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ABSTRACT
Fully Homomorphic Encryption (FHE) schemes are a powerful tool

that allows arbitrary computations on encrypted data. This makes

them a promising tool for a variety of use cases that require out-

sourcing the computation on privacy-sensitive data to untrusted

parties. FHE schemes today operate over finite fields, while many

use cases call for natural or even real numbers, requiring appropri-

ate encoding of the data into the plaintext space supported by the

encryption scheme. However, the choice of encoding can tremen-

dously impact the overall effort of the computation on the encrypted

data. Surprisingly, although the question of selecting the encoding

is quite natural and arises immediately in practice, a comprehensive

analysis is still missing.

In this work, we formally and experimentally investigate this

question for applications that operate over integers and rational

numbers based on a selection of natural metrics: the number of finite

field additions, the number of finite field multiplications, and the

multiplicative depth. Our results are partly constructive and partly

negative: We show that for the first two metrics, an optimal choice

does exist and we state it explicitly. However, we show likewise that

regarding multiplicative depth, the parameters need to be chosen

specific to the use-case, as there is no global optimum. Still, we

show exactly how one can choose the best encoding depending on

the use-case.

1 INTRODUCTION
Fully Homomorphic Encryption (FHE) describes a class of encryp-

tion schemes which allow arbitrary computation on encrypted

data. This makes them a promising tool for a variety of use cases

that require outsourcing the computation on privacy-sensitive data

to untrusted parties. Typical applications, e.g. see [2, 24], are pri-

vacy preserving medical analysis, recommender systems, machine

learning algorithms, genome analysis, biometric authentication and

financial analysis, to name a few. All these applications function

over data structures involving rational or integer numbers, which

must somehow be embedded into the plaintext space of the ap-

propriate FHE scheme. We point out that if the entire function is

known beforehand, the parameters can often be chosen in a way

such that the entire computation remains in the (extremely large)

plaintext space. This approach (called Somewhat Homomorphic En-
cryption, SHE) is often faster, but loses the main advantage of FHE:

The flexibility to execute any function on the encrypted data. More-

over, the function may not be fully known in advance. Thus, to

incorporate cases like proprietary algorithms or functions that are

not known at encryption time, we focus on true FHE that allows

arbitrary functions.

Unfortunately, current FHE schemes are not yet sufficiently prac-

tical due to the fact that their algorithms are quite involved and

hence inherently more time consuming. However, continuous im-

provements are being made, with some current schemes achieving

bootstrapping (see below) in less than a second. Thus, while there

is still a lot a long way to go, it seems as though FHE is slowly

approaching the realm of real-world feasibility. Publicly available

implementations like [21] and [7] make the technology accessible

beyond a theoretical level.

Another, often overlooked aspect that strongly impacts the over-

all performance is how an FHE scheme is applied. For instance,

most FHE schemes today operate over finite fields GF (pk ) for an
arbitrary prime p and k ≥ 1, while many use cases call for natu-

ral or even real numbers, requiring appropriate encoding of the

data into the plaintext space supported by the encryption scheme.

The standard way of doing this for a plaintext space Zp or related

is to represent the number in p-adic fashion1 and encrypt each

digit separately. Of course, when one then wants to operate on

(e.g., add or multiply) these encrypted numbers, the operation must

be transformed into an operation on the single encrypted digits.

These operations quickly incur many consecutive multiplications

of encrypted digits, yielding a further effort penalty.

The reason is that all currently known FHE schemes are noise-

based, where the noise masks the plaintext and grows with each

operation – linearly with each ciphertext addition, and quadratically

with multiplication. When the noise surpasses a certain threshold,

decryption fails and the plaintext cannot be retrieved. To solve this

problem, there exists a so-called bootstrapping operation, which

removes some of the noise before the ciphertext becomes unread-

able. Unfortunately, it is very computationally intensive, so that

reducing the number of bootstrappings has a huge effect on the

overall effort.

Possibly surprising is the enormous impact which the chosen

encoding of the data into the plaintext can have in this context.

For example, [22] observes an increase in runtime from 0.004 to

over 120 seconds just by switching from “normal” computation

over the rational numbers (i.e., no encoding in our sense) to binary

encoding, which emulates an FHE plaintext space of {0, 1} (without

actually using any encryption). In fact, the same paper observes

that the choice of encoding can tremendously impact the overall

effort, incurring a nearly 50% longer runtime for the worst exam-

ined encoding compared to the best one. Thus, a user or company

1
E.g., if the plaintext space is {0, 1}, the binary encoding for natural numbers.
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that aims to use FHE immediately faces the following question:

”What is the preferable encoding of my plaintext data
such that later on, the operations on the encrypted data

incur an overhead as small as possible?”
Although this question is quite natural and arises immediately

in practice, a comprehensive analysis of the best encoding is still

missing. In this work, we investigate this question for applications

that operate over integers and rational numbers. To this end, we

formally and experimentally analyze the effort for FHE computation

subject to different encoding choices. We base our analysis on

three natural cost metrics to measure the effort of performing some

computation with FHE: number of additions of encrypted numbers,

number of multiplications of encrypted numbers, and multiplicative

depth required by the function to be executed.
2

Our results are partly constructive and partly negative: We show

that for the first two metrics, an optimal choice does exist and

we state it explicitly. However, we show likewise that regarding

multiplicative depth, the parameters should be chosen specific to the

use-case, as there is no global optimum. Nonetheless, our formulas

allow exactly to do this. Our contributions are:

Formula for adding two numbers in pk -adic encoding
We first derive a generic formula that expresses how to add two

numbers inpk -adic encoding3. Although it seems to be quite natural

to investigate the structure of this formula, we merely found [25]

in open literature, which only covers a small subset of our work

(see Section 8). Hence, this result may be of independent interest.

Cost analysis for natural numbers.
Based on the derived generic formula, we analyze the costs for

adding two encrypted natural numbers in pk -adic encoding. The
cost metrics we examine are field additions, field multiplications,

and multiplicative depth. Our results are as follows:

1) For p-adic encoding with respect to the required number of field

additions or field multiplications, the efforts for additions and mul-

tiplications of encrypted integers strictly increase with p, making

p = 2 by far the best choice. As a preview of our results, the increase

of the required number of field additions and multiplications for

adding two numbers of similar size depending on the choice of p
can be seen in Figures 1a and 1b.

2) For p-adic encoding with respect to the depth metric, it likewise

holds that the required depth grows asymptotically with increasing

p. However for low primes, the required number of digits dominates

the depth, making p = 2 a non-optimal choice. Unfortunately, the

optimal choice of p when using only depth as a metric heavily

depends on further use-case depended parameters, so there is no

generic optimum. One parameter is the size of the encrypted data

(more specifically, the required number of digits). Also, the optimal

choice of p for multiplying two numbers is a different one than

the optimal p for addition, so the best choice not only depends on

the size of the input data, but also on the nature of the function

one wants to apply. This can be seen in Figure 1c, with special

attention directed to the high values near the left vertical axis. Still,

2
We argue in Section 2 why each of these cost metrics is relevant, but the preferred

choice is essentially up to the reader.

3
The term pk -adic encoding denotes the natural extension of p-adic encoding to the

field GF (pk ) for k ≥ 1 and is explained in Section 6.

our formulas allow to compute the best encoding in case that the

use-case depending parameters mentioned above are known.

3) For pk -adic encoding with k > 1, we show that performance is

always worse compared to p-adic encoding.

Cost analysis for rational numbers and integers
We then discuss how the analysis can be extended from natural

numbers to rational numbers and integers. Through scaling (see

Section 7.2), one can easily move from rational numbers to integers,

but we quickly discuss how choosing the scaling factor relative to to

the order of the finite field is particularly beneficial. Incorporating

negative numbers proves to be the main challenge. We consider the

two most common encodings for signed integers, p’s Complement

and Sign-Magnitude, and analyze their cost compared to natural

numbers. We see that p’s Complement encoding is a good choice

for adding two numbers, and Sign-Magnitude encoding performs

better for multiplication. We explain that by switching between

these two encodings, we can get the lowest cost: Only slightly more

than the same operation for natural numbers, in addition to the cost

of switching. Thus, our results for natural numbers also extend both

to integers and rational numbers, meaning that p = 2 is optimal

with regard to field additions and multiplications, and depth does

not have a generic optimum but the best choice can be computed

depending on the use-case.

Outline. The paper is structured as follows: Section 8 gives an

overview of related work, and Section 2 provides a discussion

of the cost metrics considered in this work. In Section 3, we set
about finding the formula for the carry values when adding two

numbers in p-adic encoding. In Section 4, we analyze the effort
for computing each digit of the result when adding two natural

numbers, and in Section 5we use these results to compute the cost

of adding or multiplying two natural numbers in p-adic encoding.

Section 6 presents the results of using GF (pk ) for k > 1 as the

encoding base. Section 7 is concerned with extending the cost

analysis to incorporate rationals and negative numbers. Lastly,

Section 9 gives our conclusion and briefly presents ideas for future

work.

2 COST METRIC
In this section, we explain andmotivate the cost metrics we base our

analysis on. The majority of current FHE schemes support finite

fields GF (pk ) as plaintext space, making it necessary to embed

the plaintext data into this structure. This means that a number A

needs to be encoded by a set of digits ãi ∈ GF (pk ).4 Encrypting A
essentially means encrypting each digit ãi , and computing on an

encrypted number is accomplished by operating on the encrypted

digits. That is, we need to emulate the original operation (e.g.,

adding two natural numbers) through finite field operations on the

plaintext digits (i.e., a series of additions and multiplications on the

individual digits) that result in a sequence of digits encoding the

correct result of the addition. Consequently, we express the effort

with regard to the underlying field operations although in reality,

they would be performed on the encrypted digits in the ciphertext

space, which depends on the specific encryption scheme being used.

4
We will discuss typical encodings later in this paper.
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(a) Additions (b) Multiplications (c) Depth

Figure 1: Number of field additions, multiplications and multiplicative depth for adding x = 20/7000/107 to a number of same
size. The horizontal axis is the encoding base p, and the vertical axis the number of operations/depth, and the plots correspond
to the three numbers.

We now present the three cost metrics that we use in the rest of

the paper and briefly explain their respective relevance.

2.1 Multiplicative Depth
As explained in the introduction, all current FHE schemes are noise-

based in that the plaintext is masked by noise, and each multiplica-

tion doubles the amount of noise. When a certain limit on the noise

is passed, the ciphertexts cannot be decrypted correctly anymore.

Bootstrapping can remove some of the noise before it exceeds this

threshold, but this is a very costly operation. Thus, the goal is often

to minimize the number of bootstrapping procedures that are nec-

essary by minimizing the number of consecutive multiplications
5

(since each multiplication doubles the noise), also referred to as

multiplicative depth. For this reason, multiplicative depth has been

the standard cost metric and is naturally part of our analysis.

2.2 Number of Field Multiplications
The second cost metric we use to measure effort is the total num-

ber of (not necessarily consecutive) field multiplications. First off,

multiplications of encrypted value are much more expensive than

additions for all current schemes, so keeping track of this num-

ber seems like an obvious choice. In addition, the multiplicative

depth one incurs in p-adic encoding quickly becomes so large that

bootstrapping is unavoidable, so that minimizing the total number

of multiplications can speed up performance significantly in this

scenario. To see this, consider the extreme case of a parameter set-

ting that requires bootstrapping after every multiplication: In this

case, multiplicative depth is completely irrelevant and the number

of multiplications determines the effort of the computation. This

line of reasoning also extends to less extreme cases: For example,

imagine a formula that requires the computation of a large number

of terms to achieve the lowest multiplicative depth. If each of these

terms requires a bootstrapping operation, but there is another way

5
For example, suppose we need to do bootstrapping after 3 consecutive multiplications,

and we want to compute a · b · c · d for some a, b, c, d . Then computing (a · b) ·
(c · d ) only uses 2 consecutive multiplications and thus does not need bootstrapping,

whereas computing ((a ·b) · c) ·d has 3 consecutive multiplications and thus requires

bootstrapping.

of computing the formula with a slightly higher depth and signifi-

cantly fewer terms, the latter can have fewer total bootstrapping

operations and thus be much faster. For this reason, we feel that

minimizing depth mainly makes sense when it serves to avoid boot-

strapping altogether – in cases where it is inevitable because even

the optimal depth is too high, the number of multiplications may

be the better cost metric.

2.3 Number of Field Additions
For all schemes today, field additions cost almost nothing compared

to field multiplications. However, there is no theoretical reason why

this must be the case, so we include this metric because it might be

valuable in the future for a different kind of scheme.

3 FORMULA FOR COMPUTING CARRY
VALUES OVER ZP

In this section and the following Section 4, we lay the theoretical

foundation for the effort analysis starting from Section 5. More

concretely, we derive in this section the formulas for the digits of

the sum of two numbers in p-adic encoding. As we will see, the
carry digits are particularly important here so that we investigate

them more closely in Section 4.

