
Subversion-zero-knowledge SNARKs

Georg Fuchsbauer1

June 2017

Abstract

At Asiacrypt 2016 Bellare, Fuchsbauer and Scafuro introduced the notion of subversion zero
knowledge for non-interactive proof systems, demanding that zero knowledge (ZK) is main-
tained even when the common reference string is chosen maliciously. Succinct non-interactive
arguments of knowledge (SNARKs) are proof systems with short and efficiently verifiable proofs,
which were introduced for verifiable computation. They are deployed in cryptocurrencies such
as Zcash, which guarantees user anonymity assuming zero-knowledge SNARKs. We show that
under a plausible hardness assumption, the most efficient SNARK schemes proposed in the liter-
ature, including the one underlying Zcash, satisfy subversion ZK or can be made to at very little
cost. We argue that Zcash is thus anonymous even if its parameters were set up maliciously.

1 Introduction

Arguably the main application for SNARKs is verifiable computation. Consider a client that
outsources resource-intensive computation to a powerful server, which attaches a proof to the
result in order to convince the client that it was correctly computed. For this to be meaningful,
verification of such a proof must be considerably more efficient than performing the computation
in the first place. SNARK systems provide such proofs and an impressive line of research has led
to more and more efficient systems with proofs of size less than a kilobyte that are verified in
milliseconds. The reason why SNARKs are not used for verifying outsourced computation yet is
that computing a proof for complex computations is still not practical.

Zero-knowledge (ZK) SNARKs apply to the situation where some inputs of the computation
come from the prover (the server in our example), who wants to keep its inputs private. Theses
systems guarantee that a proof does not reveal more about them than what can be inferred from the
result of the computation. ZK-SNARKs are already deployed, for example in Zcash [Zca], which
is a cryptocurrency like Bitcoin [Nak09], based on the Zerocash protocol [BCG+14a]. It protects
users’ privacy by letting them make anonymous payments. As opposed to Bitcoin, where all
transactions are public, coins in Zerocash (which would correspond to unspent transaction outputs
in Bitcoin) only appear in a stealth form on the blockchain. They are represented by cryptographic
commitments that look like random strings and transactions are ZK proofs. It therefore cannot be
determined which coins have been spent; to prevent double-spending, coins contain serial numbers,
which must be revealed when spending coins by transferring their value to newly created coins.
SNARK proofs ensure that this is correctly done and the compound value of the new coins does
not exceed that of the spent ones. To make payments anonymous, the proofs must not reveal any
of these hidden values, such as the serial numbers of the new coins; anonymity thus crucially relies
on the SNARK being zero-knowledge.

1 Inria, Ecole Normale Supérieure, CNRS and PSL Research University, Paris, France. Email: georg.fuchsbauer
@ens.fr. URL: http://www.di.ens.fr/~fuchsbau/. The author is supported in part by the French ANR EfTrEC
project (ANR-16-CE39-0002-01).

1

The main drawback of SNARKs is that they require system parameters that must be gener-
ated in a trusted way. In particular, whoever knows the randomness used when setting them up
can convince verifiers of false statements (violating soundness of the system), which for Zerocash
translates to counterfeiting money. The authors of Zerocash write: “[D]ue to the zk-SNARK, our
construction requires a one-time trusted setup of public parameters. The trust affects soundness
of the proofs, though anonymity continues to hold even if the setup is corrupted by a malicious
party.” [BCG+14a]. The last statement is then not elaborated any further. We note that the
actual parameters of Zcash have been set up in a way that distributes the trust, using the efficient
multiparty protocol that Ben-Sasson et al. [BCG+15] devised for this purpose (see below).

In this work we look at whether zero knowledge is actually retained when the parameters are set
up in a malicious way for the most efficient SNARK constructions in the literature, including the
one [BCTV14] that underlies Zcash. We base our analyses on the theoretical framework introduced
by Bellare et al. [BFS16], who formalized the notion of subversion zero knowledge. In the following
we discuss SNARKs in more detail starting from the basics: ZK proofs.

Zero-knowledge proofs. A zero-knowledge proof [GMR89] is a protocol between a prover
and a verifier that allows the former to convince the latter of the validity of a statement without
revealing anything else. ZK proofs are an important building block for cryptographic schemes as
they allow to assert that computations were done correctly while respecting the user’s privacy.
The three main properties of a ZK proof system are that a proof for a valid statement computed
according to the protocol should convince a verifier (completeness); but there is no way that a
malicious prover can convince a verifier of false statements (soundness); moreover nothing but the
truth of the statement is revealed (zero konwledge).

In non-interactive ZK proofs [BFM88], the prover only sends one message (the proof) to the
verifier. NIZK systems rely on a common reference string (CRS) to which both prover and verifier
have access and which must be set up in a trusted way (the CRS corresponds to the SNARK
parameters mentioned above). Without such a CRS, NIZK systems are not possible [GO94].

NIZK proof systems exist for every NP-language [BFM88, BDSMP91]. A language L is an NP
language if it can be defined via a polynomial-time computable relation R as follows: a statement x is
in L iff there exists a witness w such that R(x,w) = true, where the length of w must be polynomial
in the length of x. In verifiable computation a server’s private input would be a witness. For the
proofs in Zerocash [BCG+14a], a statement x consists of the Merkle commitment to all coins in the
system and the serial numbers of the spent coins; the witness w contains the commitment openings,
the keys allowing to spend the coins and their values.

Zero knowledge is formalized via a simulator that generates a CRS in which it can embed
a trapdoor. The trapdoor must allow the simulator to produce proofs without a witness for the
proven statement. ZK requires that there exists a simulator whose simulated CRSs and proofs are
computationally indistinguishable from real ones. (If both types are distributed equivalently then
we have perfect ZK.) In a line of work Groth, Ostrovsky and Sahai [GOS06b, GOS06a, Gro06,
GS08] constructed NIZK proof systems based on groups equipped with a pairing, i.e., an efficiently
computable bilinear map. They gave the first perfect ZK system for all NP languages and very
efficient schemes for specific languages based on standard cryptographic assumptions.

SNARKs. Another line of work considered the size of proofs from a theoretical point of view,
leading to schemes with a proof size that is sublinear in the length of the proven statement [Mic00].
SNARGs are succinct non-interactive arguments, where succinct is defined as the proof length
being at most polylogarithmic in the length of the statement and the witness. They are arguments
(as opposed to proofs) because soundness only holds against efficient provers. This is the best
achievable notion, since SNARGs are unconditionally ZK (which implies every CRS contains a

2

trapdoor). SNARKs are succinct non-interactive arguments of knowledge, for which a valid proofs
implies that the prover knows the witness.

The first NIZK system with constant-size proofs was given by Groth [Gro10] using bilinear
groups, and which was later improved by Lipmaa [Lip12]. Gennaro, Gentry, Parno and Raykova
[GGPR13] introduced the notion of a quadratic span program (QSP), showed how to efficiently
convert any boolean circuit into a QSP and then constructed a SNARK system for QSPs whose
proofs consist of 8 elements of a bilinear group. They also gave a construction based on quadratic
arithmetic programs (QAP), which represent arithmetic circuits, whose inputs are elements from
a finite field F and whose gates add or multiply F elements. QAPs are preferred in practice due
to their greater efficiency. Parno, Howell, Gentry and Raykova [PHGR13] improved on [GGPR13],
making the conversion from a circuit to a QAP more efficient and reducing the proof size by
one group element. They implemented their scheme and called it “Pinocchio”. Ben-Sasson et al.
[BCG+13, BCTV14] improve the conversion of actual program code to QAPs, reduce the size of
SNARK parameters and implemented their results [BCG+14b].

The size of SNARK proofs for boolean circuits was then further reduced by Danezis, Fournet,
Groth and Kohlweiss [DFGK14], who modified QSP to square span programs and built a SNARK
for them whose proofs consist of only 4 group elements. Last year Groth [Gro16] presented the
most efficient SNARK construction to date, which is for arithmetic circuits and whose proofs
consist of only 3 group elements (and require 3 pairings to verify). All previous bilinear-group-
based SNARKs are proven under strong cryptographic assumptions (knowledge assumptions), for
which there is evidence that they might be unavoidable [GW11, BCCT12]. Starting from Bitansky
et al.’s [BCI+13] linear interactive proof framework, Groth achieves his result by proving security
directly in the generic-group model [Sho97] (in which all previously considered assumptions hold).
He also shows that SNARKs over asymmetric bilinear groups must contain at least one element
from both source groups, meaning that the proof size of his construction is only one element short
of the optimal size.

Subversion-resistance. The Snowden revelations documented the NSA’s efforts to subvert
standards, for which an illustrative example is the NSA-designed and ISO-standardized Dual EC
random number generator. Its parameters include two elliptic-curve points, whose respective dis-
crete logarithms can act as a backdoor that can be exploited to break TLS [CFN+14]. NIZK
systems are particularly prone to parameter subversion, since their CRS must be subvertible by
design: zero knowledge requires that an honest CRS is indistinguishable from a backdoored CRS,
where the backdoor is the trapdoor used to simulate proofs. For SNARKs the parameters always
contain a backdoor and anyone knowing it can simulate proofs for false statements, breaking sound-
ness. For NIZK proofs of knowledge for which the CRS contains a trapdoor that allows extraction
of the witness from an honest proof, a subvertor can even violate their zero-knowledge property.

Motivated by this, Bellare, Fuchsbauer and Scafuro [BFS16] ask what security can be main-
tained for NIZKs when its trusted parameters are subverted. They first formalize different notions
of resistance to CRS subversion and then investigate their achievability. They define subversion
soundness (S-SND), meaning that no adversary can generate a (malicious) CRS together with a
valid proof π for a false statement x.

They also give a subversion-resistant analogues for zero knowledge. Recall that ZK assumes that
there exists a CRS simulator Sim.crs returning a simulated CRS crs′ and an associated simulation
trapdoor std, and a proof simulator Sim.pf that outputs proofs on input a valid instance x and
std, such that no efficient adversary can distinguish the following: either being given crs′ and an
oracle implementing Sim.pf, or an honest crs and an oracle returning honestly computed proofs.
Subversion ZK (S-ZK) requires that for any adversary X creating a malicious CRS crs in any way

3

it likes using randomness (coins) r, there exists a simulator SimX.crs returning a simulated CRS
crs′ with trapdoor std together with simulated coins r′, as well as a simulator SimX.pf returning a
proof on input a valid instance x and std, such that no adversary can distinguish the following:
being given crs′ and r′ and a SimX.pf oracle, or a crs output by X, together with the used coins
r and an honest proof oracle. The authors also define a subversion-resistant notion (S-WI) of
witness-indistinguishability [FLS90] (see Sections 2.3 and 2.4).

