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Abstract. Parallel versions of collision search algorithms require a sig-
nificant amount of memory to store a proportion of the points computed
by the pseudo-random walks. Implementations available in the literature
use a hash table to store these points and allow fast memory access.
We provide theoretical evidence that memory is an important factor in
determining the runtime of this method. We propose to replace the tra-
ditional hash table by a simple structure, inspired by radix trees, which
saves space and provides fast look-up and insertion. In the case of many-
collision search algorithms, our variant has a constant-factor improved
runtime. We give benchmarks that evaluate the linear parallel perfor-
mance of the attack on ECDLP.
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1 Introduction

Given a function f : S → S on a finite set S, we call collision any pair a, b
of elements in S such that f(a) = f(b). Collision search has a broad range of
applications in the cryptanalysis of both symmetric and asymmetric ciphers:
computing discrete logarithms, finding collisions on hash functions and meet-in-
the-middle attacks. The Pollard’s rho method [14], initially proposed for solving
factoring and discrete logs, can be adapted to find collisions for any random
mapping f . The parallel collision search algorithm, proposed by van Oorschot
and Wiener [18], builds on Pollard’s rho method, and is expected to have a
linear speedup compared to the sequential version. This algorithm computes
several walks in parallel and stores some of these points, called distinguished
points, within the shared memory of an SMP system.

In this paper, we revisit the memory complexity of the parallel collision
search algorithm, both for applications which need a small number of collisions
(i.e. discrete logs) and those needing a large number of collisions, such as meet-
in-middle attacks. In the case of discrete logarithms, collision search methods
are the fastest known attacks in a generic group. In elliptic curve cryptogra-
phy, subexponential attacks are known for solving the discrete log on curves



defined over extension fields, but only generic attacks are known to work in
the prime field case. Evaluating the performance of collision search algorithms
is thus essential for understanding the security of curve-based cryptosystems.
Several record-breaking implementations of this algorithm are available in the
literature: over a prime field the current record reaches a discrete log in a 112-
bit group on a curve of the form y2 = x3 − 3x+ b [5,10]. This computation was
performed on a Playstation 3. More recently, Bernstein, Lange and Schwabe [7]
reported on an implementation on the same platform and for the same curve, in
which the use of the negation map gives a speed-up by a factor

√
2. Over binary

fields, the current record is a FPGA implementation breaking a discrete loga-
rithm in a 117-bit group [1]. As for the meet-in-the-middle attack, this generic
technique is widely used in cryptanalysis to break block ciphers (double and
triple DES, GOST [9]), hash functions [12,13] and lattice-based cryptosystems
(NTRU [4,19]).

First, our contribution is to extend the analysis of the parallel collision search
algorithm and present a formula for the expected runtime to find any given
number of collisions, with and without a memory constraint. We show how to
compute optimal values of θ - the proportion of distinguished points, allowing to
minimize the running time of collision search, both in the case of discrete loga-
rithms and meet-in-the-middle attacks. In the case where the available memory
is limited, we determine the optimal value of θ, proving that the value conjec-
tured by van Oorschot and Wiener was asymptotically correct. Going further in
the analysis, our formulae show that the actual running time of finding-many-
collisions algorithm is critically reduced if the number of words w that can be
stored in memory is larger.

Secondly, we focus on the data structure used for the algorithm. To the best of
our knowledge, all existing implementations of parallel collision search algorithms
use hash tables to organize memory and allow fast look-up operations. In this
paper, we introduce a new structure, called Packed Radix-Tree-List, which is
inspired by radix trees. We show that the use of this structure leads to a better
use of memory in implementations and thus yields improved running times for
many-collision applications.

Using the PRTL structure, we have implemented the parallel collision search
algorithm for discrete logarithms on elliptic curves defined over prime fields,
as well as a multi-collision search algorithm. Our benchmarks demonstrate the
performance and scalability of this method.

Organisation. Section 2 reviews algorithms for solving the discrete logarithm
problem and for meet-in-the-middle attacks. In Section 3, we revisit the proof
for the time complexity of the collision finding algorithm for a small and a large
number of collisions. We furthermore show how to minimize the runtime, in
function of the proportion of distinguished points. Section 4 describes our choice
for the data structure, complexity estimates and comparison with hash tables.
Finally, Section 5 presents our experimental results.
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2 Parallel collision search

In this section we briefly review Pollard’s rho method and the parallel algorithm
for searching collisions. In order to look for collisions for a function f : S → S
with Pollard’s rho method, the idea is to compute a sequence of elements xi =
f(xi−1) starting at some random element x0. Since S is finite, eventually this
sequence begins to cycle and we therefore obtain the desired collision f(xk) =
f(xk+t), where xk is the point in the sequence before the cycle begins and xk+t
is the last point on the cycle before getting to xk+1 (hence f(xk) = f(xk+t) =
xk+1). One may show that the expected number of steps taken until the collision
is found is

√
πn
2 , and therefore that the memory complexity is also O(

√
πn
2 ). This

algorithm can be further optimized to constant memory time by using Floyd’s
cycle [11,8]. We do not further detail memory optimizations here since they are
inherently of sequential nature and no way to exploit these ideas in a parallel
algorithm is currently known.

The parallel version for the collision search was proposed by van Oorschot
and Wiener [18] and assigns to each thread the computation of a trail given
by points xi = f(xi−1) starting at some point x0. Only points that belong to
a certain subset, called the set of distinguished points, are stored. This set is
defined by points having an easily testable property. Whenever a walk computes
a distinguished point xd, it stores in a common list of tuples (x0, xd). If two walks
collide, this is identified only when they both reached a common distinguished
point. We may then re-compute the paths and the points preceding the common
point are distinct points which map to the same value.

