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Abstract

This paper presents an independent security review of a popular en-
crypted cloud storage service (ECS) SpiderOakONE. Contrary to previous
work analyzing similar programs, we formally define a minimal security
requirements for confidentiality in ECS which takes into account the pos-
sibility that the ECS actively turns against its users in an attempt to beak
the confidentiality of the users’ data.

Our analysis uncovered several serious issues, which either directly or
indirectly damage the confidentiality of a user’s files, therefore breaking
the claimed Zero- or No-Knowledge property (e.g., the claim that even
the ECS itself cannot access the users’ data). After responsibly disclosing
the issues we found to SpiderOak, most have been fixed.

1 Introduction
More and more users worldwide choose to store their data using cloud storage
services such as Dropbox, Google Drive, Microsoft Azure, etc. (Dropbox alone
recently celebrated reaching half a billion users.1) These services give users
a transparent way to share their data between multiple devices, they allow to
share files between users, and provide a relatively cheap way for keeping personal
backups in the cloud.

Unfortunately, “classic” cloud storage solutions provide little or no guarantee
about the confidentiality of the data that the users choose to store in the cloud.
While most of these services guarantee that the data is encrypted in transit
to protect against a network eavesdropper, no mechanism prevents the storage
provider itself from accessing the users’ data. (In fact, the economic viability of
some of these systems relies on being able to identify multiple copies of the same
data being stored, and thus being able to implement deduplication techniques.
However, using de-duplication might allow attackers to learn information about

1https://blogs.dropbox.com/dropbox/2016/03/500-million/ (all links last retrieved on
December 20th 2017)

1

https://blogs.dropbox.com/dropbox/2016/03/500-million/


other users’ data. See [19] for a description of the problem and [18, 25] for some
cryptographic solutions which allow to perform de-duplication in a secure way.)

Moreover, data that is being stored unencrypted is more vulnerable to data
breaches, whether that be from a malicious outsider, malicious insider or gov-
ernment sponsored actor. (According to [15], of the 1792 breaches in 2016 only
75, or 4.2%, used encryption in part or full.)

All of these factors lead to an increased interest in password-encrypted cloud
storage services that offer to store the user’s data in an encrypted format, in
such a way that even the service provider themselves cannot access the users’
data. This is a very useful property, which has an important impact against
several interesting threat models: if the service provider is technically unable to
access the user’s data, the provider cannot be coerced (e.g., by law enforcement)
to reveal the content of the user’s encrypted storage; also, since the users’ data
is only stored in encrypted format (and the password is unknown to the server),
even if someone could gain access to the cloud storage system, this would not
help in compromising the users’ data.

SpiderOak2 is among the most popular encrypted cloud storage services
offering end-to-end encrypted cloud storage. SpiderOak received popular at-
tention after being endorsed by Edward Snowden as a secure alternative to
Dropbox [27], and has received positive reviews by the EFF [14]. SpiderOak in
particular marketed their product using the term Zero-Knowledge (now replaced
by No-Knowledge [31]), capturing the property that even SpiderOak themselves
have no way of accessing the content of the encrypted users’ storage.

In a nutshell, virtually every encrypted cloud storage, including SpiderOak,
stores the users’ data encrypted under a user chosen password. Therefore,
whether this No-Knowledge property holds ultimately relies on two factors:

1. The user must choose a strong password; and

2. The user’s password must never leave the client’s software.

Much has been written about the (in)ability of users to choose strong pass-
words (e.g., [7]), so we will not address this threat further in this paper. What
is perhaps more interesting, from a technical point of view, is to look at the
service provider’s choices in protocol design and software implementation to
ensure that no one, not even the service provider itself, can extract the user’s
password from the client software. SpiderOak is very explicit about this: for
instance, users attempting to login using the web interface (which would reveal
the password to the server) are required to acknowledge the following message3:

I understand that for complete ’Zero-Knowledge’ privacy, I should
only access data through the SpiderOak desktop application.

2https://spideroak.com/
3https://spideroak.com/browse/login/storage
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1.1 Contributions and Paper Organization
The main contribution of this paper is to present an independent security review
of the SpiderOakONE client software with the goal of examining the Zero- or
No-Knowledge claim from the perspective of a malicious service provider. We
believe that independent security reviews of real world systems is very important
towards the goal of improving user’s privacy.

In Section 2 we provide a simple and formal definition of what kind of ba-
sic confidentiality should be provided by a password-encrypted cloud storage
service. We believe that our definition represents the minimal guarantees that
such a service should provide, and we argue for why this is the case. To the best
of our knowledge, this is the first such definition, since neither SpiderOak, nor
other password-encrypted cloud storage services have ever provided formal def-
initions of which security guarantees they provide (in particular, only intuitive,
high-level and therefore ambiguous descriptions of what Zero- or No-Knowledge
means could be found): therefore, we believe that our definition can be used as
a benchmark in future analysis of other password-encrypted services and will
have a tangible and concrete effect in practice on the design of such services.
As an example of this, we note that SpiderOak published a piece on this more
comprehensive threat model [34], partially inspired by our work.

In Section 3 we describe how SpiderOakONE is implemented, what systems
it runs on and what version we analysed. We then describe how the applica-
tion was reverse engineered and analysed. This description comprises both the
implementation and how the client application was reverse engineered, as well
as the choice of protocols and primitives. We show that decompilation is fairly
easy and that therefore future audits can be preformed without access to the
source code.

Since SpiderOak provides only a very superficial description of its application
(cf. their whitepaper [33]), our description fills this hole and could serve as a
stepping stone for in-depth analysis of the application’s mode of operation in
the future.

Our main results can be found in Section 4, where a series of attacks that
can be carried out against SpiderOak users in our threat model are presented.
We stress that these attacks are not possible just because of implementation
“bugs”, but because of the design choices made in the development of the system.
Therefore, these attacks teach us what threats and pitfalls should be avoided
and should serve as motivation for careful vetting of applications that make
strong claims with regard to security—not just for their users but also for their
developers.

We hope that the attacks we present will motivate more research into the
security encrypted cloud storage application, when the ECS is considered as
potentially malicious. In particular, just like SpiderOak claims4 that only the

4https://support.spideroak.com/hc/en-us/articles/115001855103-No-Knowledge-
Explained
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user can read their files, so does e.g., Tresorit5 and LastPass6.

Responsible Disclosure We have communicated our findings to the security
team of SpiderOak on April 5th, 2017. On June 5th 2017 SpiderOak released a
new version of the software which resolves most of the issues described in this
paper. SpiderOak notified their users by email and released a blog post about
this [35]. We find it commendable that SpiderOak has reacted so swiftly to the
issues we found.

1.2 Related Work
Previous analysis’ of SpiderOakONE has focused on its shared directory func-
tionality (i.e., ShareRooms) and only in the presence of an external attacker.
In [6] Bharagavan and Delignat-Lavaud demonstrate a Cross Site Request Forgery
attack on the ShareRoom functionality due to a lax cross-origin policy. Bansel
et al. later provide a formal modelling of this attack using ProVerif in [2]. Wilson
and Ateniese show in [39] that the ShareRoom functionality reveals the shared
files to the server, in addition to the intended recipient. Our work shows that,
in addition to the shared files being readable by the server, some files that are
not shared (i.e., not part of the directory being shared) might also be revealed.

