
stores the users’ data encrypted under a user chosen password. Therefore,
whether the no-knowledge property holds ultimately relies on two factors:

1. The user must choose a strong password; and

2. The user’s password must never leave the client’s software;

Much has been written about the (in)ability of users to choose strong pass-
words, so we will not address this threat further in this paper. What is perhaps
most interesting, from a technical point of view, is to look at the service provider
choices in protocol design and software implementation to ensure that no one,
even the service provider itself, can extract the user’s password from the client
software. SpiderOak is very explicit about this: for instance, users attempting

2https://spideroak.com/
3https://techcrunch.com/2014/10/11/edward-snowden-new-yorker-festival/
4https://spideroak.com/articles/why-we-will-no-longer-use-the-phrase-zero-

knowledge-to-describe-our-software

2

https://spideroak.com/
https://techcrunch.com/2014/10/11/edward-snowden-new-yorker-festival/
https://spideroak.com/articles/why-we-will-no-longer-use-the-phrase-zero-knowledge-to-describe-our-software
https://spideroak.com/articles/why-we-will-no-longer-use-the-phrase-zero-knowledge-to-describe-our-software

to login using the web interface (which would reveal the password to the server)
are required to acknowledge the following message5:

I understand that for complete ’Zero-Knowledge’ privacy, I should
only access data through the SpiderOak desktop application.

Our Contributions. In this paper we present an independent security review
of the SpiderOak ONE client software with the goal of assessing to which degree
SpiderOak satisfies the no-knowledge property. We choose to start by analysing
SpiderOak due to its popularity, and we believe that it would be interesting,
in the future, to perform similar studies of other encrypted cloud storage apps.
In particular, we are not claiming that SpiderOak is less secure than any of its
competitors (in fact, since SpiderOak has already fixed most of the problems de-
scribed in this paper it is entirely possible that the current version of SpiderOak
is more secure than its competitors who have not gone through an independent
security review yet).

Since SpiderOak is not an open source application, the first contribution of
this paper is to present (in section 3) a high-level overview of how SpiderOak
handles the user’s password in some critical phases (such as user registration,
authentication, file encryption etc.). In section 2, we describe our methodology
and how we have inferred the behaviour of the client software. Finally, in sec-
tion 4, we present the main contribution of this paper i.e., four possible attacks
(three active, one passive) that would allow a rogue SpiderOak server (or a man-
in-the-middle who can circumvent the TLS layer) to break to different degrees
the no-knowledge property.

To understand the significance of these attacks, we need to take a step back
and describe the threat-model that we consider in this paper: it is evident that,
since SpiderOak is a closed source application and since users retrieve the client
software from SpiderOak itself, a malicious SpiderOak server could always serve
a targeted user a different copy of the client software that, on purpose, leaks
the user password to the server.6

We ignore this threat in the remainder of the paper and we will instead
assume that the user can trust SpiderOak to deliver a benign version of the
client software. After this initial phase our threat model includes any attacker
that is able to interact with the client-software. Note that, due to the use of TLS
and certificate pinning, it is not easy to convince the client software to interact
with anyone else but the real SpiderOak server. In particular, we conclude that
the only entities which will be able to run the attacks described here are:

1. A rouge SpiderOak server (which could become compromised due to ex-
ternal hacking, insider attacks, etc.);

5https://spideroak.com/browse/login/storage
6SpiderOak, partially inspired by our research, has recently published a blog post discussing

these threats, see https://spideroak.com/articles/building-for-new-threat-models-in-
a-postsnowden-era.

3

https://spideroak.com/browse/login/storage
https://spideroak.com/articles/building-for-new-threat-models-in-a-postsnowden-era
https://spideroak.com/articles/building-for-new-threat-models-in-a-postsnowden-era

2. A rogue SpiderOak enterprise server (in enterprise mode a company can
internally run a SpiderOak server); or

3. Anyone else able to bypass certificate pinning or the TLS encryption layer
(e.g., certificate pinning can be turned off in order to inspect traffic, which
is not uncommon in corporate settings);

Responsible Disclosure. We have communicated our findings to the security
team of SpiderOak on April 5th, 2017. On June 5th 2017 SpiderOak released a
new version of the software which resolves most of the issues described in this
paper. SpiderOak notified their users by email and released a blog post about
this7. We find it commendable that SpiderOak has reacted so swiftly to the
issues we found.

Other Related Work. There seem to be relatively little previous work that
analyses the security of encrypted cloud storage solutions. Some notable exam-
ples include: Kholia and Węgrzyn [13] analyzed Dropbox and described several
security vulnerabilities in a threat-model very different from ours (since Drop-
box never claimed any “no-knowledge” property). Grothe et al. [7] analyzed Mi-
crosoft Azure and its interaction with Tresorit (a solution supporting client-side
encryption), showing that when a users shares a file with another user, Tre-
sorit could decrypt this file as well. In an extensive technical report Botgmann
et al. [2] examined the security mechanisms of several cloud storage services
(but not of SpiderOak). Virvisil et al. [16] provide a good survey of challenges
and solutions for secure cloud storage. Bhargavan and Delignat-Lavaud [1] pre-
sented attacks against the web-based interface offered by SpiderOak (concretely,
the interface related to shared directories). Finally, Wilson and Ateniese [17]
have also analyzed the security of client-encrypted cloud storage, including Spi-
derOak, however they only focus on the ways in which the applications could
learn information about files shared by the user.

Therefore, to the best of our knowledge, ours is the first work uncovering
problems with encrypted data storage of any encrypted cloud storage solution
which involves only data at rest.

2 Analyzing the Application
Our analysis was performed on the SpiderOak ONE desktop client version 6.1.5
(released 26–07–2016) as can be downloaded from their website.8 The client
was run in a Windows XP virtual machine.

In section 4 we attack a client (also version 6.1.5) running on a GNU/Linux
virtual machine, however, the differences between operating systems are minimal
and will be explicitly mentioned where appropriate.

7https://spideroak.com/articles/security-update-for-spideroak-groups--one-
bugs-reported--resolved

8https://spideroak.com/opendownload. A 32-bit version (which we used) can be retrieved
from https://spideroak.com/getbuild?platform=win32

4

https://spideroak.com/articles/security-update-for-spideroak-groups--one-bugs-reported--resolved
https://spideroak.com/articles/security-update-for-spideroak-groups--one-bugs-reported--resolved
https://spideroak.com/opendownload
https://spideroak.com/getbuild?platform=win32

2.1 Introduction to SpiderOak
SpiderOak ONE runs on both Windows, GNU/Linux and Mac OS X, and Spi-
derOak provides builds for both i386 and x86_64 (i.e., 32 and 64 bit variants),
as well as various packaging formats (e.g., rpm and deb).

Registration must happen through the desktop client, and SpiderOak warns
against using their website for logging in (as mentioned in the introduction).