Solving discrete logarithms. Our focus is on the elliptic curve discrete log-
arithm (ECDLP) in a cyclic group G = 〈P 〉, but the methods described in this
paper apply to any cyclic finite group. We will assume that the curve E and the
group G are defined over a finite field Fp, where p is a prime number. Let Q ∈ G
and say we want to solve the discrete logarithm problem Q = xP , where x ∈ Z.
To apply the ideas explained above, we define a map F : G→ G which behaves
randomly and such that each time we compute f(R) we can easily keep track of
integers a and b such that f(R) = aP + bQ. Pollard’s initial proposal for such a
function was

f(R) =

R+ P if R ∈ S1

2R if R ∈ S2

R+Q if R ∈ S3

(1)

where the sets Si, i ∈ {1, 2, 3} are pairwise disjoint and give a partition of the
group G. As a consequence, whenever a collision f(R) = f(R′) occurs, we obtain
an equality

aP + bQ = a′P + b′Q. (2)

This allows us to recover x = (a−a′)/(b−b′), provided that b−b′ is not a multiple
of r. Starting from R0, a multiple of P , Pollard’s rho [15] method computes a
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sequence Ri of points where Ri+1 = f(Ri). Since the group G is finite, this
sequence will produce a collision after

√
πn
2 iterations on average, where n is

the cardinality of the group G. To define distinguished points, we take an easily
testable property, such as a certain number of trailing bits of their x-coordinate
being zero. Whenever a walk computes such a point, this is stored in a common
list, together with the corresponding a and b. If two walks collide, this can not
be identified until the computation of the common distinguished point. Then
the discrete logarithm is recovered from (2).

Meet-in-the-middle attacks. Meet-in-the-middle attacks require finding a
collision of the type f1(a) = f2(b), where f1 : D1 → R and f2 : D2 → R
are two functions with the same co-domain. As explained in [18], solving this
equation may be formulated as a collision search problem on a single function
f : S × {1, 2} → S × {1, 2}, where the solution we need is of the type:

f(a, 1) = f(b, 2), (3)

and has some extra specific property. This collision is called the golden collision.
The number of unordered pairs in S are approximatively n2

2 and the probability
that the two points in a pair map to the same value of f is 1

n . There are n
2

expected collisions for f and there may be several solutions to Equation (3).
Hence one typically assumes that all collisions are equally likely to occur and
that in the worst case, all possible n

2 collisions for f are generated before finding
the golden one. Because so many collisions are generated, memory complexity
can be the bottleneck in meet-in-the-middle attacks and the memory constraint
becomes an important factor in determining the running time of the algorithm.
We further explain this idea in Section 3.

Computational model and data structure. We consider a CPU imple-
mentation of the shared memory paradigm, where each thread involved in the
process performs the same task of finding and storing distinguished points. In
this case, the choice of a data structure allowing efficient look-up and insertion is
significant. The most common structure used in the literature is a hash table. In
order to make parallel access to memory possible, van Oorschot and Wiener [18]
propose the use of the most significant bits of distinguished points. Their idea
is to divide the memory in segments, each corresponding to a pattern on the
first few bits. Threads read off these first bits and are directed towards the right
segment. Each segment is organized as a memory structure on its own.

A more commonly used computational model for solving the ECDLP is the
distributed client-server model, where a large number of client processors are
communicating with a central server over the Internet. Here the server stores
and compares the distinguished points received from the clients. A representative
implementation of this model is [6]. Following the client-server architecture, there
is the FPGA model, where a host computer is controlling a large number of
FPGAs, as in [1].
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Excluding the need for a structure that allows efficient simultaneous access
to memory, all results in this paper apply to both computational models, even
though our experimental results are obtained using the CPU implementation.

Notation. In the remainder of this paper, we denote by θ the proportion of
distinguished points in a set S. We denote by n the number of elements of S. We
denote by E an elliptic curve defined over a prime finite field Fp. Whenever the
set S is the group E(Fp), n is the cardinality of this group. For simplicity, in this
case, we assume that n is prime (which is the optimal case in implementations).

3 Time complexity

Van Oorschot and Wiener [18] gave formulae for the expected running time of
parallel collision search algorithms. In this section, we revisit the steps of their
proof and show a careful analysis of the running time. Our theoretical model
provides a more rigorous argument for linear scalability and yields runtimes
which asymptotically coincide to those in [18]. However, our refined formulae
indicate that the actual running time of the algorithm depends on the proportion
of distinguished points and allow us to determine the optimal choice of θ for
actual implementations.

3.1 Finding one collision: elliptic curve discrete logarithm

Van Oorschot and Wiener [18] proved that the runtime for finding one collision
is

O

(
1

L

√
πn

2

)
,

with L the number of threads we use. This is obtained by finding the expected
number of computed points before a collision occurs and then intuitively dividing
the clock time by L when L processors are involved. The proof of the following
theorem, which is in Appendix A gives a more refined analysis on why the PCS
parallelizes linearly.

Theorem 1. In the parallel collision search algorithm, the expected running
time to find one collision is

f(θ) = (
1

L

√
πn

2
+

1

θ
)tc + (

θ

L

√
πn

2
)ts, (4)

where tc and ts are constants of the time it takes to compute and to store a point
respectively.

As we can see in Equation (4), the proportion of distinguished points we
choose will influence our time complexity. The optimal value for θ is the one that
gives the minimal run complexity. Most importantly, our analysis puts forward
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the idea that the optimal choice for θ depends essentially on the choices made
for the implementation and the memory management. From this formula, we
easily deduce that if the proportion of distinguished points is too small or too
large, the running time of the algorithm increases significantly.