Several attacks against Cloud Storage Services that use deduplication was
described in [19] and [29]. However, SpiderOak does not do deduplication [33]
(see also Section 3.4).

Password managers can be seen as a special case of encrypted cloud storage
applications. In this direction, Li et al. conducted in [28] a security analysis of
five popular web-based password managers and found in four out of five cases
that attackers could learn arbitrary credentials. In [3] Belenko and Sklyarov
show that mobile password managers often provide little or no protection.

In the context of ECS in general: Virvisil et al. [38] provide a brief survey of
challenges and solutions for secure cloud storage. An extensive survey of some
cloud storage application can be found in [8]. The description we provide of
SpiderOakONE (Section 3 and the Appendix) can be seen as complementary to
this previous work.

Kamara et el. provide in [23] a description of how to build ECS using stan-
dard cryptographic tools. Like us, they assume that the client is trusted, while
the server is not. A similar assumption exists in [37] (so called “internal adver-
saries” in their work).

2 Security Model
In this section we provide a formal definition capturing a basic confidential-
ity security requirement for files stored on a password-encrypted cloud storage

5https://tresorit.com/security
6https://lastpass.com/whylastpass_technology.php
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service (or PECS for short). The definition is designed to capture the mini-
mal security guarantees that a PECS should provide, and we believe it can be
used as a simple benchmark against which other PECS can be tested. The def-
inition does not attempt to capture every possible security requirements for a
PECS: in particular, the definition does not capture hiding the access pattern
(which could be achieved using tools such as Oblivious RAM [17, 36]), nor does
it capture retriviability (which could be addressed using proofs of retrievabil-
ity [21, 36]), integrity, or several other properties which could be desirable in an
PECS context.

The definition will follow the standard game-based approach typically used
in cryptography, and will resemble the common notion of CCA security, and the
way we deal with password encrypted data is inspired by [5, 40].

In our abstraction we model a PECS as a pair of interactive systems Cli, Ser
which can run a number of different subprotocols (described below). We use
the standard notation (oC ; oS) ← π(iC ; iS) to denote an interactive protocol
between Cli and Ser, where (iC , oC) represent the input and output of Cli, and
(iS , oS) represent the input and output of Ser. We denote by ⊥ an empty
input/output.

Server Init: The function st0 ← Init() is used to initialize the server state.
All other subprotocols will take as input the current state of the server
sti and output an updated state sti+1 (as a notational convenience, we
assume that the state contains the complete view of the server in each
subprotocol and that sti+1 ⊇ sti i.e., no information is ever erased from
the server’s state);

Password Registration: Running (pw; sti+1)← πreg(κ; sti) the client can reg-
ister a password of strength κ on the server; After this step the server’s
state contains a hashed version of the password h = Hc(pw), where c spec-
ifies the number of iterations of the hash function/random oracle H. The
password registration command can be issued multiple times, to capture
the fact that a user might want to change password during the lifetime of
the system.

File Storage: Running (⊥; sti+1) ← πsto(pw, f, id; sti) a client can store a file
f with identifier id using the current password pw on the server;

Other Commands: Depending on the specific PECS system, a number of
other commands will be implemented using sub-protocols (oC ; oS) ←
πcmd(pw, id1, . . . , id`; sti) which take as input the current client’s password
and zero or more file id’s. As a result the server state might be updated.
We divide the commands in non-revealing commands πnrc, capturing the
fact that these commands should not reveal any information about the
content of the files to the server, and in revealing commands πrev, captur-
ing the fact that when using these commands the server is allowed to learn
the content of the involved files. Examples of common non-revealing com-
mands include client authentication (login), retrieving a file at the client
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side, and moving or deleting a file at the server side; examples of common
revealing commands include public sharing or declassifying of a file.

We are now ready to present a security experiment, modeled as a game be-
tween the client and the adversary, capturing the desired security requirements.
For simplicity we present the game with a single Cli, but the definition could be
easily extended to deal with the more realistic setting in which multiple clients
interact with the same encrypted cloud storage PECS.
Confidentiality Experiment for PECS

1. st0 ← Init();

2. (pw; st1)← πreg(κ; st0);

3. The adversary A on input the server state st1 adaptively chooses a series
of commands to be executed (password registration, store, other revealing
or non-revealing commands), specifying the input of the client in every
subprotocol. More precisely, the adversary can specify a command cmd
and the corresponding inputs and (oC ; oS) ← πcmd(pw, iC ; iS) will be ex-
ecuted with the current password. [Optional for forward secrecy : every
time a new password is registered, the old password leaks to A];

4. At some point A outputs (f0, f1, id
∗) where f0, f1 are two files of equal

length;

5. One of the two files (chosen at random) is now stored on the server i.e.,
b← {0, 1}, and (⊥; sti+1)← πsto(pw, fb, id

∗; sti);

6. A continues issuing commands to be executed as in step (3), but is now
prevented from running any revealing command on id∗ [Optional for for-
ward secrecy : when new passwords are registered, the old password does
not leak to A];

7. A outputs a guess b′.

Definition 1 (Confidentiality of Password-Encrypted Cloud Storage). We say
that a PECS satisfies file confidentiality if no PPT adversary A making at most
q queries to the random oracle can win in the above confidentiality experiment
with probability more than

1

2
+

q

c2κ

(plus a negligible factor in the computational security parameter k). In addi-
tion we say a PECS satisfies forward secrecy if the above holds even when old
passwords are leaked to A in step 3 of the experiment.

Some remarks about our definition are in order at this point: as already
stated, our definition only attempts at capturing a minimal confidentiality re-
quirement for the stored data, and does not capture many other desirable secu-
rity properties (integrity, retrievability, hiding the access pattern, etc.). Since
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our definition also allows for revealing commands, our definition capture the
intuitive requirement that declassifying (e.g., sharing publicly) one or more files
should not impact the security of the other files stored at the server. We dis-
tinguish between a passive A that only chooses the scheduling and the inputs
of the commands to be executed, and an active A that in addition can specify
arbitrarily corrupted behaviour for the server (but not for the client) in the sub-
protocols. We use the RO model to be able to better quantify the probability
that the adversary can succeed in brute forcing the hash of the password (which
is unavoidable in any password-encrypted protocol), and to allow to reason
about attacks that might give a “constant” (e.g., 103) advantage in succeeding,
which might be considered a breach in practice. In particular our definition
allows for a “slack term” q

c2κ in the winning probability for the adversary that
represent the base probability for an adversary to brute force a password hash
h = Hc(pw) with q queries to H, where the password pw has strength κ and c
denotes the number of iterations of the hash function. The forward secure ver-
sion of our definition captures the natural requirement that, in the case an old
password is leaked to the server, the confidentiality of files which were uploaded
under a newer password should not be compromised.