Once the user has acquired an account, the application creates a directory
named SpiderOak HIVE, where files herein gets automatically backed up. In
addition, SpiderOak ONE uses the notion of a Sync folder (the aforementioned
SpiderOak HIVE being the default) which is a folder that is kept synchronized
across the user’s devices. The user can select other folders that should be
backed up and turn them into Syncs as well. These Syncs allows the user, for
example, to have a directory be synchronized on two of his devices, but not on
a third. Finally, the user can select single files or whole directories, and share
them. Sharing a file or folder makes it available through SpiderOak’s website so
others (who do not necessarily have SpiderOak ONE installed) can access them.
SpiderOak ONE is able to handle multiple versions of a single file, making it
possible to revert to historical versions of a file, or restore deleted files.

By default, the application only requires the user to input their password
the first time they login. I.e., when they create their account or register a new
device. It is possible to set the application to require a password on every
startup, however.

2.2 Under the Hood
SpiderOak ONE gets installed at C:\Program Files\SpiderOakONE (or at
/opt/SpiderOakONE on GNU/Linux). After the first execution, the ap-
plication furthermore creates a directory for run-time specific files (in
Local Settings\Application Data on Windows and $HOME/.config on
GNU/Linux).

Libraries and Files. Browsing the install directory reveals that the appli-
cation makes use of various mature open source libraries. Examples include
OpenSSL version 1.0.1t, released 3th May 2016; libsodium version 1.0.0, re-
leased 30 September 2014; py-bcrypt version 0.4 released 25 August 2013; and
Twisted Matrix version 10.2.0 released 29 November 2010. An interesting obser-
vation is the apparent age of some of these libraries. For example, the version
of py-bcrypt used is fairly old and not maintained anymore (and we show later
that it contains an exploitable bug). Similarly for the version of Twisted used
(For example, it is still contains the httpoxy9 vulnerability, although it is not an
issue in SpiderOak ONE as it does not use CGI scripts).

The run-time directory contains various files used to persist settings across
reboots, as well as diagnostic data from the application. For example, in order
to not require a password on every startup, the application will write the user’s

9https://httpoxy.org/. Fixed in Twisted version 16.3.1

5

https://httpoxy.org/

password un-encrypted to file. If the user has set the application to require
a password, the user’s password will not be stored in cleartext. A very weak
password hash, however, will (and we return to this issue in subsection 4.3). In
addition, the run-time directory also contains the output of logging statements
from the application, providing a very convenient way of tracking the behaviour
of the application when it is running.

Reverse Engineering. SpiderOak ONE, being proprietary10, provides no
readily available source code. The first step in analyzing the application was
therefore to obtain a readable copy of the application’s code. Browsing the
application files after installation, revealed that the application is written in
Python, bundled as zipped archive containing Python bytecode. Unlike e.g.,
Dropbox which uses a modified interpreter and obfuscates its bytecode [13],
SpiderOak ONE does no such thing, making the reverse engineering relatively
straightforward. Using the open source tool uncompyle6, a Python decompiler11,
the application’s bytecode was converted into normal Python code. Since there
is no obfuscation, and due to the nature of Python bytecode (in particular, it
does not aim to optimize the code or minimize its size) the obtained Python
code has a lot of information, such as proper variable names, documentation
strings and so on.

The client application communicates with the server in two different ways:
Using HTTP over TLS (HTTPs) and using a Perspective Broker12 implementa-
tion, also over TLS. Both types of connections use certificate pinning, although
with different certificates.

2.2.1 HTTPs

We observed essentially three different situations in which the application will
use HTTPs for communicating with the server: Account registration, device
registration and sharing of single files. The TLS version used is 1.0 using
the cipher suit TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA. The certificate pre-
sented by SpiderOak is issued by GeoTrust and uses the signature algorithm
sha256WithRSAEncryption. When received the certificate is checked against a
pinned (i.e., hard-coded) root certificate in the client. SpiderOak ONE checks
that the Common Name (CN) field in the certificate presented by the server,
matches either spideroak.com, *.spideroak.com or *.backupsyncshare.com.
Although the last name seems out of place, its DNS entries point to SpiderOak
servers, so we assume that it is also owned by SpiderOak. Checking the CN
is necessary to prevent a Man-in-the-Middle attack where the certificate used
is signed by the correct CA, but where the CN is unrelated to the requested

10See Open Source section at https://spideroak.com/features/private-by-design
11https://github.com/rocky/python-uncompyle6
12A serialization and Remote Procedure Call abstraction from the Twisted library: See e.g.,

https://twistedmatrix.com/documents/12.1.0/core/howto/pb-intro.html

6

https://spideroak.com/features/private-by-design
https://github.com/rocky/python-uncompyle6
https://twistedmatrix.com/documents/12.1.0/core/howto/pb-intro.html

site, as described in [3]. Validation of the certificate signature is handled by
OpenSSL.

2.2.2 Perspective Broker (PB)

All other communication — synchronizing stored files, settings etc. — is han-
dled by a Perspective Broker (PB) class. Roughly speaking, PB is a Remote
Procedure Call interface that can handle transmission of both simple and com-
plex data types. When the client has performed a successful login, it will send
a copy of its avatar (a reference to a class with methods that can be called
remotely) to the server. Once received by the server, the server then sends back
its avatar. Thus allowing the client to call remote procedures on the server, and
vice versa.

Communication done in this fashion is protected by TLS, also version 1.0,
although TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA is used as the cipher suit in-
stead. The SpiderOak server presents in this context a self-cipher certificate
which is checked against an identical certificate that is hard-coded in the appli-
cation. We note that SpiderOak ONE does not use the certificate described in
the previous section here. Since the certificate presented by the server is also
pinned in the client, there is no need to validate the CN field (in fact, it is not
even present). A final, somewhat interesting observation here, is the fact that
the signature algorithm is sha1WithRSAEncryption, which has been deprecated
everywhere else, especially after the recent reveal that collisions for SHA1 have
been found [15].

2.2.3 Patching of the application

In order to better understand and test SpiderOak ONE, we performed small
patches. As mentioned, the application does not make use of obfuscation tech-
niques which made the decompilation and patching easier. Indeed, in order
to introduce a patch in the application, we simply had to write it in python,
compile the new file and put it back into the correct directory.

We created two types of modifications. One for helping us analyze the net-
work traffic generated by the application and one which helped us understand
the flow of the program (which was particularly helpful for the sake of under-
standing what files gets encrypted with which keys).

Network Analysis. In a nutshell, we patched the application to simply write
to the disk the master secret for any TLS connection it established. This modifi-
cation was easy to implement, as all TLS communication was handled by a single
class (from the Twisted library), but also because the version of Twisted used
was old enough, that it exposes some particularly low level OpenSSL objects.
Specifically, a connection object which has a method to retrieve a master secret
for the connection in question. (In the code snippet, cheating is a PyOpenSSL
Connection object13).

13https://pyopenssl.readthedocs.io/en/latest/api/ssl.html

7

https://pyopenssl.readthedocs.io/en/latest/api/ssl.html

1 if self.cheating:
2 _k = self.cheating.master_key ()
3 if _k:
4 _cr = str(self.cheating.client_random ())
5 _cr = _cr.encode(’hex’)
6 _f = open(’C:\\’+_cr [:6]+ ’.txt’, ’a’)
7 _f.write(’CLIENT_RANDOM ’)
8 _f.write(_cr)
9 _f.write(’ ’)

10 _f.write(str(_k). encode(’hex’))
11 _f.close ()
12 self.cheating = None

Analyzing the network was then simply a matter of recording all traffic (which
we did by routing network traffic from our test machine through another virtual
machine, running tcpdump) and then have wireshark decrypt it.