3.1 Overview
Suppose we have two natural numbers encoded p-adically: A =
anan−1 . . . a1a0 and B = bnbn−1 . . .b1b0. If we wish to add these

numbers in this encoding, we can write

an an−1 . . . a2 a1 a0
+ bn bn−1 . . . b2 b1 b0
= cn+1 cn cn−1 . . . c2 c1 c0

(1)

To be able to homomorphically evaluate a function on encrypted

data, we need to express the result as a polynomial in the inputs -

in this case, we need to be able to write

ci = ci (an ,bn ,an−1,bn−1, ...,a1,b1,a0,b0) (2)

for any i , where ci (. . .) refers to some polynomial (slightly abusing

notation). Clearly, it holds that ci = ai + bi + ri , where r0 = 0,

3



and for i > 0, ri is the carry from position i − 1. Our goal in this

section is to express ri (ai−1,bi−1, ri−1) as a polynomial, which will

constitute Theorem 1. Addition is defined mod p, and we will often
write ri instead of ri (ai−1,bi−1, ri−1) for simplicity.

3.2 Formula
Recall that our goal is to find the formula from Equation 2. We

have already established that ci = ai + bi + ri , where r0 = 0, and

for i > 0, ri is the carry from position i − 1. Thus, we now aim to

find the polynomial that expresses the carry as a function of the

inputs and carry from the previous position: ri (ai−1,bi−1, ri−1). To
simplify the notation, we define the following expression:

Definition 1. In the following, denote

li (x) =

p−1∏
j=0
j,i

(x − j).

These functions were in fact derived through a bilinear Lagrange-

approximation in two variables over the finite field Zp , which can

be seen in the proof of Theorem 1 in Appendix A. We now state

the formula for the carry using these li (x)-functions:

Theorem 1. The formula for computing ri (ai−1,bi−1, ri−1) is

ri (a,b, r ) =

p−1∑
k=1

(
lk (b) ·

k∑
j=1

lp−j (a)
)
+ ri−1 · (p − 1) · lp−1(a + b)

= f1(a,b) + ri−1 · f2(a,b).

This polynomial is unique in that there is no other polynomial of
smaller or equal degree which also takes on the correct values for ri at
all points (ai−1,bi−1, ri−1) with ai−1,bi−1 ∈ {0, . . . ,p − 1}, ri−1 ∈

{0, 1}.

The proof is given in Appendix A.

4 THE EFFORT OF COMPUTING THE CARRY
4.1 Overview
In this section, we prove that the effort required to compute each

digit ci when adding two natural numbers encoded p-adically is

• Field additions: 5p − 4

• Field multiplications: 2p · log
2
(p) + 2p − 2 · log

2
(p) − 4

• Multiplicative depth: ⌈log
2
(p)⌉ + i − 1

To this end, we make use of Theorem 1 from Section 3. Recall

that ci = ai +bi + ri . Moreover, it holds that ri can be computed as

ri = f1(ai−1,bi−1) + ri−1 · f2(ai−1,bi−1) (see Theorem 1). Putting

this together, we get as effort for computing ci for i > 1 (where

D(fi ) denotes the multiplicative depth of fi , Adds(fi ) denotes the
number of field additions incurred through the function fi , and
likewise Mults(fi ) for field multiplications):

• Field additions: 3 + Adds(f1) + Adds(f2)
• Field multiplications: 1 +Mults(f1) +Mults(f2)
• Multiplicative depth:

max{D(f1),max{D(ri−1), D(f2)} + 1}

It remains to analyze these parameters. The computation is split

into three parts:

First, the effort for computing f2 is computed in Subsection 4.2,
then the effort for f1 in Subsection 4.3, and lastly the results are

combined for the total effort for each digit in Subsection 4.4. The
effort for f1 is again split into several parts: First, the effort for the

closed formula from Theorem 1 is examined, and a time-memory

tradeoff that minimizes effort by precomputing certain values is pre-

sented. Then, we compare this to the expanded form of the formula,

whose analysis can be found in the appendix. This promises a lower

optimal depth, so we take the addition/multiplication costs from

the closed formula and the lower depth value from the expanded

formula as best-case costs to be as unbiased as possible.

4.2 Effort for f2
Recall from Theorem 1 that f2(a,b) = (p − 1) · lp−1(a + b) with

li (x) =

p−1∏
j=0
j,i

(x − j).

First, note that we do not count the multiplication with p − 1 as

a multiplication, as this is a multiplication with a constant, which

is usually cheaper than the multiplication of two ciphertexts. More

importantly, multiplying with p − 1 just switches the sign, so in

schemes that support subtraction of two ciphertexts, we can rewrite

ri = f1(ai−1,bi−1) − ri−1 · f2(ai−1,bi−1) and incur no additional

effort at all, which is what we assume here.

This leaves us with the task of computing

lp−1(a + b) =
p−2∏
0

(a + b − j), which is a product of p − 1 factors:

• We require one addition to compute (a +b), and additional
p−2 additions to compute (a+b)− j for each j ∈ {1, . . . ,p−
2} (we need no computation for j = 0), which yields p − 1

additions in total.

• To multiply p − 1 factors, one needs p − 2 multiplications

in total.

• Implementing the multiplication in way with the least

depth (i.e., in a fanned-out fashion
6
) we obtain a depth of

⌈log
2
(p − 1)⌉.

Thus, our effort for computing f2 is:
• Field additions: p − 1

• Field multiplications: p − 2

• Multiplicative depth: ⌈log
2
(p − 1)⌉

4.3 Effort for f1
4.3.1 Straightforward Approach. We first present the straight-

forward way of computation, and then show how to reduce the

number of field multiplications in a time-memory tradeoff. The

straightforward computation consists of the following steps:

(1) Compute (a − j) and (b − j) for j = 1, . . . ,p − 1:

• Field additions: 2p − 2

• Field multiplications: 0

• Multiplicative depth: +0

6
What we mean by this is the balanced way of multiplying using something similar to

a binary tree structure: For example, the product a ·b · c ·d · e · f would be computed

as

(
(a ·b) · (c ·d )

)
· (e · f ) (depth 3) rather than (((((a ·b) · c) ·d ) · e) · f ) of depth 5.
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(2) Compute li (a), li (b) for i = 1, . . . ,p − 1 using the precom-

puted factors from the previous step (see also the effort

analysis from f2):
• Field additions: 0

• Field multiplications: 2 · (p − 1) · (p − 2) = 2p2 − 6p + 4
• Multiplicative depth: ⌈log

2
(p − 1)⌉ for each li (a) and

li (b)

(3) Compute

i∑
j=1

lp−j (a) for i = 1, . . . ,p − 1 recursively by set-

ting for i = 1:

1∑
j=1

lp−j (a) = lp−1(a) and then computing

for i = 2, . . . ,p − 1:

i∑
j=1

lp−j (a) =
( i−1∑
j=1

lp−j (a)
)
+ lp−i (a),

which incurs only one field addition for each sum. By com-

puting this way, we get:

• Field additions: p − 2

• Field multiplications: 0

• Multiplicative depth: +0

(4) Compute li (b) ·
i∑
j=1

lp−j (a) for i = 1, . . . ,p−1, which incurs

one multiplication for each i and raises the multiplicative

depth by one (remember, when multiplying two factors,

each of depth d , the product has depth d + 1):
• Field additions: 0

• Field multiplications: p − 1

• Multiplicative depth: +1, so ⌈log
2
(p − 1)⌉ + 1 total

(5) Lastly, sum up all the li (b) ·
i∑
j=1

lp−j (a) to obtain

p−1∑
i=1

(
li (b) ·

i∑
j=1

lp−j (a)
)
:

• Field additions: p − 2

• Field multiplications: 0

• Multiplicative depth: +0

In total, we obtain the effort as:

• Field additions: 4p − 6

• Field multiplications: 2p2 − 5p + 3
• Multiplicative depth: ⌈log

2
(p − 1)⌉ + 1

4.3.2 Time-Memory Tradeoff. Step 2 of the straightforward ap-

proach is obviously far from efficient, since we are computing all

łi (a), li (b) independently from each other in spite of their close rela-

tions. As an example, consider l1(a) =
p−1∏
j=0
j,1

(a− j) = a · (a−2) · (a−3) ·

· · ··(a−(p−1)) and l2(a) =
p−1∏
j=0
j,2

(a−j) = a·(a−1)·(a−3)·· · ··(a−(p−1)).

With Step 2 as it is, computing both products would cost us 2 · (p−2)
multiplications. Imagine, however, if we were to precompute the

value L = a · (a − 3) · · · · · (a − (p − 1)): The precomputation can be

done with p−3multiplications (because there are p−2 factors), and

from this precomputed value, l1(a) = L · (p−2) and l2(a) = L · (p−1)

can be computed with one multiplication each, yielding a total of

p − 1 multiplications instead of 2p − 4. This example illustrates the

idea behind the following time-memory tradeoff:

For convenience and readability, we will assume that all fractions

are integers in our notation. In reality, if we are dividing a set with,

for example, 17 elements, we will make one set with 8 elements

and one with 9, but we will write
17

2
in the following.

From the definition of the li (x), it is obvious that each li (x)
contains all factors from {x , (x −1), . . . , (x −(p−1))} except for one

(namely (x − i)). Now in a first step, suppose we divide the factors

into two sets {x , (x−1), . . . , (x−
p
2
)} and {(x−

p
2
+1), . . . , (x−(p−1))}

and multiply the elements in each set to obtain two intermediate

products
7 L1

2
:=

p
2∏

j=0
(x − j) and L2

2
:=

p−1∏
j= p

2
+1

(x − j). Then for each i =

1, . . . ,p−1, either L1
2
or L2

2
is contained in li (x), and conversely each

li (x) can be calculated from one of the L
j
2
with

p
2
−1multiplications

(because there the are
p
2
− 1 missing factors and L

j
2
that need to be

multiplied). Adding the 2 · (
p
2
− 1) multiplications for computing

the two L
j
2
, we get (p − 1) · (

p
2
− 1) + 2 · (

p
2
− 1) multiplications for

computing all li (a). Since we need to do this for li (b) as well, we

multiply this number by 2 to obtain 2 · ((p−1) · (
p
2
−1)+2 · (

p
2
−1)) =

(p − 1) · (p − 2) + 2 · (p − 2) = p2 − p − 2 field multiplications for

Step 2 instead of 2p2 − 6p + 4 from before.

Of course, we do not need to stop here: We can also calculate

L1
4
:=

p
4∏

j=0
(x − j), . . . ,L4

4
:=

p−1∏
j= 3p

4
+1

(x − j).

Each of these Li
4
can be computed with

p
4
− 1 multiplications, so

we have a total of 4 · (
p
4
− 1) = p − 4 multiplications from these

intermediate products. Also, we can compute L1
2
= L2

4
· L2

4
and

L2
2
= L3

4
· L4

4
with only 2 further multiplications, so precomputation

incurs p − 2 multiplications in total.

Now for each of the li (x), we can compute li (x) = L
j1
2
· L

j2
4
· r̃ for

some j1 ∈ {1, 2}, j2 ∈ {1, 2, 3, 4} and r̃ consists of
p
4
−1 terms that are

multiplied in trivial fashion. Thus, we get a total of 1+1+
p
4
−2 =

p
4

multiplications for each li from this part of the computation. Putting

this together, the multiplication cost of computing li (x) for all

i = 1, . . . ,p − 1 in this manner is p − 2 + (p − 1) ·
p
4
. Since we need

to do all this for both variables values a and b, we get a total of

2 · (p − 2 + (p − 1) ·
p
4
) = 1

2
p2 + 3

2
p − 4 field multiplications.

Generalizing this idea, if we split the factors into k = 2
w

groups

for somew , we observe that each Lik has
p
k elements and can thus

be computed with
p
k − 1 field multiplications. Doing this for all k

Lik ’s, we get k · (
p
k − 1) = p − k multiplications. Also, computing

all L
j
k/2 from the Lik only costs additional

k
2
multiplications. Thus,

computing all L
j
n for n = k

2
down to n = 2 incurs

k
2
+ k

4
+ · · ·+ 2 =

w−1∑
z=1

2
z = (

w−1∑
z=0

2
z ) − 1 = (2w − 1) − 1 = k − 2 field multiplications.

In total, precomputation always needs (p − k) + (k − 2) = p − 2

multiplications.

7
Generally, the notation Lik denotes that we have divided the p factors into k roughly

equal sets, and this is the i th of these sets: Lik :=

i ·p
k∏

j= (i−1)·pk +1

(x − j)
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In the same way as above, we can now compute li (x) = L
j1
2
· · · · ·

L
jw
k · r̃ for some ji ∈ {1, . . . , 2i } and r̃ consisting of

p
k −1 terms that

are multiplied in trivial fashion (incurring
p
k − 2multiplications). In

addition to the multiplications from r̃ , there are furtherw = log
2
(k)

multiplications in the formula for li (x), so for each li (x) we get

p
k − 2 + log

2
(k) field multiplications.

Putting this together and again multiplying by 2 to accomodate

both a and b, we obtain 2 · (p − 2 + (p − 1) · (
p
k − 2 + log

2
(k))) =

2

k p
2 + (2 log

2
(k)− 2k+2

k ) ·p−2 · log
2
(k) field multiplications instead

of Step 2 in our original effort analysis.