As is common in cryptographic definitions, we require that the adversary
should not be able to learn any information about stored files, and we capture
this by saying that no adversary should be able to even distinguish between
the encryptions of two known files. However, in the upcoming sections we will
distinguish between different levels to which the definition can fail. In particular
we will consider:

Password recovery: This is considered a total break of the system, as the
adversary will be able to recover every single file ever stored by the client;
(As in Attacks 4.2 and 4.3)

File recovery: Here the adversary can completely recover one or more files;
(As in Attack 4.4)

ρ-Password Weakening: Here the adversary can increase the password guess-
ing advantage. We say that an adversary has succesfully run a ρ-password
weakening attack if, after the attack, the probability that the adversary
wins the distinguishing game is at least

1

2
+

q

c2κ−ρ

i.e., the attack effectively removes ρ bits of security from the password.
Attacks 4.1 and 4.3 are examples of this kind of attacks.

Note that a password recovery attack is (clearly) the most devastating one,
whereas file recovery attacks and password weakening attacks are somehow in-
comparable: depending on the password strength κ and the factor ρ, a password
weakening attack might have no practical impact (and not be enough to recover
even a single file) or lead to a complete password recovery (thus allowing to
recover every encrypted file).
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Our Model vs. the Real World. One objection to our definition might
be that an adversary (the server) cannot force the client to run adversarially
chosen subprotocols, however, as detailed later in Section 3.1 this is justified by
the fact that the client software offers an RPC interface.7

Another objection might be that since SpiderOak is proprietary, the ad-
versary could simply serve a “broken” copy of the client to the user. While
not unheard of (e.g., the Juniper incident [9]), such an attack could be easily
detectable and could potentially ruin the reputation of a service provider. More-
over, this attack could be prevented by making the client version of the software
open source, so that clients can verify that the software they run satisfies the
specifications of the protocol. Therefore, we will not consider this threat in the
paper and assume that the client is able to retrieve an “honest” copy of the
client software, and that only in a second phase the cloud service provider turns
on its users. (This models the natural scenario in which the service provider is
coerced to attack one of its users, or the case in which a company is sold and
therefore a potentially malicious actor gets full control of the server.)

Finally we note that using an encrypted communication channel (e.g., TLS)
between the client and the server does not help towards achieving our secu-
rity definition. Indeed, the adversary is the intended recipient of the client’s
(password-encrypted) data. On the other hand, using an authenticated and
encrypted channel helps in case where a system is (as we shall see) not secure
according to our definition, since in this case the use of TLS is necessary to pre-
vent that third parties can impersonate the server and run the attacks against
the client.

To conclude, and in the context of our analysis, our definition captures
attacks that (in the real world) can be carried out by:

1. A rogue SpiderOak server (e.g., malicious insider or a new owner);

2. A rogue SpiderOak enterprise server (running a local SpiderOak server);
or

3. Anyone else able to impersonate the server towards a client (e.g., by by-
passing certificate pinning, exploiting possible vulnerabilities in the TLS
implementation, etc.)

Feasibility of the Definition Before describing how SpiderOak does not
satisfy our definition of security for PECS, we briefly sketch how one could
build a system which which would satisfy Definition 1 (this is only meant as
a “sanity check” to justify that our definition of security is indeed achievable
using standard cryptographic techniques): At the key registration step, the
user should send the hashed version of the password to the server. For user
authentication a Zero-Knowledge identification protocol (in the cryptographic

7It is not unreasonable to assume that this applies to some degree in general. E.g., for
applications that support multiple devices (an arguably necessary criteria for a Cloud Storage
application), the server needs to be able to signal device A that a file was uploaded on device
B, in order to preserve consistency.
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sense e.g., such as [16]) could be used. All files should be encrypted by the client
before being uploaded to the server using provably secure encryption schemes
e.g., satisfying the notion of authenticated encryption [24]. To satisfy forward
secrecy new files need to be encrypted using the new password. Note that our
definition does not require anything of old files, therefore old files need not
be downloaded and re-encrypted by the clients—a simple and efficient solution
would involve storing the old password on the server encrypted under the new
password.

3 SpiderOakONE
In this section we provide some high-level background information about the
SpiderOakONE client application in order to allow the reader to understand the
attacks presented later. We describe the offered functionalities, how the client
was reverse-engineered, and the necessary technical details of its inner workings
(authentication, encryption and keys, which will be treated separately). More
technical details about the functioning of the client application can be found in
the Appendix.

3.1 Offered Functionality
The functionality offered by SpiderOakONE is what one would expect from a
PECS: Automatic synchronization of one or more directories, recovery of older
version files and selective file sharing (either single files or whole directories).
SpiderOakONE runs on all major operating systems (MAC OSX, Linux and
Windows). Our analysis focused on the Windows and Linux versions (version
6.1.5 released July 26th, 2016) and we note that there is no discernible difference
between the clients running on different OS’. Although it is possible to use the
SpiderOak website to log into an account, it is not possible to register an account
through their website. It is also not possible to upload files through their web
interface (as opposed to e.g., Dropbox or Google Drive). The only functionality
offered on their website is viewing of files that have been shared. (The reason for
this, is that shared files are not end-to-end encrypted, but are at most protected
by HTTP Basic Authentication. That is, the server has access to all shared files
in plaintext.)

Mobile client applications for both Android and iOS are also available, al-
though these cannot presently do any encryption or decryption of files. Their
functionality is, to the best of our knowledge, limited to what their web interface
offers, i.e., viewing of shared files only.

3.2 Methodology and Reverse Engineering
The SpiderOakONE client is written in Python 2.7 and comes with a collection
of bundled libraries, such as OpenSSL. SpiderOakONE does not employ any
kind of obfuscation, unlike e.g., Dropbox [26], making reverse engineering quite
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easy using standard off-the-shelf tools. The Python bytecode files for the client
is bundled together with the installer, and can be found in a zip archive named
either library.zip or shared.zip, depending on the operating system (the
former being the file on Linux and the latter Windows). In the end, decompila-
tion of the core client application could be achieved by a small bash script that
uses uncompyle68.

All communication happens over TLS and the client uses certificate pinning
by default. I.e., the client checks that the incoming server certificate validates
against a small set of hard-coded certificates. We also note that certificate
checking is implemented in a sound way, and that it avoids pitfalls such as
forgetting to check the CN field [10]. Communication (below the TLS layer)
happens with either HTTP or a two-way Perspective Broker RPC interface
offered by Twisted9 (two-way since the client can call methods on the server
and vice versa). HTTP is used during authentication and the RPC interface is
used for essentially everything else.

Reading TLS traffic. We wrote a small patch for the client that made it
output the TLS master secret of any connection it establishes to a file. Being
able to read the data that is sent between the client and server was important
to understand what data is being disclosed to the server and to be able to make
educated guesses at the server behaviour (to which we did not have access).
We found that all connections were handled by Twisted and we therefore only
had to patch the code at a single location. Installation of the patch was in
addition made easier by the aforementioned fact that no obfuscation is used (we
could simply alter the decompiled code and put it back into the compressed
archive in the installation folder). During our inspection of the application, we
also discovered that certificate verification could be turned off by running the
application with an environment variable SPIDEROAKONE_SSL_VERIFY set to 0.
This fact turned out to be very useful for validating some of our attacks later
on. (Specifically, it allowed us to conduct Man-in-the-Middle attacks or run
the client against a “rogue” server without performing any modifications to the
clients code.)