Program Flow. We took advantage of the already fairly comprehensive log-
ging framework present in the application, in order to better understand the
program flow. Concretely, we employed what is essentially “debugging by print-
ing” by inserting more logging statements in places where we needed to under-
stand what happened. The output of these logging statements could then be
found in the run-time directory (as mentioned earlier). By using some prefix not
used elsewhere in the application (e.g., “!!!”) grepping for the relevant outputs
became easy.

3 Protocols
From the decompiled application code we extracted a formal description of some
core aspects of SpiderOak ONE, namely

1. how SpiderOak ONE handles authentication in the context of a new user
account, or a new device registration for an existing device;

2. how it handles and creates the various cryptographic keys needed; and

3. how it handles encryption of a users personal files.

Notation. For a bit-string x, let |x| denote its length in bits and |x|8 its length
in bytes. a || b is the concatenation of bit-strings a and b; and by xi:j we mean
the sub-string composed of the bits xi, . . . , xj−1. Let Enck(iv,m), respectively
Deck(iv,m), denote an AES-CFB encryption, respectively decryption, using
initialization vector iv, key k on message m. For a description of CFB refer
to [5]. Unless otherwise stated, the segment size is 8 and as a consequence, |m|
must be a multiple of 8 (which is always the case if m is a byte-string). Let
RSAEncpk(m) = me mod n denote a textbook RSA encryption on m ∈ Zn

8

using key pk = (e, n), decryption is RSADecsk(m) and an RSA signature is
Signsk(h) where h = H(m) for some hash function H and m is the message
being signed.

Finally, for some password p and salt s, let bcrypt(p, s) denote a bcrypt
hash [14] and let PBKDF2(p, s, n) denote a PBKDF2 hash [11] (n being the
iteration count).

3.1 Registration protocols
SpiderOak ONE handles registration of both new user accounts, as well as new
devices to existing accounts. In either case, the client and server execute a
challenge-response authentication protocol, the concrete format of which de-
pends on what type of registration (i.e., account or device), is taking place.

In total, the client can be made to engage in four different authen-
tication protocols: bcrypt, pandora/zk, escrow/challenge and pando-
ra/zk/sha256.14 We will present all but the last one in this paper. At the end
of the section, we will give a brief description of the whole account and device
registration process.

Note that our analysis is based only on the client-side version of the software.
We therefore resort to some conjectures on how the server-side version of the
application is supposed to run. The accuracy of these conjectures is irrelevant
to our analysis, since we want the no-knowledge property to hold even against
a corrupt SpiderOak server.

3.1.1 bcrypt

The following conceptually simple challenge-response protocol is executed when-
ever a user registers a new account through the client.

Server Send bcrypt salt s to client.

Client Compute h = bcrypt(p, s), p being a password input by the user and
send h to the server.

Server Compare h to a stored hash and accept if they are equal. Otherwise
reject.15

During account registration, before this protocol is used, the client will have
transmitted h to the server. Thus, at the point where this protocol gets exe-
cuted, the server already possesses h.

When the server is allowed to act maliciously, the protocol is not without
issue (which is somewhat surprising given its simple description). We explore
this further in subsection 4.1.

14The names reflect those used internally in the application.
15Concretely, the server will reply with an HTTP code 200 (accept) or 403 (reject). This

holds for all authentication protocols in the application.

9

3.1.2 pandora/zk

This next protocol is executed during device registration. After the client
has computed all the user’s cryptographic keys, these are transmitted to the
server (a process we will detail in sections 3.1.4 and 3.2). However, for the
sake of this protocol, we jump and define two of these values here, namely
ck = PBKDF2(p, s1, 16384), a challenge key ; and s1 a 256-bit salt (p is the
password input by the user during account registration). The server and client
then execute the following protocol.

Server Let k be a 256-bit value and iv a 128-bit value. Let tv be a 32-bit value
denoting the current server time. Send iv, tv, s1 and c = Encck(iv, k) to
the client.

Client Compute ck∗ = PBKDF2(p∗, s1, 16834), k∗ = Decck∗(iv, c) (p∗ being
a password input by the user) and reply with a = Enck∗(iv, tv) to the
server.

Server Abort if Enck(iv, tv) 6= a. Otherwise accept.

It is clear that the client can compute the same ck as used by the server,
if the user input the same password in this protocol, as during the account
registration. Without knowing the description of the server-side of the protocol,
it is not possible to give a full analysis of the soundness of this protocol (e.g.,
whether it is possible to make the server accept without knowing ck). We note
however that the knowledge of ck is always enough to make the server accept,
and that therefore the protocol is not a cryptographic proof of knowledge of the
password p.

3.1.3 escrow/challenge

In contrast to the protocols presented so far, we have never observed the es-
crow/challenge protocol being invoked during our analysis of the application
and it appears that the protocol is only used in the enterprise setting. Never-
theless, the client software can be made to engage this protocol and we later
show (in subsection 4.2) that this protocol can be used by a malicious server in
order to fool the client into revealing the user password.

We assume the server has a (possibly empty) list l of pairs (pki, idi), where
pki as an RSA public key and idi is an arbitrary ID. For the sake of presentation
we first describe two subroutines Fingerprinting and Layered Encryption

Fingerprinting. The client will compute a fingerprint (concretely a string
of 1 to 4 letter words) from l using [4], pick every second word and present
the resulting string to the user. Let E(x) be a function that returns x encoded
according to the Distinguished Encoding Rules scheme (defined in ITU-T X.690)
and key2eng(h) be the function that converts a 256-bit binary string h into a
list of 24 words according to [4]. The process for creating a fingerprint is then

10

1. Compute h = sha256(id0 || E(pk0) || . . . || idn || E(pkn));

2. Compute key2eng(h) = x1 || y1 || . . . || x12 || y12; and

3. Output the fingerprint fp = y1 || . . . || y12.

We speculate that the choice of only using every other words is a question of
usability; 12 words are easier to recognize than 24. An example of fingerprint
derived in this fashion can be seen in Figure 1.

STAY ED NAME HOSE PAR WIFE MAY EACH MEAL JUST YE NET

Figure 1: Example fingerprint. Computed using h = sha256(), i.e., l is an empty
list.

We use Fingerprint(l) to denote a function that outputs a fingerprint
computed in the described way, on a list l of keys and ids.

Layered Encryption. The following process describes an approach for cre-
ating a layered encryption of the user’s password p, using the contents of l. Let
c some arbitrary value obtained from the server.

1. Let auth = “{“challenge” : c, “password” : p}”, i.e., a JSON string.
Then, for all id, pk in l do

(a) Let k be a random bit-string s.t. |k| = |pk| − 1 and let iv =
sha256(tv)0:16 where tv is the current system time.

(b) Compute A = Encsha256(k)(iv, auth), B = RSAEncpk(k)

(c) Re-assign auth = idi || A || B || iv

2. Output auth

As with the Fingerprint function, we also define a function,
LayerEnc(p, l, c) to denote the above process, using inputs p, user’s password;
l, a list of keys and ids; and c some arbitrary value.