Taking this to the extreme where k = p/2, i.e., we precompute

everything down to products of 2 factors, we get

2

p/2
p2 + (2 log

2
(p/2) −

2(p/2) + 2

p/2
) · p − 2 · log

2
(p/2)

= 4p + (2 · (log
2
(p) − 1) − 2 −

4

p
) · p − 2 · (log

2
(p) − 1)

= 4p + 2p · log
2
(p) − 4p − 4 + 2 − 2 · log

2
(p)

= 2p · log
2
(p) − 2 · log

2
(p) − 2

This minimum number of multiplications requires storing 2 ·

(k + k
2
+ k

4
+ · · · + 2) = 2 · (p/2+

p/2
2
+

p/2
4
+ · · · + 2) precomputed

values. Setting for simplicity reasons p ≈ 2
w
for some w , we get

2·(2w−1+2w−2+2w−3+· · ·+2) = 2·((
w−1∑
i=0

2
i )−1) = 2·(2w −1)−1 ≈

2p − 4.

Thus in total, we get as effort for computing f1 with the closed

formula:

• Field additions: 4p − 6

• Field multiplications: 2p · log
2
(p) − 2 · log

2
(p) − 2 + p − 1

= 2p · log
2
(p) + p − 2 · log

2
(p) − 3

• Multiplicative depth: ⌈log
2
(p − 1)⌉ + 1

Note that the idea of precomputation only really makes sense if

p > 4, so for p ∈ {2, 3}, we use the non-precomputation formulas

from the beginning.

4.3.3 Using the expanded polynomial. We note at this point

that it seems as though the polynomial for f1 =
∑p−1
i=1

(
li (b) ·∑i

j=1 lp−j (a)
)
has a smaller degree than expected when the double

sum is expanded. Concretely, the degree of the expanded polyno-

mial seems to be p rather than the expected 2p − 2. For the analysis

of this expanded form of the polynomial, we refer the reader to

Appendix B. The results of this analysis are that the closed double-

sum formula is much more efficient regarding the metrics of field

additions and multiplications, and that the best possible depth of

⌈log
2
(p)⌉ can be achieved through the expanded formula at much

higher addition and multiplication costs. The difference in multi-

plicative depth to the closed formula is at most 1. These results can

be seen in Figure 2.

Thus, we use the field addition and multiplication metric from

the closed formula, but the best possible depth of ⌈log
2
(p)⌉ from

the expanded formula in our effort analysis.

The effort for computing f1 is bounded by:
• Field additions: 4p − 6

• Field multiplications: 2p · log
2
(p) + p − 2 · log

2
(p) − 3

• Multiplicative depth: ⌈log
2
(p)⌉

4.4 Conclusion
Putting these numbers together with the effort for f2 and our anal-

ysis from the beginning, we will shortly obtain the total cost for

computing ci . However, we first need to make some observations

about the depth: Firstly, r0 is 0, so we do not need to compute

anything at all. Second, r1 = f1(a0,b0) and thus automatically

has the depth of f1. For subsequent ri , we derived a depth of

max{D(f1),max{D(ri−1), D(f2)} + 1}. Using this formula for r2, we
get

D(r2) =max{D(f1),max{D(r1), D(f2)} + 1}

=max{D(f1), D(f2)} + 1

=max{⌈log
2
(p)⌉, ⌈log

2
(p − 1)⌉} + 1

=⌈log
2
(p)⌉ + 1

From here on, it is clear that D(ri ) > D(f1) ≥ D(f2), so the depth

will increase by 1 with each i , leaving us with a total depth of

D(ri ) = ⌈log
2
(p)⌉ + i − 1.

Now, we can give the total cost for computing ci (for i > 1):

• Field additions: 5p − 4

• Field multiplications: 2p · log
2
(p) + 2p − 2 · log

2
(p) − 4

• Multiplicative depth: ⌈log
2
(p)⌉ + i − 1

Special cases: The effort for computing c0 = a0 + b0 is merely

1 field addition, and the cost for computing c1 = a1 + b1 + r1 =
a1+b1+ f1(a0),b0) is 4p+4 additions, 2p · log2(p)+p−2 · log

2
(p)+1

multiplications, and a depth of ⌈log
2
(p)⌉. Another special case is

the most significant digit cn+1 = rn+1, which has 2 field additions

less than the other ci , i > 1.

5 COST ANALYSIS FOR COMPUTING ON
ENCRYPTED NATURAL NUMBERS

5.1 Overview
In this section, we analyze the effort required to add or multiply

two natural numbers encoded p-adically using the polynomial we

derived above.

In Subsection 5.2, we calculate the cost of adding two numbers

in p-adic encoding. This involves determining the number of dig-

its required for the respective base, and then using the costs per

digit from the previous subsection to determine the total cost of

addition. We also present Theorem 2, which tells us that p = 2 is

the best choice in terms of field additions and multiplications. The

proof of the theorem presents the asymptotic analysis, and we have

graphed the costs for different numbers in p-adic encoding for all
p under 1000. We also graph the multiplicative depth and see that

the optimal choice of p for this metric depends on the size of the

number being encoded, or more specifically, the required number

of digits. Lastly, Subsection 5.3 analyzes the cost of multiplying

two numbers in p-adic encoding, using the addition from the pre-

vious subsection as a building block. We see that the cost analysis

for addition carries over to multiplication and obtain p = 2 as the

optimal choice regarding field additions and multiplications here

as well, along with a variable optimum for depth.
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(a) Additions (b) Multiplications (c) Depth

Figure 2: Field additions, multiplications and (optimal) mult. depth to compute f1 through the closed and expanded forms.

5.2 The Cost of Adding Two Natural numbers
Suppose we have some natural number x (in decimal representa-

tion). Then to represent x inp-adic encoding, we require ⌊logp (x)⌋+

1 digits. Adding two such numbers, our result will have ⌊logp (x)⌋+2

digits. We consider two cases (due to the different effort for c0):
Case 1: 0 ≤ x ≤ p−1: This means that our number can be encoded

with 1 digit, and the result will have two digits. We have c0 = a0+b0
with an effort of 1 addition, and c1 = r1 = f1(a0,b0) with an effort

of 4p − 6 additions, 2p · log
2
(p) + p − 2 · log

2
(p) − 3 multiplications

and a depth of ⌈log
2
(p)⌉. In total, the cost of adding two 1-digit

numbers is 4p − 5 additions, 2p · log
2
(p) + p − 2 · log

2
(p) − 3

multiplications and a depth of ⌈log
2
(p)⌉.

Case 2: p ≤ x : This means that x will be encoded with 2 ≤ ℓ :=

⌊logp (x)⌋ + 1 digits and the result will have ℓ + 1 digits. We again

have c0 = a0 + b0 with an effort of 1 addition. Next, we have

c1 = a1 + b1 + r1 = a1 + b1 + f1(a0,b0) with an effort of 4p − 4

additions, 2p · log
2
(p) + p − 2 · log

2
(p) − 3 multiplications and

a depth of ⌈log
2
(p)⌉. The last digit cℓ = rℓ has a cost of 5p − 6

additions, 2p · log
2
(p) + 2p − 2 · log

2
(p) − 4 multiplications, and a

depth of ⌈log
2
(p)⌉+1. The remaining ℓ−2middle digits ci have the

normal effort of 5p − 4 additions, 2p · log
2
(p) + 2p − 2 · log

2
(p) − 4

multiplications and a depth of ⌈log
2
(p)⌉ + i − 1.

In total, the cost of adding two ℓ-digit numbers, ℓ > 2, is:
• 9p − 9 + (ℓ − 2) · (5p − 4) = (5ℓ − 1) · p − (3ℓ + 2) field

additions
• 4p · log

2
(p)+3p−4 · log

2
(p)−7+(ℓ−2) · (2p · log

2
(p)+2p−2 ·

log
2
(p)−4) = 2ℓ ·p · log

2
(p)+(2ℓ−1)·p−2ℓ · log

2
(p)−4 ·ℓ+1

field multiplications
• A multiplicative depth of ⌈log

2
(p)⌉ + ℓ − 1.

Keeping in mind that ℓ := ⌊logp (x)⌋ + 1 in the general Case 2,

we can now clearly see the main result of this paper:

Theorem 2. Using total number of additions or multiplications
(or a balance between total number of multiplications and depth) as
the cost metric, p = 2 is the most efficient encoding for adding two
natural numbers in p-adic encoding.

Proof. We can see from the above cases that while the required

encoding length ℓ = ⌊logp (x)⌋ + 1 = ⌊
log

2
(x )

log
2
(p) ⌋ + 1 only decreases

logarithmically, the effort grows with p as O(ℓ ·p) = O((⌊
log

2
(x )

log
2
(p) ⌋ +

1) · p) ≈ O(p +
p

log
2
(p) ) (for additions) and as O(ℓ · p · log

2
(p)) =

O((⌊
log

2
(x )

log
2
(p) ⌋+1)·p ·log2(p)) ≈ O(p ·log

2
(p)+p) (for multiplications).

The depth ⌈log
2
(p)⌉ + ℓ − 1 = ⌈log

2
(p)⌉ + ⌊

log
2
(x )

log
2
(p) ⌋ also increases

logarithmically. �

We would like to point out again that if the function being eval-

uated is known beforehand, choosing p so large that computations

do not wrap around mod p is likely to be faster – however, this is

not Fully Homomorphic Encryption but rather Somewhat Homo-

morphic Encryption. Theorem 2 holds for p-adic encoding used in

true FHE. We have illustrated this Theorem through Figure 1 on

page 3, which shows the effort as p grows for selected values of x .
We can see that indeed, the number of additions, multiplications

and the depth increase significantly as the encoding basep increases.
Note that the jags in the first two diagrams occur when the base

prime becomes so large that one digit less is required for encoding

than under the previous prime, so the effort drops briefly before

increasing again. The diagram for depth shows us an interesting

phenomenon (which also occurs for the non-optimal depth ⌈log
2
(p−

1)⌉ + ℓ) that is hidden in the asymptotic analysis: For low primes,

it is actually the required number of digits that dominates the total

depth cost. This problem becomes more pronounced the larger

the encoded number is, and vanishes after the first few primes

as the expected asymptotic cost takes over. This means that if

depth is the only cost metric that is being considered (where as

we have explained before, we feel that as soon as bootstrapping

is unavoidable, the total number of multiplications is the more

important metric), choosing a slightly larger prime than 2 yields

better results at the cost of significantly increased multiplications.

Also, the optimal choice of p depends heavily on the numbers that

are being encoded. For example, in Figure 1c, the depth-optimal

choices for adding x would be p = 3 for x = 20, p = 7 for x = 7000,

and p = 29 for x = 10
7
.

5.3 The Cost of Multiplying Two Natural
numbers

In this section, we analyze the cost of multiplying two natural

numbers aℓ−1aℓ−2 . . . a1a0 ·bℓ−1bℓ−2 . . .b1b0 with ℓ digits inp-adic
encoding. In performing this multiplication, there are two main

steps: First, we need to perform a one digit multiplication of each bi
7



with all of aℓ−1aℓ−2 . . . a1a0, shifting one space to the left with each
increasing i . In the second step, we add up the rows we obtained

in this way using the addition from the previous subsection as a

building block. As an example, consider the multiplication of two

3-digit numbers:

a2 a1 a0 · b2 b1 b0
x3 x2 x1 x0

y3 y2 y1 y0
z3 z2 z1 z0

c5 c4 c3 c2 c1 c0

The first step is obtaining the rows x3x2x1x0 = a2a1a0 · b0,
y3y2y1y0 = a2a1a0 ·b1 and z3z2x1z0 = a2a1a0 ·b2. Except in the case
of p = 2 (where bi ∈ {0, 1}, so x3x2x1x0 = (a2 · b0)(a1 · b0)(a0 · b0)),
this actually requires some computational effort: In the case that

a0 · b0 > p, we have a carry into the next digit. Concretely, we

write ai · bj + ri = ri+1 · p + xi where r0 = 0 and ri ∈ {0, . . . ,p −

2}.8 Very similarly to the uniqueness proof of Theorem 1, we can

obtain the formula for this carry digit through a 3-fold Lagrange

approximation over the variables ai ,bi and ri . This means that

the formula for the carry ri will be a triple sum over li -functions.
Note, however, that this polynomial is not unique, as it can take

multiple values for r = p − 1. For example, although the degree

would generally be expected as 3 · (p − 1), we have experimentally

seen that among these different possible polynomials, there seems

to be one which has a degree of only 2 · (p−1)+1. Thus, in our effort
analysis we will use this value as our lower bound on the depth,

and a similar reasoning for number of additions and multiplications

via the closed Lagrangian formula as in the previous section. Using

precomputing as above, we obtain as effort for computing ri+1 from
(ai ,bi , ri ):

• Field additions: 6p − 9

• Field multiplications: 3p · log
2
(p) + 2p − 3 · log

2
(p) − 5

• Multiplicative depth: ⌈log
2
(2p − 1)⌉

Thus, each row, which has length ℓ + 1, roughly has as its effort

(where we increase the depth by log
2
of the degree, i.e., log

2
(2p− 1)

with each i and mind the special first and last digit):

• Field additions: ℓ · (6p − 8) − 1

• Field multiplications: ℓ · (3p · log
2
(p) + 2p − 3 · log

2
(p) − 5)

• Multiplicative depth: ℓ · ⌈log
2
(2p − 1)⌉

Doing this for all ℓ rows, the first of the two steps has the following

effort:

• Field additions: ℓ2 · (6p − 8) − 1

• Field multiplications: ℓ2 · (3p · log
2
(p)+ 2p − 3 · log

2
(p) − 5)

• Multiplicative depth: ℓ · ⌈log
2
(2p − 1)⌉

The second step consists of adding all the rows that we computed

in the first step. We apply the improvement presented in [22] where

we copy the digits of the upper row over the blank spaces on the

right to the result, and apply a logarithmic approach (i.e., with rwi
denoting row i , we compute (rw1 + rw2) + (rw3 + rw4) instead of

(((rw1 + rw2) + rw3) + rw4) to keep the involved lengths and thus

effort as low as possible.