Analysis by printing. We employed what is essentially a “debugging by
printing” technique in order to trace the execution of the client. By utilizing
an already existing logging framework in the application, as well as the fact
that modifications are easy to make, we could e.g., make the client output the
encryption keys created during the execution of the protocols. Then, given these
keys, we could implement our own decryption routines, which could be tested
for correctness by decrypting the data sent by the client to the server.

8https://github.com/rocky/python-uncompyle6
9https://twistedmatrix.com
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3.3 Authentication
SpiderOakONE is able to execute different authentication protocols depending
on the context and what the server sends. I.e., if the user is creating a new
account, one kind of authentication protocol will be used, and if the user is
logging in with an existing account, another type of protocol will be used. The
(human) user will only be involved in the authentication process if (1) they are
creating a new account, (2) logging into an existing account on a new device, or
(3) if they have chosen to require a password every time the client application
starts (which is non-default behaviour). This section focuses on protocols that
are applicable to only points 1 and 2. Point 3 is treated briefly in the description
of Attack 4.3.

The server has full control over which protocol is actually run. Concretely,
the server will send a short identifier that the client then uses to determine which
protocol it should engage in (that is, there is no protocol negotiation between
client and server similar to what happens in e.g., TLS, SSH, etc.). So even if
some of the protocols we describe were not observed during normal interaction
between the client and server, a malicious server can nevertheless still make a
client engage in the protocol.

We restrict ourselves to describing only two of the four possible protocols in
this section—the protocols presented here are the ones that we will attack later,
and as such, the presentations focus on their flaws. A full technical description
of all four protocols can be found in Appendix B. Also worth mentioning is
that all the authentication protocols used can be categorized as non-standard
or “home-made” (even if sound, provably secure authentication protocols which
allow a client to authenticate itself without revealing any information about the
password exist in the literature).

Authentication using bcrypt. The first protocol we describe is fairly simple
and involves the client deriving a bcrypt [30] hash from the user’s password and
a salt supplied by the server. The server then compares this hash with a hash
sent previously by the user. It goes as follows:

Client: Send username usr to the server.

Server: Do a lookup for the bcrypt salt s′ associated with usr and if found,
return it to the user. Otherwise abort.

Client: Compute h = bcrypt(pw, s) and send h to the server.

Server: Lookup h′ associated with usr. If h′ = h consider the user authenti-
cated, otherwise abort.

During account registration, the client will generate a random bcrypt salt
s (with a work factor of 12), compute h = bcrypt(pw, s) and send (h, s) to
the server along with usr. If usr is not already registered, the server will then
associate (h, s) with usr. Immediately afterwards, the client and server will then
run the above protocol. This execution flow essentially encompasses the account
registration phase.
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A non-default authentication protocol (escrow login). The other au-
thentication protocol we will look at is non-default in the sense that we did
not observe it being used during normal interaction between the server and the
client. For reference, we will call this protocol escrow login. (The format of the
protocol implies that it is used for escrowing keys, and we believe it is used in
SpiderOak’s enterprise product “Groups”.) Nevertheless, since the server gets
to pick which authentication protocol to run, and because this protocol can be
leveraged for a password recovery attack, we will present it here. The technical
details of the protocol can be found in Appendix B.3. The protocol consists of
two steps:

1. Computing a fingerprint on a list lst of public keys obtained from the
server and having the user verify said fingerprint; and

2. Computing a layered encryption of the user’s password pw using the public
keys from lst and returning this encryption to the server.

The rough idea of step 1, is to hash all keys in lst and create a fingerprint using
RFC1751 [11]. For step 2, first pw is encrypted using pk1 (i.e., the first key in
lst); the result is then encrypted with pk2 and so on. The exact details can be
found in the appendix. The protocol in its entirety proceeds roughly as follows:

Client: Send username usr to the server.

Server: Do a lookup for a list lst containing some number of RSA public keys
pki. Also do a lookup for a string chl. Send (lst, chl) to the client.

User: Compute a fingerprint of lst and show fp to the user. If the user accepts
fp, proceed. Otherwise abort.

Client: If still running. Compute c = Epkn(. . . Epk1(pw || chl)) using the keys
pki from lst. Send c back to the server.

Our description stops here since, as mentioned, we did not observe the protocol
during normal interaction between the client and server and thus cannot say
what is supposed to happen on the server side after the it receives c. However,
the description above will be sufficient for the purpose of demonstrating the
attack against the client.

3.4 Keys and Secrets
SpiderOakONE creates and maintains several different secrets used for IV gen-
eration10, key generation, encryption, authentication and as KDF salts. Some
of these values will be public, in the sense that both the client and server know
them; the rest will be private, i.e., the server knows only an encryption of those
values. From a high-level point of view, it is possible to divide these secrets into
three groups, depending on when they are created:

10SpiderOakONE uses a SIV scheme [32]. Concretely, IVs are generated as H(id || miv)
where id is e.g., the unique id for the content and miv is a per-account random string (long-
term secret).
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Long term secrets

dkn

{kn,i}mni=1

dk2 . . .

{k2,i}m2
i=1

dk1

{k1,i}m1
i=1

Figure 1: Relationship between secrets (the notation a → b indicates that the
value b can only be recovered using the value a).

Long-term: Secrets that are created at the same time as the account are called
long-term. In a nutshell, each long-term secret is protected by first de-
riving a key from the user’s password and then using this key with a
symmetric encryption scheme to encrypt the secret. (Details can be found
in Appendix C.) We note that all non-key material (seeds, KDF salts, and
so on) are in this category.

Directory keys: Each directory stored on the client will have an associated
key, which we dub directory key. Each directory key is encrypted with a
single specific long-term key.

File encryption keys: Each file stored in a given directory is encrypted with
its own fresh key. Interestingly, this key is derived as k = H(F || mk)
where F is the content being encrypted,mk is a long-term secret (mk =“master
key”) and H a hash function. The encrypted file is stored as Edk(k) ||
Ek(F ) where dk is the directory key and E is a symmetric cipher. This
scheme is reminiscent of a convergent encryption scheme as described
in [4, 12], although the introduction of mk means that deduplication is
not possible.

The relationship between long-term secrets, directory keys and file encryption
keys is illustrated in Figure 1.

Password Changes. The relationship between the different secrets used in
the application (i.e., the user’s password protects the long-term secrets, which
protect directory keys, which protect file encryption keys) means care has to
be taken when a password change occurs. In our analysis we discovered that
when a user starts a password change in SpiderOakONE the only effect is to re-
encrypt the long-term secrets that are directly affected by the password change
(i.e., secrets which were encrypted using k = KDF (pw)). In particular, the
long-term secrets themselves are not rotated, nor are the directory and file keys.
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3.5 Encryption
File encryption is handled in two slightly different ways, depending on the data
being encrypted. One method is used for encrypting metadata (such as directory
structure, settings and even old passwords); another method is used for encrypt-
ing a user’s files. That said, these differences are small and we only summarize
how each method works here. (Details can be found in Appendix D.)