The actual protocol can then be summarized quite nicely as follows (note,
we still assume the server to own some list l of keys and ids)

Server Let c be an arbitrary bit-string and send c, l to the client.

Client Compute fp = Fingerprint(l) and prompt the user to either accept or
reject the fingerprint. If the user rejects fp, the client aborts the protocol.
Otherwise it computes auth = LayerEnc(p, l, c) and sends auth to the
server.

We leave out how the server acts when given auth. As mentioned, we have not
witnessed this protocol during interaction with a real SpiderOak server and will
in this context refrain from speculating on what the server does in a real setting.

11

3.1.4 Account Registration

When users register a new account, they input an email email, password p, name
name and optional password hint, after which the client and server perform the
following protocol

Client Compute a random bcrypt salt s with a cost factor of 12. Send h =
bcrypt(p, s), email and name to the server.

Server If email is already registered, abort. Otherwise pick a username u =
u_spideroak_auto_n (n being an integer chosen such that u is unique
among SpiderOak users) and send u back to the client.

Both Execute the bcrypt protocol from subsubsection 3.1.1 and continue if it
succeeds.

Client User inputs a device name dname and sends it to the server.

Server Let rt be a 256-bit reinstall token, did = 1 the device ID and send
did, u, rt to the client.

Client Compute a list of keys kl according to subsection 3.2 and send it to the
server.

An interesting note is the fact that there are two usernames associated with
an account: The email input by the user and u picked by the server. Same goes
for the device name, with the user chosen dname and server chosen did. (Part
of) u and did play a role in the naming of files internally in the application.
Additionally, u is used by the application if the user has chosen to require the
password to be input on all startups.

3.1.5 Device Registration

At the point where the user registers a new account, the server already knows
some information about the user. In particular, the list of keys kl, which includes
the values ck and s1. In order to register another device for the same user, the
client does the following

Both Run the protocol pandora/zk from subsubsection 3.1.2 and continue if
it succeeds.

Server Compute a list of the user’s registered devices dlist and send dlist to
the user.

Client User inputs a new device name dname and sends it to the server (the
dlist is needed so the user can see a list of other owned devices)

Server Compute didnew as the maximum of device ID’s from dlist plus 1. Send
didnew, kl to the client.

Note how at account registration, the client sends the user’s keys to the
server. Conversely, during device registration, the server sends the user’s keys
to the client.

12

3.2 Keys
SpiderOak ONE uses several different cryptographic keys. Almost all are com-
puted by the client at the point of account creation and remain static thereafter.
As all keys are also stored on the server to allow support of multiple devices,
these keys need to be encrypted. To that end, the application encrypts all but
one key (the exception being ck from the previous section) in a hierarchical
manner, with a key derived directly from the user’s password at the top. A
rough sketch of this procedure is as follows

• An RSA keypair keypair.key is encrypted with a key derived from the
users password

• A symmetric key symkey.key is encrypted with keypair.key

• All other keys are encrypted with symkey.key.

The only key not encrypted in this manner is ck from the pandora/zk authen-
tication protocol.

A more detailed description of the key encryption process follows. To that
end, let p denote the user password, s2 be a random 256-bit salt and miv is
a 2048-bit random value used as a master iv. All keys are assumed to have a
distinct name and size parameter. The latter is 256 in all but two cases, in
which case it will be 4096.

keypair.key Let (sk, pk = (e, n))← RSAGen(3072) be an RSA keypair with
e = 216 + 1.16. Compute a key and a synthetic IV as

k ← PBKDF2(p, s2, 16384) (1)
iv ← sha256(”keypair” || s2)0:16

and define keypair.key := Enck(iv, (sk, pk)).

symkey.key Let k be a 3064-bit17 random value s.t. the most significant byte
is not 0 and let pk, sk be the values from keypair.key. Compute

c← RSAEncpk(k)
s← Signsk(sha256(c))

and define symkey.key := (c, s).18

16Default value in the RSA implementation used: https://github.com/dlitz/pycrypto/
blob/master/lib/Crypto/PublicKey/RSA.py#L499

17Note that this is 1 byte less than |pk|
18Clearly this KEM fails to satisfy CCA security (as opposed to more standard KEM based

on RSA and OAEP) but, since CPA security seems enough in this application and k is chosen
close to uniform in the domain this does not appear to be a problem.

13

https://github.com/dlitz/pycrypto/blob/master/lib/Crypto/PublicKey/RSA.py#L499
https://github.com/dlitz/pycrypto/blob/master/lib/Crypto/PublicKey/RSA.py#L499

Everything else. Let ksym ← sha256(RSADecsk(c)) and suppose we want to
encrypt a key with name name and size parameter `. To that end, let k be a
random `-bit string and compute a synthetic IV as

iv ← sha256(miv || name)0:16.

Finally, define name := Encksym(iv, k).

When the user creates an account, all keys are transmitted to the server. In
addition, the values s2, miv and ck are sent unencrypted. Note that, in order
for the client to recover their encryption keys, all that is needed is the user
password and the values s2 and miv. When the user registers a new device the
server will then transmit all the encrypted keys and the values s2 and miv, at
which point the client can recover the actual keys.

An interesting observation is that the RSA keypair acts more as a “master
key” than the user’s password. Indeed, access to the content of keypair.key
would give access to all other keys. This has some rather severe consequences
with regard to password changes (as we will describe in subsection 3.6). The
same can in principle be said about symkey.key.

For the rest of the paper we will call values encrypted by ksym as symkey
encrypted values. Also, the value miv is used throughout the encryption process
(as a seed for IV generation), so whenever we write “miv” it is implied that the
same value as above is used.

3.3 File Encryption
We describe two different schemes for file encryption used by SpiderOak ONE.
The first is used for metadata regarding both user files and the application
(settings etc.). The second is used only in the context of the files the user store.
For the sake of terseness we assume all symkey encrypted values to be decrypted.

3.3.1 Filenames

The naming scheme of files used in application plays an important role in de-
termining the keys used and how IVs are computed. The general format can be
seen in Figure 2. directory determines the key. In some cases, name is used for

directory/name.extension

Figure 2: General filename format inside the application.

creating IVs, something we have already seen with e.g., keypair.key. Likewise
for directory. The extension only plays a role with journalfiles (a specific
kind of metadata file), and is not present in all files.

Of particular note is the fact that these filenames and directory names do
not correspond to an actual location on the filesystem; they are only used by the
application and the server. We shall label the actual filesystem directory and

14

filenames as physical. E.g., a user stores a file foo.txt at the physical location
foo/bar.txt on the filesystem. However, internally in the application, the file
might be stored at block/1234-4-1001.19 We also remark that these names
are not secret.

3.4 Metadata Files
The format for encrypted files holding metadata can be seen in (2), where rn
is the record number, c is the encrypted content and rs = |c|8 is the record
size. We will refer to this construction as an AppendFile. In addition if f is an
AppendFile, we write frn to denote its record number.

rn || rs || c (2)

Suppose the application is to store some data d at a location described by
the format in Figure 2. Compute the new record number as

rn = max({frn | f stored AppendFile}) + 1 (3)

Retrieve the appropriate symkey encrypted key k according to directory and
compute a synthetic IV as

iv = sha256(miv || rn)0:16 (4)

and the encryption
c = Enck(iv, d) (5)

Finally, the new AppendFile g gets defined, using the values in (3) and (5),
according to (2). That is

g = rn || |c| || c

A remark: if |d|8 > 32768 then d will be split into chunks of at most 32768
bytes. Each chunk is then treated as a separate piece of data to be encrypted
according to the process above. Decryption is straightforward: extract rn from
the AppendFile, k according to directory, compute the IV as in (4) and decrypt
the first rs bytes of c.