8ri cannot be p − 1 because the maximum first carry r1 happens at (p − 1) · (p − 1) =
(p − 2) · p + 1, so r1 ≤ p − 2, and subsequently the maximum that can occur is at

ai · b0 + ri = (p − 1) · (p − 1) + (p − 2) = (p − 2) · p + (p − 1), so ri ≤ p − 2.

First, we do
ℓ
2
additions with ℓ + 1 digits (because the rightmost

one is copied). Next, we do
ℓ
4
additions with ℓ+3 digits, because the

rightmost two are copied down. Continuing this until we have only

one row left (with Adds(x) denoting the respective effort for adding
two number of x digits as computed in the previous subsection),

we get as total cost of this second step:

• Field additions:

⌈log
2
(ℓ)⌉∑

i=1

ℓ
2
i · Adds(ℓ + 2

i−1 + 1)

• Field multiplications:

⌈log
2
(ℓ)⌉∑

i=1

ℓ
2
i · Adds(ℓ + 2

i−1 + 1)

• Multiplicative depth:

⌈log
2
(ℓ)⌉∑

i=1
Adds(ℓ + 2i−1 + 1)

5.4 Conclusion
Putting these two steps together, we obtain as the total cost for
multiplication:

• Field additions: ℓ2 · (6p − 8) − 1 +
⌈log

2
(ℓ)⌉∑

i=1

ℓ
2
i · Adds(ℓ +

2
i−1 + 1)

• Field multiplications:

ℓ2 · (3p · log
2
(p)+2p−3 · log

2
(p)−5)+

⌈log
2
(ℓ)⌉∑

i=1

ℓ
2
i ·Adds(ℓ+

2
i−1 + 1)

• Multiplicative depth: ℓ · ⌈log
2
(2p−1)⌉+

⌈log
2
(ℓ)⌉∑

i=1
Adds(ℓ+

2
i−1 + 1)

Since this is a rather complicated formula, we have plotted the costs

for different inputs in Figure 3.

We can see that regarding additions and multiplications, the

effort is lowest at p = 2 and grows with increasing p, though
there are again some sharp drops when the required number of

digits decreases. As one would expect, the issue with depth has

propagated from addition, which we used as a building block in

multiplication: The best depth for x = 20 would be p = 23, the best

depth for x = 7000 would be p = 89, and the best depth for x = 10
7

would be p = 59. We would like to point out that these values are

not the same values that were optimal for addition (e.g., p = 89 is

far from optimal for adding x = 7000) - thus, if one were to use

depth as the sole metric, the optimal choice of p not only depends

on the size of the numbers one is working with, but also on the

number of additions vs. multiplications one wants to perform on

these inputs. In the context of outsourced information, it is also

important to note that optimizing the choice of p in this way could

leak unwanted information, depending on the specific outsourcing

scenario.

6 USING GF (PK ) AS ENCODING BASE
We now generalize our analysis tp arbitrary finite fields as encoding

bases.

6.1 Analysis
Much in the same way as in Sections 4 and 5, we have also ana-

lyzed the effort incurred when using GF (pk ) for a prime p and a

8



(a) Additions (b) Multiplications (c) Depth

Figure 3: Number of field additions, fieldmultiplications andmultiplicative depth formultiplying x = 20/7000/107 to a number
of same size.

k > 1 as an encoding base. First, recall thatGF (pk ) � Zp [X ]/(f (x))
with f (x) irreducible of degree k . We embed a decimal number

between 0 and pk − 1 into GF (pk ), whose elements are polyno-

mials over Zp , through the insertion homomorphism: The ele-

ment a =
k−1∑
i=0

αiX
i ∈ GF (pk ) (with αi ∈ Zp ) encodes the number

ã =
k−1∑
i=0

αip
i ∈ N. Then generalizing this to allow numbers larger

than pk − 1 is straightforward: We will represent a number a as

anan−1 . . . a1a0 where ai ∈ GF (pk ) through a =
n∑
j=0

ãi (p
k )i .

Example 1. Suppose we are working overGF (23) � Z2[X ]/(X 3 +

X + 1). Then the single element X 2 + 1 ∈ GF (23) encodes the natural
number 22 + 1 = 5, whereas the single element X ∈ GF (23) encodes
the natural number 2. Using this structure as an encoding base, we
can display natural numbers that are larger than 2

3 = 8 through
tupels of GF (23)-elements. For example, the tupel
(x+1, 1,x2) encodes the number (x+1) · (23)2+1 · (23)1+x2 · (23)0 7→
3·82+1·8+4·1 = 204. Encoding in the other direction works similarly:
Suppose we want to encode the number 8008 in this fashion, then we
first write it a sum of powers of 23: 8008 = 4096 + 3584 + 320 + 8 =

1 · 84+7 · 83+5 · 82+1 · 81+0 · 80 7→ 1 · 84+ (X 2+X +1) · 83+ (X 2+

1) ·82+1 ·81+0 ·80 which yields a tuple of (1,X 2+X +1,X 2+1, 1, 0).

Having determined this encoding, we now analyze the effort of

adding two natural numbers in this encoding. Intuitively, we do

not expect this to perform better than the encoding through Zp :
The carry bit formula should roughly have the same effort as for

Zp′ with p
′
of size comparable to pk , but the addition is now more

complicated. Concretely, the native addition structure ofGF (pk ) is

that of (Zp )
k
, i.e., it is done component-wise with no carry-over

into other components, whereas we would need the addition of

Zpk to natively support our encoding. Thus, we must emulate the

addition ci = ai + bi + ri in the same way as we compute the carry

bit, so we expect a similar effort here and at least double the effort

compared to Zp′ in total.

We now present the results of this analysis – the detailed com-

putation can be found in Appendix C. To add two natural numbers,

we have the following effort:

Case 1: 0 ≤ x ≤ pk − 1: This means that our number can be

encoded with 1 digit, and the result will have two digits.

• Field additions: 2p2k + 2pk − 5

• Field multiplications: 4pk · log
2
(pk ) + 2pk − 2 log

2
(pk ) − 7

• Constant multiplications: p2k

• Multiplicative depth: ⌈log
2
(pk − 1)⌉ + 1

Case 2: pk ≤ x : This means that x will be encoded with 2 ≤ ℓ :=

⌊logp (x)⌋ + 1 digits and the result will have ℓ + 1 digits.

• Field additions: 5p2k + 8pk − 12+ (ℓ− 2) · (3 ·p2k + 6pk − 6)

= (3ℓ − 1) · p2k + (6ℓ − 4) · pk − 6ℓ

• Field multiplications: 10pk · log
2
(pk ) + 6pk − 4 log

2
(pk ) −

19 + (ℓ − 2) · (6pk · log
2
(pk ) + 4pk − 2 log

2
(pk ) − 11)

= (6ℓ−2) ·pk · log
2
(pk )+(4ℓ−2) ·pk −2ℓ · log

2
(pk )−11ℓ+3

• Constant multiplications: 3p2k + 1 + (ℓ − 2) · (2p2k + 1)

= (2ℓ − 1) · p2k + ℓ − 1

• Multiplicative depth: ⌈log
2
(pk − 1)⌉ + ℓ

6.2 Conclusion
We now compare the calculated effort to:

(1) Encoding the same number in base p instead of pk and

performing the addition.

(2) Encoding the same number in base p′ with p′ close to pk .

Concretely, Figure 4 shows the effort of adding two numbers of the

same size (x = 20/7000/107) in the respective encoding base for

bases less than 1000. The blue points are the efforts for using Zp ,

the red squares for p2, the black diamonds for p3, and the green star

groups all bases pk with k ≥ 4, since the primes p with pk ≤ 1000

for increasing k become very few. We have omitted a graph for

constant multiplications because there are none (when the scheme

supports subtraction) when the plaintext space is Zp .

We see that the pk -encoding performs poorly regarding all met-

rics, and using Zp as an encoding base is the better choice. Recall

from Section 5.2 that the smaller the encoding base p for a plaintext

space of Zp , the smaller the cost in terms of ciphertext additions and

multiplications, and that the optimal base in terms of multiplicative

depth varies. However, the factor that induces this variation is the

required encoding length, and since we can choose a prime p′ that
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x = 20 : # Additions x = 20 : # Multiplications x = 20 :Multiplicative Depth

x = 7000 : # Additions x = 7000 : # Multiplications x = 7000 :Multiplicative Depth

x = 10
7
: # Additions x = 10

7
: # Multiplications x = 10

7
: Multiplicative Depth

Figure 4: Number of field additions, field multiplications and multiplicative depth for multiplying x = 20 (first row)/x = 7000

(second row)/x = 10
7 (bottom row) to a number of same size for encoding base GF (pk ).

is close to pk (and thus requires roughly the same encoding length)

which requires much less effort as shown in Figure 4, there is no

case where choosing pk as an encoding base with k > 1 brings any

benefit. For this reason, pk is always the worst encoding choices

(and we are never without an alternative), so we do not continue

with the analysis of GF (pk ) as an encoding base.

7 RATIONAL NUMBERS AND INTEGERS
7.1 Overview
In most real-world applications, computing on natural numbers is

not sufficient. In this section, we briefly discuss how to incorpo-

rate rational numbers of arbitrary but fixed precision (so that real

numbers can be approximated) and at what cost (Subsection 7.2).
Afterwards, we consider in Subsection 7.3 (signed) integers by

investigating the costs when using the encodings p′s Complements

and Sign-Magnitude, respectively. It turns out that by switching

between these two encodings, we can get the lowest cost as with

only slightly higher effort than for natural numbers, in addition to

the cost of switching ( which is roughly that of one p-adic addition.).

Thus, our results for natural numbers also extend to rational num-

bers, meaning that p = 2 is optimal with regard to field additions

and multiplications, and depth does not have a generic optimum.

7.2 Representing Rational Numbers by Scaling
First, let the encoding base p be an arbitrary prime. Given a rational

number that we wish to encode (and assuming for the moment

that negative numbers are no problem), we need to transform this

rational into an integer, which we can then encode p-adically in

the next step. The probably most straightforward approach is to

introduce a scaling factor. We explain that choosing a power of p
as scaling factor is beneficial. That is, we pick a precision

9 σ with

which we want to work with in the following. We now multiply the

rational with pσ and round or truncate to obtain an integer that

we can encode.

The importance of choosing the scaling factor as a power of the

encoding base is as follows: Suppose that we have two rational

numbers A and B which we scale and round to Ã = A · pσ and

9
i.e., there are σ p-adic digits after the point.

10



B̃ = B ·pσ . After encoding p-adically and encrypting the individual
digits, multiplying yields Ã · B̃ = A · B · p2σ . Thus, after decrypting,
the data owner needs to know what power of the scaling factor

to divide the result by, leaking unwanted information about the

function that was applied, which might be the computing party’s

secret. Also the required number of digits increases to accommodate

the extra precision digits, making all computations less efficient.

However, if we have a number in p-adic encoding, deleting the last

σ digits corresponds to dividing by pσ and truncating the result.

This way, using pσ as the scaling factor, the computing party can

delete the σ least significant digits after each multiplication and

thus keep the precision at a constant σ bits, increasing efficiency (by

using less digits) and privacy (because the data owner now divides

the result by pσ regardless of the function that was applied).

7.3 Encoding Integers
Now that we have seen how to transform rationals into integers

and work with them efficiently, we need to look into incorporat-

ing negative numbers into our p-adic encoding from the previous

sections. Generalizing from p = 2, for which these encodings are

well known, we investigate two main approaches: p’s Complement

and Sign-Magnitude. Note that this question has been extensively

studied in [22] but for the case p = 2 only. In the following, we

explain shortly how the results extend to the case of p > 2. As the

extension is quite straightforward, we omit the technical details

and only sketch the main arguments.

7.3.1 p’s Complement. In p’s Complement encoding, elements

have the forman . . . a1a0 withai ∈ {0, 1, . . . ,p−1} for i = 0, . . . ,n−
1, and an ∈ {0, 1}, where x = −an · pn +

∑n−1
i=0 ai · p

i
. This means

that the first digit encodes either 0 or −pn and the following digits

correspond to the “normal” p-adic encoding. As an example, sup-

pose p = 3. Then 0201 evaluates to 0 · (−33) + 2 · 32 + 0 · 3 + 1 = 19,

whereas −19 = −27 + 8 = −33 + 0 · 32 + 2 · 3 + 2 would be encoded

as 1022. In the case that p = 2, this is the encoding that is usually

used in the internal workings of a computer.

