
Parallel Collision Search with Radix Trees

Gilles Dequen1 and Sorina Ionica1 and Monika Trimoska1,2

1 Laboratoire MIS, Université de Picardie Jules Verne
33 Rue Saint Leu Amiens 80039–France

2 SATT Nord
25 Avenue Charles Saint-Venant Lille 59800–France

Abstract. Parallel versions of collision search algorithms require a sig-
nificant amount of memory to store a proportion of the points computed
by the pseudo-random walks. Implementations available in the literature
use a hash table to store these points to allow fast memory access. We
propose to replace the traditional hash table by a radix tree structure,
allowing both look-up and insertion in a single operation. We provide
theoretical and experimental evidence that memory access is an impor-
tant factor in determining the runtime of our algorithm. Our benchmarks
indicate that our algorithm achieves linear parallel performance.
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1 Introduction

Given a function f : S → S on a finite set S, we call collision any pair a, b
of elements in S such that f(a) = f(b). Collision search has a broad range of
applications in the cryptanalysis of both symmetric and asymmetric ciphers:
computing discrete logarithms, finding collisions on hash functions and meet-
in-the-middle attacks. The Pollard’s rho method, initially proposed for solving
factoring and discrete logs, can be adapted to find collisions for any random
mapping f . The parallel collision search algorithm, proposed by van Oorschot
and Wiener [16], builds on Pollard’s rho method, and is expected to have a linear
speedup compared to the sequential version. This parallel algorithm computes
several walks in parallel and stores some of these points, called distinguished
points, within the shared memory of an SMP system.

In this paper, we revisit the memory complexity of the parallel collision
search algorithm, both for applications which need a small number of collisions
(i.e. discrete logs) and those needing a large number of collisions, such as meet-
in-middle attacks. In the case of discrete logarithms, collision search methods
are the fastest known attacks in a generic group. In elliptic curve cryptogra-
phy, subexponential attacks are known for solving the discrete log on curves
defined over extension fields, but only generic attacks are known to work in



the prime field case. Evaluating the performance of collision search algorithms
is thus essential for understanding the security of curve-based cryptosystems.
Several record-breaking implementations of this algorithm are available in the
literature: over a prime field the current record reaches a discrete log in a 112-
bit group on a curve of the form y2 = x3 − 3x + b [5,9]. This computation was
performed on a Playstation 3. More recently, Bernstein, Lange and Schwabe [6]
reported on an implementation on the same platform and for the same curve, in
which the use of the negation map gives a speed-up by a factor

√
2. Over binary

fields, the current record is a FPGA implementation breaking a discrete loga-
rithm in a 117-bit group [1]. As for the meet-in-the-middle attack, this generic
technique is widely used in cryptanalysis to break block ciphers (double and
triple DES, GOST [8]), hash functions [11,12] and lattice-based cryptosystems
(NTRU [4,17]).

To the best of our knowledge, all existing implementations of parallel colli-
sion search algorithms use hash tables to organize memory and allow fast look-up
operations. In this paper, we propose a radix tree data structure for storing the
distinguished points computed by the algorithm. The basic idea is to associate
to each point a string (given for instance by the x-coordinate of the point), par-
tition this string into blocks of fixed length and store each block in a node of the
radix tree. This technique has the advantage that both look-up and insertion
of a new point in the data structure are done in logarithmic time, in a single
operation. We further extend the analysis of the parallel collision search algo-
rithm and show that the runtime complexity depends critically on the value of θ,
the probability that a point on the curve is distinguished. In order to minimize
the runtime, we deduce an optimal value of θ. This value is supported by our
experiments and depends on the data structure and the machine architecture
which are chosen for the implementation. We have implemented our radix tree
algorithm for discrete logarithms on elliptic curves defined over prime fields. Our
benchmarks demonstrate the performance and scalability of our method.

Organisation. Section 2 reviews algorithms for solving the discrete logarithm
problem and for meet-in-the-middle attacks. Section 3 describes our choice for
the data structure, complexity estimates and comparison with hash tables. In
Section 4, we revisit the proof for the time complexity of the collision finding
algorithm for a small and a large number of collisions. We furthermore show how
to minimize the runtime, in function of the proportion of distinguished points.
Finally, Section 5 presents our experimental results.