Following [GO94], Bellare et al. [BFS16] first show that S-SND cannot be achieved together
with (standard) ZK for non-trivial languages (for trivial ones the verifier needs no proof to check
validity of statements). This is because ZK allows breaking soundness by subverting the CRS. They
then show that S-SND can be achieved together with S-WI. Their main result is a construction
that achieves both S-ZK (and thus S-WI) and SND.

BFS’s S-ZK scheme. To achieve S-ZK, a simulator must be able to simulate proofs under a CRS
output by a subvertor, so it cannot simply embed a trapdoor as in standard ZK. Bellare et al. base
S-ZK on a knowledge assumption, which is the type of assumption that also implies knowledge
soundness of SNARKs. It states that an algorithm can only produce an output of a certain form if
it knows some underlying information. This is formalized by requiring the existence of an extractor
that extracts this information from the algorithm. In their scheme this information acts as the
simulation trapdoor, which under their knowledge assumption can be obtained from a subvertor
outputting a CRS.

Concretely, they assume that for a bilinear group (G,+) with a generator P any algorithm that
outputs a Diffie-Hellman tuple of the form (P, s1P, s2P, s1s2P) must know either s1 or s2. They
call their assumption Diffie-Hellman knowledge-of-exponent assumption (DH-KEA). Note that a
tuple (P, S1, S2, S3) of the above form can be verified via the (symmetric) bilinear map e by checking
e(S3, P) = e(S1, S2).

A question that arises is: who chooses the group G in their scheme? Bellare et al. address this
by making the group G be part of the scheme specification. This begs the question whether the
subversion risk has not simply been shifted from the CRS to the choice of the group. However, the
group generation algorithm is deterministic and public, so users can create the group themselves,
or even use their own implementation to hedge against a subverted standardized implementation.
The group is thus reproducible, whereas the CRS is inherently not. Of course, the group itself could
also be weak, (e.g., the discrete-log problem could be easy), but we know it is possible to publicly
specify good algorithms, as done for example in research papers. If these are deterministic, and
their results hence reproducible, this yields faith that there are no backdoors.

We note that Groth, Ostrovsky and Sahai [GOS06a] face a similar problem when constructing
non-interactive WI proofs without a CRS, where the prover choses the group. For soundness (which
protects against malicious provers) of their scheme, it suffices that the group is verifiable, that is,
one can efficiently check whether it actually is a bilinear group. However, they need not make
any hardness assumptions over such possibly maliciously chosen groups, for which it would not be
possible to efficiently verify that they hold.

Parameter setup in practice. A way to avoid the problem of generating a trusted CRS for
NIZK systems altogether is by proving its security in an idealized model, the random-oracle model
(ROM) [BR93]. Instead of a CRS, one assumes that all parties have access to a truly random
function (which is modeled as an oracle returning random values). In practice the random oracle is
replaced by a cryptographic hash function and the proof in the ROM can be viewed as a security
heuristic for the resulting scheme.

For NIZK systems whose CRS is a uniform random string one can in practice set the CRS to a
common random-looking public value such as the digits of π or the output of a standardized hash

4

function on a fixed input. This intuitively guarantees that no one has embedded a trapdoor. For
the Groth-Sahai proof system [GS08], the CRS consists of random elements of an elliptic curve;
they can be set up by mapping a common random string to group elements by hashing directly
into elliptic curves [BF01, SvdW06, BCI+10].

For practical SNARKs the situation is different: there are no CRS-less constructions in the
random-oracle model and the CRS is highly structured. The parameters typically contain elements
of the form (P, τP, τ2P), where P is a generator of a group G and τ is a random value. Soundness
completely breaks down if the value τ is known to anyone. Unfortunately, there is no known way of
creating such a triple obliviously, that is, without knowing the value τ . In order to show subversion
zero knowledge of SNARK schemes, we leverage this fact by actually assuming that creating such a
triple cannot be done without knowing τ . Under this assumption, which we call square knowledge
of exponent (SKE) assumption (Definition 2.14), we then prove subversion ZK of several relevant
SNARK constructions from the literature. As an additional sanity check, we prove that SKE holds
in the generic group model (Theorem 2.16). Like Bellare et al. [BFS16], we consider the description
of G to be part of the system specification. Unlike them we however assume that schemes sample
random group generators, which is closer to how schemes are modeled when formally analyzed.

To show subversion zero knowledge of existing SNARK schemes, we proceed in two steps. Their
(standard) zero knowledge was proved by showing that proofs can be simulated when the secret
values used to compute the CRS are known. However, this simulation trapdoor typically contains
other values in addition to the value τ from the CRS elements (P, τP, τ2P). As it is not clear how
the S-ZK simulator can extract all of them, our first step is to show that proofs can be simulated
using τ only (or other values that can be extracted under our assumption).

Standard ZK follows, since under a correctly computed CRS the simulated proofs are equiva-
lently distributed as honestly generated proofs. However, for S-ZK this must hold even for a CRS
that was computed in any arbitrarily way. While we cannot guarantee that the CRS creator used
random values when computing the CRS, we show how to verify that the structure of the CRS is
as prescribed. (For one of the schemes [BCTV14] that we analyze, this requires to extend the CRS
slightly.) We then show that if a CRS passes this verification then simulated proofs are distributed
like real proofs. This proves that the scheme is S-ZK under our SKE assumption.

Since simulated proofs are by definition independent of a witness, this moreover shows that
under a verified CRS, proofs for different witnesses are equally distributed. As a corollary we thereby
obtain that the SNARKs we consider satisfy subversion witness indistinguishability unconditionally
(i.e., no assumptions required).

We note that Ben-Sasson et al. [BCG+15] also consider making a CRS verifiable. Their goal
is to protect soundness against subversion by sampling the secret values underlying a CRS in a
distributed way. If at least one of the participants in the CRS-creation protocol is honest then this
leads to a correctly distributed CRS. In order for this process to be auditable, they require the CRS
creator(s) to prove that the CRS is of the correct form via a NIZK protocol [Sch91, FS87] that is
secure in the random-oracle model. Their protocol thus returns verifiable SNARK parameters.

Our results. We already discussed that SNARKs are not subversion sound, since their CRS
contains the simulation trapdoor. In this work we look at subversion-resistance of their zero-
knowledge property and investigate several SNARK constructions from the literature that are based
on bilinear groups. In particular, the first QAP-based and QSP-based constructions [GGPR13]; the
optimized Pinocchio construction [BCTV14] implemented in libsnark [BCG+14b]; and finally the
two most efficient SNARK constructions to date by Groth et al. [DFGK14, Gro16]. We consider
all of these schemes over fixed bilinear groups, that is, we assume that there is one group for every
security parameter. As discussed above, this seems unavoidable, since when the CRS subvertor

5

is allowed to choose its own group it is unclear how to make any assertions, as we would have to
make hardness assumptions with respect to an arbitrary group. We also make the (reasonable)
assumption that a privacy-conscious prover (whose protection is the goal of zero knowledge) first
checks whether the CRS looks plausible (to whatever extent this is possible) before publishing a
proof with respect to it. All of our results implicitly make these two assumptions.

We start with the first SNARK construction for QAPs by Gennaro, Gentry, Parno and Raykova
[GGPR13] and show how to verify that the CRS is correctly formed. We then show that assuming
SKE, their construction satisfies subversion zero knowledge as defined in [BFS16]. The same holds
for the QSP-based SNARK from [GGPR13]. We next turn to the optimized version of Pinocchio
over asymmetric bilinear groups due to Ben-Sasson, Chiesa, Tromer and Virza [BCTV14]. For this
construction we show that adding 4 group elements to the CRS makes it efficiently checkable. We
then prove that the scheme with this slightly extended CRS satisfies subversion zero knowledge
under SKE. For the SNARK by Danezis, Fournet, Groth and Kohlweiss [DFGK14], the CRS is
already verifiable and S-ZK of the scheme is shown analogously to Pinocchio.

Finally, we consider the most efficient SNARK scheme by Groth [Gro16], and again show that
the scheme is already subversion-zero-knowledge under SKE. Proving this turns out tricker than
for the previous schemes, since the value τ , for which P, τP, τ2P, . . . is contained in the CRS does
not suffice to simulate proofs. We show that, using SKE twice, another value can also be extracted,
which together with τ then enables proof simulation. As corollaries, we get that S-WI holds
unconditionally for all considered schemes.

Implications of our results. The SNARK parameters used in Zcash were computed by run-
ning the multi-party protocol from [BCG+15] and verifiability of this process is achieved via random-
oracle NIZK proofs. Let us define a CRS subvertor that runs this protocol, playing the roles of
all parties, an outputs the resulting CRS which includes the ROM proofs. Since the latter guar-
antee well-formedness of the CRS, under SKE there exists an efficient extractor that can extract
the simulation trapdoor from this CRS subvertor. Using the trapdoor, proofs can be simulated
(as specified in Section 5). We thus conclude that, assuming users verify the consistency of the
CRS, Zcash provides subversion-resistant anonymity in the random oracle model under the SKE
assumption with respect to the concrete bilinear group used by Zcash. Thus, even if all parties
involved in creating the parameters were malicious, Zcash is still anonymous.

2 Definitions

2.1 Notation

If x is a (binary) string then |x| is its length. If S is a finite set then |S| denotes its size and s←$ S
denotes picking an element uniformly from S and assigning it to s. We denote by λ ∈ N the security
parameter and by 1λ its unary representation.

Algorithms are randomized unless otherwise indicated. “PT” stands for “polynomial time”,
whether for randomized or deterministic algorithms. By y ← A(x1, . . . ; r) we denote the opera-
tion of running algorithm A on inputs x1, . . . and coins r and letting y denote the output. By
y←$A(x1, . . .), we denote the operation of letting y ← A(x1, . . . ; r) for random r. We denote by
[A(x1, . . .)] the set of points that have positive probability of being output by A on inputs x1, . . .
Adversaries are algorithms. Complexity is uniform throughout: scheme algorithms and adversaries
are Turing Machines, not circuit families.

For our security definitions and some proofs we use the code-based game playing framework
of [BR06]. A game G (e.g. Figure 1) usually depends on some scheme and executes one or more

6

adversaries. It defines oracles for the adversaries as procedures. The game eventually returns a
boolean. We let Pr[G] denote the probability that G returns true.