By estimating the ratio ts/tc for a given implementation, one can extrapolate
the optimal value of θ by computing the zeros of the derivative:

f ′(θ) =
1

L

√
πn

2
ts −

1

θ2
tc.

Figure 1 gives timings for our implementation of the attack, using a hash
table to store distinguished points. Timings shown on the figure are a mean for
100 tests on a 65-bits curve and support our theoretical findings.
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Fig. 1: Timings of solving ECDLP for different values of θ, 65-bits curve, 28
threads

Note that most recent implementations available in the literature choose
the number of trailing bits giving the distinguished point property in a range
between 0.178 log n and 0.256 log n (see [1,7,10]). This value was determined by
experimenting on curves defined over small size fields. Our theoretical findings
confirm that these values were close to optimal, but we support the idea that for
future record-breaking implementations, the value of θ should be determined as
explained above.

When we consider the client-server model, clients do not have access to mem-
ory, but they send distinguished points to the server and thus ts stands for cost
of communication on the client side. We suppose that all of the clients’ proces-
sors are dedicated to computing points. On the server side however, the analysis
is different. This theorem and the means of finding the optimal value for θ apply
both to the shared memory implementation adopted in this paper, and to the
more common distributed client-server model.

3.2 Finding many collisions: Meet-in the middle attacks

Using a simplified complexity analysis, van Oorschot andWiener [18] put forward
the following heuristic.
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Heuristic. Let n be the cardinality of the set S. For a memory which can hold
w distinguished points, the (conjectured) optimum proportion of distinguished
points is θ ∼ 2.25

√
w
n . Under this assumption, the expected number of itera-

tions required to complete a meet-in-the-middle attack using these parameters
is O(nL

√
n
w ).

This heuristic suggests that in the case of meet-in-the-middle attacks, a memory
data structure allowing to store more distinguished points will yield a better
time complexity. To prove the conjectured runtime, we first give a more refined
analysis for the running time of a parallel collision search for findingm collisions.

Theorem 2. In the parallel collision search algorithm, the expected running
time to find m collisions with a memory constraint of w words is:

1

L

(
w

θ
+ (m− w2

2θ2n
)
θn

w

)
+
m

θ
. (5)

The proof of this Theorem is in Appendix B and it relies strongly on our
formula for the expected total number of computed distinguished points for
finding k collisions, when the memory is not limited:

Sk = θ
√

2kn. (6)

We confirmed this estimation experimentally by running a multi-collision algo-
rithm for a curve over a 55-bit prime field. The comparison of our formula with
the experimental results is in Table 1.

Collisions Experimental
Avg.

Sk Collisions Experimental
Avg.

Sk

100 238289 231704 500 530493 518107
1000 750572 732714 2000 1062581 1036215
5000 1681831 1638399 7000 1990671 1938581

Table 1: Comparing Formula 6 to an experimental average. Each value is an
average of 100 tests.

Recall that in the meet-in-the-middle attack, one needs to compute n
2 colli-

sions. By minimizing the complexity function obtained in Theorem 2 , we obtain
an estimate for the optimal value of θ to take, in order to minimize the running
time of the algorithm.

Corollary 1. The optimum proportion of distinguished points minimizing the
time complexity bound in Theorem 2 is θ =

√
w2+nLw
n . Furthermore, by choosing

this value for θ, the running time of the parallel collision search algorithm for
finding n

2 collisions is bounded by:

O

(
n
√
w2 + nLw

wL

)
. (7)
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The proof of this corollary is in Appendix C and it confirms and proves the
heuristic findings in [18]. Most importantly, Theorem 1 suggests that in the case
of applications which fill the memory available, the number of words we can
store is an important factor in the running time complexity. More storage space
yields a faster algorithm by a constant factor. We propose such optimization in
Section 4.

4 Our approach for the data structure

In this section, we evaluate the memory complexity of parallel collision search
algorithms. As explained in Section 2, van Oorschot and Wiener’s [16] proposed
to divide the memory into segments to allow simultaneous access by threads.
We revisit this construction, with the goal in mind to minimize the memory
consumption as well. Since in Section 3 we showed that the time complexity of
collision search depends strongly on the available amount of memory, we propose
an alternative structure called a Packed Radix-Tree-List, which will be referred
to as PRTL in this paper. We explain how to choose the densest implementation
of this structure for collision search data storing in Section 5.

Since the PRTL is inspired by radix trees, we first describe the classic radix
tree structure and then we give complexity analysis confirmed with experimental
results on why its straightforward implementation is not memory efficient. The
structure that we finally use for collision search has the memory gain of radix
tree common prefixes, but avoids the memory loss of manipulating pointers.

4.1 Radix tree structure

Each distinguished point from the collision search is represented as a number in
a base of our choice, denoted by b. For example, in the case of attacks on the
discrete logs on the elliptic curve, we may represent a point by its x-coordinate.
The first numerical digit of this number in base b gives the root node in the
tree, the next digit is a child and so on. According to graph theory, this leads to
define an acyclic graph which consists of b connected components (i.e. a forest).

In regard to the memory consumption, we take advantage of common prefixes
to have a more compact structure. Let c be the length of words we store in the
tree and K the number of distinguished points computed by our algorithm.
To estimate the memory complexity of this approach, we give upper and lower
bounds for the number of nodes that will be allocated in the radix tree before a
collision is found.