2 Parallel collision search

In this section we briefly review Pollard’s rho method and the parallel algorithm
for searching collisions. In order to look for collisions for a function f : S → S
with Pollard’s rho method, the idea is to compute a sequence of elements xi =
f(xi−1) starting at some random element x0. Since S is finite, eventually this
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sequence begins to cycle and we therefore obtain the desired collision f(xk) =
f(xk+t), where xk is the point in the sequence before the cycle begins and xk+t
is the last point on the cycle before getting to xk+1 (hence f(xk) = f(xk+t) =
xk+1). One may show that the expected number of steps taken until the collision
is found is

√
πn
2 , and therefore that the memory complexity is also O(

√
πn
2 ). This

algorithm can be further optimized to constant memory time by using Floyd’s
cycle [10,7]. We do not further detail memory optimizations here since they are
inherently of sequential nature and no way to exploit these ideas in a parallel
algorithm is currently known.

The parallel version for the collision search was proposed by van Oorschot
and Wiener [16] and assigns to each thread the computation of a trail given
by points xi = f(xi−1) starting at some point x0. Only points that belong to
a certain subset, called the set of distinguished points, are stored. This set is
defined by points having an easily testable property. Whenever a walk computes
a distinguished point xd, it stores in a common list of tuples (x0, xd). If two walks
collide, this is identified only when they both reached a common distinguished
point. We may then re-compute the paths and the points preceding the common
point are distinct points which map to the same value.

Solving discrete logarithms. Our focus is on the elliptic curve discrete loga-
rithm in a cyclic group G = 〈P 〉, but the methods described in this paper apply
to any cyclic finite group. We will assume that the curve E and the group G are
defined over a finite field Fp, where p is a prime number. Let Q ∈ G and say we
want to solve the discrete logarithm problem Q = xP , where x ∈ Z. To apply
the ideas explained above, we define a map F : G→ G which behaves randomly
and such that each time we compute f(R) we can easily keep track of integers
a and b such that f(R) = aP + bQ. Pollard’s initial proposal for such a function
was

f(R) =

R+ P if R ∈ S1

2R if R ∈ S2

R+Q if R ∈ S3

(1)

where the sets Si, i ∈ {1, 2, 3} are pairwise disjoint and give a partition of the
group G. As a consequence, whenever a collision f(R) = f(R′) occurs, we obtain
an equality

aP + bQ = a′P + b′Q. (2)

This allows us to recover x = (a−a′)/(b−b′), provided that b−b′ is not a multiple
of r. Starting from R0, a multiple of P , Pollard’s rho [13] method computes a
sequence Ri of points where Ri+1 = f(Ri). Since the group G is finite, this
sequence will produce a collision after

√
πn
2 iterations on average, where n is

the cardinality of the group G. To define distinguished points, we take an easily
testable property, such as a certain number of trailing bits of their x-coordinate
being zero. Whenever a walk computes such a point, this is stored in a common
list, together with the corresponding a and b. If two walks collide, this can not
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be identified until the computation of the common distinguished point. Then
the discrete logarithm is recovered from an equality of type 2.

Meet-in-the-middle attacks. Meet-in-the-middle attacks require finding a
collision of the type f1(a) = f2(b), where f1 : D1 → R and f2 : D2 → R
are two functions with the same co-domain. As explained in [16], solving this
equation may be formulated as a collision search problem on a single function
f : S × {1, 2} → S × {1, 2}, where the solution we need is of the type:

f(a, 1) = f(b, 2). (3)

and has some extra specific property. This collision is called the golden collision.
The number of unordered pairs in S are approximatively n2

2 and the probability
that the two points in a pair map to the same value of f is 1

n . There are n
2

expected collisions for f and there may be several solutions to equation 3. Hence
one typically assumes that all collisions are equally likely to occur and that in the
worst case, all possible n

2 collisions for f are generated before finding the golden
one. Because so many collisions are generated, memory complexity can be the
bottleneck in meet-in-the-middle attacks and the memory constraint becomes an
important factor in determining the running time of the algorithm. We further
explain this idea in Section 4.