3.4.1 journalfiles

An important type of metadata files are journalfiles, which are used to keep
track of all actions regarding other files: removal, moving, adding, deleting and
so on. For our purposes, they are of interest because they add an additional level
to the key hierarchy. Each (physical) directory that is backed up in SpiderOak
ONE has its own journal and an associated key. We will refer to the latter as a
directory key.

19The format a-b-c, is the naming scheme most commonly used inside the application. a is
the n part of the username u from subsubsection 3.1.4, and is unique across all accounts; b
corresponds to did from subsubsection 3.1.4 and c is a sequence number starting at 1001.

15

Suppose the user adds a physical directory to be stored in the cloud by
SpiderOak. The application then creates a new journal with name name.jrn
and a new directory key with name name.key in the following way

1. Compute a synthetic IV as

iv = sha256(miv || “journal” || name.key)0:16

2. Let dk, the directory key, be a 256-bit random string and define name.key
as

name.key := Encjk(iv, dk)

where jk is a symkey encrypted key associated with journalfiles. The new
journal name.jrn is then encrypted as an AppendFile using name.key as the
key. This construction gives the application a key per directory, a key that is
also used in the encryption of user files. Roughly speaking, when the user adds
a file to some directory, the journal for that directory key is retrieved, then the
directory is retrieved (by simply exchanging the .jrn extension for .key). The
file is then encrypted using a construction that relies on the directory key. One
important note is, the directory key used for a file, does not change when the
file is moved. If the user moves a file, all the application does is create two new
journal entries: one in the old directory, stating the file was moved out (a “move
out” entry); and one in the new directory stating the file was moved in (a “move
in” entry).

3.5 User Files
The client creates two different types of files, whenever the user uploads a new
(physical) file. The first type will contain the content of the actual file, while the
second contains information about the first. We will call the former blockfiles
and the latter versionfiles.

The structure of both blockfiles and versionfiles are the same and can be seen
in (6). eXk is an encrypted key derived from the data being encrypted and a
4096-bit master secret key mk (which is another symkey encrypted value), and
c is the encrypted data.

eXk || c (6)

How c is encrypted depends on whether the file is a blockfile or a versionfile.
That said, the way eXk is derived from a piece of data m, with name name in
a physical directory with key dk, is the same. This derivation can be seen in (8)
(the key used to encrypt c being (7)).

Xk = sha256(m || mk) (7)
eXk = Encdk(iv,Xk). (8)

The synthetic IV used is computed according to (9).

iv = sha256(directory || name || miv)0:16 (9)

16

where directory is either “block” or “version”.
We now give a more complete description. That is, suppose the user stores

some physical file f in a physical directory with the directory key dk. In addition,
let Enc∗ denote a full-width AES-CFB encryption (128-bit segment size), let
pad(x) denote a function that returns x padded according to ANSI X.923 and
suppose f.name is the name given to f in the application. Then

1. Partition f into n blocks b0, . . . , bn of some size. Each bi has a distinct
name b1.name.

2. For each bi, compute ivi as in (9), using “block” as the directory and
bi.name as name. Derive bki — the encryption key — according to (7)
(using bi in place of m). Compute

ci = Enc∗bki
(iv,pad(bi))

ebki = Encdk(iv, bki)

and define the blockfile for block bi according to (6) (i.e., as ebki || ci).

3. Derive, according to (7), a key fk using f ; and compute, according
to (9), an IV iv with directory “version” and name as f.name. Let
bl = [b0.name, . . . , bn.name] be a list containing the names of the blocks
containing f . Compute

c = Encfk(iv, bl)
efk = Encdk(iv, fk)

and define the versionfile for f as efk || c.

Some observations: Suppose f is small (e.g., a small text file), then it is
likely that only one block is needed. Note that, in this case we will derive the
same encryption key for both the (single) blockfile and versionfile, i.e., fk = bk.
However, the IVs derived will be different since the value of directory differs
(the string “block” is used in the first and “version” in the latter) and the IVs
are generated using a collision-resistant hash function. A similar argument can
be made in case f has two blocks bi and bj that are identical: in this case,
bi.name 6= bj .name and thus ivi 6= ivj . And similarly if f shares a block with
some other file f ′.

The way f is partitioned depends on what data f stores. For example, if
f is an MP3 or JPEG file, then |b0|8 = 2048 and all subsequent blocks will be
102400 bytes. This arguably leaks some information about f , although we will
not consider it further.

Finally, in reality, the list bl contains (in addition to the names of blocks)
also an MD5 hash and adler32 checksum of each block, as well as its size.

Note that the construction makes sharing of a file efficient: If the user wants
to share some file f , then it is enough that the client simply sends fk and all
bki (for the relevant blocks) to the server. The server can then itself decrypt f .
This is, more or less, also how file sharing is handled.

17

3.5.1 Single File Sharing

Let V and B0, . . . , Bn be the versionfile respectively blockfiles corresponding to
some file f the user wants to share. For V the client decrypts efk to obtain
fk; for all Bi the client decrypts ebki to obtain bki. The client then constructs
a Basic HTTP Authentication [10] header with a username consisting of an ID
assigned by the server at account registration, a device ID and optionally rt from
subsubsection 3.1.4. As password, the client will use the encrypted content of
a symkey value.20 The client sends fk, bk0, . . . , bkn to the server, using HTTP
Basic Authentication and HTTPs. The server then responds with a URL at
which the file f (which can now be reconstructed by the server, as it has all
the necessary keys) can be downloaded. Note that, by using the fact that the
encryption keys are part of a file, the application can share even large files very
efficiently.

3.5.2 Shared Directories

The approach for sharing a whole directory is conceptually similar to the single
file case. However, instead of sharing the keys embedded in the encrypted files
(blockfiles and versionfiles), the application simply shares the directory key.

Since files are not reencrypted when they are moved, this approach inadver-
tently shares “too much” in some scenarios. We return to this issue in subsec-
tion 4.4.

3.6 Password Change and Key Upgrade
The hierarchical relationship between the various encryption keys in the ap-
plication makes possible to support password change or RSA key upgrade at
very little cost. SpiderOak ONE, not surprisingly, allows the user to change
their password. In addition, the server can instruct the client to upgrade the
strength of the RSA keypair inside keypair.key.

Password change. The application only contains two values that depend
directly on the user’s password: keypair.key as it is encrypted with a key
k derived from the users password, and the challenge key ck. Thus, when
the user changes their password, the application simply recomputes these two
values. Note that the RSA keypair stored in keypair.key is not updated, and
the system essentially just re-encrypts the same key using the new password.
The details of the process were already described in (1).