We recall the standard notions of soundness, knowledge-soundness, witness-indistinguishability
and zero knowledge for NIZKs, which assume the CRS is trusted and then give their subversion-
resistant counterparts that were introduced in [BFS16]. We mainly follow their exposition and
start with the syntax.

2.2 NP Relations and NI Systems

NP relations. Consider R : {0, 1}∗ × {0, 1}∗ → {true, false}. For x ∈ {0, 1}∗ we let R(x) =
{w |R(x,w) = true } be the witness set of x. We say that R is an NP relation if it is PT and
there is a polynomial R.wl : N → N called the maximum witness length such that every w in R(x)
has length at most R.wl(|x|) for all x ∈ {0, 1}∗. We let L(R) = {x |R(x) 6= ∅ } be the language
associated to R. The fact that R is an NP relation means that L(R) ∈ NP.

NI systems. A non-interactive (NI) system Π for R specifies the following PT algorithms. Via
crs←$ Π.Pg(1λ) one generates a common reference string crs. Via π←$ Π.P(1λ, crs, x, w) the honest
prover, given x and w ∈ R(x), generates a proof π that x ∈ L(R). Via d ← Π.V(1λ, crs, x, π) a
verifier can produce a decision d ∈ {true, false} indicating whether π is a valid proof that x ∈ L(R).
We require (perfect) completeness, that is, Π.V(1λ, crs, x,Π.P(1λ, crs, x, w)) = true for all λ ∈ N,
all crs ∈ [Π.Pg(λ)], all x ∈ L(R) and all w ∈ R(x). We also assume that Π.V returns false if any of
its arguments is ⊥.

2.3 Standard Notions: SND, KSND, WI and ZK

Soundness. Soundness means that it is hard to create a valid proof for any x 6∈ L(R). We consider
computational soundness as opposed to a statistical one, which is usually sufficient for applications,
and which is the notion achieved by SNARGs.

Definition 2.1 (SND) An NI system Π is sound for R, if Advsnd
Π,R,A(·) is negligible for all PT

adversaries A, where Advsnd
Π,R,A(λ) = Pr[SNDΠ,R,A(λ)] and game SND is specified in Figure 1.

Knowledge soundness. This strengthening of soundness [BG93] means that a prover that out-
puts a valid proof must know the witness. Formally, there exists an extractor that can extract
the witness from the prover. The notion implies soundness, since for a proof of a wrong statement
there exists no witness.

Definition 2.2 (KSND) An NI system Π is knowledge-sound for R if for all PT A there exists a
PT extractor E such that Advksnd

Π,R,A,E(·) is negligible for all PT adversaries A, where Advksnd
Π,R,A,E(λ) =

Pr[KSNDΠ,R,A,E(λ)] and game KSND is specified in Figure 1.

Note that (as well as following two notions) the output of game KSND is efficiently computable,
which is not the case for SND, since membership in L(R) may not be efficiently decidable. This
can be an issue when proving security of more complex systems that use a system Π as a building
block.

WI. Witness-indistinguishability [FLS90] requires that proofs for the same statement using dif-
ferent witnesses are indistinguishable. The adversary can adaptively request multiple proofs for
statements x under one of two witnesses w0, w1; it receives proofs under wb for a challenge bit b
which it needs to guess.

7

Game SNDΠ,R,A(λ)

crs←$ Π.Pg(1λ)

(x, π)←$ A(1λ, crs)

Return
(
x 6∈ L(R) and Π.V(1λ, crs, x, π)

)
Game S-SNDΠ,R,A(λ)

(crs, x, π)←$ A(1λ)

Return
(
x 6∈ L(R) and Π.V(1λ, crs, x, π)

)

Game KSNDΠ,R,A,E(λ)

crs←$ Π.Pg(1λ) ; r←$ {0, 1}A.rl(λ)

(x, π)← A(1λ; r)

w←$ E(1λ, r)

Return
(
R(x,w) = false and Π.V(1λ, crs, x, π)

)

Game S-KSNDΠ,R,A,E(λ)

r←$ {0, 1}A.rl(λ)

(crs, x, π)← A(1λ; r)

w←$ E(1λ, r)

Return
(
R(x,w) = false and Π.V(1λ, crs, x, π)

)
Game WIΠ,R,A(λ)

b←$ {0, 1} ; crs←$ Π.Pg(1λ)

b′←$ AProve(1λ, crs)

Return (b = b′)

Prove(x,w0, w1)

If R(x,w0) = false or R(x,w1) = false

then return ⊥
π←$ Π.P(1λ, crs, x, wb)

Return π

Game S-WIΠ,R,A(λ)

b←$ {0, 1} ; (crs, st)←$ A(1λ)

b′←$ AProve(1λ, crs, st)

Return (b = b′)

Prove(x,w0, w1)

If R(x,w0) = false or R(x,w1) = false

then return ⊥
π←$ Π.P(1λ, crs, x, wb)

Return π

Game ZKΠ,R,A(λ)

b←$ {0, 1}
crs1←$ Π.Pg(1λ)

(crs0, std)←$ Π.Sim.crs(1λ)

b′←$ AProve(1λ, crsb)

Return (b = b′)

Prove(x,w)

If R(x,w) = false then return ⊥
If b = 1 then π←$ Π.P(1λ, crs1, x, w)

Else π←$ Π.Sim.pf(1λ, crs0, std, x)

Return π

Game S-ZKΠ,R,X,S,A(λ)

b←$ {0, 1} ; r1←$ {0, 1}X.rl(λ)

crs1 ← X(1λ; r1)

(crs0, r0, std)←$ S.crs(1λ)

b′←$ AProve(1λ, crsb, rb)

Return (b = b′)

Prove(x,w)

If R(x,w) = false then return ⊥
If b = 1 then π←$ Π.P(1λ, crs1, x, w)

Else π←$ S.pf(1λ, crs0, std, x)

Return π

Figure 1: Games defining soundness, knowledge-soundness, witness-indistinguishability and zero knowledge
(left) and their subversion-resistant counterparts (right) for an NI system Π.

Definition 2.3 (WI) An NI system Π is witness-indistinguishable for R, if Advwi
Π,R,A(·) is negli-

gible for all PT adversaries A, where Advwi
Π,R,A(λ) = 2 Pr[WIΠ,R,A(λ)]− 1 and game WI is specified

in Figure 1.

ZK. Zero knowledge [GMR89] means that no information apart from the fact that x ∈ L(R) is
leaked by the proof. It is formalized by requiring that a simulator, who can create the CRS, can
compute proofs without being given a witness, so that CRS and proofs are indistinguishable from
real ones. In particular, the distinguisher A can adaptively request proofs by supplying an instance
and a valid witness for it. The proof is produced either by the honest prover using the witness, or

8

by simulator. The adversary outputs a guess b′ as to whether the proofs were real or simulated.

Definition 2.4 (ZK) An NI system Π is zero-knowledge for R if Π specifies additional PT algo-
rithms Π.Sim.crs and Π.Sim.pf such that Advzk

Π,R,A(·) is negligible for all PT adversaries A, where

Advzk
Π,R,A(λ) = 2 Pr[ZKΠ,R,A(λ)]− 1 and game ZK is specified in Figure 1.

An NI system Π is statistical zero-knowledge if the above holds for all (not necessarily PT)
adversaries A. It is perfect zero-knowledge if Advzk

Π,R,A(·) ≡ 0.

Uniform complexity. The above definition follow a “cryptographic style” [DDO+01, GOS06b]
where x is chosen by the adversary, as opposed to a “complexity-theoretic style” used in earlier work
[GMR89, BDSMP91], which quantifies over all x, requiring non-uniform complexity for adversaries
and assumptions. Bellare et al. [BFS16] follow Goldreich [Gol93] and consider uniform complexity
for all algorithms including adversaries.

2.4 Notions for Subverted CRS: S-SND, S-KSND, S-WI and S-ZK

For all notions considered in the previous section the CRS is assumed to be honestly generated.
Motivated by parameter subversion attacks, Bellare et al. [BFS16] ask what happens when the
CRS is maliciously generated and define subversion-resistant analogues S-SND, S-WI and S-ZK, in
which the adversary chooses the CRS.

Subversion soundness. Subversion soundness asks that if the adversary creates a CRS in any
way it likes, it is still unable to prove false statements under it. We accordingly modify the soundness
game SND by letting the adversary choose crs in addition to x and π.

Definition 2.5 (S-SND) An NI system Π is subversion-sound for R if Advs-snd
Π,R,A(·) is negligible

for all PT adversaries A, where Advs-snd
Π,R,A(λ) = Pr[S-SNDΠ,R,A(λ)] and game S-SND is specified in

Figure 1.

Subversion WI. Subversion WI demands that even when the subvertor creates a CRS in any way
it likes, it can still not decide which of two witnesses of its choice were used to create a proof.
The adversary is modeled as a two-stage algorithm: it first outputs a CRS crs along with state
information (which could contain a trapdoor associated to crs) passed to the second stage. The
second stage is then defined like for the honest-CRS game WI, where via its Prove oracle, the
adversary can adaptively query proofs for instances under one of two witness.

Definition 2.6 (S-WI) An NI system Π is subversion witness-indistinguishable for R if Advs-wi
Π,R,A(·)

is negligible for all PT adversaries A, where Advs-wi
Π,R,A(λ) = 2 Pr[S-WIΠ,R,A(λ)]− 1 and game S-WI

is specified in Figure 1.

Subversion ZK. This notion considers a CRS subvertor X that returns an arbitrarily formed CRS.
Subversion ZK now asks that for any such X there exists a simulator that is able to simulate (1) the
full view of the CRS subvertor, including its coins, and (2) proofs for adaptively chosen instances
without knowing the witnesses. The simulator consists of S.crs, which returns a CRS, coins for X
and a trapdoor which is then used by its second stage S.pf to simulate proofs. The adversary’s task
is to decide whether it is given a real CRS and the coins used to produce it, and real proofs (case
b = 1); or whether it is given a simulated CRS and coins, and simulated proofs (case b = 0).

Definition 2.7 (S-ZK) An NI system Π is subversion-zero-knowledge for R if for all PT CRS
subvertors X there exists a PT simulator S = (S.crs, S.pf) such that for all PT A the function
Advs-zk

Π,R,X,S,A(·) is negligible, where Advs-zk
Π,R,X,S,A(λ) = 2 Pr[S-ZKΠ,R,X,S,A(λ)]− 1.