Data structure. To store distinguished points, one may use any data struc-
ture allowing efficient look-up and insertion. The most common structure used
in the litterature is a hash table. In order to make parallel access to memory
possible, van Oorschot and Wiener [16] propose the use of the most significant
bits of distinguished points. Their idea is to divide the memory in segments,
each corresponding to a pattern on the first few bits. Threads read off these first
bits and are directed towards the right segment. Each segment is organized as a
hash table, to allow efficient look-up and insertion.

Notation. In the remainder of this paper, we denote by θ the proportion of
distinguished points in a set S. We denote by n the number of elements of S. We
denote by E an elliptic curve defined over a prime finite field Fp. Whenever the
set S is the group E(Fp), n is the cardinality of this group. For simplicity, in this
case, we assume that n is prime (which is the optimal case in implementations).

3 Our approach for the data structure

In this section, we describe the data structure we used for our implementation
of the parallel collision search algorithm and explain its advantages over hash
tables.

To store the list of distinguished points, we use a radix tree structure. Each
point is represented as a number in a base of our choice, denoted by b. For
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simplicity, we take b = 10 here. For example, in the case of attacks on the
discrete logs on the elliptic curve, we may represent a point by its x-coordinate.
The first entry in the representation of this number gives the root node in the
tree, the next entry is a child and so on. According to graph theory, this leads to
define an acyclic graph which consists of b connected components (i.e. a forest).
As an illustration, Figure 1 shows how to store 7 numbers with 5 digits.

Fig. 1: Example of the structure for the set 15311, 46112, 48325, 48977, 91333,
92685, 92688

The search for a collision and the storage of a new point are done in a single
operation. Indeed, the insertion algorithm for a radix tree always starts with a
search. This means that when we fail to find the point we already have processed
a part of the insertion algorithm. Let us look at an example. We consider the
tree in Figure 1. The distinguishing property is having 3 trailing zero bits and
the distinguished point that the thread found has the x-coordinate 48956000.
Since we do not store the 3 trailing zeros, we are looking for the word 48956. We
find the node 4, the node 8 and the node 9 and then, the node 5-child-of-9 does
not exist. We realize that the point is not in the tree, so we wish to add it. To
add the point, we do not have to start from the root. We are currently on the
node 9 and so we can insert a new child with the value of 5, and continue with
the insertion algorithm up to the end of the word. The look-up and insertion
take log p time.

Making changes to a shared structure in parallel imposes the use of locks.
Note that with a radix tree storing a point does not require locking the entire
structure. Since we associate one lock per node, only those affected by the inser-
tion will be locked. As the tree grows bigger, the probability of a thread being
stuck on a lock is remarkably small.

Let c be the length of words we store in the tree and K the number of distin-
guished points computed by our algorithm. To estimate the memory complexity
of our approach, we give upper and lower bounds for the number of nodes that
will be allocated in the radix tree before a collision is found.
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Worst-case scenario. In the worst case scenario, for each new word added
in this structure we will create as much nodes as possible. This means that the
x-coordinates of the added points have the shortest possible common prefix, as
shown in Figure 2. For the first 10 points, we will use 10c nodes. After that, the
first distinguished point that we find will take c− 1 nodes, since all possibilities
for the first letter in the string were created. We repeat this operation 9 · 10
times, provided that K > 10 + 9 · 10.

Fig. 2: Worst-case scenario example

More generally, let k = blog10Kc − 1. We build the tree by allocating nodes
as follows:

– 10c nodes for the first 10 points
– 9 · 10 · (c− 1) for the next 9 · 10 points
– 9 · 102 · (c− 2) for the next 9 · 102 points etc.
– 9 · 10k · (c− k) for 9 · 10k points.

For each of the remaining K − (10 +
∑k
i=1 9 · 10i) points we will need c− k − 1

nodes. To sum up, the total number of nodes that will bound our worst-case
scenario is given by:

N(K) = 10c+

k∑
i=1

9 · 10i(c− i) + (K − 10− 90

k−1∑
i=0

10i)(c− k − 1).