Addition. Addition works in much the same way as normal p-
adic addition, except for one point: To obtain the correct result when

adding two n-digit numbers, the result must also be encodeable

by n digits, and any values past the nth digit are discarded. Since

the result of adding two n-digit numbers is usually n + 1 digits

long, we first extend the inputs by one digit without changing

their value so that we can then add two n + 1 digit numbers whose

sum is also encodeable by n + 1 digits, yielding the correct result.
Note that to extend the number of digits by k , we must merely

insert k 0’s (for a positive number) or p − 1’s behind the most

significant digit. This is called sign extension. However, the most

significant digit may come out wrong, as the result will be mod p
though in reality, it is mod 2. This can be fixed by replacing cn

with

(
cn · (cn − 2) · (cn − 4) . . . (cn − (p − 1))

)p−1
. In its expanded

form, this adds a depth of ⌈log
2
(p − 1)⌉, and incurs

p−1
2

additions

and
p−1
2
+p−2multiplications in its closed form, which is less than

a full addition of natural numbers. Obviously, this is not necessary

if p = 2, so this further increases the efficiency of p = 2 compared

to other p.

Conclusion: This means that the effort of adding two numbers

in p’s Complement encoding is comparable to twice the effort for

adding two natural numbers derived in Section 5.2, except that the

depth is twice as large. For p = 2, it is almost exactly the same effort

as adding two natural numbers in binary encoding.

Multiplication. When multiplying two numbers in p’s Comple-

ment encoding, we need to follow a few steps. For maximum gen-

erality, we assume that the input numbers have m and n digits,

respectively.

(1) Increase the the number of digits for both numbers through

sign extension (as described above) to lengthm + n.
(2) Perform regular p-adic multiplication of the two resulting

numbers. Note that to add the individual rows, we must

use the addition function from above.

(3) Keep only the rightmost n +m digits.

Because of the sign extension required in the first step, not only

are the rows longer than for natural number multiplication (n +m
as compared to n), but there are also more of them (n+m as opposed

tom), so we must do more additions with inputs of greater lengths.

Conclusion: This means that p’s Complement roughly requires

the same multiplication effort as a natural number with twice as

many digits, i.e., multiplying a natural number x with k digits

in p’s Complement encoding requires roughly the same effort as

multiplying x2 (which has 2k digits) in “regular” p-adic encoding.

7.3.2 Sign-Magnitude. The second encoding that we consider,
Sign-Magnitude, is the most obvious approach to incorporating

negative numbers: The absolute value of the number is encoded

p-adically as a natural number, and there is an extra digit (the most

significant digit) which determines the sign. Concretely, elements in

this encoding have the form anan−1 . . . a1a0 with ai ∈ {0, 1, . . . ,p−
1} for i = 0, . . . ,n−1, and an ∈ {0, 1}, where x = (−1)an ·

∑n−1
i=0 ai ·

pi . It is easy to see that for positive numbers, this encoding is the

same asp’s complement. Continuing the example from above where

p = 3, we again evaluate 0201 as (−1)0 · (2 · 32 + 0 · 3 + 1) = 19.

However, −19 = (−1)1 · (2 · 32 + 0 · 3 + 1) is now encoded as 1201.

As we can easily see, a numbers is changed to its negative simply

by changing the first digit. This encoding suffers from having two

representations of 0: 00 . . . 0 and 100 . . . 0.

Addition. Adding two numbers in Sign-Magnitude representa-

tion is surprisingly complex, at least when the data is encrypted
10
.

Concretely, if the two most significant digits are equal, one drops

them, adds the remaining digits using the addition for natural num-

bers, and add the most significant bit to the front again. However,

if they are unequal, we must compare the absolute values, subtract

(in a routine which we have not defined in this paper - it has effort

roughly like addition) the smaller from the larger, and keep the sign

of the larger value. As the reader may have noticed, we also need

a comparison function, which in itself has several different case

branches which we must all compute. Using the extended version of

[22] (in which the comparison function is derived in the appendix)

10
When computing in the clear, one only has to compute the appropriate branch when

a computation splits up via IF-clauses. When computing on encrypted data, however,

one cannot see what the appropriate branch is, and thus has to compute all possibilities,

multiplying each with a (encrypted) boolean variable expressing whether that branch

is true and adding the results.
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as our basis, we estimate the cost of comparing two numbers as

more than three times the cost of adding those numbers.

Conclusion: The total cost of adding two numbers in Sign-Magni-

tude encoding is roughly one p-adic addition, two comparisons

(each having costs of about three additions) and 4 subtractions

(where subtraction and addition have about the same cost). This

yields already 11 additions in “regular” p-adic encoding, being sig-

nificantly more costly than using p′s Complement encoding. Note

that the effort induced by choosing the correct branch is not in-

cluded yet, meaning that the total effort will be even higher.

Multiplication. Multiplication with Sign-Magnitude encoding

is conceptually very simple: We delete the sign digits an and bn ,
multiply the remaining digits as with regular p-adic multiplication,

and append the correct sign digit cn . This last part is easy: Since the
sign digits an ,bn ∈ {0, 1}, the function cn = (an+bn ) · (an+bn−2) ·
(p−1) computes the correct value: 0when an = bn , and 1 otherwise.
To add the individual rows that we obtain during multiplication, we

do not have to use the complicated addition as presented above, but

rather the much more efficient addition of natural p-adic numbers,

as we have discarded the sign during multiplication.

Conclusion: The effort of multiplying two numbers in Sign-Magni-

tude encoding is roughly the same as multiplying them with “regu-

lar” p-adic encoding.

7.3.3 Hybrid Encoding. We see that the choice of encoding to

incorporate negative integer numbers can make a big difference in

performance. Since p’s Complement addition is more efficient than

Sign-Magnitude, but Sign-Magnitude is more efficient for multipli-

cation, we believe that a hybrid approach like in [22] would also

be the best choice here: One does all additions in p’s Complement

encoding, and for multiplication switches the encoding to Sign

Magnitude. Using this, one can have roughly the same operation

cost as for natural numbers in p-adic encoding (slightly more for

additions), plus the cost of switching between encodings, which is

roughly that of one p-adic addition. Of course, since this already
holds true for natural numbers in p-adic encoding, the choice p = 2

by far incurs the least amount of field additions and multiplications

in these two encodings and the hybrid encoding also, while the

optimal depth choice remains variable.

8 RELATEDWORK
While encryption schemes that allow one type of operation on

ciphertexts are well understood and have a comprehensive secu-

rity characterization [3], Fully Homomorphic Encryption, which

allows both unlimited additions and multiplications, was only first

solved in [17]. Since then, numerous other schemes have been de-

veloped, for example [27] (the most approachable in its simplicity),

[6] (currently considered the most efficient one), and several others

like [26], [11], [12], [16] and [19]. An overview can be found in

[2]. These schemes usually have a plaintext space of Zp [X ]/(F (x))
where F (x) is a cyclotomic polynomial, though [27] was first de-

fined over Z2 and extended to other plaintext spaces in [25], and

[15] is a notable exception with a plaintext space of {0, 1} using

the NAND operator.

There are several libraries implementing FHE, with [21] usually

considered as the fastest. Numerous works have been published

concerning actual implementation of FHE, like [18] (homomor-

phically evaluating the AES circuit), [5] (predictive analysis on

encrypted medical data), or [20] (machine learning on encrypted

data), and [24] discusses whether FHE will ever be practical and

gives a number of possible applications. Most of these applications

work by embedding their computations into a very large plaintext

space and using SHE, as described in the introduction.

The recent increase in papers regarding encoding for FHE illus-

trates its importance: [10] examines encoding rational numbers

through continued fractions (restricted to positive rationals and

evaluating linear multivariate polynomials), whereas [13] focuses

on most efficiently embedding the computation into a single large

plaintext space. Another work that explores similar ideas as [13]

and also offers an implementation is [14]. An extension of [16]

allowing floating point numbers is presented in [1], and [8] gives a

high-level overview of arithmetic methods for FHE, but resticted

to positive numbers. In [22], arithmetic operations and different

binary encodings for rational numbers are examined and compared

in their effort. [4] explores a non-integral base encoding, and [28]

(seemingly having significant overlap with [22]), presents different

arithmetic algorithms including a costly division, though apparently

limited to positive numbers. Lastly, [9] allows approximate opera-

tions by utilizing noise from the encryption itself. To our knowledge,

there are no papers concerned with the costs of encoding in a base

other than p = 2 except [23], which exclusively analyzes [25] and

uses different cost metrics. The latter also presents a formula for

the carry of a half adder, but merely considers GF (pk ) for k = 1

in the context of homomorphically computing the decryption step

(needed for bootstrapping) of their variation of [27], and does not

include an effort analysis.

9 CONCLUSION AND FUTUREWORK
In conclusion, we have shown that among all plaintext spaces of the

form GF (pk ), the choice Z2 is optimal with regard to the number

of field operations when computing on encrypted numbers. For the

cost metric of multiplicative depth, there is no generic optimum,

as the optimum depends heavily on the circumstances – however,

choosing k > 1 is never a good choice. We show how to extend

p-adic encoding of natural numbers to rationals and see that the

above results also hold in this case.

For future work, we intend to extend our analysis to other rep-

resentations like the Non-Adjacent Form and Redundant Digit En-

coding, where the latter seems very promising as it would allow

addition without having to propagate the carry.
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A PROOF OF THEOREM 1
This Section contains the proof of Theorem 1 from Section 3. We

first show in Lemma 1 that ri ∈ {0, 1}, then use that fact to sepa-

rate the formula for ri into ri = f1(ai−1,bi−1)+ ri−1 · f2(ai−1,bi−1)
in Lemma 2, which has the lowest depth increase out of all pos-

sible formulas because ri−1 only has degree 1. We proceed with

Corollary 1, which derives from Lemma 2, showing that the in-

volved functions are symmetric. We then present Lemmata 3 and
4, which will be needed in later proofs. Lastly, Theorem 1 presents
the main result of this section, namely the closed formula for ri .

Recall that our goal is to find the polynomial that expresses the

carry bit as a function of the inputs and carry from the previous

position: ri (ai−1,bi−1, ri−1).

Lemma 1. The carry ri is at most 1 for all i .

Proof. Weprove this by induction over the position i ∈ {0, . . . ,n+
1}:

i = 0: This is the first position and thus there is no carry from a

previous position, i.e., r0 = 0 ≤ 1.

Now for a general position i > 0, suppose it holds that ri−1 ≤ 1.

Since ak ≤ p − 1 and bk ≤ p − 1 for all k , we have (over the natural
numbers, not mod p): ai−1 + bi−1 + ri−1 ≤ p − 1 + p − 1 + 1 =

2 · p − 1 < 2 · p. Since this last inequality is a real inequality, we

need to carry less than 2, i.e., at most 1, over to the next position

(which corresponds to the next higher power of p). Thus, the next
carry ri ≤ 1. �

Having established this, we can now express the carry ri (over
N rather than Zp ) as:

ri =

{
0, ai−1 + bi−1 + ri−1 ≤ p − 1

1, ai−1 + bi−1 + ri−1 ≥ p
(3)

Next, we show how to elegantly express ri with minimal degree

in ri−1:

Lemma 2. The polynomial for computing ri (ai−1,bi−1, ri−1) has
the form

ri = f1(ai−1,bi−1) + ri−1 · f2(ai−1,bi−1) (4)

where f1, f2 are polynomials in two variables with

f1(a,b) =

{
0, a + b ≤ p − 1

1, a + b ≥ p
and f2(a,b) =

{
1, a + b = p − 1

0, else
(5)

where these sums are again taken over N rather than Zp .

Proof. We know that ri = f (ai−1,bi−1, ri−1) is a polynomial in

three variables, and since ri−1 ∈ {0, 1} by Lemma 1, the power of

ri−1 must be at most 1 (if we are looking for the most simple form)

since 0
x = 0 and 1

x = 1 for all x ≥ 1, so writing e.g. r5i−1 would
always evaluate to the same result as just ri−1. Thus, we can write

ri = f1(ai−1,bi−1) + ri−1 · f2(ai−1,bi−1) by factoring out ri−1.
For the second part of the claim, consider the function f1(ai−1,bi−1):
Since the other half of the equation for ri is multiplied with ri−1, it
evaluates to 0 when ri−1 = 0. Thus, f1 defines the behavior of the
function when the carry ri−1 is 0, so it must hold that

f1(a,b) =

{
0, a + b ≤ p − 1

1, a + b ≥ p.
(6)

Now consider the second case where ri−1 = 1, i.e., ri = f1(a,b)+
f2(a,b). This means that we have

ri =

{
0, a + b + 1 ≤ p − 1

1, a + b + 1 ≥ p.
=

{
0, a + b ≤ p − 2

1, a + b ≥ p − 1.