9

The definition is akin to a (uniform version of) zero knowledge for interactive proof systems
[GMR89], when interpreting the CRS as the verifier’s first message. The simulator must produce a
full view of the verifier (including coins and a transcript of its interaction with the Prove oracle).
On the other hand, to imply ZK of NI systems, the simulator needs to produce the CRS before
learning the statements for which it must simulate proofs. Moreover, the simulator can depend on
X but not on A.

Subversion KSND. For completeness we give a subversion-resistant analogue for knowledge-
soundness, as this is the notion considered for SNARKs. We modify game KSND and let the
adversary choose crs in addition to x and π. Note that we are not aware of any construction that
achieves S-KSND for a non-trivial language.

Definition 2.8 (S-KSND) An NI system Π is subversion knowledge-sound for R if for all PT A
there exists a PT extractor E such that Advs-ksnd

Π,R,A,E(·) is negligible for all PT adversaries A, where

Advs-ksnd
Π,R,A,E(λ) = Pr[S-KSNDΠ,R,A,E(λ)] and game S-KSND is specified in Figure 1.

2.5 Bilinear Groups and Assumptions

Bilinear groups. The SNARK construction we consider are based on bilinear groups, for which
we introduce a new type of knowledge-of-exponent assumption. We distinguish between asymmetric
and symmetric groups.

Definition 2.9 An asymmetric-bilinear-group generator aGen is a PT algorithm that takes input
a security parameter 1λ and outputs a description of a bilinear group (p,G1,G2,GT , e, P1, P2) with
the following properties:

− p is a prime of length λ;

− (G1,+), (G2,+) and (GT , ·) are groups of order p;

− e : G1 × G2 → GT is a bilinear map, that is, for all a, b ∈ Zp and S ∈ G1, T ∈ G2 we have:
e(aS, bT) = e(S, T)ab;

− e is non-degenerate, that is, for P1 ∈ G∗1 and P2 ∈ G∗2 (i.e., P1 and P2 are generators)
e(P1, P2) generates GT .

Moreover, we assume that group operations and the bilinear map can be computed efficiently, mem-
bership of the groups and equality of group elements can be decided efficiently, and group generators
can be sampled efficiently.

A symmetric-bilinear-group generator sGen returns a bilinear group with G1 = G2, which we
denote by G, and with a symmetric non-degenerate bilinear map e : G×G→ GT .

Deterministic group generation. While in the cryptographic literature bilinear groups are
often assumed to be probabilistically generated, real-world pairing-based schemes are defined for
groups that are fixed for every security level λ. We reflect this by defining group generation as a
deterministic PT algorithm. An advantage of doing so is that every entity in a system can compute
the group from the security parameter and no party must be trusted with generating the group.

Deterministic group generation has been considered in [FHS15, BFS16], but in contrast to these
works we do not consider a fixed generator P for the group in the assumption we make; instead,
generators are sampled randomly.

Assumptions. We recall the assumptions under which SNARKs in the literature were proven
sound. In contrast to previous work, we assume that groups are generated deterministically and that
all algorithms are uniform (see discussion below). The following assumptions are from [DFGK14],
who adapted PDH from [Gro10] to asymmetric bilinear groups, and TSDH from [BB04, Gen04].

10

Game PDHq,aGen,A(λ)

(p,G1,G2,GT , e)← aGen(1λ) ; P1←$ G∗1 ; P2←$ G∗2 ; s←$ Z∗p ;

Y ←$ A
(
1λ, P1, P2, sP1, sP2, . . . , s

qP1, s
qP2, s

q+2P1, s
q+2P2, . . . , s

2qP1, s
2qP2

)
Return (Y = sq+1P1)

Game TSDHq,aGen,A(λ)

(p,G1,G2,GT , e)← aGen(1λ) ; P1←$ G∗1 ; P2←$ G∗2 ; s←$ Z∗p ;

(r, Y)←$ A
(
1λ, P1, P2, sP1, sP2, . . . , s

qP1, s
qP2,

)
Return

(
r ∈ Zp \ {x} and Y = e(P1, P2)1/(s−r)

)
Game PKEq,aGen,Aux,A,E(λ)

(p,G1,G2,GT , e)← aGen(1λ) ; P1←$ G∗1 ; P2←$ G∗2 ; s←$ Z∗p
r←$ {0, 1}A.rl(λ)

z←$ Aux(1λ, P1, sP1, . . . , s
qP1)

(V,W)← A
(
1λ, P1, P2, sP1, sP2 . . . , s

qP1, s
qP2, z; r

)
(a0, . . . , aq)←$ E

(
1λ, P1, P2, sP1, sP2, . . . , s

qP1, s
qP2, z, r

)
Return

(
e(V, P2) = e(P1,W) and V 6= (

∑q
i=0 ais

i)P1

)

Figure 2: Games defining assumptions q-PDH, q-TSDH and q-PKE

Definition 2.10 (q-PDH) The q(λ)-power Diffie-Hellman assumption holds for an asymmetric

group generator aGen if Advpdh
q,aGen,A(·) is negligible for all PT adversaries A, where Advpdh

q,aGen,A(λ) :=
Pr[PDHq,aGen,A(λ)] and PDH is defined in Figure 2.

The q-PDH assumption for symmetric group generators sGen is defined analogously by letting
G1 = G2 and P1 = P2 (A thus only receives 2q group elements).

Definition 2.11 (q-TSDH) The q(λ)-target-group strong Diffie-Hellman assumption holds for
group generator aGen if Advtsdh

q,aGen,A(·) is negligible for all PT adversaries A, where Advtsdh
q,aGen,A(λ) :=

Pr[TSDHq,aGen,A(λ)] and TSDH is defined in Figure 2.

The q-TSDH assumption for symmetric group generators sGen is defined analogously by letting
G1 = G2 and P1 = P2 (A thus only receives q + 1 group elements).

KEA. The knowledge-of-exponent assumption [Dam92, HT98, BP04] in a group G states that an
algorithm M that is given two random generators P,Q ∈ G∗ and outputs (cP, cQ) must know c.
This is formalized by requiring that there exists an extractor for M which when given M’s coins
outputs c. This has been considered in the bilinear-group setting [AF07] where M’s output (cP, cQ)
can be verified by using the bilinear map. Generalizations of KEA were made by Groth [Gro10]
who assumed that for every M that on input (P,Q, sP, sQ, s2P, s2Q, . . . , sqP, sqQ) returns (cP, cQ)
an extractor extracts (a0, . . . , aq) such that c =

∑q
i=0 ais

i. Danezis et al. [DFGK14] port Groth’s
assumption to asymmetric groups as follows.

Definition 2.12 (q-PKE) The q(λ)-power knowledge of exponent assumption holds for aGen
w.r.t. the class Aux of auxiliary input generators if for every PT Aux ∈ Aux and PT A there exists
a PT E s.t. Advpke

q,aGen,Aux,A,E(·) is negligible, where Advpke
q,aGen,Aux,A,E(λ) := Pr[PKEq,aGen,Aux,A,E(λ)]

and PKE is defined in Figure 2.

11

Game DHKEdetSGen,M,E(λ)

(p,G,GT , e, P)← detSGen(1λ) ; H0, H1←$ G ; r←$ {0, 1}M.rl(λ)

(S0, S1, S2)←M(1λ, H0, H1; r) ; s←$ E(1λ, H0, H1, r)

Return
(
e(S0, S1) = e(P, S2) and sP 6= S0 and sP 6= S1

)
Game SKEsGen,M,E(λ) (for symmetric groups)

(p,G,GT , e)← sGen(1λ) ; r←$ {0, 1}M.rl(λ)

(S0, S1, S2)←M(1λ; r) ; s←$ E(1λ, r)

Return
(
e(S1, S1) = e(S0, S2) and sS0 6= S1

)
Game SKEaGen,M,E(λ) (for asymmetric groups)

(p,G1,G2,GT , e)← aGen(1λ) ; r←$ {0, 1}M.rl(λ)

(S0, S1, S2, T0, T1)←M(1λ; r) ; s←$ E(1λ, r)

Return
(
e(S1, T0) = e(S0, T1) and e(S2, T0) = e(S1, T1) and sS0 6= S1

)
Figure 3: Games defining knowledge-of-exponent assumptions

The q-PKE assumption for symmetric group generators sGen is defined by letting G1 = G2 but
again choosing P1, P2←$ G∗ (A thus again receives 2q + 2 group elements).

Bellare et al. [BFS16] consider not only deterministically generated groups, but in addition fix
the group generator P . (They therefore need to define all other assumptions, such as DLin [BBS04],
with respect to this fixed group generator.) BFS introduce a new type of KEA, called DH-KEA,
which assumes that if M outputs a Diffie-Hellman (DH) tuple (sP, tP, stP) w.r.t. the fixed P , then
M must either know s or t. The auxiliary input given to M are two additional random generators
H0, H1. The intuition is that while an adversary may produce one group element without knowing
its discrete logarithm by hashing into the elliptic curve [BF01, SvdW06, BCI+10], it seems hard to
produce a DH tuple without knowing at least one of the logarithms.

Definition 2.13 (DH-KEA) Let detSGen be a group generator outputting a fixed generator P
and let Advdhke

detSGen,M,E(λ) := Pr[DHKEdetSGen,M,E(λ)], with game DHKE defined in Figure 3. The
Diffie-Hellman knowledge of exponent assumption holds for detSGen if for every PT M there exists
a PT E s.t. Advdhke

detSGen,M,E(·) is negligible,

SKE. We now consider a weakening of DH-KEA where we prescribe s = t; that is, if M on
input P outputs a pair (sP, s2P) then E extracts s. This assumption is implied by DH-KEA. We
strengthen the assumption by letting M choose the generator P itself and assume that there exists
an extractor that extracts s when M outputs a tuple (P, sP, s2P). This allows us to choose a random
generator when setting up parameters of a scheme. The security of such schemes then follows from
assumptions such as PDH, as defined above, where the generators are chosen randomly.

Definition 2.14 (SKE) Let sGen be a symmetric-group generator and let

Advske
sGen,M,E(λ) := Pr[SKEsGen,M,E(λ)] ,

where game SKE is defined in Figure 3. The square knowledge of exponent assumption holds for
sGen if for every PT M there exists a PT E s.t. Advske

sGen,M,E(·) is negligible.