The simplification of this formula is detailed in Appendix A and shows that:

N(K) ≤ 10k+1 +K(c− k − 1)− 102

9
. (4)

Best-case scenario Let K be the number of distinguished points that we need
to store and let k = blog10Kc + 1. In the best-case scenario, we may assume
without loss of generality that each time a new point is added in the structure,
the minimal number of nodes is used, i.e. the x-coordinates of the added points
have the longest possible common prefix. For example, for the first point c nodes
are added, for the next 9 nodes, one extra node is allocated and so on, until all

6



Fig. 3: Best-case scenario example

subtrees of depth 1, 2 etc. are filled one by one. Figure 3 gives an example of
how 215 points are stored. If K > 10c, we fill the first tree and start a new one.
Let xi, for i ∈ {0, 1 . . . , k}, denote the i-th digit of K, from right to the left. In
full generality, since c > k, we use:

– xk complete subtrees of depth k and a (xk+1)-th incomplete tree of depth
k;

– the (xk+1)-th tree of depth k has xk−1 complete subtrees of depth k−2 and
a (xk−1+1)-th incomplete tree of depth k − 1;

– c− k extra nodes.

Summing up all nodes, we get the following formula:

N(K) =

k∑
i=0

xi

i∑
j=0

10j + k + c− k =
1

9

k∑
i=0

xi(10i+1 − 1) + c =
10

9
K − c− 1

9

k∑
i=0

xi.

We conclude that:

N(K) ≥ 10

9
K − c− k − 1. (5)

To conclude we have proved the following:

Proposition 1. The expected number of nodes in the radix tree verifies the fol-
lowing inequalities:

10

9
K − c− logK − 1 ≤ N(K) ≤ (c− logK + 1)K − 102

9
. (6)

Experimental evidence for the average case. To have an initial estimate of
the average case, we experimented by counting the number of nodes created and
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Key
size

Points Nodes Word
length

Nodes
Points

Worst-case
offset

Best-case
offset

Between best
and worst

45 bits 2720 18925 11 7.10 +3904 -15894 0.80
50 bits 7394 57235 12 7.86 +9885 -49011 0.83
55 bits 21042 178629 13 8.61 +21318 -155239 0.87

Table 1: Average number of nodes in the radix tree data structure for solving
ECDLP

comparing them to the number of points stored while solving discrete logarithms
on elliptic curves. The results in Table 1 are an average of 200 runs.

The last column shows where the average-case stands on a scale from 0 to 1,
where 0 represents the best-case scenario and 1 represents the worst-case scenario
calculated by equations 5 and 4 respectively. Columns 6 and 7 give the offset
of these values compared to the experimentally obtained average. In column 5
we compare the word length with the nodes to points ratio, we see how much
we gain from the common prefixes.

Radix trees versus hash tables. Let’s say that the expected number of dis-
tinguished points computed by the random walks before a collision is found is K.
In order to estimate the amount of memory needed to store distinguished points
in the hash table, we have to determine the size of indexes. Assume that the hash
values are b-bit numbers, so that we create a large hash table of 2b numbers,
which will be indexed using the hash values. To bound the cost of look-up and
insertion, we follow an analysis given in [10, Sect. 6.3.2] and choose the size of
b so that we avoid obtaining multicollisions on the hash functions on elements
from the list of distinguished points computed during the algorithm. Assuming
that hash values behave as random numbers, then to avoid 3-multicollisions for
instance, we take

K3/6 ∼ 22b.

By approximating K ∼ θ
√

πn
2 , this yields b ∼ 3

2 log θ + 3
4 log πn

2 and a memory
complexity of the hash table algorithm of :

O(θ
3
2

(πn
2

) 3
4

). (7)

In the case of discrete logarithms, we will compare this against the worst-
case complexity of our radix tree data structure. By a theorem of Hasse [14], we
know that the number of points on the curve is given by n = p + 1 − t, with
|t| ≤ 2

√
p. Since we assume that n is prime, we approximate log n ∼ log p. Hence

an approximation of the number of nodes in the radix tree in the the worst-time
is:

(
1

2
log n− log

√
πθ√
2

+ 1)θ

√
πn

2
.
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This shows that the memory complexity obtained for the algorithm by using our
data structure is better than the one of the hash table version.

As radix trees, hash tables have log p look-up and insertion times, since one
needs to take into account the cost of hashing the key. In the worst case, look-
up and insertion may take longer, depending on how collisions are handled. To
all these, we have to add the cost of comparing the two keys, the one to be
inserted with the one already stored. We have to do this comparison to see if
the discovered collision is a distinguished point collision or just a hash table one.
Whereas with radix trees, when we find the corresponding node and it already
has a value, we are sure to have found the desired collision.