Proposition 1. The expected number of nodes in the radix tree verifies the fol-
lowing inequalities:

b

b− 1
K − c− logK − 1 ≤ N(K) ≤ (c− logK +

b

b− 1
)K. (8)
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The proof of these inequalities is detailed in Appendix D.
Traditionally, nodes in a radix tree are implemented as arrays of pointers

to child nodes. This representation will lead to excessive memory consumption
when the data to be stored follows a uniform random distribution, leading to
sparsely populated branches and to the average distribution of nodes in the tree
being closer to the worst case than to the best case.

The difference between the worst case value and the best case value is ap-
proximatively (c − logK)K. Depending on the application, this value may be
large. We take the case where a single collision is stored for solving the ECDLP.
By a theorem of Hasse [16], we know that the number of points on the curve is
given by n = p + 1 − t, with |t| ≤ 2

√
p. Since we assume that n is prime, we

approximate log n ∼ log p. Hence an approximation of this number is:

(
1

2
log n− log

√
π

2
)θ

√
πn

2
.

In the case of many collisions algorithms, c ∼ K and this standard deviation
becomes negligible, resulting into a space-reduced data structure. We show how
to handle sparse trees efficiently in Section 4.2.

Memory consumption of a radix tree for solving ECDLP. In the case of
attacks on the discrete logs on the elliptic curve, we store the starting point of
the Pollard walk aP and the first distinguished point we find, represented by the
coefficient a and the x-coordinate correspondingly. In practice, implementing
this structure is very costly. To have a log p look-up and insertion time each
node has to store the pointers to all of its b children in an array. Furthermore,
internal nodes, as well as leaves, have to hold a pointer to a coefficient a, since
x-coordinates can be of different lengths.1 For reasons pointed out earlier, there
is also a lock associated to each node.

We label a pointer wasted when it is pending (i.e. unallocated child or a
coefficient) and we denote by rate of use the ratio between the memory that is
used and the allocated amount of memory. We show in Table 2 the experimental
results that we got for the rate of use of the radix tree structure in the case of
collision search for the discrete log attack.

Key size base 2 base 4 base 8 base 10
60 bits 51.47% 35.46% 22.4% 18.58%
65 bits 51.39% 35.36% 21.95% 18.50%

Table 2: Rate of use of the radix tree structure for solving ECDLP according to
base 2, 4, 8 and 10. Each value is an average of 100 tests.

1 Words can be of uniform length if we add zeros at the beginning.
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4.2 Packed Radix-Tree-List

Using the analysis from the previous paragraph we look to construct a more
efficient memory structure by avoiding the properties of the classic radix tree
which make it memory costly in the collision search case. Intuitively, we see that
the radix tree is dense at the upper levels and sparse at the lower ones. Hence
it would be less memory consuming to construct a radix tree up to certain level
and then add the points to linked lists, each list starting from a leaf on the tree.
We call this a Packed Radix-Tree-List2. Figure 2 illustrates an example of an
abstract Radix-Tree-List in base 4.

Fig. 2: Radix-Tree-List structure with b = 4 and l = 2

We look to estimate up to which level the tree is complete for our use case.
Let K be the number of stored points before a collision is found and let l be the
level up to which we build the radix tree. The number of leaves in a complete
radix tree of depth l is bl. As per the coupon collector’s problem, all the linked
lists associated with a leaf will contain at least one point when the following
inequality is verified:

K ≥ bl(ln bl + 0.577). (9)

We consider the highest value of l which satisfies this inequality to be the optimal
level, as it allows us to obtain the shortest linked lists while having 100% rate
of use of the memory structure. We verify this experimentally by inserting a
given number of randomly obtained points of length c = 65 bits to the PRTL
structure. The results are in Table 3.

We do 100 runs per K using a base 2 tree implementation and we count the
number of empty lists at the end of each run. None of the 300 runs finished with
an empty list in the PRTL structure, which confirms that the obtained l is small
enough to have at least one point per list.

Then, to confirm that l is the highest possible value that achieves this, we
do the same number of tests, taking l + 1, which is the lowest value that does
not satisfy the inequality 9. The results show that l + 1 is not small enough to
produce a 100% rate of use of the memory, therefore l is in fact the optimal level
to choose.
2 The ’packed’ property is addressed in Section 5, where we give implementation de-
tails.
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Nb. of points Chosen level Average nb. of empty lists per run
l l + 1 l l + 1

5 million 18 19 0 37
7 million 18 19 0 0.84
10 million 19 20 0 75

Table 3: Verifying experimentally the optimal level.

We notice that in the case of 7 million points, we have very few (or none)
empty slots even by taking the level l + 1. This is explained by the fact that
a PRTL of level 19 needs 7207281 points to have all of its lists filled, as per 9.
Given that 7 million is very close to this number, some of the runs finish with
100% rate of use.

The attribution of a point to a leaf is determined by its prefix and we know
in advance that all of the leaves will be allocated. Therefore, in practice we do
not actually have to construct the whole tree, but only the leaves. Hence, we
allocate an array indexed by prefixes beforehand and then we insert each point
to the corresponding prefix’s list. The operation used to map a point to an index
is faster than a hash table function. More precisely, we perform a logical AND
operation between the point’s x-coordinate and a precomputed mask to extract
the prefix. Furthermore, the lists are sorted. Since we are doing a search-and-
add operation, sorting the lists does not take additional time and proves to be
more efficient than simply adding at the end of the list. Figure 3 illustrates the
implementation of this structure.

Fig. 3: PRTL implementation. Same points stored as in Figure 2.

Remark 1. When implementing the attack for curves defined over sparse primes,
we advise taking an l-bit suffix instead of an l-bit prefix. Prefixes of numbers
in sparse prime fields are not uniformly distributed and one might end up only
with prefixes starting with the 0-bit, and therefore a half empty array.