On uniformity. As Bellare et al. [BFS16], who follow Goldreich [Gol93], we only consider uniform
machines to model the adversary M and the extractor E. One might ask what would happen if

12

we defined SKE for non-uniform adversaries, which for every security parameter λ receive advice
advM,λ. It all depends on how non-uniformity of the extractor is modeled: if the extractor receives
the same advice as M then the assumption does not hold: since the group (pλ,Gλ, (GT)λ, eλ) is
fixed for a particular λ, if the advice is of the form advM,λ := (S0, sS0, s

2S0) ∈ Gλ and M simply
outputs advM,λ, then E cannot extract s.

This problem disappears if we allow the extractor to have its own arbitrary advice. Then for
advM,λ as above, the extractor could have advice advE,λ := s, which would enable it to extract s.

SKE for asymmetric groups. For asymmetric bilinear-group generators, we make assumption
SKE in the first source group G1. Unlike for symmetric groups, a tuple (S0, sS0, s

2S0) ∈ G3
1 is not

verifiable via an asymmetric pairing. To make it verifiable, we weaken the assumption and require
M to additionally output G2 elements T0 and T1 = sT0 that enable verification (as done in game
SKEaGen).

Definition 2.15 Let aGen be an asymmetric-group generator and let

Advske
aGen,M,E(λ) := Pr[SKEaGen,M,E(λ)] ,

where game SKE is defined in Figure 3. The SKE assumption holds for aGen in the first source
group if for every PT M there exists a PT E s.t. Advske

aGen,M,E(·) is negligible.

We note that in addition to verifiability these additional elements T0 and T1 actually add to the
plausibility of the assumption for asymmetric groups. Even if outputting S2 was not required, one
could argue that in Type-2 and Type-3 bilinear groups, in which the DDH assumption holds in G1,
it should be hard to compute (S0, S1, T0, T1) ∈ G2

1×G2
2 with e(S1, T0) = e(S0, T1) without knowing

the logarithms of S1 to base S0 (or equivalently T1 to base T0). One might choose S0 and S1 by
hashing into the group; but if one was able to compute from them the respective T0 and T1 then
this would break DDH in G1. (Given a DDH challenge (S0, S1 = s1S0, S2 = s2S0, R), compute T0
and T1 as above; then we have R = s1s2S0 iff e(R, T0) = e(S2, T1).)

Finally, we note that q-PKE with q = 0 does not imply SKE, since a PKE adversary must
return (V,W) which is a multiple of the received (P1, P2), while an SKE adversary can choose the
“basis” (S0, T0) itself. The converse does not hold either (SKE 6⇒PKE), since an SKE adversary
must return S2 = s2S0.

SKE in the generic-group model. We show that SKE holds in the generic-group model. We
show it for symmetric generic groups, which implies the result for asymmetric groups (where the
adversary has less power). As [BFS16] did for DH-KEA, we reflect hashing into elliptic curves by
providing the adversary with an additional generic operation: it can create new group elements
without knowing their discrete logarithms (which are not known to the extractor either).

Theorem 2.16 SKE, as defined in Definition 2.14, holds in the generic-group model with hashing
into the group.

In the proof of the theorem we will use the following lemma, which we prove first.

Lemma 2.17 Let F be a field and let A,B,C ∈ F[X1, . . . , Xk], with degree of A, B and C at
most 1. If A · C = B2 then for some s ∈ F: B = s ·A.

Proof. Let αi, βi, γi, for 0 ≤ i ≤ k, denote the coefficients of Xi (where X0 := 1) in A,B,C,
respectively. If A = 0 then B = 0 and the theorem follows. Assume thus A 6= 0; Define j :=
min{i ∈ [0, k] : αj 6= 0} and s := βj · α−1j .

13

To prove the lemma, we will now show that for all i ∈ [0, k]:

βi = s · αi . (1)

From A · C = B2 we have

L(X) :=
(
β0 +

∑k
i=1 βiXi

)2 − (α0 +
∑k

i=1 αiXi

)(
γ0 +

∑k
i=1 γiXi

)
= 0 . (2)

From L(0, . . . , 0) = 0, we get: (I) β20 = α0γ0, which implies that Eq. (1) holds for i = 0: either
α0 = 0, then from (I): β0 = 0; or α0 6= 0, then j = 0 and Eq. (1) holds as well.

Let now i ∈ [1, k] be arbitrarily fixed and let ei denote the vector (0, . . . , 0, 1, 0, . . . , 0) with 1 at
position i. Consider L(ei) = 0, which together with (I) yields

2β0βi + β2i − α0γi − αiγ0 − αiγi = 0 . (3)

Similarly, from L(2ei) = 0, we have 4β0βi + 4β2i − 2α0γi − 2αiγ0 − 4αiγi = 0 , which subtracting
Eq. (3) twice yields: (II) β2i = αiγi. If αi = 0 then βi = 0, which shows Eq. (1). For the remainder
let us assume αi 6= 0.

Plugging (II) into Eq. (3) yields: (III) 2β0βi = α0γi − αiγ0.

If α0 6= 0 then j = 0 and plugging (I) and (II) into (III) yields

2β0βi − α0α
−1
i β2i − αiα−10 β20 = 0 .

Solving for βi yields the unique solution βi = β0α
−1
0 αi, which shows Eq. (1) for the case α0 6= 0.

Let us now assume α0 = 0. By (I) we have β0 = 0. If i = j then Eq. (1) holds by definition of s.
Assume i 6= j. From L(ei + ej) we have (since α0 = β0 = 0):

0 = β2i + β2j + 2βiβj − αiγ0 − αiγi − αiγj − αjγ0 − αjγi − αjγj = 2βiβj − αiγj − αjγi ,

where we used (II) and αiγ0 = αjγ0 = 0 (which follows from (III) and α0 = β0 = 0). Together with
(II) the latter yields

2βiβj − αiα−1j β2j − αjα−1i β2i = 0 .

Solving for βi yields the unique solution βi = βjα
−1
j αi, which concludes the proof.

Proof of Theorem 2.16. In the “traditional” generic-group model, group elements are repre-
sented by random strings and an adversary M only has access to operations on them (addition
of elements in G, multiplication of elements in GT and pairing of elements in G) via oracles. In
particular, M can only produce new G elements by multiplying received elements.

We also need to reflect the fact that by “hashing into the group”, M can create a new group
element without knowing its discrete logarithm w.r.t. one of the received elements. We extend the
generic-group model and provide the adversary with an additional operation, namely to request
a new group element “independently of the received ones”. (And neither the adversary nor the
extractor we construct knows its discrete logarithm.)

For SKE the adversary M receives the group element P and needs to output (S0, S1, S2) where for
some s, t: S0 = tP , S1 = sS0 = stP and S2 = s2S0 = s2tP . The adversary can produce these group
elements by combining the received generator P with newly generated (“hashed”) group elements
that it has requested. We represent the latter as xiP , for i = 1, . . . k, for some k. The extractor
keeps track of the group operations performed by M and thus knows

α0, . . . , αk, β0, . . . , βk, γ0, . . . , βk ∈ Zp (4)

14

such that M’s output (S0, S1, S2) is of the form

S0 = α0P
∑k

i=1 αi(xiP) S1 = β0P
∑k

i=1 βi(xiP) S2 = γ0P
∑k

i=1 γi(xiP)

Note that the extractor does however not know x := (x1, . . . , xk).

Assume the adversary wins and e(S1, S1) = e(S0, S2). Taking the logarithms of the latter yields(
β0 +

∑k
i=1 βixi

)2 − (α0 +
∑k

i=1 αixi
)(
γ0 +

∑k
i=1 γixi

)
= 0 . (5)

Since the adversary has no information about x1, . . . , xk (except for a negligible information leak
by comparing group elements, which we ignore), the values in Eq. (4) are generated independently
of x1, . . . , xk. By the Schwartz-Zippel lemma the probability that Eq. (5) holds when x1, . . . , xk
are randomly chosen is negligible, except if the left-hand side corresponds to the zero polynomial.
With overwhelming probability we thus have

B(X)2 −A(X) · C(X) = 0

with

A(X) = α0 +
∑k

i=1αiXi B(X) = β0 +
∑k

i=1βiXi C(X) = γ0 +
∑k

i=1γiXi

By Lemma 2.17 we have that B = sA for some s ∈ F. The extractor computes and returns s. It
wins since S0 = A(~x)P and S1 = B(~x)P = sA(~x) = s S0

3 SNARKs

We start with a formal definition of SNARGs and SNARKs.

Definition 3.1 (SNARG) An NI system Π = (Π.Pg,Π.P,Π.V) is a succinct non-interactive ar-
gument for an NP relation R if it is complete and sound, as in Definition 2.1; and moreover
succinct meaning that for all λ ∈ N, all crs ∈ [Π.Pg(λ)], all x ∈ L(R), all w ∈ R(x) and all
π ∈ [Π.P(1λ, crs, x, w)] we have |π| = poly(λ) polylog(|x|+ |w|).

Definition 3.2 (SNARK) A SNARG Π is a succinct non-interactive argument of knowledge if
it satisfies knowledge soundness, as in Definition 2.2.

Gennaro, Gentry, Parno and Raykova [GGPR13] based their SNARK constructions on quadratic
programs. In particular, they show how to convert any boolean circuit into a quadratic span program
and any arithmetic circuit into a quadratic arithmetic program (QAP).

Definition 3.3 (QAP) A quadratic arithmetic program over a field F is a tuple of the form(
F, n, {Ai(X), Bi(X), Ci(X)}mi=1, Z(X)

)
,

where Ai(X), Bi(X), Ci(X), Z(X) ∈ F[X], which define a language of statements (s1, . . . , sn) ∈ Fn
and witnesses (sn+1, . . . , sm) ∈ Fm−n such that(

A0(X) +

m∑
i=1

siAi(X)
)
·
(
B0(X) +

m∑
i=1

siBi(X)
)

= C0(X) +

m∑
i=1

siCi(X) +H(X) · Z(X) , (6)

for some degree d − 2 quotient polynomial H(X), where d is the degree of Z(X) (we assume the
degrees of all Ai(X), Bi(X), Ci(X) is at most d− 1).

15

A strong QAP is such that for any (r1, . . . , rm, s1, . . . , sm, t1, . . . , tm) ∈ F3m for which Z(X) divides(
A0(X) +

∑m
i=1riAi(X)

)
·
(
B0(X) +

∑m
i=1siBi(X)

)
− C0(X) +

∑m
i=1tiCi(X) , (7)

it must be the case that (r1, . . . , rm) = (s1, . . . , sm) = (t1, . . . , tm).