4 Time complexity

This section provides a time analysis of the parallel collision search algorithm.
Van Oorschot and Wiener [16] proved that the runtime of their algorithm is

O

(
1

L

√
πn

2

)
,

with L the number of threads we use.
We revisit the steps of their proof and show a careful analysis of the running

time. Our theoretical model provides a more rigorous argument for linear scal-
ability and indicates that the actual running time of the algorithm depends on
the proportion of distinguished points.

Theorem 1. The total running time of the parallel collision search algorithm is

f(θ) = (
1

L

√
πn

2
+

1

θ
)tc + (

θ

L

√
πn

2
)ts, (8)

where tc and ts are constants of the time it takes to compute and to store a point
respectively.

Proof. Let T = 1 be the moment when every thread has found the first dis-
tinguished point. The number of distinguished points stored in the common
structure at T = 1 is L. Note that the length of a short walk is 1

θ , thus every
thread has calculated 1

θ points at the moment T = 1. The probability of not
having a collision at T = 1 is

1− L

nθ
.

Even though the collision is discovered only when a distinguished point is found,
two trails can collide at any given point on the short walk. Furthermore, any of
the L threads can cause a collision. Thus, the probability for all threads of not
finding a collision on any point on the short walk is:

(1− L

nθ
)

1
θL,
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at the moment T = 1.
Let X be the number of distinguished points calculated per thread before

duplication. The probability of not having a collision after each thread has found
and stored T distinguished points is

P (X > T ) = (1− L

nθ
)
L
θ · (1− 2L

nθ
)
L
θ · . . . · (1− TL

nθ
)
L
θ .

To do this multiplication we are going to take a shortcut. When x is close to
0, a coarse first-order Taylor approximation for ex as:

ex ≈ 1 + x.

Now we can rewrite our expression to:

P (X > T ) = (e−
L
nθ · e− 2L

nθ · . . . · e−TLnθ )
L
θ =

= (e
−(L+2L+...+TL)

nθ ))
L
θ =

= (e
−T (T+1)L

2nθ )
L
θ =

= (e
−T2L
2nθ )

L
θ = e

−T2L2

2nθ2 . (9)

This gives us the probability

P (X > T ) = e
−T2L2

2nθ2 ,

thus the expected number of distinguished points found before duplication, is

E(X) =

∞∑
T=1

T ·P (X = T ) =

∞∑
T=1

T ·(P (X > T−1)−P (X > T )) =

∞∑
T=0

P (X > T ).

We approximate

E(X) =

∞∑
T=0

e
−T2L2

2nθ2 ≈
∫ ∞
0

e
−x2L2

2nθ2 dx ≈ θ

L

√
πn

2
.

Since the length of a short walk is 1
θ , the number of calculated points (distin-

guished or not) before a collision occurs is

1

L

√
πn

2
.

However, a collision might occur on any point on the walk and it will not be
detected until the walk reaches a distinguished one. We add 1

θ to the number
of calculations for the discovery of a collision. Finally, the expected number of
calculated points per thread is:

1

L

√
πn

2
+

1

θ
.
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The two main operations in our algorithm are computing the next point on the
random walk and storing a distinguished point. Thus, the time complexity of
our algorithm is:

f(θ) = (
1

L

√
πn

2
+

1

θ
)tc + (

θ

L

√
πn

2
)ts. (10)

Remark 1. Note that the analysis above shows that the number of points com-
puted by the algorithm is O

(
θ
√

πn
2

)
. This was proven by van Oorschot and

Wiener in the first place.

As we can see in Equation (8), the proportion of distinguished points we
choose can influence our time complexity. The optimal value for θ is the one
that gives us the minimal time complexity. The time complexity is minimal at
a point at which its derivative with respect to θ is 0. In our implementation for
discrete logarithms, tests show that both computing and storing a point take 1
microsecond. We replace constants tc and ts with 1 to look for the minimal value
of our runtime function, by computing the zeros of its derivative:

f ′(θ) =
1

L

√
πn

2
− 1

θ2
.