RSA keypair Upgrade. A similar approach is taken when the RSA key-
pair from keypair.key has to be upgraded. However, since (the key inside)
symkey.key depends on the size of this keypair, this will have to be recomputed
as well. Roughly speaking

20This is the other 4096-bit symkey encrypted value (the first being mk). It is interesting
that this is the only place it is used. In other words, this key is encrypted but never decrypted.

18

1. Compute new RSA keypair of size nnew,

2. pick new k′sym as (nnew − 8) random bits,

3. encrypt k′sym using the new RSA keypair, and

4. extract and re-encrypt all the symkey encrypted keys (i.e., decrypt them
using the old ksym and re-encrypt them using k′sym);

As in the password change case, this process does not sample fresh keys i.e.,
upgrading the RSA keypair does not produce new symkeys. The value of nnew

(which the server sends) must be greater than the size of old keypair, in order
to avoid trivial downgrade attack on the client by the client.

Consequences. Consider the case where a user wants to change their pass-
word (due to fear of the password being compromised) or where the server
instructs a client to upgrade the keylength (due to fear on a possible attack on
the current parameters). We note that, if the attack has already taken place,
then neither the password change procedure, nor the RSA key upgrade proce-
dure will guarantee any additional security even for files which will be uploaded
in the future!

To see why, note that knowledge of the password (resp. the RSA secret key)
allows to learn the symkey used to encrypt the files (concretely, the journalkey).
Since these keys are not being rotated, the next uploaded file will be encrypted
with a compromised key.

4 Attacks
We now present some concrete issues we found in the application, and show
how a malicious server can abuse them in order to obtain a copy of the user
password and thereby decrypt their stored files.

The attacks we will present can be abused by a malicious server acting as
either an active or passive adversary. More precisely, we consider the following
two types of malicious servers

Active A malicious server is considered Active if it will tamper with an ongoing
connection between the server and client.

Passive A malicious server is considered Passive if it will only inspect that
data being transmitted by the client.

We present three issues that can be exploited by an actively malicious server:
A downgrade and memory leak in the protocol from subsubsection 3.1.1; a pass-
word retrieval in the protocol from subsubsection 3.1.2, where we in addition
argue that the Fingerprint procedure is insufficient to guard against the at-
tack; and lastly, an attack which abuses weak path string validation in some of
the remote procedures available to the server. In particular, this allows us to
request the file mentioned in subsection 2.2 that stores the user’s password in

19

plaintext. We also present one passive attack, which was mentioned in passing
when we described directory sharing: In a nutshell, sharing a directory has con-
sequences for the secrecy of other files that was once in the shared directory, or
that become part of the shared directory after it stops being shared.

Attacker Setup. For issues exploitable by an active adversary, we used a
client running in a Debian 8.7 virtual machine. The SpiderOak ONE version
was 6.1.5. We made no modifications to the client, although we did modify the
environment it was running in. That is, by starting the client with the command
in Figure 3

$ SPIDEROAKONE_SSL_VERIFY=0 SpiderOakONE

Figure 3: Command for running SpiderOak ONE without any kind of certificate
validation enabled (GNU/Linux).

we can turn off certificate pinning, allowing us to perform active Man-in-the-
Middle attacks.

The single passive attack was verified by using data generated by our analysis
client. I.e., the client described in subsection 2.2 running on a Windows XP
virtual machine.

4.1 Active Attack 1: bcrypt downgrade and memory leak
When executing the protocol in subsubsection 3.1.1, the client performs very
little verification of the salt s it receives from the server. In fact, if one considers
only the core application, no verification at all is done and the salt is passed
directly to the underlying bcrypt library. This results in two distinct issues that
can be combined by a malicious server to

1. obtain a weak password hash derived from s and user’s password; and

2. leak a small amount of client memory.

The bcrypt KDF expects a salt of the Modular Crypt Format21 i.e., of the
form idcost$salt. In a nutshell, the first issue arises because a malicious
server can lower the value of cost; the second issue is a result of a bug in
the bcrypt implementation used, which leaks memory when salt is not valid
base64.

Downgrade. During normal execution of the protocol the server will use a
salt computed earlier by the client. In particular, cost will be 12 (as described
in subsubsection 3.1.4). The “strength” of the downgrade the server can perform,
depends on what values are allowed by the underlying bcrypt library. Inspecting

21See e.g., http://man7.org/linux/man-pages/man3/crypt.3.html

20

http://man7.org/linux/man-pages/man3/crypt.3.html

the implementation22 reveals that cost must be between 4 (16 iterations) and
31 (2147483648 iterations). This implies that a downgrade by a factor of 8 (i.e.,
from 4096 to 16 iterations) is possible.

1 static void
2 decode_base64(u_int8_t *buffer , u_int16_t len ,
3 u_int8_t *data){
4 // snip
5 while (bp < buffer + len) {
6 c1 = CHAR64 (*p);
7 c2 = CHAR64 (*(p + 1));
8 /* Invalid data */
9 if (c1 == 255 || c2 == 255)

10 break;
11 // snip
12 int
13 pybc_bcrypt(const char *key , const char *salt ,
14 char *result , size_t result_len){
15 // snip
16 u_int8_t csalt[BCRYPT_MAXSALT];
17 // snip
18 decode_base64(csalt , BCRYPT_MAXSALT ,
19 (u_int8_t *) salt);

Listing 1: Memory leak

Memory Leak. Further inspection of the bcrypt implementation revealed a
memory disclosure bug. Consider the snippet in Listing 1, and suppose the
server supplied a salt with invalid base64 data in the salt part. The code
allocates 16 bytes of uninitialized memory in csalt, then tries to decode salt;
storing the result in csalt. However, if the first byte of salt is not valid base64,
the decode_base64 function will exit immediately, leaving csalt uninitialized.

Constructing a “bad” salt for use by a malicious server is straightforward.
For example, using the salt in Figure 4 results in the client returning password

$2a$04$0x01AAAAAAAAAAAAAAAAAAAAA

Figure 4: Bad salt (0x01 denotes the byte 00000001)

hashes shown in Figure 5.
In particular, the returned salts contain 16 bytes of memory (the 21 base64

encoded characters after the last $) as well as a cost factor of 4 indicating only
16 iterations was used in deriving any of the hashes. The impact of this attack
(on top of the described memory leakage) mostly depends on the strength of

22concretely, the code in bcrypt.c, see https://github.com/grnet/python-bcrypt/blob/
master/bcrypt/bcrypt.c

21

https://github.com/grnet/python-bcrypt/blob/master/bcrypt/bcrypt.c
https://github.com/grnet/python-bcrypt/blob/master/bcrypt/bcrypt.c

| client memory |
$2a$04$iM/x.Nb9...ebsuH716...fw576xg/3FVnWNYCHyYDskSOcnov/dG
$2a$04$6AAwCPD9...ergmZCV6...XE9PkLUUoclduCplVq8QsR1bF0Jf0mS
$2a$04$qAo3aRT9...evhD5LV6...nfOE4dX7TLQ4RGDHdUE5UzXQPiI0WKm

Figure 5: bcrypt hashes derived by the client when the user input the password
asd and using the salt in Figure 4.

the user password. In any case, by downgrading the cost factor, the server can
speed-up any brute force (or dictionary attack) against the hashed password.