Comparing this with the above values for f1(a,b) from Equation

6, we see that they are nearly identical and differ solely when

a + b = p − 1, which results in a carry-out of ri = 1 if the carry-in

is ri−1 = 1. This difference thus constitutes f2:

f2(a,b) = ri − f1(a,b) =

{
1, a + b = p − 1

0, else.

(7)

�

Corollary 1. Both f1(a,b) and f2(a,b) are symmetric11. By ex-
tension, ri (a,b, ri−1) itself is also symmetric ina andb, i.e., ri (a,b, ri−1) =
ri (b,a, ri−1).
11
A function f (a, b) is called symmetric if f (a, b) = f (b, a) for all a, b .
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Proof. The first claim follows directly from the definition of

the two functions f1 and f2 in Equation ??. The second claim can

then easily be seen by applying this to Equation ??:

ri (a,b, ri−1) = f1(a,b) + ri−1 · f2(a,b)

= f1(b,a) + ri−1 · f2(b,a) = ri (b,a, ri−1).

�

The following Lemma will aid us in the proof of our main theo-

rem:

Lemma 3. For all i ∈ {0, ...,p − 1}, it holds that

p−1∏
j=0
j,i

1

i − j
= p − 1 mod p.

Proof. We rearrange the product in the following way:

p−1∏
j=0
j,i

1

i − j
=

1

i
·

1

i − 1

· · · · ·
1

i − (i − 1)
·

1

i − (i + 1)
· · · · ·

1

i − (p − 1)

=
1

i
·

1

i − 1

· · · · ·
1

1

·
1

p − 1

· · · · ·
1

i + 1
=

p−1∏
j=1

1

j
.

Since x 7→ x−1 is a bijection on Z∗p = {1, . . . ,p − 1},we have:

p−1∏
j=1

1

j
=

p−1∏
j=1

j = (p − 1)! (8)

Note that (p − 1)! is a multiplication of all invertible elements

of Zp . Also, the equation x2 = 1 has exactly two roots over Zp : 1

and p − 1. Thus, for all elements x ∈ Z∗p ,x < {1,p − 1} (i.e., for all

x ∈ {2, . . . ,p − 2}), it holds that x , x−1. This means that (p − 1)!

contains the inverse of every element except 1 and p − 1. Thus, all

elements except p − 1 “cancel out” by being multiplied with their

inverse, so we get

(p − 1)! = p − 1 mod p. (9)

Thus, in total, we have

p−1∏
j=0
j,i

1

i − j
=

p−1∏
j=1

1

j
=

p−1∏
j=1

j = (p−1)! = p−1 mod p.

�

Recall that we defined

li (x) :=

p−1∏
j=0
j,i

(x − j).

We prove the following attribute:

Lemma 4. For all i,k ∈ {0, . . . ,p − 1} it holds that

li (k) = −δik =

{
p − 1, i = k

0, i , k .

Proof. Let k , i . Then the term (x−k) is a factor in the product,
so evaluating at x = k yields a factor of (k − k) = 0, thus making

the whole product zero.

Now suppose k = i . Then much like in the proof of Supplemen-

tary Lemma 3, we have that

p−1∏
j=0
j,i

(i − j) =

p−1∏
j=1

j = (p − 1)! = p − 1 mod p.

�

We now state the formula for the carry bit using these li (x)-
functions:

Theorem 1. The formula for computing ri (ai−1,bi−1, ri−1) is

ri (a,b, r ) =

p−1∑
k=1

(
lk (b) ·

k∑
j=1

lp−j (a)
)
+ ri−1 · (p − 1) · lp−1(a + b).

This polynomial is unique in that there is no other polynomial of
smaller or equal degree which also takes on the correct values for ri at
all points (ai−1,bi−1, ri−1) with ai−1,bi−1 ∈ {0, . . . ,p − 1}, ri−1 ∈

{0, 1}.

Proof. Correctness: With the notation of Lemma 2, we only

need to show that

f1(a,b) =

p−1∑
i=1

(
li (b) ·

i∑
j=1

lp−j (a)
)

(10)

and

f2(a,b) = (p − 1) · lp−1(a + b). (11)

We start with f2: Since

f2(a,b) :=

{
1, a + b = p − 1

0, else

by Lemma 2, and

lp−1(x) :=

{
p − 1, x = p − 1

0, x , p − 1,

it holds that

(p − 1) · lp−1(x) =

{
(p − 1)2 = 1, x = p − 1

0, else.

Substituting (a + b) for x , we get

(p − 1) · lp−1(a + b) =

{
1, a + b = p − 1

0, a + b , p − 1

= f2(a,b).

Moving on to f1(a,b), let a = ã and b = ˜b be fixed but arbitrary.

We first observe that according to Lemma 4, all li ( ˜b) with i , ˜b
evaluate to zero. Since both sums involved in Equation 10 start at 1

rather than 0, the sums evaluate to 0 if ã = 0 (then the terms of the

inside sum are all 0) or
˜b = 0 (then the coefficients of the outside

sum are all 0). This is as it should be, as it can easily be seen that

ã + ˜b ≤ p − 1 if either ã or
˜b is 0, so that f1(ã, ˜b) = 0 according to

Lemma 2.
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Now assume that ã and ˜b are both not 0. Then all li ( ˜b) = 0 except

l
˜b (
˜b) = p − 1 (by Lemma 4). We can thus rewrite the right part of

Equation 10 as

p−1∑
i=1

(
li ( ˜b) ·

i∑
j=1

lp−j (ã)
)
= l

˜b (
˜b) ·

˜b∑
j=1

lp−j (ã) = (p − 1) ·

˜b∑
j=1

lp−j (ã).

(12)

Now we distinguish two cases:

Case 1: ã + ˜b ≤ p − 1, which means that f1(ã, ˜b) = 0 according to

Lemma 2. We also have

ã + ˜b ≤ p − 1 ⇔ ã ≤ p − ˜b − 1. (13)

Looking at the inner sum of Equation 10, we can write it out as

lp−1(ã)+ lp−2(ã)+ · · ·+ lp− ˜b (ã). Since ã < p − ˜b (Equation 13), lã (ã)

is not included in this sum, and thus all terms of the inner sum

evaluate to 0 (Lemma 4), making the whole sum 0when ã+ ˜b ≤ p−1:

p−1∑
i=1

(
li ( ˜b)·

i∑
j=1

lp−j (ã)
)
= l

˜b (
˜b)·

˜b∑
j=1

lp−j (ã) = (p−1)·

˜b∑
j=1

0 = (p−1)·0 = 0.

(14)

Case 2: ã + ˜b ≥ p, which means that f1(ã, ˜b) = 1 according to

Lemma 2. By the same argument as in Case 1, we have

ã + ˜b ≥ p ⇔ ã ≥ p − ˜b . (15)

Thus, lã (ã) is included in the written-out inner sum lp−1(ã) +
lp−2(ã)+ · · ·+lp− ˜b (ã), which evaluates to p−1 according to Lemma

4. Combining this with Equation 12, the sum now evaluates to

p−1∑
i=1

(
li ( ˜b) ·

i∑
j=1

lp−j (ã)
)
= l

˜b (
˜b) ·

˜b∑
j=1

lp−j (ã) = (p − 1) ·

˜b∑
j=1

lp−j (ã)

= (p − 1) · lã (ã) = (p − 1) · (p − 1) = 1

(16)

where computations are mod p.
Combining equations 14 and 16, we get:

p−1∑
i=1

(
li ( ˜b) ·

i∑
j=1

lp−j (ã)
)
=

{
0, a + b ≤ p − 1 (Case 1)

1, a + b ≥ p (Case 2)

= f1(a,b).

(17)

Uniqueness: To prove uniqueness, we take quick look at how

our polynomial was derived by recalling Lagrange’s polynomial

interpolation
12
. The idea is to perform a bivariate Lagrangian in-

terpolation of f1(a,b) by first performing p interpolations over Zp
to obtain the functions fb = f1 |b (a):

fb (a) =

p−1∑
i=0

hi (a) · f (i,b).

Then, using these polynomials as “values" for f1 at the points b =
0, . . . ,p−1, we perform a second interpolation over Zp [a] to obtain

12
Given k + 1 points (xi , yi = f (xi )), i = 0, . . . , k , the Lagrangian interpolation

polynomial (which interpolates the function f through these points) is given as

L(x ) =
k∑
i=0

hi (x ) · yi , where hi (x ) :=
k∏
j=0
j,i

x − x j
xi − x j

.

f1(a,b):

f1(a,b) =

p−1∑
i=0

hi (b) · fi (a) =

p−1∑
i=0

hi (b) ·
( p−1∑
j=0

hj (a) · f (j, i)
)
. (18)

Now note the following: Since we are given the values of the func-

tion on all values in Zp and are also computing in this field, we can

write

hi (x) :=
k∏
j=0
j,i

x − x j

xi − x j
=

p−1∏
j=0
j,i

x − j

i − j
.

Using Lemma 3, we see that

hi (x) =

p−1∏
j=0
j,i

x − j

i − j
= (p − 1) ·

p−1∏
j=0
j,i

(x − j) = (p − 1) · li (x).

Now we can rewrite Equation 18 as

f1(a,b) =

p−1∑
i=0

(p − 1) · li (b) ·
( p−1∑
j=0

(p − 1) · lj (a) · f (j, i)
)

(19)

= (p − 1)2 ·

p−1∑
i=0

li (b) ·

p−1∑
j=0

lj (a) · f (j, i)

=

p−1∑
i=0

li (b) ·

p−1∑
j=0

lj (a) · f (j, i).

Lastly, since f (j, i) =

{
1, i + j ≥ p

0, else

, we see that only lj (a) with

i + j ≥ p ⇔ j ≥ p − i ⇔ j ∈ {p − i, . . . ,p − 1} are multiplied with

f (j, i) = 1, whereas all other values are multiplied with 0. Likewise,

f (j, 0) = f (0, i) = 0 for all i, j , so both the outer and inner sums can

disregard i, j = 0. Thus, we get the formula

f1(a,b) =

p−1∑
i=1

(
li (b) ·

p−1∑
j=p−i

lj (a) · 1
)
=

p−1∑
i=1

(
li (b) ·

i∑
j=1

lp−j (a)
)
,

which is exactly the formula we already proved correctness for.

Looking at this derivation of the formula, we consider the fol-

lowing facts:

(1) As a polynomial ring over a field, Zp [a] is a factorial ring.
(2) As a polynomial ring over a factorial ring, (Zp [a])[b] �
Zp [a,b] is a factorial ring.

(3) In a factorial ring (or more generally, an integral domain),

a polynomial of degree n ≥ 1 has at most n roots .

(4) If f (x) and д(x) are polynomials of degree at most p − 1,

then h(x) := f (x) − д(x) also has degree at most p − 1.

Putting all this together, we prove uniqueness in two steps: First,

we show that the fb (a) are unique, then we show that f1(a,b) is
unique.

Let b ∈ {0, . . . ,p − 1} be fixed but arbitrary and consider the

polynomial fb (a), which was derived through Lagrangian interpola-
tion in the points (a,b) for all a ∈ {0, . . . ,p − 1} as described above.

Now assume that there is a different polynomial д(a) , fb (a) of
equal or less degree (which is p − 1) with д(a) = fb (a) = f1(a,b) for
all a ∈ {0, . . . ,p − 1}. Then h(a) := д(a) − fb (a) is a polynomial of

degree at most p−1 (fact 4) with at least p roots (in a = 0, . . . ,p−1).
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This, however, is a contradiction to Zp [a] being a factorial ring (fact
1), since this polynomial can have at most p − 1 roots in such a ring

(fact 3). Thus, the polynomial д(a) cannot exist.
By exactly the same reasoning (seeing the polynomials fb (a) as

points in Zp [a] to perform Lagrangian interpolations, and using

fact 2), it can be seen that f1(a,b) is also unique.

Since f1(a,b) is symmetric by Corollary 1, the bilinear interpola-

tion is well-defined in that it yields the same result when interpo-

lating first over Zp [b] in the variable b (yielding polynomials fa (b))
and then over Zp [b] to obtain f1(a,b).

Thus, the polynomial f1(a,b) is unique.
Regarding the polynomial f2(a,b) = (p−1) ·lp−1(a+b), we write

f2 as a polynomial in one variable u := a + b. Then (p − 1) · lp−1(u)
has degree p − 1 and is fixed on p points: It is 0 for u = 0, . . . ,p − 2,

and is 1 in u = p − 1. Since Zp [u] is a factorial ring (fact 1), we can

again apply the same reasoning as above: If there were another

polynomial of equal or less degree that is also defined in these

points, subtracting them would yield a polynomial of degree at

most p − 1 with p roots (fact 4), which cannot be the case in a

factorial ring (fact 3).

Thus, f2(a,b) is also unique, and as such the entire polynomial

ri (ai−1,bi−1, ri−1). �

B ANALYSIS OF THE EXPANDED FORMULA
In this appendix, we present some results and the effort analysis

regarding the expanded form of f1.

Lemma 5. In the expanded form of li (x), the term xk has the
coefficient ip−(k+1) mod p where 1 ≤ k ≤ p−1 and i ∈ {1, . . . ,p−1}.
In other words,

li (x) = xp−1 + i · xp−2 + i2 · xp−3 + · · · + ip−3 · x2 + ip−2 · x mod p.