We deduce that the optimal number of trailing bits is logn
4 . In Section 5 we

give timings for our implementation of the attack, which support these theoreti-
cal findings. Although we do not dispose of an implementation of the hash table
variant of the algorithm and we are unable at the time of the submission to give
a full analysis in this case, we are inclined to believe that the choices that were
made in implementations available in the literature [9,6] were optimal or close
to optimal. We detail their choices in Section 5. Most importantly, our analysis
puts forward the idea that the optimal choice for θ depends essentially on the
choices made for the implementation and the memory management.The optimal
value for θ calculated here justifies our results in Figures 6 and 7.

4.1 Finding many collisions: Meet-in the middle attacks

Using a simplified complexity analysis, van Oorschot andWiener [16] put forward
the following heuristic.
Heuristic. Let n be the cardinality of the set S. For a memory which can hold
w distinguished points, the (conjectured) optimum proportion of distinguished
points is θ ∼ 2.25

√
w
n . Under this assumption, the expected number of itera-

tions required to complete a meet-in-the-middle attack using these parameters
is O(n

3/2

w ).

This heuristic suggests that in the case of meet-in-the-middle attacks, our parallel
collision search with radix tree algorithm will yield a memory improvement, and
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also a better time complexity. We revisit their proof and give a more refined
analysis for the running time of a parallel collision search for finding n

2 collisions.

Theorem 2. In the parallel collision search algorithm, an upper bound for the
expected time to find n

2 collisions with a memory constraint of w words is given
by:

1

L

w
θ

+ (
n

2
−

log
(

(α−1)ω
√
2

θ
√
πn

+ 1
)

logα
)
nθ

w

+
n

2θ
. (11)

Proof. Let X be the number of distinguished points calculated per thread before
duplication. Let T1 be the number of distinguished points computed until the
first collision was found, and Ti, for any i > 1, the number of points stored in
the memory after the (i− 1)th collision was found and before the ith collision is
found.

As shown in Theorem 1, the expected number of points stored before finding
the first collision is T1 = θ

√
πn
2 . The probability of not having found the second

collision after each thread has found and stored T distinguished points is

P (X > T ) = (1− L+ T1
nθ

)
L
θ · (1− 2L+ T1

nθ
)
L
θ · . . . · (1− TL+ T1

nθ
)
L
θ .

As in the proof of Theorem 1, we approximate this expression by

P (X > T ) = e
−T2L2−2LT1T

2nθ2 .

Hence the expected number of distinguished points computed by a thread
before the second collision is:

E(X) =

∞∑
T=0

e
−T2L2−2LT1T

2nθ2 ≈
∫ ∞
0

e
−x2L2−2xLT1

2nθ2 dx =

= e
T2
1

2nθ2

∫ ∞
0

e
−(xL+T1)2

2nθ2 dx =
θ
√
n

L
e
T2
1

2nθ2

∫ ∞
T1
θ
√

2n

e−t
2

dt

=
θ
√

2n

L
e
T2
1

2nθ2

(
−e
−t2

2t

∣∣∣∣∞
T1
θ
√

2n

−
∫ ∞

T1
θ
√
n

e−t
2

2t2

)
.

Since the last integral is negligible, we get that the number of distinguished points
stored during the search for the second collision T2 is given by ≈ θ

√
2n
π = αT1,

with α = 2
π . By redoing the computation above in order to estimate Ti one may

show that Ti ≤ αTi−1. To simplify the computation, we assume that in the worst
case Ti = αTi−1. Hence the total number of points stored until i collisions are
found is bounded by:

T1 + T2 + . . . Ti−1 =
1− αi

1− α
T1.
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Hence the memory will fill after computing the first k =
log

(
(α−1)ω

√
2

θ
√
πn

+1
)

logα colli-
sions and the expected total time for one thread is:

1

L

k∑
i=1

αi−1
1

θ
T1 =

w

Lθ
.

On the other hand, as shown in [16], when the memory is full, the time to find
a collision is nθ

Lw . To sum up, the total time to find n
2 collisions is:

1

L

w
θ

+ (
n

2
−

log
(

(α−1)w
√
2

θ
√
πn

+ 1
)

logα
)
nθ

w

+
n

2θ

By minimizing the complexity function obtained in Theorem 2 , we obtain an
estimate for the optimal value of θ to take in order to minimize the running time
of the algorithm.