Remark 2. Describing the structure, we took the example of the ECDLP. How-
ever, the analyses and choices we made for constructing the PRTL are valid for
any collision search application which includes storing a pair (key, data) and re-
quires pairs to be efficiently looked up by key. For the ECDLP, Bailey et al. [6]
propose, for example, to store a 64-bit seed on the server instead of the initial
point, which makes the pair (x− coordinate, seed).
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PRTL vs. hash table We experimented with the ElfHash function, which is
used in the UNIX ELF format for object files. It is a very fast hash function, and
thus comparable to the mask operation in our implementation. Small differences
in efficiency are negligible since the insertion is the less significant part of the
algorithm. Indeed, recall one insertion is done after 1

θ computations.
As is the practice with the Parallel Collision search, we allocate K indexes for

the hash table, since we expect to have K stored points. Recall that this guaran-
tees an average search time of O(1), but it does not avoid multi-collisions. Indeed,
according to [11, Section 6.3.2], in order to avoid to avoid 3-multicollisions, one
should choose a hash table with K

3
2 buckets. Consequently, we insert points in

the linked lists corresponding to their hash keys, as we did with the PRTL. Every
element in the list holds a pair (key, data) and a link to the next element. The
PRTL is more efficient in this case as we only need to store the suffix of the key.

With this approach, we can not be sure that a 100% of the hash table indexes
will have at least one element. We test this by inserting a given number of random
points on a 65-bit curve and counting the number of empty lists at the end of
each run, like we did to test the rate of use for the PRTL. We try out two
different table sizes: the recommended hash table size and for comparison, a size
which matches the number of leaves in the PRTL. All results are an average of
100 runs.

Nb. of points Average nb. of empty lists
for size = K

Average nb. of empty lists
for size = 2l

5 million 2592960 (51.85%) 98308 (37.50%)
7 million 3632679 (51.89%) 98304 (37.50%)
10 million 5138792 (51.38%) 196615 (37.50%)
Table 4: Test the rate of memory use of a hash table structure.

Results in Table 4 show that when we choose a smaller table size, we have
fewer empty lists, but the hash table is still not 100% full. Due to these results,
when implementing a hash table we choose to allocate a table of pointers to
slots, instead of allocating a table of actual slots which will not be filled. This is
the optimal choice because we only waste 8 Bytes for each empty slot, instead
of 24 (the size of one slot).

Since results in Table 3 show that the array in PRTL will be filled completely,
when using this structure we allocate an array of slots directly. This makes PRTL
save a constant of 8K Bytes compared to a hash table.

To sum up, the PRTL structure is less space consuming and has a memory
rate of use of 1. Note however that by Equation (9), the average number of
elements in a chained list corresponding to a prefix is K

bl
≈ l log b + 0.577. This

shows that the search time in our structure is negligible, and our benchmarks
shown in Section 5 confirm that memory access has no impact on the total
running time for the algorithm.
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It is clear that when one implements the PRTL, this structure takes the
form of a hash table where the hash function is in fact the modulo a specific
value calculated using the correlation (9). It might seem counter-intuitive that
the optimal solution for a hash function is the modulo function. However, col-
lision search algorithms do not require a memory structure that has hash table
properties, such as each key to be assigned to a unique index.

Indeed, a well distributed hash function is useful when we look to avoid
multicollisions. With collision search algorithms, the number of stored elements
is so vast that we can not possibly allocate a hash table of the appropriate
size and thus we are sure to have longer than usual linked lists. Fortunately,
this is not a problem since the insertion time is, in this case, not significant
compared to the 1

θ random walk computations needed before each insertion. For
example, 1

θ would be of order 232 for a 129-bit curve. On the other hand, as
shown in Section 3, the available storage space is a significant factor in the time
complexity, which makes the use of this alternative structure more appropriate
for collision searches.

5 Implementation and benchmarks

Packed RTL A link in the lists in the PRTL stores one (key, data) pair. The
intuitive structure implementation of such a link would be the following:

s t r u c t {
po in t e r to key−s u f f i x ;
po in t e r to data ;
po in t e r to next ;
} l i n k ;

In addition, we have the bytes storing the actual values for the key-suffix and
the data.

In order to have the best packed structure, we look to avoid wasting space
on addressing, structure memory alignment and unintended padding. Hence we
propose to store all relevant data in one byte-vector. Our compact slot has the
following structure:

s t r u c t {
byte vec to r [ vec to r s i z e ] ;
po in t e r to next ;
} l i n k ;

The key-suffix and data are bound in one single vector. We designed functions
that allow us to extract and set a specific bit. In this way, we have at most 7
bits wasted due to alignment.

Our implementation of a PRTL yields a better memory occupation, but most
importantly, manipulating this structure does not slow down the overall runtime
of the attack. We show tests that verify this in Table 5, where we insert a given
number of random points on a 65-bit curve, using both a hash table and the
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PRTL. To have a measurement of the runtime that does not depend on point
computation time, we take θ = 1, meaning every point is a distinguished one.
The key length is thus c = 65. All results are an average of 100 runs.

K Memory Runtime
PRTL Hash table PRTL Hash table

5 million 106 MB 324 MB 5.05 s 5.20 s
7 million 148 MB 454 MB 6.74 s 7.01 s
10 million 213 MB 649 MB 9.84 s 10.2 s

Table 5: Comparing the insertion runtime and memory occupation of a PRTL
vs. a hash table.

We show similar experiments in Table 6. This time, we performed actual
attacks on the discrete log over elliptic curves, instead of inserting random points.
Since the number of stored points is now random and can be different between
two sets of runs, the runtime per stored point and memory per stored point are
more relevant results.