Proof. It is a well-known fact that over Zp , it holds that

F (x) :=

p−1∏
i=0

(x − j) = xp − x .

Now note that

li (x) =

p−1∏
j=0
j,i

(x − j) =

p−1∏
i=0

(x − j)

x − i
=

F (x)

x − i
=

xp − x

x − i
.

Performing this division by hand, we get

(xp− x)/(x − i) = xp−1+ i · xp−2+ · · ·+ ip−3 · x2+ ip−2 · x
− (xp −i · xp−1)

i · xp−1 −x
−(i · xp−1 −i2 · xp−2)

i2 · xp−2 −x
. . .

ip−2 · x2 −x
−(ip−2 · x2 −ip−1 · x)

0

where the last line of 0 occurs because i , 0 and thus ip−1 =
1 mod p according to Fermat’s Little Theorem. �

Corollary 2. The coefficient of the term axby in the polynomial
f1 is

(p − 1)−x ·

p−1∑
i=1

(
i−y ·

i∑
j=1

j−x
)
.

Proof. We first recall Formula 10:

f1(a,b) =

p−1∑
i=1

(
li (b) ·

i∑
j=1

lp−j (a)
)
.

Using Lemma 5, we can write this as

f1(a,b) =

p−1∑
i=1

(
(bp−1 + i · bp−2 + · · · + ip−2 · b)

·

i∑
j=1

(ap−1 + (p − j) · ap−2 + · · · + (p − j)p−2 · a)
)

As can easily be seen from this notation, the term ax ·by (with x ,y ∈

{1, . . . ,p−1}) will have the coefficient

p−1∑
i=1

(
ip−y−1 ·

i∑
j=1

(p−j)p−x−1
)
.

Since the order in the exponent mod p is p − 1, we can equivalently

write

p−1∑
i=1

(
i−y ·

i∑
j=1

(p− j)−x
)
. Finally, rewriting (p− j)−x = (p− 1)−x · j−x

and moving the constant value (p − 1)−x in front of the sums, we

obtain as the coefficient of the term ax · by :

(p − 1)−x ·

p−1∑
i=1

(
i−y ·

i∑
j=1

j−x
)
. (20)

�

Corollary 3. f1 has degree at least p.

Proof. From Corollary 2, we know that the coefficient of the

term ap−1 · b is

(p − 1)−(p−1) ·

p−1∑
i=1

(
i−1 ·

i∑
j=1

j−(p−1)
)
.

Since both sums start at 1, all involved elements are in Z∗p and thus

j−(p−1) = 1 mod p, meaning we can write the inner sum as

i∑
j=1

j−(p−1) =
i∑
j=1

1 = i .

Substituting this into the entire formula and noting (p−1)−(p−1) = 1

in the front, we get

p−1∑
i=1

(
i−1 · i

)
=

p−1∑
i=1

1 = (p − 1) , 0.

Thus, the term ap−1 · b, which has degree p, has a non-zero coeffi-

cient, implying a total degree of at least p. �

Conjecture 1. f1 has exactly degree p.

Intuition: This was the case for all p that we tested, and it was

possible for us to show that the coefficient (p − 1)−x ·
p−1∑
i=1

(
i−y ·

i∑
j=1

j−x
)
is 0 for p + 1 ≤ x +y ≤ 2p − 2 when the parity of x and y is

equal. However, the other case proves to be elusive, so we leave this

statement as a conjecture. Luckily, as we will show in the following,

this is not very important because the closed formula will turn out

to be the better choice anyway.
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Nonetheless, we present this expanded form of f1 for the first
few primes

13
:

p = 2 : f1(a,b) = ab

p = 3 : f1(a,b) = − a2b − ab2 − ab

p = 5 : f1(a,b) = − a4b − 2a3b2 − 2a2b3 − ab4 − 2a3b + 2a2b2

− 2ab3 − a2b − ab2

p = 7 : f1(a,b) = − a6b − 3a5b2 + 2a4b3 + 2a3b4 − 3a2b5 − ab6

− 3a5b + 3a4b2 − 3a3b3 + 3a2b4 − 3ab5 + a4b

+ 2a3b2 + 2a2b3 + ab4 − 3a2b − 3ab2

p = 11 : f1(a,b) = − a10b − 5a9b2 − 4a8b3 + 3a7b4 + 2a6b5 + 2a5b6

+ 3a4b7 − 4a3b8 − 5a2b9 − ab10 − 5a9b + 5a8b2

− 5a7b3 + 5a6b4 − 5a5b5 + 5a4b6 − 5a3b7

+ 5a2b8 − 5ab9 − 2a8b + 3a7b2 − 4a6b3 + 5a5b4

+ 5a4b5 − 4a3b6 + 3a2b7 − 2ab8 − 4a6b − a5b2

+ 2a4b3 + 2a3b4 − a2b5 − 4ab6 − 5a4b + a3b2

+ a2b3 − 5ab4 − 4a2b − 4ab2

As noted above in Conjecture 1, the polynomial in its expanded

form seems to have a degree of only p instead of the expected 2p−2,

implying a theoretical best depth of ⌈log
2
(p)⌉. Thus, it seems natural

to examine the effort for computing the polynomial in this expanded

form to see if this might be more efficient. Since the computation

of the coefficient (p − 1)−x ·
p−1∑
i=1

(
i−y ·

i∑
j=1

j−x
)
for each term is

not encrypted, it costs nearly nothing compared to the encrypted

computations, so we ignore this cost. Also, we will distinguish

between constant multiplication (i.e., multiplying the ciphertext

by its plaintext coefficient) and regular field multiplication of two

ciphertexts, as the former is often much more efficient than the

latter. We also assume that constant multiplication dies not increase

the depth.

Since we implemented precomputation for the closed formula,

we will do the same here:

(1) Compute a2, . . . ,ap−1 and b2, . . .bp−1, where ak is com-

puted with minimum depth and only one multiplication

from a ⌊k/2⌋ · a ⌈k/2⌉ :
• Field additions: 0

• Field multiplications: 2p − 4

• Constant multiplications: 0

• Multiplicative depth: maximum ⌈log
2
(p − 1)⌉

(2) Let nt be the number of terms in the expanded polynomial.

Then for each of thent terms of the form α ·ax ·by , multiply

the precomputed factors ax and by (1 field multiplication)

and multiply the result by the plaintext coefficient α (1

constant multiplication):

• Field additions: 0

• Field multiplications: nt
• Constant multiplications: nt
• Multiplicative depth: +1

13
The code to generate these polynomials for any p is available upon request.

(3) Sum up the nt terms:

• Field additions: nt − 1

• Field multiplications: 0

• Constant multiplications: 0

• Multiplicative depth: +0

As we can see, we now need to estimate the number of terms in

the polynomial. To do this, we calculated the exact number of terms

for all primes less than 350. Next, we ran a quadratic regression

on the number of terms with respect to the prime, setting aside

10 values (see below) to check the estimate. The result, with an

incredibly high correlation coefficient of 0.99998, is that the number

of terms in the expanded polynomial is about

nt(p) := 0.249657916p2 + 0.869559p + 3.1487.

The fit of the regression curve can be seen in Figure 5.

Figure 5: The number of terms for different p, the regression
curve from these terms, and the test set.

As can easily be seen, the curve fits the data extremely well - the

values predicted by this formula compared to the actual values are

shown in Table 1.

Using this formula (rounded to nt(p) ≈ 0.25p2+0.87p+3.15),
we get as a total effort for computation:

• Field additions: 0.25p2 + 0.87p + 2.15
• Field multiplications: 0.25p2 + 2.87p − 0.85

• Constant multiplications: 0.25p2 + 0.87p + 3.15
• Multiplicative depth: ⌈log

2
(p−1)⌉+1, theoretical best:

⌈log
2
(p)⌉

We can see that as p increases, the closed formula has much

lower computation effort. Concretely, the number of operations to

compute f1 can be seen in Figure 6.

In addition, we would like to point out that if one were to imple-

ment this p-adic encoding, the closed formula can easily be realized

by a loop, whereas it is questionable if one would actually want

to implement the expanded form with e.g. nearly 10000 terms for

p = 197.

To be an unbiased as possible, we took the better of the two

values as an upper bound on the effort.
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p 11 43 47 131 151 197 241 269 311 337

formula 43 502 596 4401 5827 9863 14713 18303 24421 28650

actual 39 503 597 4311 5849 9897 14759 18357 24471 28727

Table 1: Actual vs. estimated values for the number of terms in the expanded form of f1 for the values of the test set.

(a) Additions (b) Multiplications (c) Depth

Figure 6: Number of field additions, field multiplications and multiplicative depth to compute f1 through the closed and ex-
panded forms (for the expanded form, the theoretical optimal depth is used).

C DETAILED ANALYSIS FOR GF (PK ) AS
ENCODING BASE

In this section, we analyze the situation for using GF (pk ) for a
prime p and a k > 1 as an encoding base, with the encoding as

described in Section 6.

C.1 Effort for ci
As mentioned previously, in this encoding we cannot simply write

ci = ai+bi+ri because the field addition is not the correct operation.

Instead, we compute ri = f (ai−1,bi−1, ri−1) and ci = ˜f (ai ,bi , ri ) :=
ai +Zpk

bi +Zpk
ri . We do this as before through bilinear Lagrangian

Interpolation. Concretely, the two functions are detailed in the

following.

C.1.1 Computing the Carry ri . We first note that as before, the

carry can never be more than 1: Since the first carry r0 is 0, the
maximum value that can be reached in this step is for a0 = b0 =

pk − 1, yielding a result of 2pk − 2 < 2pk , so the carry r1 is at most

1. Similarly, with a carry ri of at most 1 and a maximumum value of

ai = bi = p
k − 1, we get a maximum of ai +bi + ri = 2pk − 1 < 2pk

for the subsequent positions, so the carry is always at most 1. We

then compute the function returning ri as before by setting

ri = f1(ai−1,bi−1) + ri−1 · f2(ai−1,bi−1)

where (with all additions over N)

f1(a,b) =

{
0, a + b ≤ pk − 1

1, a + b ≥ pk
and f2(a,b) =

{
1, a + b = pk − 1

0, else

(21)

Since we again have f2(a,b) = (p − 1) · lp−1(a + b), the function

f2 has a degree of p
k − 1, which is also the true degree (i.e., the

higher-order terms do not generally vanish) and can be computed

with pk − 2 multiplications (not counting the multiplication with

p − 1 because it is a constant) and pk − 1 additions. Thus, for f2 we
have an effort of

• Field additions: 2pk − 1

• Field multiplications: pk − 2

• Constant multiplications: 1
• Multiplicative depth: ⌈log

2
(pk − 1)⌉.

The other part, f1, is obtained by Lagrangian Interpolation over

the variables a and b, so we have a theoretical degree of 2 · pk − 2.

Concretely,

f1(a,b) =
∑

j ∈GF (pk )∗

(
lj (b) ·

∑
i ∈GF (pk )∗

li (a) · r̃ (i, j)
)

(22)

where

r̃ =

{
0, i +N j < pk

1, i +N j ≥ pk

is supplied as a known value in Lagrangian interpolation
14
. We call

the above Formula 22 the closed formula.

Note:. We only sum over the non-zero elements ofGF (pk ) because
if either i or j is zero, the carry can never be 1 and thus r̃ (i, j) = 0. Of
course, technically we could reduce the number of terms even further
by only summing up the elements where r̃ (i, j) = 1 as we did in the
case of Zp . However, due to the more abstract nature of GF (pk ) and
the non-trivial mapping to N, we will disregard this option since it
makes only little difference: Using precomputation again, the only
change is that the total number of ciphertext additions would decrease
slightly. We will, however, not count the multiplication with r̃ (i, j) as

14
Recall that we can, of course, easily compute these values in the clear when coming

up with the formula for f1 . Later, when computing on the encrypted values, f1 will do
exactly the same thing as r̃ , but expressed as a polynomial over GF (pk ) which we

can evaluate on encrypted inputs.
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p\k 1 2 3 4
2 2 5 11 23

3 3 13 43 133

5 5 41 221 1121

7 7 85 631

p\k 1 2 3 4
2 2 6 14 30

3 4 16 52 160

5 8 48 248 1248

7 12 96 684 4800

Table 2: Actual degree of f1 vs. 2pk − 2

a multiplication since it is always either 0 or 1, so we always either
add the term or don’t.

In reality, we again have the effect that the expanded formula

(obtained by multiplying out the closed formula) seems to have a

lower degree. Concretely, Table 2 shows the actual degree of f1 for

different values of p and k and the expected value of 2 · pk − 2.

We can see that the degree of f1 seems to be pk + (p − 1) ·pk−1 −

(p − 1) = 2 · pk − pk−1 − (p − 1). Since this is asymptotically the

same as the closed formula but would incur significant effort in

computing a very large number of terms in the expanded version,

we will stick with the closed formula in our analysis. As in Section

4.3, we use precomputation to compute intermediate results that

are shared between the different li ’s in Step 2 of the following

computation, where the notation Liv denotes that we have divided

the pk factors into v roughly equal sets, and this is the ith of these

sets. Then computing all such sets forv =
pk
2
, . . . , 2 requires a total

of pk − 2 multiplications similar to the explanation in Section 4.3,

and computing li from these Lv takes log
2
(pk ) − 1 per li of which

there are pk − 1. Remembering to do these computations for a and

b each, we can compute all the li in Step 2 with 2 ·

(
pk − 2 + (pk −

1) · (log
2
(pk ) − 1)

)
= 2pk · log

2
(pk ) − 2 log

2
(pk ) − 2multiplications.