Validation. We validated the attack by writing a small Python Flask23 ap-
plication that could act as a malicious login server.

4.2 Active Attack 2: escrow/challenge password retrieval
Recall the LayerEnc function from subsubsection 3.1.2 and note that the
holder of the private keys ski, corresponding to the pki in l can decrypt auth
and thus learn the user password. More precisely, suppose the server instead
sends l∗ = [(id∗0, pk

∗
0), . . . , (id

∗
n, pk

∗
n)], such that the server knows the secret keys

sk∗i corresponding to pk∗i for i = 1 . . . n (and suppose for the time being that
the client also accepts the fingerprint output by Fingerprint(l∗))24. When
the client returns a response, the server can simply reverse the encryption done
by LayerEnd as the server knows the corresponding secret keys to the public
keys the client used.

Moreover, the if the server sends l∗ = [] (i.e., an empty list), the client will
skip the encryption step altogether (since there is no values to loop over) and
send back the user password un-encrypted.

eyJjaGFsbGVuZ2UiOiAiZGVhZGJlZWYiLCAicGFzc3dvcmQiOi
Aic2VjcmV0MTIzIn0=

{"challenge": "deadbeef", "password": "_________"}

Figure 6: Auth string returned by the client (before and after decoding) in the
case where no keys are sent.

Since the client has to accept the fingerprint created from the list of keys the
server sends, it is naturally to ask how effective it is. The fingerprint computed
is shown as a popup containing a message and the fingerprint itself, along with
two buttons: “yes” to accept the presented fingerprint and “no” to reject it. The
message included is the interesting part and is quoted below (emphasis ours):

If your SpiderOakONE Administrator has given you a fingerprint
phrase and it matches the fingerprint below, or if you have not

23http://flask.pocoo.org/
24The fingerprint is shown even in the case of an empty list.

22

http://flask.pocoo.org/

been given a fingerprint, please click “Yes” below. Otherwise
click “No” and contact your SpiderOakONE Administrator.

Consider the following scenario. A user connects to a malicious server and
tries to perform an action that requires some form of authentication towards the
server (i.e., either account or device registration). The server, being malicious,
then performs the attack described above, resulting in a fingerprint along with
the aforementioned message being presented to the user. It is entirely possible
the user has never seen this message before and is thus unsure of how to act.
Now, common sense would dictate that you simply press “no” (do not accept
strange proposals from your computer). However, the message suggests the
opposite. In other words, if the user followed the instructions given by the
application, she would end up revealing her password to the server, thus giving
full access to all her files.

One could argue that it would be risky for a rogue SpiderOak to run this
attack: regardless of whether the user clicks ’yes’ or ’no’, the user will detect
some anomaly in the functioning of the application. However, as we shall see
in the next section, there exist a way of stealing the user password which is
completely undetectable.

Validation. The attack was verified using the same malicious login server as
in the previous section (although with a different configuration).

4.3 Active Attack 3: Unsafe file retrieval
The next issue we describe centers on three remote procedures the server can
invoke remotely on the client. Two of these procedures are available by default
while the last is only available if the client has enabled the “remote diagnostics”
flag. All three procedures share the same basic functionality, namely that of
allowing the server to retrieve physical files stored locally on the client.

1 _safe_user_file_regexp = re.compile(’’’
2 ^([a-zA-Z0 -9_-]{1 ,240})
3 ([\\\\/])
4 ((?:[@a -zA -Z0 -9_ -]|\\.(?!\\.)){1 ,240})$’’’,
5 re.VERBOSE)

Listing 2: safe user file regular expression. Formatted a bit for readability.

Of course, simply letting the server retrieve any physical file it wants to is
insecure. The client therefore checks the path requested against the regular
expression shown in Listing 2.
Roughly speaking, the regular expression allows only paths of the form
dir/file.ext, where dir cannot contain any dots and file cannot more than
one consecutive dots and no slashes.25 If the path requested matches the regular

25The last requirement prevents relative directory traversing, e.g.,
foo/bar/../../../outside.txt

23

expression, the client appends it to the local directory SpiderOak ONE uses and
retrieves the file. For example, if the server asks for foo/bar.txt, the client
will reply with the content of the physical file stored at (if it exists)

$HOME/.config/SpiderOakONE/foo/bar.txt

By default the client will store a file with the user password in plaintext at
two different locations:

• tss_external_blocks_snapshot.db/00000003

• tss_external_blocks_pandora_sqliite_database/00000003

The first directory does not match the regular expression (as the directory name
contains a dot); the second does, however. Abusing this issue is then simple:
When the client connects, simply issue a remote procedure call asking for the
second location above. Since the client considers the path requested as “safe”,
the content of the file is returned. An example of the content can be seen
in Figure 7.

{’reinstall_token’:
’xGqQnxG8+7wfvvE+EREZtcNSgSi2bsBP5z/RC24cHLs’,

’password_verify’:
’*\x84f;\xae\xd4\xb2\xcf\xb4w\tm\x91\x17\xecb’,

’user_name’: ’u_spideroak_auto_205015’,
’password_plain’: ’________’,
’email’: ’__________________________’,
’device_id’: 1}

Figure 7: Example content of a retrieved file after deserialization with password
and email blurred. reinstall_token is the rt value from subsubsection 3.1.4.
password_verify is a hash of the user’s password

Since all file encryption ultimately depends on the security of the user pass-
word, the impact is clear: possessing the user password allows one to recover all
their files.

Non-default behaviour. The setting described so far is the default be-
haviour in SpiderOak ONE in which the user password is stored unencrypted
on the user client. Thanks to this, the user does not have to type the password
at every login.

More paranoid users could have enabled the flag that requires the password
to be typed at every login. When this flag is enabled, the password field in Fig-
ure 7 will be missing. However, password_verify will still be present, which is
computed as

h1 = MD5(”password_verify” || username || password)
h2 = MD5(h1 || ”password_verify” || username || password)

= password_verify

24

where username is the value in the user_name field in Figure 7 and password is
the user’s password. Now the attack has the same flavour of the one described
in subsection 4.1 i.e., the server has now hold of a weak hash of the password,
which is much easier to brute-force.

Validation. We wrote a Man-in-the-Middle program that could parse and
tamper with the remote procedure calls constructed by the PB interface. We
then used it to intercept the connection between our client and a legitimate
SpiderOak server. Finally, the actual attack (crafting the procedure call) was
done by substituting a benign call from the legitimate server (e.g., a query about
the current client time) with a malicious call, after which we could parse the
clients response and verify that it was possible to extract the user’s password.

4.4 Passive Attack 1: Missing key rotation for shared di-
rectories

The last issue we present is connected to the process of releasing the directory
key when sharing a directory. More specifically, the client does not ensure
that other files also encrypted under the shared directory key — but which are
not currently part of the physical directory — are re-encrypted under a new
directory key. We present two scenarios, in order to illustrate this issue

Scenario 1. The user has stored some physical directory D containing a file
F on their machine. At some points the user decides to share D and therefore
instructs their client to do so. The client then decrypts dk and sends it to
SpiderOak, who can now decrypt F and publish it on their website. Later, the
user instructs their client to stop sharing D. The client forwards the instruction
to SpiderOak who removes F from their website. Now, later again, the client
adds a new file F ′ to D. As the directory key associated with D is still dk, F ′
will be encrypted using dk (as explained in subsection 3.3). In particular, when
the client uploads the encryption of F ′, the server can also decrypt this file, as
it already possesses dk.