Corollary 1. The optimum proportion of distinguished points minimizing the

time complexity bound in Theorem 2 is θ ∼
√
w(2w+Ln)

Ln . Furthermore, by choos-
ing this value for θ, the running time of the parallel collision search algorithm
for finding n

2 collisions is bounded by:

O

(
n

L

√
2w + Ln

2L
√
w

)
. (12)

Proof. In order to be able to formally compute a minimal value of θ depending
on n and w, we approximate the logarithm in Equation 11 by (α−1)w

√
2

(α−1)w
√
2+θ
√
n
.

Hence, the time complexity is bounded by:

f(θ) =
1

L

(
w

θ
+ (

n2θ

2w
−
√
n

w
)

)
+

n

2θ
.

By minimizing this expression, we obtain that by taking θ ∼
√
w(2w+Ln)

Ln , the

time complexity is O
(
n
L

√
2w+Ln
2L
√
w

)
.

This confirms the heuristic findings in [16]. Most importantly, the running
time complexity in Equation (12) suggests that in the case of meet-in-middle
applications which fill the memory available, our approach will yield a faster
algorithm, since we can store a large number of words.

5 Implementation and benchmarks

To support our findings, we implemented the parallel collision search with radix
trees for discrete logarithms on elliptic curves defined over prime fields. Our im-
plementation is in C and the external libraries we used are The GNU Multiple
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Precision Arithmetic Library [2] for large numbers arithmetic, and the OpenMP
(Open Multi-Processing) interface [3] which supports shared memory multipro-
cessing programming. Our tests were performed on a 16-core Intel Xeon E5-2680
processor and we experimented using between 2 and 16 threads.

Additive walks. Teske [15] showed experimentally that the walk proposed by
Pollard 1 originally performs on average slightly worse than a random walk. Teske
proposes alternative mappings that lead to the same performance as expected
in the random case: additive walks and mixed walks. The additive walks are
presented as follows. Let r be the number of sets Si which give a partition of the
group G, and let Mi be a linear combination of P and Q: Mi = aiP + biQ, for
i = ¯1, r. We choose the iterating function of the form:

Ri+1 = f(Ri) =



Ri +M1, Ri ∈ S1;

Ri +M2, Ri ∈ S2;

Ri +M3, Ri ∈ S3;

. . .

Ri +Mr, Ri ∈ Sr.

(13)

In the case of mixed walks, we introduce squaring steps to r-additive walks.
However, Teske’s experimetal results show that apart from the case r = 3, the
introduction of squaring steps does not lead to a significantly better performance.
After experimenting with both of them, we confirmed his conclusion and decided
to use additive walks.

Teske shows experimentally that if r ≥ 20 then additive walks are close to
random walks. We therefore chose r = 20 in our implementation.

Use of automorphisms If the function f is chosen such that f(R) = f(−R)
then we may regard f as being defined on equivalence classes under ±. Since
there are n

2 equivalence classes, this would lead to a theoretical speed-up of√
2. However, it was observed that the use of the negation map leads to so-

called fruitless cycles, cycles that trap the random-walks. In practice, since these
cycles need to be handled, the actual speed-up is significantly less than

√
2

and actually depends on the platform one uses [6]. In this paper, we aim at
evaluating the performance of our algorithm independently of the platform one
may choose for its implementation. Therefore, we do not use automorphisms in
our implementation.

Long walks vs. short walks As we explained in section 2 every thread selects
a starting point, which is a multiple of P , and computes the random walk until a
distinguished point is found. After the distinguished point is stored in the radix
tree, the thread starts a new walk from a new starting point. We refer to this as
a short walk because the walk stops at the first distinguished point and has an
average length of 1/θ. A second possibility is that the thread would continue the
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walk from a distinguished point rather than start from a new one. We refer to
this as a long walk. This approach is used in the Pollard’s rho method because
it allows the walk to enter a cycle and is an indispensable factor in finding a
collision using the Floyd’s cycle finding algorithm[10]. However, in the Parallel
Collision Search algorithm every distinguished point is stored, and thus the cycle
property is irrelevant.