Metadata encryption. SpiderOakONE uses a different long-term key for
each particular type of metadata. For example, all information concerning di-
rectory structure is encrypted with a long-term key tree.key; all information
concerning application settings is encrypted with a long-term key conf.key, and
so on. Metadata encryption is then conceptually simple: For a piece of metadata
m, find the corresponding long-term key k and encrypt m using k.

User file encryption. From a high-level point of view, encryption of a file F
in SpiderOakONE is performed as follows:

1. Split F into blocks bi, and assign identifiers to each block;

2. Derive a key for each block as ki = H(bi || mk) and encrypt bi under ki as
Edk(ki) || Eki(bi) (where dk is the directory key for the directory F was
added to, and mk is the master secret key);

3. Derive a key using the whole file vk = H(F || mk) and use it to encrypt
the identifiers of all the blocks that form F ;

4. Upload the encryption of each block and the encrypted list of identifiers
to the server.

The encryption done in step 3 corresponds to a so-called version file for F . Each
time a file is added or updated, a version file is also generated. As the name
implies, these files are used for versioning. However, they are also used in file
sharing and file recovery, in that they describe which encrypted blocks of data
makes up a particular file.

File sharing. File sharing—of either an individual file or whole directories—is
performed in the following way:

Single File: Use the version information of the file being shared to determine
which blocks are needed. From these blocks, each key is recovered and
uploaded to the server (together with information about which blocks the
server needs to decrypt). A shared file lives for three days at which point
the server removes access to it.

Directory (ShareRooms): Decrypt the particular directory key used for the
directory that is being shared, and give it to the server. The server can
then itself recover all files. A shared directory lives until the user explicitly
revokes it.
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Note that this affirms the results of [39], i.e., that the server can read files that
are being shared.

4 Attacks on SpiderOakONE
The following section presents four different attacks that show how the analysed
version of SpiderOakONE does not satisfy Definition 1. All attacks are critical
and lead to either a total breach of confidentiality (i.e., password recovery), file
recovery or password weakening. For each attack, we describe the underlying
cause, how the attack was experimentally validated and the practical impact.

4.1 Password weakening in bcrypt login
Recall the bcrypt authentication protocol: the Server sends a salt s, the client
computes h = bcrypt(pw, s) and returns h to the server, who then accepts or
rejects.

The issue that will be exploited in this protocol, is (1) that the format of
the salt s used by the bcrypt KDF also specifies the work factor, (2) that the
server essentially gets to pick s, and (3) that the client does not check that s
actually matches the value it itself created earlier. As a result, a malicious server
can obtain a drastically weakened password hash (i.e., execute a ρ-password-
weakening attack for ρ = 8).

More in detail, the format of the salt s follows the modular crypt format,
i.e., is of the form

$2a$cost$salt

where 2a designates the format (bcrypt salt), cost is the cost factor and salt a
random string (base64 encoded). Now an active adversary (playing the role of
the server) can attack the client by sending a value s′ such that s′.cost < s.cost,
and in this way, obtain a much weaker hash h′. The question is now: how
low can cost go, or put differently, what is the greatest ρ that the adversary
can obtain? In a normal execution cost is set to 12 meaning bcrypt does 212

iterations during the key derivation [30]. By inspecting the source code11 of the
bcrypt implementation used by SpiderOakONE we find that the lowest value of
cost allowed is 4. Thus an 8-password weakening attack can be achieved by
asking the client to run the bcrypt login protocol with the salt s′ equal to

$2a$04$AAAAAAAAAAAAAAAAAAAAAA

which let the adversary obtain the weakened hash h′ = bcrypt(pw, s′).

Pr[b′ = b] =
1

2
+

q

c2κ−8

11https://github.com/grnet/python-bcrypt/blob/master/bcrypt/bcrypt.c
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1 static void
2 decode_base64(u_int8_t *buffer , u_int16_t len ,
3 u_int8_t *data){
4 // snip
5 while (bp < buffer + len) {
6 c1 = CHAR64 (*p);
7 c2 = CHAR64 (*(p + 1));
8 /* Invalid data */
9 if (c1 == 255 || c2 == 255)

10 break;
11 // snip
12 int
13 pybc_bcrypt(const char *key , const char *salt ,
14 char *result , size_t result_len ){
15 // snip
16 u_int8_t csalt[BCRYPT_MAXSALT ];
17 // snip
18 decode_base64(csalt , BCRYPT_MAXSALT ,
19 (u_int8_t *) salt);

Listing 1: base64 decoding function used. csalt will contain uninitialized mem-
ory if either c1 or c2 (content of data) is not valid base64.

Remember that in a regular execution cost is set to c = 212 and in our attack
this is downgraded to 24. Thus A has the following probability of computing
pw from h′ in q queries:

Pr[A guesses pw] =
q

242κ
=

q

c2κ−8
.

which implies the claim.
Upon inspection of the code for the bcrypt library we also discovered a trivial

memory leak (relevant parts shown in Listing 1). If the salt part of s is invalid
base64, then up to 16 bytes of memory will be leaked through h′. We can
therefore augment the attack from before, by instead using the salt

$2a$04$0x01AAAAAAAAAAAAAAAAAAAAA

where 0x01 is the byte 00000001.

Experimental verification. We verified this attack by writing our own login
server. As described in Section 3.2 there are essentially two different servers:
One which “talks” HTTP and one which talks RPC (using Twisted PB). More-
over, the HTTP server is only used during authentication (which is relevant for
this attack), so we only had to implement the HTTP part of the server to verify
this attack. Our server works as one would imagine: upon a login request, the
server constructs the salt as specified and sends it back. Upon obtaining h we
can then verify that the salt we sent was indeed the one used (as we of course
also know the password used in the test run).
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Practical impact. As described, this attack effectively removes 8 bits of en-
tropy from the user’s password. Whether this leads to a breach of confidentiality
or not ultimately depends on the original strength of the password. For refer-
ence, [7] estimates that typical passwords only provide between 10 and 20 bits
of security. We note that this attack is not detectable from the user point of
view.

4.2 Password recovery via escrow login
We move on to the attack on the escrow login protocol described briefly in
Section 3.3 (cf. B.3 for the details). Recall that this protocol is in two steps and
revolves around a list lst = {pki}i∈[n] essentially chosen by the server:

1. First, the client computes a fingerprint on lst and shows it to the user;

2. Second, assuming the user accepts the fingerprint, an encryption c =
Epkn(. . . Epk1(pw || chl)) is computed and returned to the server.

Looking at the protocol, we can see that the server is the one who picks the
keys pki. Therefore, the attack exploits the fact that the server can (maliciously)
pick keys for which it knows the corresponding private keys and thus decrypt c
to obtain pw when the client sends back c in the last step. Note that the attack
can only happen if the user accepts the shown fingerprint fp′ that is computed
on the (malicious) keys in lst. However, as we shall see, due to the wording of
the message to the user, it is not unlikely that a user might accept a malicious
set of keys.