Scenario 2. The user has stored some physical directory D containing files
Fpub and Fsec. The user wants share D, but not Fsec. Thus, before the user
asks their client to share D, the user moves Fsec into some other directory D′.
The user then asks their client to share D (now containing only Fpub) at which
point the client does as before: Find the correct dk, decrypt it and send it to
SpiderOak. However, the act of moving a physical file simply means adding the
“move in” and “move out” journal entries. In particular, the encryption key used
will still be dk. Thus, when the client uploads dk, the server can recover both
Fpub and Fsec.

It is easy to imagine both scenarios happening in the real world. The first
scenario shows that sharing a directory “taints” files into the future, while the

25

second scenario shows that sharing also taints files into the past (so to speak).

Validation. We used our analysis client and executed the two scenarios above.
In order to verify that we could decrypt some block b, we need miv, b.name
and dk (as described in subsection 3.5). The first value could be extracted by
observing a device registration (miv is part of kl in subsubsection 3.1.5); b.name
is sent when (the blockfile for) b gets uploaded; and the directory key dk is
transmitted un-encrypted when the corresponding directory gets shared.

5 Conclusion
In this paper we described a number of vulnerabilities which allow a rogue
SpiderOak server (or anyone able to bypass certificate pinning and manage
to interact with the client software) to break the no-knowledge property i.e.,
compromise the confidentiality of the user’s file. While most of the problems
have already been fixed by SpiderOak, the fact that the attacks have been
possible so far has serious consequences: since the attacks are easy to carry
and undetectable at the client side, there is no way to be completely sure that
attacks have not been already run.

We would recommend all SpiderOak users to change their password (as this
could have been stolen). Unfortunately, as described in subsection 3.6, changing
the password simply re-encrypts the long term secret key under a new password.
Therefore if an attacker has already obtained this long-term secret key, chang-
ing the password will not even help in ensuring the confidentiality of the files
uploaded by the users in the future (and clearly nothing can restore the eventual
loss of confidentiality which could have already occurred).

Our analysis can also be used to draw some general conclusions about the de-
sign of encrypted cloud storage systems. We believe that “the root of all evil” in
the case of SpiderOak relies in the choice of using the same secret (the password)
both for authentication and confidentiality purposes. We understand that, from
a user experience point of view, it is hard to have to generate, store and type
two strong passwords. However we have also observed how this choice (com-
bined with authentication protocols which are not zero-knowledge in a strong,
cryptographic sense) leads to a complete loss of confidentiality.

Acknowledgments. Research funded by the Danish Council of Independent
Research. We are grateful to DDIS for useful sparring and technical dialogues.

References
[1] Karthikeyan Bhargavan and Antoine Delignat-Lavaud. Web-based attacks

on host-proof encrypted storage. In 6th USENIX Workshop on Offensive
Technologies, WOOT’12, August 6-7, 2012, Bellevue, WA, USA, Proceed-
ings, pages 97–104, 2012.

26

[2] Moritz Borgmann, Tobias Hahn, Michael Herfert, Thomas Kunz, Marcel
Richter, Ursula Viebeg, and Sven Vowe. On the security of cloud storage
services. 2012.

[3] Tom Chothia, Flavio D Garcia, Chris Heppel, and Chris McMahon Stone.
Why banker bob (still) can’t get tls right: A security analysis of tls in
leading uk banking apps. 2017.

[4] McDonald D. A convention for human-readable 128-bit keys. RFC 1751,
RFC Editor, 12 1994.

[5] Morris J. Dworkin. Recommendation for Block Cipher Modes of Operation.
NIST Pubs, 2001.

[6] EFF. Who has your back? government data requests 2014. https://www.
eff.org/who-has-your-back-2014#spideroak, 2014.

[7] M. Grothe, C. Mainka, P. Rösler, J. Jupke, J. Kaiser, and J. Schwenk. Your
cloud in my company: Modern rights management services revisited. In
2016 11th International Conference on Availability, Reliability and Security
(ARES), pages 217–222, Aug 2016.

[8] Shai Halevi, Danny Harnik, Benny Pinkas, and Alexandra Shulman-Peleg.
Proofs of ownership in remote storage systems. In Proceedings of the 18th
ACM Conference on Computer and Communications Security, CCS 2011,
Chicago, Illinois, USA, October 17-21, 2011, pages 491–500, 2011.

[9] Danny Harnik, Benny Pinkas, and Alexandra Shulman-Peleg. Side channels
in cloud services: Deduplication in cloud storage. IEEE Security & Privacy,
8(6):40–47, 2010.

[10] Reschke J. The ’basic’ http authentication scheme. RFC 7617, RFC Editor,
9 2015.

[11] Burt Kaliski. Pkcs# 5: Password-based cryptography specification version
2.0. 2000.

[12] Sriram Keelveedhi, Mihir Bellare, and Thomas Ristenpart. Dupless:
Server-aided encryption for deduplicated storage. In Proceedings of the
22th USENIX Security Symposium, Washington, DC, USA, August 14-16,
2013, pages 179–194, 2013.

[13] Dhiru Kholia and Przemysław Węgrzyn. Looking inside the (drop) box. In
Presented as part of the 7th USENIX Workshop on Offensive Technologies,
Washington, D.C., 2013. USENIX.

[14] Niels Provos and David Mazières. A future-adaptable password scheme. In
USENIX Annual Technical conference, 1999.

27

https://www.eff.org/who-has-your-back-2014#spideroak
https://www.eff.org/who-has-your-back-2014#spideroak

[15] Marc Stevens, Elie Bursztein, Pierre Karpman, Ange Albertini, and Yarik
Markov. The first collision for full sha-1. Cryptology ePrint Archive, Report
2017/190, 2017. http://eprint.iacr.org/2017/190.

[16] Nikos Virvilis, Stelios Dritsas, and Dimitris Gritzalis. Secure Cloud Storage:
Available Infrastructures and Architectures Review and Evaluation, pages
74–85. Springer Berlin Heidelberg, Berlin, Heidelberg, 2011.

[17] Duane C Wilson and Giuseppe Ateniese. “to share or not to share” in
client-side encrypted clouds. In International Conference on Information
Security, pages 401–412. Springer, 2014.

28

http://eprint.iacr.org/2017/190

	Introduction
	Analyzing the Application
	Introduction to SpiderOak
	Under the Hood
	HTTPs
	Perspective Broker (PB)
	Patching of the application

	Protocols
	Registration protocols
	bcrypt
	pandora/zk
	escrow/challenge
	Account Registration
	Device Registration

	Keys
	File Encryption
	Filenames

	Metadata Files
	journalfiles

	User Files
	Single File Sharing
	Shared Directories

	Password Change and Key Upgrade

	Attacks
	Active Attack 1: bcrypt downgrade and memory leak
	Active Attack 2: escrow/challenge password retrieval
	Active Attack 3: Unsafe file retrieval
	Passive Attack 1: Missing key rotation for shared directories

	Conclusion