Field Memory Memory per point Runtime Runtime per point
PRTL Hash

table
PRTL Hash

table
PRTL Hash

table
PRTL Hash

table
55-bit 402 KB 1172 KB 19 B 59 B 35.16 s 36.42 s 1.69 ms 1.81 ms
60-bit 618 KB 1801 KB 20 B 59 B 210.33 s 212.83 s 6.88 ms 6.91 ms
65-bit 1856 KB 5212 KB 21 B 60 B 1292 s 1291 s 14.90 ms 14.95 ms
Table 6: Runtime and the memory cost for the attack on ECDLP using PRTLs
and hash tables.

The results are an average of 100 runs and they show that by using a PRTL
for the storage of distinguished points we optimize the memory complexity by a
factor of 3. The vector method that we describe in this section can be applied
for a classic hash table as well. In that case, the PRTL would have a gain factor
of 1.5 over the packed hash table, according to these experimental results.

However, the number of stored points for the presented tests is relatively
small, corresponding to the number of points needed for one collision. For ap-
plications that demand a large number of collisions, such as meet-in-the-middle
attacks, the ratio between the prefix and the suffix grows in the favour of the
PRTL. Moreover, the difference between the memory occupied by the hash table
and the one taken by the PRTL grows linearly with the number of stored points,
and can be calculated as follows:

Mhybrid = Mhash −K(d l
8
e+ 8).

We suppose that all of the points can be addressed using 8-Byte addresses, i.e.
K < 264, and let us look at the example of a meet-in-the-middle attack on the
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3-DES with three independent keys. Following van Oorschot and Wiener [18],
this has a runtime of 7n2

√
n1

K , where the memory available is K words and
n1 = 256 and n2 = 2112. We calculate the memory requirements to store K pairs
(key, data) ∈ {0, 1}64 × {0, 1}56. Table 7 shows the memory occupation for the
packed hash table and the PRTL and the ratio between them when we increase
the value of K.

K Packed hash table PRTL Gain Ratio Complexity
232 137438 MB 85899 MB 12K 1.60 7 · 2124
240 35184372 MB 20890720 MB 13K 1.68 7 · 2120
248 9007199254 MB 5066549580 MB 14K 1.77 7 · 2116
256 2305843009213 MB 1224979098644 MB 15K 1.88 7 · 2112
264 590295810358705 MB 295147905179352 MB 16K 2.00 7 · 2108

Table 7: Comparing structure-specific memory requirements for a parallel colli-
sion search MITM attack on 3-DES.

To prove our claims from Section 3 that more storage space yields a faster
algorithm, we ran a multi-collision search while limiting the available memory.
When the memory is filled, each thread continues to search for collisions without
adding any new points. Results in Table 8 show that the PRTL yields a better
runtime compared to a classic Hash table due to the more efficient memory use.

Collisions Memory limit Runtime Stored points
PRTL Hash table PRTL Hash

table
400 10MB 14,3 min 18,8 min 474019 216459

10000 40MB 74,2 min 113,4 min 2104832 867429
50000 100MB 172,5 min 241,6 min 5262727 2169383

Table 8: Runtime for multi-collision search for a 55-bit curve using PRTLs and
hash tables. Each value is an average of 100 runs.

5.1 ECDLP implementation details and scalability

To support our findings, we implemented the parallel collision search using both
PRTLs and hash tables for discrete logarithms on elliptic curves defined over
prime fields. Our implementation is in C and the external libraries we used are
The GNU Multiple Precision Arithmetic Library [2] for large numbers arith-
metic, and the OpenMP (Open Multi-Processing) interface [3] which supports
shared memory multiprocessing programming. Our tests were performed on a
28-core Intel Xeon E5-2640 processor and we experimented using between 1 and
28 threads. For completeness, in Appendix E we enumerate the choices we made
in our implementation and which are common in the literature.
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Parallel Performance We were interested in the parallel performance i.e.
how efficient our program is when increasing the number of parallel processing
elements. A program is considered to scale linearly if the speedup is equal to
the number of threads used. In the theoretical model [18], the Parallel Collision
Search is considered to have a linear scalability and our time complexity in
Theorem 1 also proves this.

We experimented with L ∈ {1, 2, 7, 14, 28} threads, solving the discrete log
over a 60-bit curve. Table 9 shows the Wall clock runtime and the parallel per-
formance of the attack when we double the number of threads.

L1 L2 Parallel performanceThreads Runtime Threads Runtime
1 2459 s 2 1699 s 0.72
7 776 s 14 411 s 0.94
14 411 s 28 210 s 0.97

Table 9: Runtime and Parallel performance of the attack on ECDLP. Results
are based on 100 runs per Li ∈ L.

We conclude that the parallel performance is not as good as expected for 2
threads, yet it gets closer to linear as the number of threads grows.

6 Conclusion

We revisited the time complexity of the parallel collision search and explained
how to choose the optimal value for the proportion of distinguished points when
implementing this algorithm. We proposed an alternative memory structure for
the parallel collision search algorithm proposed by van Oorschot and Wiener [18].
We show that this structure yields a better memory complexity than the hash
table variant of the algorithm. Moreover, using the new memory structure, we
obtained a better bound for the time complexity of the parallel collision search,
in the case where a large number of collisions is needed. Finally, we implemented
the radix tree parallel collision search algorithm for solving discrete logarithms
and showed its scalability.
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A Appendix : Proof of Theorem 1

Proof. We call short path the chain of points computed by a thread between two
consecutive distinguished points. The expected number of distinguished points
produced after a certain clock time T is TLθ. The probability of not having a
collision at T = 1, for one thread is

1− Lθ

nθ
.