Having the user check the fingerprint is obviously done in order to ensure
that she does not produce an encryption under maliciously chosen keys. But
what if she does not have anything to check the fingerprint against? More
precisely, since the adversary can run any login protocol he wants, he can run
this particular protocol which is never run in the single user settings. Thus,
when the protocol is run (in the single user setting) it can be assumed that
the user does not have a “valid” fingerprint to verify the malicious fingerprint
against! Of course, the attack would be thwarted if the client instructed the
user to reject a fingerprint if there is nothing to check it against. Unfortunately,
SpiderOakONE takes a TOFU (trust on first use) approach with regards to
these fingerprints. The message shown to the user is presented here, emphasis
ours:

If your SpiderOakONE Administrator has given you a fingerprint
phrase and it matches the fingerprint below, or if you have not
been given a fingerprint, please click “Yes” below. Otherwise
click “No” and contact your SpiderOakONE Administrator.

So assuming the user behaves according to the instructions given by the appli-
cation, our attack will succeed with significant probability.
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Formally, the attack proceeds as follows: the attacker A generates an RSA
keypair (pk, sk) and then requests the client to execute the escrow login protocol
with lst = {pk} and chl = 0, thus receiving an encryption of the password pw
using pk which can be decrypted using sk leading to password recovery and a
total breach of confidentiality

An interesting quirk. A missing length check in the client means that a
similar attack is possible even in a passive setting (albeit in the enterprise prod-
uct). Suppose the escrow login protocol is used as follows: A company uploads
lst to SpiderOak and gives fp (the fingerprint computed on lst) to each of its
employees. Whenever an employee wants to use SpiderOak (for work) they use
the escrow protocol to login. SpiderOak authenticates the employee by pass-
ing c back to the company who can decrypt it and check the challenge stored
alongside the password (and thus determine if the employee should be authen-
ticated or not). However, if the company misconfigures lst as lst = ∅ then no
encryption is done in the client! That is, c = pw || chl and thus pw is leaked to
SpiderOak.

Experimental verification. Verification of this attack was performed in a
similar way as what was described for the attack on the bcrypt login protocol.
We verified that both lst = {pk} for a pk we control (i.e., know sk) and lst = ∅
leads to a full password recovery.

Practical impact. While the effect of this attack are more devastating than
the previous one (as it leads to full password recovery), this attack can easily be
detected since it requires the user being prompted and accepting a dialog box.
Unfortunately, as we shall see in the next attack, there is another (undetectable)
way that allows a rogue server to recover the user’s password.

4.3 Password recovery via RPC methods
The third attack we present also leads to full recovery of the user’s password.
Even more, it does so completely silently and at any point the client is online
(as opposite to the first two which can only be executed during the login/au-
thentication phase), and in addition requires no interaction from the user. We
also show that, even if the user takes extra steps to thwart the full password
recovery attack, the attack would still lead to a significant password weakening
attack.

We first note that the SpiderOakONE the client writes the user’s password
(unencrypted) to a file after the first login (which is done as part of the account
registration or device registration phase), in order to avoid having the user type
in their password on every startup. Therefore, the user’s password constantly
resides in plaintext on the client. We can exploit this by making use of specific
RPC methods the client makes available to the server. Concretely, the client has
three methods available that allow for file retrieval. Such methods implement
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1 _safe_user_file_regexp = re.compile(’’’
2 ^([a-zA-Z0 -9_-]{1 ,240})
3 ([\\\\/])
4 ((?:[@a-zA-Z0 -9_ -]|\\.(?!\\.)){1 ,240})$’’’,
5 re.VERBOSE)

Listing 2: Regular expression used by SpiderOakONE to check if a file retrieval
request should be allowed

some security checks to prevent the server from retrieving any file stored on
the client. Unfortunately we discovered that the checks in place do not prevent
the server from requesting the file with the user’s password. Each of the three
methods works in essentially the same way: They take as input a filename,
check if this filename satisfies a certain regular expression (shown in Listing 2)
and if so, return the content of the file to the server. Two of the three methods
are available by default and the last is available if the user has enabled remote
diagnostics. The file that stores the user’s password is located at the following
two locations12

tss_external_blocks_snapshot.db/00000003
tss_external_blocks_pandora_sqliite_database/00000003

By inspecting the regular expression in Listing 2 we see that, while the first file
does not match (due to the . before the /), the second file does.

Therefore, an attacker A can simply request the client to execute one these
insecure RPC and immediately recover the password.

As mentioned in Section 3.3, users can opt-out from the automatic login
functionality and instead choose to input the password at every startup. When
this option is enabled, the plaintext password pw is not stored on the client. In
its place, the client will store a hashed version of the password which is used by
the client to verify the password input by the user. Unfortunately the stored
hash is quite weak, and is calculated as in (1) where u is a value picked by the
server during account registration.

tmp = MD5("password_verify" || u || pw),
h = MD5(tmp || "password_verify" || u || pw), (1)

Therefore, even more “paranoid” users choosing the stronger security settings
are not immune from the attack, since even in this case the adversary can run
the attack and learn the weakened hash of the password thus leading to a ρ-
password weakening attack with ρ = lg(c)− 1 = 11.

Experimental verification. Implementing this attack required more work
than the the previous one, since relatively little documentation exists for the

12Locations are relative to the SpiderOakONE configuration directory. E.g., $HOME/.config
on Linux.
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used RPC interface (as opposed to the simple HTTP communication used during
authentication). In addition, as many different RPCs are called on the client, it
was not straightforward to inject extra calls to the insecure remote methods, as
this would require our Man-in-the-Middle application to keep track of every call
made after the injected call, and adjust sequence numbers accordingly to avoid
having the client crashing after completion of the attack. Therefore, instead of
injecting new calls between the real SpiderOak server and our client we changed
an existing call originating at the real server to one which requests the file
containing the user’s password. Then, from the clients response, we verified
that the password could be successfully extracted.

Practical impact. As already stated, this attack is extremely dangerous as
it is completely undetectable and it allows to recover the password from users
running with standard settings at any time. Even in the case where users chose
the more conservative settings, the attacks is still effective in weakening the
password hash.

4.4 File recovery in directory sharing
The last attack we describe can be run by a passive adversary e.g., it only re-
quires the adversary to be able to observe the server (as opposed to the previous
three that all require A to make the server deviate from normal behaviour in
some way).

In a nutshell, we discovered that a shared directory cannot be securely un-
shared. That is, files added to a directory after it has been un-shared can still
be read by the server; the same goes for files moved out of a directory before it
is shared. The following two scenarios illustrate these observations:

Scenario 1: Suppose Alice and Bob begin a new relationship, and therefore
Alice decides to share a directory of photos with Bob. After some time,
Alice and Bob break up and therefore Alice stops sharing this directory
with Bob. Afterwards, she uploads new photos to the same directory
assuming that Bob will be unable to see them. However, Bob, who has read
access to the PECS, can also see her new photos since they are protected by
the same directory key which he learned while they were in a relationship.