All of the discussed SNARK constructions are for QAPs defined over a bilinear group, which we
will assume is fixed for a particular security parameter λ. We will thus consider NP relations of
the following form:

Definition 3.4 (QAP relation) A QAP relation for a (symmetric or asymmetric) bilinear group
generator GGen is defined as

R =
(
λ, n, ~A, ~B, ~C,Z

)
with ~A, ~B, ~C ∈

(
F(d−1)[X]

)(m+1)
, Z ∈ F(d)[X], n ≤ m

and F := Zp where p is such that (p, . . .)← GGen(1λ) . (8)

For x ∈ Fn and w ∈ Fm−n we define R(x,w) = true iff there exists H(X) ∈ F[X] so that Eq. (6)
holds for s := x ◦ w (where “ ◦” denotes concatenation).

4 GGPR’s QAP-based SNARK

Gennaro et al. [GGPR13] presented the first zero-knowledge SNARK construction for arithmetic
circuits that are expressed as quadratic arithmetic programs. Their construction is defined over
symmetric bilinear groups. They separate the CRS into a (long) part pk, used to compute proofs,
and a (short) part vk, used to verify them.

Key generation. On input a R as in Eq. (8) that corresponds to a strong QAP do the following:

1. Compute (deterministically) a symmetric bilinear group (p,G,GT , e)← sGen(1λ) and sample
a random group generator P ←$ G∗. Set Gr = (p,G,GT , e, P).

2. Sample random τ, α, βA, βB, βC ←$ F, conditioned on Z(τ) 6= 0 and γ←$ F∗.

3. Set pk = (pkA,pk
′
A, pk

′′
A,pk

′′
Z,A,pkB, pk

′
B,pk

′′
B,pk

′′
Z,B,pkC ,pk

′
C ,pk

′′
C ,pk

′′
Z,C , pkH ,pk

′
H ,pkZ ,

pk′Z), where

for i = n+ 1, . . . ,m : pkA,i := Ai(τ)P pk′A,i := Ai(τ)αP pk′′A,i := Ai(τ)βAP

for i = 1, . . . ,m : pkB,i := Bi(τ)P pk′B,i := Bi(τ)αP pk′′B,i := Bi(τ)βBP

pkC,i := Ci(τ)P pk′C,i := Ci(τ)αP pk′′C,i := Ci(τ)βCP

for i = 0, . . . , d : pkH,i := τ iP pk′H,i := τ iαP

and moreover pkZ := Z(τ)P pk′Z := Z(τ)αP

pkA,0 := A0(τ)P pk′A,0 := A0(τ)αP pk′′Z,A := Z(τ)βAP

pkB,0 := B0(τ)P pk′B,0 := B0(τ)αP pk′′Z,B := Z(τ)βBP

pkC,0 := C0(τ)P pk′C,0 := C0(τ)αP pkZ,C := Z(τ)βCP

16

4. Set vk = (Gr, vkA, vkB,0, vkC,0, vkZ , vkα, vkγ , vk
′′
A,γ , vk

′′
B,γ , vk

′′
C,γ) where{

vkA,i
}n
i=0

:=
{
Ai(τ)P

}n
i=0

vkB,0 := B0(τ)P vkC,0 := C0(τ)P

vkZ := Z(τ)P vkα := αP vkγ := γP

vk′′A,γ := βAγP vk′′B,γ := βBγP vk′′C,γ := βCγP

5. Return crs := (pk, vk).

CRS verification. On input (R,pk, vk), let {ai,j}, {bi,j}, {ci,j}, {zk} denote the coefficients
of Ai(X), Bi(X), Ci(X) and Z(X), respectively, that are contained in R, for 0 ≤ i ≤ m and
0 ≤ j ≤ d− 1 and 0 ≤ k ≤ d.

1. Compute (p,G,GT , e)← sGen(1λ) and check that it is the same as the group in Gr from vk;
check P 6= 0G.

2. Check correct choice of τ, γ: vkZ 6= 0G and vkγ 6= 0G.

3. Check consistency of pkH and pk′H : P = pkH,0 and

for i = 1, . . . , d : e(pkH,i, P) = e(pkH,i−1, pkH,1)

for i = 0, . . . , d : e(pk′H,i, P) = e(pkH,i, vkα)

4. Check consistency of vk:

for i = 0, . . . , n : vkA,i =
∑d−1

j=0ai,jpkH,j

vkB,0 =
∑d−1

j=0b0,jpkH,j vkC,0 =
∑d−1

j=0c0,jpkH,j vkZ =
∑d

j=0zjpkH,j

5. Check consistency of the remaining pk elements: for i = n+ 1, . . . ,m:

pkA,i =
∑d−1

j=0ai,jpkH,j e(pk′A,i, P) = e(pkA,i, vkα) e(pk′′A,i, vkγ) = e(pkA,i, vk
′′
A,γ)

for i = 1, . . . ,m:

pkB,i =
∑d−1

j=0bi,jpkH,j e(pk′B,i, P) = e(pkB,i, vkα) e(pk′′B,i, vkγ) = e(pkB,i, vk
′′
B,γ)

pkC,i =
∑d−1

j=0ci,jpkH,j e(pk′C,i, P) = e(pkC,i, vkα) e(pk′′C,i, vkγ) = e(pkC,i, vk
′′
C,γ)

and moreover:

pkZ =
∑d

j=0zipkH,j e(pk′Z , P) = e(pkZ , vkα)

pkA,0 = vkA,0 e(pk′A,0, P) = e(pkA,0, vkα) e(pk′′Z,A, vkγ) = e(pkZ , vk
′′
A,γ)

pkB,0 = vkB,0 e(pk′B,0, P) = e(pkB,0, vkα) e(pk′′Z,B, vkγ) = e(pkZ , vk
′′
B,γ)

pkC,0 = vkC,0 e(pk′C,0, P) = e(pkC,0, vkα) e(pk′′Z,C , vkγ) = e(pkZ , vk
′′
C,γ)

6. If all checks in 2.–5. succeeded then return true and otherwise false.

Prove. On input R, (pk, vk) and ~s ∈ Fm s.t. Eq. (6) is satisfied for some H ′(X):

1. If (R,pk, vk) does not pass verification, as defined above, return ⊥.

17

2. Sample δA, δB, δC ←$ F and define

A(X) := A0(X) +
∑m

i=1 siAi(X) + δAZ(X)

B(X) := B0(X) +
∑m

i=1 siBi(X) + δBZ(X)

C(X) := C0(X) +
∑m

i=1 siCi(X) + δCZ(X)

3. Compute H(X) such that A(X)B(X) − C(X) = H(X)Z(X) and let (h0, . . . , hd) ∈ Fd+1

be its coefficients. (Letting H ′(X) being such that Eq. (6) is satisfied, we have H(X) =
H ′(X) + δAB(X) + δBA(X)− δAδBZ(X)− δC .)

4. Define

πA :=
∑m

i=n+1sipkA,i + δA pkZ π′A :=
∑m

i=n+1sipk
′
A,i + δA pk′Z

πB :=
∑m

i=1sipkB,i + δB pkZ π′B :=
∑m

i=1sipk
′
B,i + δB pk′Z

πC :=
∑m

i=1sipkC,i + δC pkZ π′C :=
∑m

i=1sipk
′
C,i + δC pk′Z

πH :=
∑d

i=1hipkH,i π′H :=
∑d

i=1hipk
′
H,i

πK :=
∑m

i=n+1sipk
′′
A,i + δA pk′′Z,A +

∑m
i=1sipk

′′
B,i + δBpk

′′
Z,B +

∑m
i=1sipk

′′
C,i + δCpk

′′
Z,C

5. Return π := (πA, π
′
A, πB, π

′
B, πC , π

′
C , πH , π

′
H , πK).

Verify. On input R, vk, ~x ∈ Fn and proof π ∈ G9:

1. Compute vkx := vkA,0 +
∑n

i=1 xivkA,i.

2. Check validity of π′A, π′B, and π′C :

e(π′A, P) = e(πA, vkα) e(π′B, P) = e(πB, vkα)

e(π′C , P) = e(πC , vkα) e(π′H , P) = e(πH , vkα)

3. Check same coefficients were used via πK :

e(πK , vkγ) = e(πA, vk
′′
A,γ) · e(πB, vk

′′
B,γ) · e(πC , vk

′′
C,γ)

4. Check QAP is satisfied:

e(vkx + πA, vkB,0 + πB) = e(πH , vkZ) · e(vkC,0 + πC , P)

5. If all checks in 2.–4. succeeded then return true and otherwise false.

Theorem 4.1 ([GGPR13]) If for sGen the q-PDH and the d-PKE assumptions hold for some
q ≥ max{2d − 1, d + 2}, where d is the degree of the QAP, then the above scheme is knowledge-
sound. Moreover, it is statistical zero-knowledge.

Subversion Zero Knowledge

CRS verifiability We show that a CRS that passes verification is distributed as in Key gen-
eration, that is, that exist values τ, α, βA, βB, βC ∈ F such that the conditions in Item 2. are
satisfied and pk and vk are as in Items 3. and 4. of Key generation. Let τ, α, ξA, ξB, ξC , γ ∈ F
be the discrete logarithms of the elements pkH,1, vkα, vk′′A,γ , vk′′B,γ , vk′′C,γ and vkγ . By Check 2.
in CRS verification we have that γ 6= 0. Define βA := xAγ

−1, βB := xBγ
−1, βC := xCγ

−1.

18

Check 3. ensures that pkH and pkH are correctly computed w.r.t. τ and α and Check 4. ensures
that {vkA,i}ni=0, vkB,0 and vkC,0 are correctly computed w.r.t. τ .

Check 5. ensures that {pkA,i, pk′A,i, pk′′A,i}mi=n+1 are correctly computed w.r.t. τ , α and βA; and
{pkB,i, pk′B,i, pk′′B,i,pkC,i,pk′C,i,pk′′C,i}mi=1 are correctly computed w.r.t. τ , α, βB and βC . Moreover,
it checks that pkZ , pk′Z , pkA,0, pk

′
A,0, pk

′′
Z,A, pkB,0, pk

′
B,0, pk

′′
Z,B, pkC,0, pk

′
C,0 and pk′′Z,C are also

of the correct form.