(1) Compute (a − j) and (b − j) for j ∈ GF (pk )∗:

• Field additions: 2pk − 2

• Field multiplications: 0

• Multiplicative depth: +0

(2) Compute li (a), li (b) for i ∈ GF (pk )∗ as described above):

• Field additions: 0

• Field multiplications: 2pk · log
2
(pk ) − 2 log

2
(pk ) − 2

• Multiplicative depth: ⌈log
2
(pk − 1)⌉ for each li (a) and

li (b)
(3) Compute lj (b) ·

∑
i ∈GF (pk )∗

li (a) · r̃ (i, j) for each j ∈ GF (pk )

(recalling that we don’t count the multiplication with r̃ (i, j)
as a multiplication because this value is always in {0, 1})

with effort:

• Field additions: (pk − 1) · (pk − 2) = p2k − 3pk + 2

• Field multiplications: pk − 1

• Multiplicative depth: +1

(4) Lastly, sum up all the lj (b) ·
∑

i ∈GF (pk )∗
li (a) · r̃ (i, j) to obtain∑

j ∈GF (pk )∗

(
lj (b) ·

∑
i ∈GF (pk )∗

li (a) · r̃ (i, j)
)
:

• Field additions: pk − 2

• Field multiplications: 0

• Multiplicative depth: +0

p\k 1 2 3 4 5
2 1 4 10 22 46

3 1 9 39 129 399

5 1 25 205 1105

7 1 49 595

11 1 121

p\k 1 2 3 4
2 0 2 6 14

3 0 6 24 78

5 0 20 120 620

7 0 42 336

Table 3: Degrees of д1 and д2.

Thus, computing f1 has a total effort of:

• Field additions: 2pk − 2+p2k − 3pk + 2+pk − 2 = p2k − 2

• Field multiplications: 2pk · log
2
(pk ) − 2 log

2
(pk ) − 2 +

pk − 1

= 2pk · log
2
(pk ) + pk − 2 log

2
(pk ) − 3

• Multiplicative depth: ⌈log
2
(pk − 1)⌉ + 1

And thus, combined with the effort for f2, we get the costs of
computing the carry ri as

• Field additions: p2k + 2pk − 3

• Fieldmultiplications: 2pk ·log
2
(pk )+2pk −2 log

2
(pk )−5

• Constant multiplications: 1
• Multiplicative depth:max{⌈log

2
(pk −1)⌉+1, D(ri−1)}+1

C.1.2 Computing the Addition. As mentioned above, computing

ci is not as easy as simply computing ai +bi +ri in the fieldGF (pk ),
as the addition we require corresponds to the different structure

Zpk . Thus, we must also compute the function expressing this alien

addition through Lagrangian interpolation. Concretely, we write

ci = ˜f (ai ,bi , ri ) := ai +Zpk
bi +Zpk

ri = (1 − ri ) · ˜f1(a,i ,bi ) + ri ·

˜f2(ai ,bi ) with

˜f1(a,b) = a +Zpk
b and

˜f2(a,b) = a +Zpk
b +Zpk

1. (23)

Similarly to above, both of these functions are obtained through a

double interpolation over a and b and thus have a theoretical degree

of 2 · pk − 2 (except when k = 1, in this case we use the native

addition and thus have degree 1). Since we are interested in how the

degree propagates, it makes sense to rearrange the terms into ci =
д(ai ,bi , ri ) := ai +Zpk

bi +Zpk
ri = д1(ai ,bi )+GF (pk ) ri ·д2(ai ,bi )

with

д1(a,b) = ˜f1(a,b) and д2(a,b) = ˜f2(a,b) − ˜f1(a,b) (24)

The actual degrees for each and the expected value can be found

in Table 3, where the table for д1 contains some additional entries

that were used to check Formula 25. Missing entries are due to

very long computation times in deriving the formulas (the code is

available upon request).

We can see that the rule appears to be:

deg(д1(a,b)) = 2pk − pk−1 − p2 + p (25)

and

deg(д2(a,b)) = p
k − p. (26)

Since this is relatively close to the degree from the closed formula

(and would again incur significantly more effort in working with

the expanded form), we will use the closed formula and compute
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д1 and д2 using Equation 24. Thus, we first compute the effort of

˜f1 and
˜f1, which have similar costs and also constitute the cost

for д1, and then get the effort for д2 with one additional addition.

The effort analysis is very similar to the computation of f1 above,
except that we also compute l0(a) and l0(b) in step 2, keep track of

the constant multiplications in step 3, and sum over all of GF (pk )
in steps 3 and 4. Thus, we get:

(1) Compute (a − j) and (b − j) for j ∈ GF (pk )∗:

• Field additions: 2pk − 2

• Field multiplications: 0

• Multiplicative depth: +0

(2) Compute li (a), li (b) for i ∈ GF (pk ) with precomputation

as above:

• Field additions: 0

• Field multiplications: 2pk · log
2
(pk ) − 4

• Multiplicative depth: ⌈log
2
(pk − 1)⌉ for each li (a) and

li (b)
(3) Compute lj (b) ·

∑
i ∈GF (pk )

li (a) · ṽ(i, j) for each j ∈ GF (pk )

(where ṽ(i, j) is the known cleartext value i+Zpk
j , or i+Zpk

j +Zpk
1 respectively, incurring a constant multiplication)

with effort:

• Field additions: pk · (pk − 1) = p2k − pk

• Field multiplications: pk

• Constant multiplications: p2k

• Multiplicative depth: +1

(4) Lastly, sum up all the lj (b) ·
∑

i ∈GF (pk )
li (a) · r̃ (i, j) to obtain∑

j ∈GF (pk )

(
lj (b) ·

∑
i ∈GF (pk )

li (a) · r̃ (i, j)
)
:

• Field additions: pk − 1

• Field multiplications: 0

• Multiplicative depth: +0

Thus, computing
˜f1, ˜f2 and д1 each has a total effort of

• Field additions: p2k + 2pk − 3

• Field multiplications: 2pk · log
2
(pk ) + pk − 4

• Constant multiplications: p2k

• Multiplicative depth: ⌈log
2
(pk − 1)⌉ + 1

and д2 has the same effort, except one additional addition (so p2k +

2pk − 2 in total).

C.1.3 Computing ci . Putting the results from this section to-

gether, we get (with all operations in GF (pk )):

ci (ai ,bi , ri−1) = д1(ai ,bi ) + ri · д2(ai ,bi )

= д1(ai ,bi )

+
(
f1(ai−1,bi−1) + ri−1 · f2(ai−1,bi−1)

)
· д2(ai ,bi )

(27)

We can thus see that the total effort for the number of operations

is:

• Field additions: Adds(д1)+Adds(f1)+Adds(f2)+Adds(д2)+2
• Field multiplications: Mults(д1)+ Mults(f1)+ Mults(f2)+

Mults(д2) + 2
• Constant mults: CMults(д1) + CMults(f1) + CMults(f2) +

CMults(д2)

Inserting the values from the previous two subsections, we get an

effort of

• Field additions: p2k + 2pk − 3+p2k − 2+ 2pk − 1+p2k +

2pk − 2 + 2

= 3 · p2k + 6pk − 6

• Field multiplications: 2pk · log
2
(pk ) + pk − 4 + 2pk ·

log
2
(pk )+pk−2 log

2
(pk )−3+pk−2+2pk ·log

2
(pk )+pk−4+2

= 6pk · log
2
(pk ) + 4pk − 2 log

2
(pk ) − 11

• Constant multiplications: 2p2k + 1

Regarding depth, we have

Depth =

max {D(д1),max {max {D(f1),max {D(ri−1), D(f2)} + 1} , D(д2)} + 1}

from Equation 27. Generally, the degree of ri−1 will be highest in
that equation, and if minimal depth is our main objective, we can

compute the term involving ri−1 as ri−1 · (f2(ai−1,bi−1) ·д2(ai ,bi )),
increasing the degree by only one in each round. However, this

will increase total computation because we still need to compute

ri =
(
f1(ai−1,bi−1) + ri−1 · f2(ai−1,bi−1)

)
, as it is an input to the

next round. Still, we use the samller value in our depth analysis,

which can be found in Section C.2.

C.2 Adding Two Natural Numbers
Using the results from the previous subsection, we calculate the

total effort required to add two natural numbers x ≈ y of the same

length ℓ = ⌊logp (x)⌋ + 1. As before, we look at the special cases c0
and c1, c2 and the last digit cℓ = rℓ as well as the “regular” middle

digits.

• c0 = a0 +Zpk
b0 = д1(a0,b0):

• Field additions: p2k + 2pk − 3

• Field multiplications: 2pk · log
2
(pk ) + pk − 4

• Constant multiplications: p2k

• Multiplicative depth: ⌈log
2
(pk − 1)⌉ + 1

• c1 = д1(a1,b1) + f1(a0,b0) · д2(a1,b1) (as r0 = 0):

• Field additions: 3p2k + 4pk − 6

• Field multiplications: 6pk ·log
2
(pk )+3pk−2 log

2
(pk )−

10

• Constant multiplications: 2p2k

• Multiplicative depth: ⌈log
2
(pk − 1)⌉ + 2

• c2 = д1(a2,b2)+
(
f1(a1,b1)+r1 · f2(a1,b1)

)
·д2(a2,b2): This

entry is merely special in terms of depth, all other values

are the same as the following ci . Note that r1 = f1(a0,b0),

so its depth is ⌈log
2
(pk − 1)⌉ + 1. This is the same as the

depth of д2 and one more than that of f2, so computing

r1 · f2 · д2 will yield a depth of D(c2) = ⌈log
2
(pk − 1)⌉ + 3.

Note that r2 only has a degree of ⌈log2(p
k − 1)⌉ + 2, so this

will make have no impact in reality.

• ci = д1(ai ,bi ) + ri · д2(ai ,bi ) (2 < i < l)
= д1(ai ,bi )+

(
f1(ai−1,bi−1)+ri−1 · f2(ai−1,bi−1)

)
·д2(ai ,bi ):

As mentioned in the previous subsection, by expanding

the formula and multiplying the term ri−1 · (f2(ai−1,bi−1) ·
д2(ai ,bi )) in the appropriate order, the depth will only

increase by 1 with each increase in i , and we will have
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D(ri ) = D(ci ) (at the cost of increased computation). Thus,

we get:

• Field additions:3 · p2k + 6pk − 6

• Fieldmultiplications:= 6pk ·log
2
(pk )+4pk−2 log

2
(pk )−

11

• Constant multiplications: 2p2k + 1

• Multiplicative depth: ⌈log
2
(pk − 1)⌉ + i

• cℓ = rℓ :
• Field additions: p2k + 2pk − 3

• Field multiplications: 2pk ·log
2
(pk )+2pk−2 log

2
(pk )−

5

• Constant multiplications: 1

• Multiplicative depth: ⌈log
2
(pk − 1)⌉ + ℓ

To summarize (with eff() denoting above costs), we have the fol-
lowing effort:

Case 1: 0 ≤ x ≤ pk − 1: This means that our number can be

encoded with 1 digit, and the result will have two digits, so the

effort is eff(c0) + eff(r1) = eff(c0) + eff(f1), so we have

• Field additions: 2p2k + 2pk − 5

• Field multiplications: 4pk · log
2
(pk ) + 2pk − 2 log

2
(pk ) − 7

• Constant multiplications: p2k

• Multiplicative depth: ⌈log
2
(pk − 1)⌉ + 1

Case 2: pk ≤ x : This means that x will be encoded with 2 ≤ ℓ :=

⌊logp (x)⌋ + 1 digits and the result will have ℓ + 1 digits. The effort

is eff(c0) + eff(c1) + (ℓ − 2) · eff(ci ) + eff(cℓ), so we get

• Field additions: 5p2k + 8pk − 12+ (ℓ− 2) · (3 ·p2k + 6pk − 6)

= (3ℓ − 1) · p2k + (6ℓ − 4) · pk − 6ℓ

• Field multiplications: 10pk · log
2
(pk ) + 6pk − 4 log

2
(pk ) −

19 + (ℓ − 2) · (6pk · log
2
(pk ) + 4pk − 2 log

2
(pk ) − 11)

= (6ℓ−2) ·pk · log
2
(pk )+(4ℓ−2) ·pk −2ℓ · log

2
(pk )−11ℓ+3

• Constant multiplications: 3p2k + 1 + (ℓ − 2) · (2p2k + 1)

= (2ℓ − 1) · p2k + ℓ − 1

• Multiplicative depth: ⌈log
2
(pk − 1)⌉ + ℓ

As presented in Section 6 and illustrated by Figure 4, we conclude

that the pk -encoding performs very poorly regarding all metrics,

and using Zp as an encoding base is the better choice.
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