Scenario 2: Suppose Alice was on a vacation where she took a lot of photos,
all stored in her PECS directory Dir. She would really like to share these
photos with her colleagues. Alas, a few of the photos are a bit too private
in their nature and thus cannot be shared. To solve this dilemma, Alice
simply moves the few private pictures to a different directory Dir′ and then
shares Dir. Now everyone can see her cool vacation photos. However, Bob,
who has read access to the PECS, can also see her private photos, as these
are not securely detached from Dir!

Scenario 2 arise because no re-encryption happens when a file is moved from
one directory to another. In particular, a file that was encrypted with the
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directory key k of Dir, is still encrypted with k even after it has been moved
to another directory Dir′. Thus, when Dir is shared, the file that was moved
inadvertently gets shared as well (recall that sharing reveals the directory key
to the server cf. Section 3.5). The same idea applies in Scenario 1: When a
directory is un-shared, the previously revealed directory key k is not invalidated,
thus making new files added at a later time readable to the server.

Both scenarios can be phrased in terms Definition 1 and lead to file recovery
attacks: In Scenario 1 A makes the client upload some file in a directory, share
the directory (thus learning the directory key) and unshare the directory. Finally
A makes the client upload an unknown file to that directory and decrypts it
using the directory key; In Scenario 2 A makes the client upload an (unknown)
file to a directory, then moves the file to a different directory and finally shares
the first directory, thus learning the directory key which allows to recover the
file. Note that since no revealing commands were performed on the retrieved
file both are “valid” attacks.

Experimental validation. Validation of these attacks was carried out by
executing the steps described above on the client. E.g., uploading a file to
some directory, moving the file to another directory and then sharing the first
directory. We then recorded all traffic generated by the client and used it to
extract the file.

Practical impact. As shown, the attacks presented here lead to file recovery
for files that, one way or another, users actively choose to prevent from being
shared and is therefore critical.

4.5 On forward secrecy
As mentioned in Section 3.4, very little is changed when a SpiderOakONE user
changes their password which implies that SpiderOakONE does not satisfy our
notion of forward security. This is quite critical since, as shown by the previous
attacks, there are several ways in which a user’s password might leak.

The attack can be easily described: when an account is created a number of
long-term secrets are created and encrypted using the password. The long-term
secrets are in turn used to encrypt the individual directories and files. Thus, if
the password pw is leaked, the adversary A will be able to retrieve the long-term
secrets (and in turn the content of all existing files and directory). Now when
the user changes their password the long-term secrets are not replaced by new
ones, thus from A’s point of view the password change has no effect at all! Now,
when the user uploads a new file, A can simply retrieve it using the (unchanged)
long-term secrets, thus breaking forward secrecy.
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5 Mitigations
We reported our findings on April 5th, 2017. As of September 28th, 2017, all
reported issues have been fixed by SpiderOak [35]. The fixes implemented by
SpiderOak are summarized in this section:

4.1: A check was implemented that (1) ensures cost is at least 12 (thus prevent-
ing a downgrade), and (2), that the salt part of bcrypt(pw, s) is equal to
s (thus preventing the memory leak). It is worth noting that the memory
leak is still present, it is just not exploitable anymore.

4.2: The client now ensures that lst is non-empty. In addition, the message
displayed to the user has been reworded to be less ambiguous.

4.3: SpiderOak claimed that the functions allowing for (almost) arbitrary file
retrieval was part of an API that never got implemented. As a result,
their fix was simply to remove them.

4.4: Keys are now properly rotated, ensuring that files are not encrypted under
a key that has been previously revealed.

4.5: Forward-secrecy is still not supported by SpiderOakOne.

6 Conclusion
In this paper we described a number of vulnerabilities which (might have) al-
lowed a rogue SpiderOak server (or anyone able to bypass certificate pinning and
manage to interact with the client software) to break the confidentiality of the
user’s file. While most of the problems have already been fixed by SpiderOak,
the fact that the attacks have been possible so far has serious consequences:
since the attacks are easy to carry out and undetectable at the client side, there
is no way to be completely sure that attacks have not been already run.

We would recommend all SpiderOak users to change their password (as this
could have been stolen). Unfortunately, as described in Section 4.5, changing
the password simply re-encrypts the long term secret key under a new password.
Therefore if an attacker has already obtained this long-term secret key, changing
the password will not help in ensuring the confidentiality of the files uploaded
by the users in the future (and clearly nothing can restore the eventual loss of
confidentiality which could have already occurred).

Our analysis can also be used to draw some general conclusions about the
design of encrypted cloud storage systems. We believe that “the root of all
evil” in the case of SpiderOak relies in the choice of using the same secret (the
password) both for authentication and confidentiality purposes. We understand
that, from a user experience point of view, it is hard to have to generate, store
and type two strong passwords. However we have also observed how this choice
(combined with authentication protocols which are not zero knowledge in a
strong, cryptographic sense) leads to a complete loss of confidentiality.
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A Notation
We explicitly denote the KDFs that will be used: bcrypt(pw, s) [30] where pw is a
password and s a modular crypt formatted salt (see e.g., [1]); PBKDF2(pw, s, c) [22],
where pw is a password, s a random string and c an integer denoting an itera-
tion count. By writing Encik(iv,m) (resp. Decik(iv,m)) we mean an AES-CFB
encryption (resp. decryption) of message m under key k, using segment size i
(cf. [13]) and initialization vector iv. Similar notation is used for RSA encryp-
tion, and we use |pk| to denote the bit-length of the modulus. Assignment is
written as x := y and random sampling as x $←X. Finally, xi,j denotes the bit
sub-string xi, . . . , xj−1 of x; and by |x| we mean x’s length in bits.

B Authentication Protocols
Protocol names (e.g., “pandora/zk”) reflect the value of the short identifier the
server uses to instruct the client which protocol is to be run.

We will always use pw to denote the user’s password and usr to denote their
username.

B.1 pandora/zk (login)

Define ck as ck := PBKDF2(pwd, s1, 16384) where s1
$←{0, 1}256. Assume both

client and server knows ck. (The server learns ck after an account registration
where the client sends it.)

Client: Send usr to the server.

Server: Let k ∈ {0, 1}256, iv ∈ {0, 1}128 and let tv ∈ {0, 1}32 be the current
server time. Using usr, find values s1 and ck. Compute c := Enc8ck(iv, k)
and send (tv, iv, s1, c) to the client.
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Client: Compute k′ = Dec8ck(iv, c), a := Enc8k′(iv, tv) and send (iv, tv, c, s1, a)
back to the server.

Server: Accept if tv = Dec8k(iv, a).

B.2 bcrypt (account registration)
We repeat the description from Section 3.3 here:

Client: Send usr to the server.

Server: Using usr, find a salt s and bcrypt hash h. Send s′ to the client.

Client: Compute h′ := bcrypt(pw, s) and send h′ to the server.

Server: Reject if h′ 6= h.