Note that any of the L threads can cause a collision. Thus, the probability for
all threads of not finding a collision on any point on the short walk is:

(1− L

n
)L,

at the moment T = 1.
Let X be the number of points calculated per thread before duplication.

Hence:

P (X > T ) = (1− Lθ

nθ
)L · (1− 2L

nθ
)L · . . . · (1− TLθ

nθ
)L.

To do this multiplication we are going to take a shortcut. When x is close to
0, a coarse first-order Taylor approximation for ex as:

ex ≈ 1 + x.

Now we can rewrite our expression to:

P (X > T ) = (e−
L
n · e− 2L

n · . . . · e−TLn )=(e
−(L+2L+...+TL)

n ))L=

= (e
−T (T+1)L

2n )L = (e
−T2L

2n )L = e
−T2L2

2n . (10)

This gives us the probability

P (X > T ) = e
−T2L2

2n ,

thus the expected number of distinguished points found before duplication, is

E(X) =

∞∑
T=1

T ·P (X = T ) =

∞∑
T=1

T ·(P (X > T−1)−P (X > T )) =

∞∑
T=0

P (X > T ).

We approximate

E(X) =

∞∑
T=0

e
−T2L2

2n ≈
∫ ∞
0

e
−x2L2

2n dx ≈ 1

L

√
πn

2
.
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Since the expected length of a short walk is 1
θ , the number of distinguished points

before a collision occurs is
θ

L

√
πn

2
.

However, a collision might occur on any point on the walk and it will not be
detected until the walk reaches a distinguished one. We add 1

θ to the number
of calculations for the discovery of a collision. Finally, the expected number of
calculated points per thread is:

1

L

√
πn

2
+

1

θ
.

The two main operations in our algorithm are computing the next point on the
random walk and storing a distinguished point. Thus, the time complexity of
our algorithm is:

f(θ) = (
1

L

√
πn

2
+

1

θ
)tc + (

θ

L

√
πn

2
)ts. (11)

Remark 3. Note that the analysis above shows that the number of points com-
puted by the algorithm is O

(
θ
√

πn
2

)
. This was proven by van Oorschot and

Wiener in the first place.

B Appendix : Proof of Theorem 2

Proof. Let X be the number of distinguished points calculated per thread before
duplication. Let T1 be the number of distinguished points computed until the
first collision was found, and Ti, for any i > 1, the number of points stored in
the memory after the (i− 1)th collision was found and before the ith collision is
found.

As shown in Theorem 1, the expected number of points stored before finding
the first collision is T1 = θ

√
πn
2 . The probability of not having found the second

collision after each thread has found and stored T distinguished points is

P (X > T ) = (1− L+ T1
nθ

)
L
θ · (1− 2L+ T1

nθ
)
L
θ · . . . · (1− TL+ T1

nθ
)
L
θ .

As in the proof of Theorem 1, we approximate this expression by

P (X > T ) = e
−T2L2−2LT1T

2nθ2 .
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Hence the expected number of distinguished points computed by a thread
before the second collision is:

E(X) =

∞∑
T=0

e
−T2L2−2LT1T

2nθ2 ≈
∫ ∞
0

e
−x2L2−2xLT1

2nθ2 dx =

= e
T2
1

2nθ2

∫ ∞
0

e
−(xL+T1)2

2nθ2 dx =
θ
√
n

L
e
T2
1

2nθ2

∫ ∞
T1
θ
√

2n

e−t
2

dt

=
θ
√

2n

L
e
T2
1

2nθ2

(
−e
−t2

2t

∣∣∣∣∞
T1
θ
√

2n

−
∫ ∞

T1
θ
√
n

e−t
2

2t2

)
.

We denote by

Uk = T1 + T2 + . . . Tk.

By applying repeatedly the formula above (and neglecting the last integral),
we have that Tk = θ2n

LUk−1
. Therefore we have Uk = Uk−1 + θ2n

LUk−1
. By letting

Vk = LUk
θ
√
n
, we obtain a sequence given by the recurrence formula

Vk = Vk−1 +
1

Vk−1
.

We will use the Cesaro-Stolz criterion to prove the convergence of this limit.
First, we note that this sequence is increasing and tends to ∞. Moreover we
have that V 2

k = V 2
k−1 + 2 + 1

V 2
k−1

. Hence V 2
k−V

2
k−1

k+1−k → 2 and as per Cesaro-Stolz

we have Vk ∼
√

2k. We conclude that Uk ∼ θ
√
2kn
L .

Since Uk is the number of distinguished points computed per thread, the total
number of stored points is θ

√
2kn. Hence the memory will fill when θ

√
2kn = w.

This will occur after computing the first kw = w2

2θ2n collisions and the expected
total time for one thread is:

w

Lθ
.

When the memory is full, the time to find a collision is θn
Lw . To sum up, the total

time to find m collisions is:

1

L

(
w

θ
+ (m− w2

θ22n
)
θn

w

)
+
m

θ
.

Remark 4. According to formula obtained for Uk in the proof of Theorem 2, we
see that if the memory is not filled when running the algorithm for finding n

2
collisions, as in meet-in-the-middle applications, then we store θn distinguished
points, i.e. all distinguished points in S.
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C Appendix : Proof of Corollary 1

Proof. From Theorem 2, the runtime complexity is given by:

1

L

(
w

θ
+ (

n

2
− w2

θ22n
)
θn

w

)
+

n

2θ
.

By computing the zeros of the derivative:

f ′(θ) =
n2θ2 − w2 − nLw

2Lwθ2
,

we obtain that by taking θ =
√
w2+nLw
n , the time complexity is O

(
n
√
w2+nLw
wL

)
.