Furthermore, using the short walk method we are not required to calculate
the coefficients a and b every time. We calculate only the value of R for each
iteration, and when we find a distinguished point we store the coefficients of the
starting point (only the coefficient a is stored because the starting point being a
multiple of P , the b coefficient is zero). It is only when a collision is found that
we start iterating from the beginning of the short walk, this time computing a
and b. This convenience makes short walks the better choice. Furthermore, we
experimented with both short walks and long walks, finding that short walks give
slightly better runtime results. All our results presented here use short walks.

Parallel Performance We were interested in the parallel performance i.e.
how efficient our program is when increasing the number of parallel processing
elements. A program is considered to scale linearly if the speedup is equal to
the number of threads used. In the theoretical model [16], the Parallel Collision
Search is considered to have a linear scalability. This means that if we implement
L threads, we will find the discrete logarithm L times faster than we would using
one thread. The parallel performance was measured from two points of view:

– The runtime.
– The number of calculated (distinguished and non distinguished) points.

Figures 4 and 5 present our results. Every value is an average of 100 runs and
the parallel performance is indicated in parentheses. When working with 50-bit
or bigger field curves, the parallel performance of our method is linear.

Distinguishing property The probability θ of a point being distinguished is
a significant factor in the time complexity of the algorithm, as demonstrated in
in section 4. The results in Figures 6 and 7 show how the runtime depends on
the value of θ. Once more, every value is computed as an average of 100 runs.
The x-axis represents the number of trailing zero bits that the x-coordinate of a
point must have in order to satisfy the distinguishing property. Note that when

the number of trailing zero bits is s, the value of θ is
1

2s
.

We conclude that the optimal choice for the number of trailing zero bits is
B
4 , for a B-bit curve. Note however that all values in the interval [B6 ,

B
3 ] for a

B-bit field curve are close to this optimal value, while very small or very large
values of θ increase the runtime significantly. Our results are justified by the
optimal value for θ that we obtain theoretically in Section 4. For comparison,
Bos et al. [5] chose 24 trailing bits for the 112-bits curve and Bernstein, Lange
and Schwabe [6] took 20 trailing bits for the same size.
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6 Conclusion

We proposed an alternative memory structure for the parallel collision search al-
gorithm proposed by van Oorschot and Wiener [16]. We show that this structure
yields a better memory complexity than the hash table variant of the algorithm.
We revisited the time complexity of the parallel collision search and explained
how to choose the optimal value for the proportion of distinguished points when
implementing this algorithm. Moreover, using the new memory structure, we
obtained a better bound for the time complexity of the parallel collision search,
in the case where a large number of collisions is needed. Finally, we implemented
the radix tree parallel collision search algorithm for solving discrete logarithms
and showed its scalability.
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A Appendix : Worst-case scenario

The total number of nodes in the worst-case scenario is given by:

N(K) = 10c+

k∑
i=1

9 · 10i(c− i) + (K − 10− 90

k−1∑
i=0

10i)(c− k − 1).

First, we simplify the geometric progression:
∑k
i=1 9 · 10i(c− i), denoted by Sk.

Sk = 9 · 101 · (c− 1) + 9 · 102 · (c− 2) + · · ·+ 9 · 10k · (c− k)

10Sk = 9 · 102 · (c− 1) + · · ·+ 9 · 10k · (c− (k − 1)) + 9 · 10k+1 · (c− k)

10Sk − Sk = −(9 · 101 · (c− 1)) + 9 · 102 + 9 · 103 + · · ·+ 9 · 10k + 9 · 10k+1 · (c− k)

= −(9 · 101 · (c− 1)) +

k∑
i=2

9 · 10n + 9 · 10k+1 · (c− k)

= −(9 · 101 · (c− 1)) + 10k+1 − 102 + 9 · 10k+1 · (c− k)

Thus we have that

N(K) = 10c− 10(c− 1) +
1

9
10k+1 − 102

9
+ 10k+1(c− k) + (K − 10k+1)(c− k − 1)

=
10

9
10k+1 +K(c− k − 1) + 10c− 10(c− 1)− 102

9
.

We approximate:

N(K) ≈ 10k+1 +K(c− k − 1)− 102

9
.
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