Trapdoor extraction. In order to prove subversion zero knowledge, we now show how to
construct a simulator (Π.Sim.crs,Π.Sim.pf) for a CRS subvertor X. Let X be a CRS subvertor that
outputs (pk, vk). Define X′(1λ; r) that runs (pk, vk) ← X(1λ; r), parses pk as above and returns
(pkH,0,pkH,1, pkH,2). By SKE (Definition 2.14) there exists a PT algorithm EX′ such that if for
some P ∈ G, τ ∈ F: pkH,0 = P , pkH,1 = τP , pkH,2 = τ2P then with overwhelming probability EX′

extracts τ . Using EX′ we define the CRS simulator S.crs as follows: On input 1λ do the following:

1. Sample randomness for X: r←$ {0, 1}X.rl(λ).

2. Run (pk, vk)← X(1λ; r).

3. If (R,pk, vk) passes verification then τ ←$ EX′(1λ, r); else τ ← ⊥
4. Return ((pk, vk), r, τ).

Proof simulation. Given (pk, vk), trapdoor τ and a statement x ∈ Fn, the proof simulator S.pf
is defined as follows:

1. If τ = ⊥ then return ⊥.

2. Use τ to compute Z(τ) (which in a verified CRS is non-zero). Compute the following “simu-
lation keys”:

skA := Z(τ)−1pk′′Z,A skB := Z(τ)−1pk′′Z,B skC := Z(τ)−1pk′′Z,C

(For a valid CRS, we have skA = βAP and skB = βBP and skC = βCP .)

3. Define vx :=
∑d−1

j=0a0,jτ
j +

∑n
i=1 xi

∑d−1
j=0ai,jτ

j . Set vkx := vxP and vk′x := vxvkα.

4. Choose a, b, c←$ F and define the proof π := (πA, π
′
A, πB, π

′
B, πC , π

′
C , πK , πH) as follows:

πA := (a− vx)P = aP − vkx π′A := (a− vx)vkα

πB := (b−B0(τ))P = bP − vkB,0 π′B := (b−B0(τ))vkα

πC := (c− C0(τ))P = cP − vkC,0 π′C := (c− C0(τ))vkα

πH := Z(τ)−1(ab− c)P π′H := Z(τ)−1(ab− c)vkα
πK := (a− vx)skA + (b−B0(τ))skB + (c− C0(τ))skC

Theorem 4.2 Let R be a strong QAP and sGen be a bilinear-group generator. Then the GGPR
QAP-based SNARK [GGPR13] with CRS verification satisfies subversion zero knowledge under
SKE.

Proof. Consider (pk, vk)← X(1λ; r) and let E denote the event that (R, pk, vk) passes verification
(in which case X returns (P, τP, τ2P)) but EX′ fails to extract τ . Since a correct (pk, vk) satisfies
e(pkH,1,pkH,1) = e(pkH,0, pkH,2), by assumption SKE the probability of E is negligible. It suffices
thus to show that, conditioned on E not happening, the probability that A outputs 1 in game S-ZK
when b = 0 is the same as when b = 1.

19

If (pk, vk) does not pass verification then τ = ⊥ and both prover and proof simulator return ⊥.

If (pk, vk) verifies then (because of ¬E) EX′ extracts τ . We show that the outputs of the prover
and the proof simulator are distributed equivalently. Above we showed that if the CRS verifies
then there exist τ, α, βA, βB, βC , γ ∈ F with Z(τ) 6= 0 and γ 6= 0 such that pk and vk are defined
as in Items 3. and 4. in Key generation.

Moreover, in a real proof the elements δAZ(τ)P in πA and δBZ(τ)P in πB and δCZ(τ)P in πC
make πA, πB and πC uniformly random. For a fixed vk and πA, πB and πC , the equations in 2. of
Verify uniquely determine π′A, π′B and π′C , and the equations in 3. and 4. uniquely determine πK
and πH (since vkγ 6= 0G and vkZ 6= 0G).

In a simulated proof πA, πB and πC are also uniformly random, so it suffices to show that the
remaining proof elements satisfy the verification equations:

e(π′A, P) = e
(
(a− vx)αP, P

)
= e(πA, vkα)

e(π′B, P) = e
(
(b−B0(τ))αP, P

)
= e(πB, vkα)

e(π′C , P) = e
(
(c− C0(τ))αP, P

)
= e(πC , vkα)

e(πK , vkγ) = e
(
(a− vx)βAP + (b−B0(τ))βBP + (c− C0(τ))βCP, γP

)
= e(πA, vk

′′
A,γ) · e(πB, vk

′′
B,γ) · e(πC , vk

′′
C,γ)

e(πH , vkZ) = e
(
Z(τ)−1(ab− c)P,Z(τ)P

)
= e
(
aP, bP

)
· e
(
cP, P

)−1
= e(vkx + πA, vkB,0 + πB) · e(vkC,0 + πC , P)−1

This concludes the proof.

Corollary 4.3 Let R be a strong QAP and sGen be a bilinear-group generator. Then the GGPR
QAP-based SNARK [GGPR13] with CRS verification satisfies perfect witness-indistinguishability.

Proof. In Theorem 4.2 we showed that proofs under a (possibly maliciously generated but) valid
CRS are uniform group elements subject to satisfying the verification equation. Proofs using
different witnesses are thus equally distributed.

GGPR’s QSP-based SNARK. Gennaro et al. [GGPR13] also introduced (strong) quadratic
span programs (QSP) and show how to efficiently convert any boolean circuit into an equivalent
strong QSP. Strong QSPs are defined similarly to QAPs (Definition 3.3) except that there are
no polynomials Ci(X) and the coefficients can be different (like (r1, . . . , rm) and (s1, . . . , sm) in
Eq. (7)). Moreover the statement x ∈ {0, 1}n′

with n = 2n′ is mapped to ~r and ~s as follows: for
i ∈ {1, . . . , n′}: r2i = s2i := xi and r2i−1 = s2i−1 := 1− xi.

The first SNARK is construction in [GGPR13] is based on strong QSPs and is obtained by
setting Ci(X) :≡ 0 for all i in the QAP-based one above. It is straightforward to verify that all our
results for the QAP-based construction carry over to the QSP-based SNARK.

5 Asymmetric Pinocchio

Ben-Sasson, Chiesa, Tromer and Virza [BCTV14] proposed an asymmetric variant of Pinocchio
[PHGR13] in which they also shorten the verification key. We add 4 group elements to the CRS
(which we denote by ck for “checking key”), which via the pairings then enable one to check whether

20

(pk, vk) was correctly computed. We show that under SKE (Definition 2.15), our modification of
the scheme from [BCTV14] is subversion-zero-knowledge.

Key generation. On input a R as in Eq. (8) that corresponds to a QAP do the following:

1. Generate (deterministically) an asymmetric bilinear group (p,G1,G2,GT , e)← aGen(1λ) and
sample random group generators P1←$ G∗1 and P2←$ G∗2. Set Gr = (p,G1,G2,GT , e, P1, P2)

2. Set

Am+1 Bm+1 Cm+1

Am+2 Bm+2 Cm+2

Am+3 Bm+3 Cm+3

 :=

Z 0 0
0 Z 0
0 0 Z

3. Sample random ρA, ρB, β, γ←$ F∗ and τ, αA, αB, αC , ←$ F, conditioned on Z(τ) 6= 0.

4. Set pk = (pkA, pk
′
A,pkB, pk

′
B,pkC ,pk

′
C , pkK , pkH) where

for i = 0, . . . ,m+ 3 : pkA,i := Ai(τ)ρAP1 pk′A,i := Ai(τ)αAρAP1

pkB,i := Bi(τ)ρBP2 pk′B,i := Bi(τ)αBρBP1

pkC,i := Ci(τ)ρAρBP1 pk′C,i := Ci(τ)αCρAρBP1

pkK,i := β(Ai(τ)ρA +Bi(τ)ρB + Ci(τ)ρAρB)P1

for i = 0, . . . , d : pkH,i := τ iP1

5. Set vk = (Gr, vkA, vkB, vkC , vkγ , vkβγ , v̂kβγ , vkZ , vkIC), where

vkA := αAP2 vkB := αBP1 vkC := αCP2

vkγ := γP2 vkβγ := γβP1 v̂kβγ := γβP2

vkZ := Z(τ)ρAρBP2

{
vkIC,i

}n
i=0

:=
{
Ai(τ)ρAP1

}n
i=0

6. Set ck := (ckA, ckB, ckC , ckH) where

ckA := ρAP2 ckB := ρBP2 ckC := ρAρBP2 ckH := τP2

7. Return crs := (pk, vk, ck).

CRS verification. On input (R,pk, vk, ck), let {ai,j}, {bi,j}, {ci,j}, {zk} denote the coefficients
of Ai(X), Bi(X), Ci(X) and Z(X), respectively, for 0 ≤ i ≤ m and 0 ≤ j ≤ d− 1 and 0 ≤ k ≤ d.

1. Compute (p,G1,G2,GT , e)← aGen(1λ) and check that it is the same as the group in Gr from
vk; check P1 6= 0G1 and P2 6= 0G2 .

2. Check correct choice of secret values: ckA 6= 0G2 , ckB 6= 0G2 vkβγ 6= 0G1 and vkZ 6= 0G2 .

3. Check consistency of pkH : Check pkH,0 = P1; for i = 1, . . . , d: e(pkH,i, P2) = e(pkH,i−1, ckH)

4. Check consistency of pkA, pk
′
A,pkB, pk

′
B: for i = 0, . . . ,m+ 3:

e(pkA,i, P2) = e(
∑d−1

j=0ai,jpkH,j , ckA) e(pk′A,i, P2) = e(pkA,i, vkA)

e(P1,pkB,i) = e(
∑d−1

j=0bi,jpkH,j , ckB) e(pk′B,i, P2) = e(vkB,pkB,i)

5. Check consistency of ckC : e
(
pkA,m+1, ckB) = e

(∑d
j=0zjpkH,j , ckC

)
(Note that for an honest CRS we have pkA,m+1 = Z(τ)ρAP1 6= 0.)

21

6. Check consistency of vk: for i = 0, . . . , n: vkIC,i = pkA,i and

e(vkβγ , P2) = e(P1, v̂kβγ) e(P1, vkZ) = e
(∑d

j=0zjpkH,j , ckC
)

7. Check consistency of pkC ,pk
′
C ,pkK : for i = 0, . . . ,m+ 3:

e(pkC,i, P2) = e(
∑d−1

j=0ci,jpkH,j , ckC) e(pk′C,i, P2) = e(pkC,i, vkC)

e(pkK,i, vkγ) = e(pkA,i + pkC,i, v̂kβγ) · e(vkβγ , pkB,i)

8. If all checks in 1.–7. succeeded then return true and otherwise false.

Prove. On input R, (pk, vk, ck) and ~s ∈ Fm s.t. Eq. (6) is satisfied for some H(X) ∈ F[X].