B.3 escrow/challenge (i.e., escrow login)
We first describe the two procedures FP (f ingerprint) and LE (layered-encryption):

FP(lst)

lst is a list of keys and ids. We use a counter n to denote its length. Define lst
as

lst :=

{
{(id1, pk1), . . . , (idn, pkn)}, if n > 0

∅. else.

A hash h of l is computed as

l′ := [ ],

l′ := l′ || idi || E(pki), for (idi, pki) ∈ lst ∧ i = 1, . . . n

h := sha256(l′),

(Step 2 is skipped if n = 0.) E(x) performs a DER encoding [20] of x. Use
the key2eng procedure from [11] to obtain 24 words w0, . . . , w23. Output the
fingerprint fp = w0 || w2 || . . . || w22 (i.e., only words at even indexes are used).

LE(pw, lst, chl)

lst is defined as before and chl ∈ {0, 1}∗. Let auth = chl || pwd and do for every
pair (idi, pki) ∈ lst:

1. Pick xi
$←{0, 1}|pki|−8, let tv denote the current system time and define

ivi := sha256(tv)0,16.

2. Compute

A := Enc8sha256(xi)(ivi, auth)

B := RSAEncpki(xi),

auth := idi || A || B || ivi.
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Return auth.

The protocol in its entirety then goes as described in Section 3.3:

Client: Send usr to the server.

Server: Retrieve lst and chl associated with usr.

Client: Compute fp = FP(lst) and show fp to the user (i.e., the human). If
the user accepts the fingerprint, continue. Otherwise the client aborts the
protocol.

Client: (If the user accepted fp) Compute auth = LE(pw, lst, chl) and send
auth to the server.

Note that, as we did not observe this protocol being used during normal inter-
action with the server, we cannot say what criteria has to be satisfied, for the
server to authenticate the client.

B.4 pandora/zk/sha256
We do not know when or where this protocol is used.

Client: Retrieve value s1 from local storage and compute ck as in B.1. Send
ck to the server.

For the same reasons as in the previous protocol, we do not know how the server
should react to the client’s message.

C Keys
Figure 2 shows the relationship between various secrets in SpiderOakONE. Key
encapsulation is done in different ways, depending on the “layer” in Figure 2:

1. The user’s password protects an RSA keypair kp;

2. kp protects a special long term secret, ksym;

3. ksym protects all other long term secrets;

4. jk (a long term key) protects directory keys; and

5. Each directory key protects a set of file encryption keys corresponding to
files stored in the corresponding directory.

A technical description of all but the last step follows (the last step is treated
in Section D).
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C.1 Step 1

Let kp := (sk, pk) be a 3072-bit RSA keypair, and s2
$←{0, 1}256. Compute

k := PBKDF2(pw, s2, 16834),

iv := sha256("keypair" || s2)0,16,
ckeypair := Enc8k(iv, kp).

C.2 Step 2

Write (sk, kp) = kp, let ksym
$←{0, 1}3064 and compute

c := RSAEncpk(ksym),

s := RSASignsk(sha256(c)),

csym := (c, s).

(Note: “textbook RSA” is used, which explains the number 3064 as it is exactly
1 byte smaller than the size of the modulus.)

C.3 Step 3

Let k $←{0, 1}` where ` is the length of this particular long term key; let id be
its name (in step 1, id = "keypair") and let miv $←{0, 1}2048. Compute:

kk := sha256(ksym)

iv := sha256(miv)0,16,

cid := Enc8kk(iv, k).

C.4 Step 4

For k = jk, we have ` = 256 and id = "journalkey". Let dki
$←{0, 1}256 and

id be a unique ID for this directory. (In fact, this ID will be unique across all
accounts in the system.) Compute:

iv := sha256(miv || "journal" || id || ".key")0,16
cid := Enc8jk(iv, dki).

C.5 Remark on password change
As noted, a password change does not effectively prevent an old password from
being useful in the future. To see why, we note that, upon a password change,
the client only recomputes ckp but otherwise leaves everything as is. I.e., the
secrets recoverable with the old password, will still be the same secrets in use
with the new password.
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User password pw

kp (ckeypair)

ksym (csym)

Other long term keys . . .mk (cid)jk (cid)

Directory keys dki (cid)

File keys Xk (cid)

ckmiv, s1, s2, s

Figure 2: Key tree. A solid arrow from A to B means that A is used to “protect”
B in some way (e.g., B is encrypted under A), while a dashed arrow means A is
used to derive B in some way. Values in a dashed box are the public values (i.e.,
client and server both possess them). Values inside parenthesis are possessed
by the server and id’s are distinct.

D File Encryption
We describe in technical detail the different encryption methods mentioned in
Section 3.5.

D.1 Metadata Encryption
An encrypted metadata file can be seen as a bit-string rn || rs || c where

|rn| = |rs| = 32 and |c| = rs

8
.

That is, both rn and rs are 4-byte integers and rs describes the size of c (the
ciphertext). rn describes a record number and is used in IV creation and encryp-
tion in the following way. Suppose m is the piece of metadata to be encrypted:

1. Find the highest rn∗ among all stored encryptions. For the new encryp-
tion, set rn := rn∗ + 1;

2. Compute iv := sha256(miv || rn)0,16;

3. Let k be an encryption key (this k is always one of the long-term keys);

4. Compute c := Enc8k(iv,m), rs = |c|/8 and define the new encryption as
rn || rs || c.
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D.2 User file encryption
Let F be a file uploaded by the user to a directory with directory key dk.
Encryption of F proceeds as follows:

1. partition F into n blocks b0, . . . , bn−1 each of some (not necessarily equal)
size. The client treats block as a separate file, so let bi.id denote the id of
block bi. For each block bi, do

(a) Compute

ivi := sha256("block" || bi.id || miv)0,16,
bki := sha256(bi || mk),

wheremk $←{0, 1}2048 is a long-term secret (the previously mentioned
“master key”).

(b) Encryption of bi:

ci := Enc128bki (ivi, pad(bi)),

ebki := Enc8dk(ivi, bki),

where pad(x) applies an ANSI X.932 padding to x. Define the en-
cryption of bi as cbi := ebki || ci.

Having so obtained an encryption for each bi, compute

vk := sha256(F || mk),
iv := sha256("version" || F.id, miv)0,16.

Let bl := [b0.id, . . . , bn−1.id], compute cF := Enc8vk(iv, bl) and evkF :=
Enc8dk(iv, vk). Output ci for i = 0, . . . , n− 1 and cvF := evkF || cF .

D.3 File sharing
Observe that cvF describes the exact blocks making up the file F . Thus, a file
sharing of F has to include also cvF . File sharing then proceeds in the way
described in 3.5, namely:

Single files: The client first recovers each bi.id from cvF . From bi.id, the
corresponding cbi can be found, and from cbi, the client extracts bki from
ebki and sends {bki}n−1i=0 as well as evkF to the server.

Directory: Sharing a whole directory works in much the same way as with
single files. However, instead of recovering each individual file encryption
key, the directory key dk is shared instead.
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