D Appendix : Radix tree best and worst-case

Worst-case scenario. In the worst case scenario, for each new word added
in this structure we will create as much nodes as possible. This means that the
x-coordinates of the added points have the shortest possible common prefix, as
shown in Figure 4. For the first b points, we will use bc nodes. After that, the
first distinguished point that we find will take c− 1 nodes, since all possibilities
for the first letter in the string were created. We repeat this operation (b − 1)b
times, provided that K > b+ (b− 1)b.

Fig. 4: Worst-case scenario example, b = 10

More generally, let k = blogbKc − 1. We build the tree by allocating nodes
as follows:

– bc nodes for the first b points
– (b− 1)b(c− 1) for the next (b− 1)b points
– (b− 1)b2(c− 2) for the next (b− 1)b2 points etc.
– (b− 1)bk(c− k) for (b− 1)bk points.

For each of the remaining K − (b+
∑k
i=1(b− 1)bi) points we will need c− k− 1

nodes. To sum up, the total number of nodes that will bound our worst-case
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scenario is given by:

N(K) = bc+

k∑
i=1

(b− 1)bi(c− i) + (K − b− b(b− 1)

k−1∑
i=0

bi)(c− k − 1).

After simplification, we have that

N(K) ≈ b

b− 1
bblogbKc +K(c− blogbKc). (12)

Best-case scenario Let K be the number of distinguished points that we need
to store and let k = blogbKc. In the best-case scenario, we may assume without
loss of generality that each time a new point is added in the structure, the
minimal number of nodes is used, i.e. the x-coordinate of the added point has
the longest possible common prefix with some other point that was previously
stored. For example, for the first point c nodes are allocated, for the next b-1
nodes, one extra node is allocated and so on, until all subtrees of depth 1, 2 etc.
are filled one by one. Figure 5 gives an example of how 215 points are stored. If
K > bc−1, we fill the first tree and start a new one. Let xi, for i ∈ {0, 1 . . . , k},

Fig. 5: Best-case scenario example

denote the i-th digit of K, from right to the left. In full generality, since c > k,
we use:

– xk complete subtrees of depth k and a (xk+1)-th incomplete tree of depth
k;

– the (xk+1)-th tree of depth k has xk−1 complete subtrees of depth k−1 and
a (xk−1+1)-th incomplete tree of depth k − 1;

– c− k − 1 extra nodes.
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Summing up all nodes, we get the following formula:

N(K) =

k∑
i=0

xi

i∑
j=0

bj + k + c− k − 1 =
1

b− 1

k∑
i=0

xi(b
i+1 − 1) + c =

=
b+ 1

b
K − c− 1

b− 1

k∑
i=0

xi.

We conclude that:

N(K) ≥ b

b− 1
K − c− k − 1. (13)

E Appendix : implementation details

Additive walks. Teske [17] showed experimentally that the walk proposed by
Pollard 1 originally performs on average slightly worse than a random walk. She
proposes alternative mappings that lead to the same performance as expected
in the random case: additive walks and mixed walks. The additive walks are
presented as follows. Let r be the number of sets Si which give a partition of the
group G, and let Mi be a linear combination of P and Q: Mi = aiP + biQ, for
i = ¯1, r. We choose the iterating function of the form:

Ri+1 = f(Ri) =


Ri +M1, Ri ∈ S1;

Ri +M2, Ri ∈ S2;

. . .

Ri +Mr, Ri ∈ Sr.

(14)

In the case of mixed walks, we introduce squaring steps to r-additive walks.
However, Teske’s experimental results show that apart from the case r = 3, the
introduction of squaring steps does not lead to a significantly better performance.
After experimenting with both of them, we confirmed her conclusion and decided
to use additive walks.

Teske shows experimentally that if r ≥ 20 then additive walks are close to
random walks. We therefore chose r = 20 in our implementation.

Use of automorphisms If the function f is chosen such that f(R) = f(−R)
then we may regard f as being defined on equivalence classes under ±. Since
there are n

2 equivalence classes, this would lead to a theoretical speed-up of√
2. However, it was observed that the use of the negation map leads to so-

called fruitless cycles, cycles that trap the random-walks. In practice, since these
cycles need to be handled, the actual speed-up is significantly less than

√
2

and actually depends on the platform one uses [7]. In this paper, we aim at
evaluating the performance of our algorithm independently of the platform one
may choose for its implementation. Therefore, we do not use automorphisms in
our implementation.
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Long walks vs. short walks As we explained in Section 2 every thread selects
a starting point, which is a multiple of P , and computes the random walk until a
distinguished point is found. After the distinguished point is stored in the radix
tree, the thread starts a new walk from a new starting point. We refer to this as
a short walk because the walk stops at the first distinguished point and has an
average length of 1/θ. A second possibility is that the thread would continue the
walk from a distinguished point rather than start from a new one. We refer to
this as a long walk. This approach is used in the Pollard’s rho method because
it allows the walk to enter a cycle and is an indispensable factor in finding a
collision using the Floyd’s cycle finding algorithm[11]. However, in the Parallel
Collision Search algorithm every distinguished point is stored, and thus the cycle
property is irrelevant.

Furthermore, using the short walk method we are not required to calculate
the coefficients a and b every time. We calculate only the value of R for each
iteration, and when we find a distinguished point we store the coefficients of the
starting point (only the coefficient a is stored because the starting point being a
multiple of P , the b coefficient is zero). It is only when a collision is found that
we start iterating from the beginning of the short walk, this time computing a
and b. This convenience makes short walks the better choice. Furthermore, we
experimented with both short walks and long walks, finding that short walks give
slightly better runtime results. All our results presented here use short walks.
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