1. If (R,pk, vk, ck) does not pass verification, as defined above, return ⊥.

2. Sample δA, δB, δC ←$ F and define

A(X) := A0(X) +
∑m

i=1 siAi(X) + δAZ(X)

B(X) := B0(X) +
∑m

i=1 siBi(X) + δBZ(X)

C(X) := C0(X) +
∑m

i=1 siCi(X) + δCZ(X)

3. Compute H(X) such that A(X)B(X) − C(X) = H(X)Z(X) and let (h0, . . . , hd) ∈ Fd+1 be
its coefficients.

4. Define p̃kA,i := 1i>npkA,i (that is p̃kA,i = 0 for 0 ≤ i ≤ n and = pkA,i otherwise)

Define p̃k
′
A,i := 1i>npk

′
A,i

5. Let ~c := (1 ◦ ~s ◦ δA ◦ δB ◦ δC) ∈ Fm+4 and compute

πA :=
〈
~c, p̃kA

〉
π′A :=

〈
~c, p̃k

′
A

〉
πB :=

〈
~c,pkB

〉
π′B :=

〈
~c,pk′B

〉
πC :=

〈
~c,pkC

〉
π′C :=

〈
~c,pk′C

〉
pkK :=

〈
~c,pkK

〉
πH :=

〈
~h,pkH

〉
6. Return π :=

(
πA, π

′
A, πB, π

′
B, πC , π

′
C , πK , πH

)
.

Verify. On input R, vk, ~x ∈ Fn and proof π ∈ G7
1 ×G2.

1. Compute vkx := vkIC,0 +
∑n

i=1 xivkIC,i.

2. Check validity of π′A, π′B, and π′C :

e(π′A, P2) = e(πA, vkA) e(π′B, P2) = e(vkB, πB) e(π′C , P2) = e(πC , vkC)

3. Check same coefficients were used via πK :

e(πK , vkγ) = e(vkx + πA + πC , v̂kβγ) · e(vkβγ , πB)

4. Check QAP is satisfied via πH :

e(vkx + πA, πB) = e(πH , vkZ) · e(πC , P2)

5. If all checks in 2.–4. succeeded then return true and otherwise false.

Remark 5.1 The conditions that in Key generation ρA, ρB, β, γ and Z(τ) must be non-zero is
not made explicit in [BCTV14]. However if γ = 0 then any πK satisfies the verification equation
in 3. If β = 0 and γ 6= 0 then no πK satisfies it. If Z(τ) = 0 or ρA = 0 or ρB = 0 then vkZ = 0G2

and setting πB and πC to zero always satisfies the equation in 4.

22

Theorem 5.2 ([PHGR13, BCTV14]) If for aGen the q-PDH, the q-PKE and the 2q-SDH assump-
tions hold for q := 4d+4, where d is the degree of the QAP, then the above scheme without including
ck in the CRS is knowledge-sound. Moreover, it is statistical zero-knowledge.

Inspecting the proof in [PHGR13], it is easily seen that the additional elements contained in ck
can be produced by the reduction. This yields the following.

Theorem 5.3 If for aGen the q-PDH, the q-PKE and the 2q-SDH assumptions hold for q := 4d+4,
where d is the degree of the QAP, then the above scheme is knowledge-sound. Moreover, it is
statistical zero-knowledge.

Subversion Zero Knowledge

CRS verifiability We first show that for a CRS (pk, vk, ck) that passes verification, there exist
τ, αA, αB, αC ∈ F and ρA, ρB, β, γ,∈ F∗ such that (pk, vk, ck) is computed as in Key generation.
Let τ, αA, αB, αC , ρA, ρB, γ, ξ ∈ F be the values defined by the logarithms of the elements ckH , vkA,
vkB, vkC , ckA, ckB, vkγ and vkβγ , respectively. Check 2. ensures that ρA, ρB, ξ and Z(τ) are all
non-zero. Set β := ξγ−1 6= 0.

Check 3. ensures that pkH is correctly computed w.r.t. τ . Check 4. ensures that pkA, pk′A,
pkB and pk′B are correctly computed w.r.t. τ , ρA, ρB, αA and αB. Check 5. ensures that pkC is
correctly computed: since by 4., pkA,m+1 = Z(τ)ρA, P1 and Z(τ) 6= 0, we have ckC = ρAρBP2.

Check 6. ensures that v̂kβγ and vkZ are correctly computed and Check 7. does the same for pkC ,
pk′C and pkK .

Trapdoor extraction. This is done exactly as for the scheme in Section 4. Let X be a CRS
subvertor that outputs (pk, vk, ck). Define X′(1λ; r) that runs (pk, vk, ck) ← X(1λ; r), parses pk
as above and returns (pkH,0, pkH,1,pkH,2). By SKE (Definition 2.15) there exists a PT algorithm
EX′ that if for some P ∈ G, τ ∈ F: pkH,0 = P , pkH,1 = τP , pkH,2 = τ2P then with overwhelming

probability EX′ extracts τ . Using EX′ we define the CRS simulator S.crs as follows: On input 1λ:

1. Sample randomness for X: r←$ {0, 1}X.rl(λ).

2. Run (pk, vk, ck)← X(1λ; r).

3. If (R,pk, vk, ck) passes verification then τ ←$ EX′(1λ, r); else τ ← ⊥.

4. Return ((pk, vk, ck), r, τ).

Proof simulation. Given pk, trapdoor τ and a statement x ∈ Fn, the proof simulator S.pf is
defined as follows:

1. If τ = ⊥ then return ⊥.

2. Use τ to compute Z(τ) (which in a verified CRS is non-zero). Compute the following “simu-
lation keys”:

skA := Z(τ)−1pkA,m+1 = ρAP1 sk′A := Z(τ)−1pk′A,m+1 = αAρAP1

skB := Z(τ)−1pkB,m+2 = ρBP2 sk′B := Z(τ)−1pk′B,m+2 = αBρBP1

skC := Z(τ)−1pkC,m+3 = ρAρBP1 sk′C := Z(τ)−1pk′C,m+3 = αCρAρBP1

sk′′A = Z(τ)−1pkK,m+1 = βρAP1

sk′′B = Z(τ)−1pkK,m+2 = βρBP1 sk′′C = Z(τ)−1pkK,m+3 = βρAρBP1

23

3. Compute vkx := pkA,0 +
∑n

i=1 xipkA,i and vk′x := pk′A,0 +
∑n

i=1 xipk
′
A,i

4. Choose a, b, c←$ F and define the proof π := (πA, π
′
A, πB, π

′
B, πC , π

′
C , πK , πH) as follows:

πA := a skA − vkx = aρAP1 − vkx π′A := a sk′A − vk′x = aαAρAP1 − αAvkx
πB := b skB = bρBP2 π′B := b sk′B = b αBρBP1

πC := c skC = c ρAρBP1 π′C := c sk′C = c αCρAρBP1

πK := a sk′′A + b sk′′B + c sk′′C πH := Z(τ)−1(ab− c)P1

Theorem 5.4 Let R be a QAP and aGen be a bilinear-group generator. Then the above scheme
adapted from [BCTV14] satisfies subversion zero knowledge under SKE.

Proof. The proof is analogous to that of Theorem 4.2. We highlight the differences: Since for a
valid CRS the elements ρA, ρB and Z(τ) are all non-zero, the elements δAZ(τ)ρAP1 in πA, as well
as δBZ(τ)ρBP1 in πB and δCZ(τ)ρAρBP1 in πC , make πA, πB and πC uniformly random. If we fix
πA, πB, πC and vk then the verification equations in 2. uniquely determine π′A, π′B and π′C , while
the equations in 3. and 4. uniquely determine πK and πH (since vkγ 6= 0G2 and vkZ 6= 0G2).

Since for a valid CRS the values ρA and ρB are non-zero, the simulated proof elements πA, πB and
πC are also uniformly random. Thus, it suffices to show that the remaining proof elements satisfy
the verification equations:

e(π′A, P2) = e
(
aαAρAP1 − αAvkx, P2

)
= e(πA, vkA)

e
(
π′B, P2

)
= e
(
b αBρBP1, P2

)
= e(vkB, πB)

e
(
π′C , P2

)
= e
(
c αCρAρBP1, P2

)
= e(πC , vkC)

e(πK , vkγ) = e
(
β(aρAP1 + bρBP1 + c ρAρBP1), γP2

)
= e(vkx + πA + πC , v̂kβγ) · e(vkβγ , πB)

e(πH , vkZ) = e
(
Z(τ)−1(ab− c)P1, Z(τ)ρAρBP2

)
=

= e
(
aρAP1, bρBP2

)
· e
(
cρAρBP1, P2

)−1
= e(vkx + πA, πB) · e(πC , P2)

−1

This concludes the proof.

Corollary 5.5 Let R be a QAP and aGen be a bilinear-group generator. Then the above scheme
adapted from [BCTV14] satisfies perfect witness-indistinguishability.

Proof. In Theorem 5.4 we showed that proofs under a (possibly maliciously generated but) valid
CRS are uniform group elements subject to satisfying the verification equation. Proofs using
different witnesses are thus equally distributed.

DFGK’s SSP-based SNARK. Danezis, Fournet, Groth and Kohlweiss [DFGK14] define square
span programs, which are described by only one set {Ai(X)}i of polynomials (cf. Definition 3.3).
They show how to convert any boolean circuit into an SSP. They construct a ZK SNARK for SSPs
with proofs only consisting of 4 elements of an asymmetric bilinear group. Analogously to the
SNARK from [BCTV14], their scheme is shown to satisfy subversion zero knowledge by observing
that (1) the structure of a CRS can be verified via the bilinear map; (2) the trapdoor τ (which is
s in their notation) can be extracted analogously to the SNARK analyzed above; and (3) proofs
can be simulated using s by simply following the simulation procedure described in [DFGK14].
(When s is known, the element Gβ (in their multiplicative notation) can be obtained from the CRS
element Gβt(s) since t(s) 6= 0.)

24

6 Groth’s near-optimal SNARKs

Groth [Gro16] proposed the most efficient zk-SNARK system to date. He drastically reduced the
proof size for QAP-based SNARKs to 3 group elements and verification to one equation using 3
pairings. He achieves this by proving soundness directly in the generic-group model.

Key generation. On input a R as in Eq. (8) that corresponds to a QAP do the following:

1. Generate (deterministically) an asymmetric bilinear group (p,G1,G2,GT , e)← aGen(1λ) and
sample random group generators P1←$ G∗1 and P2←$ G∗2. Set Gr = (p,G1,G2,GT , e, P1, P2).

2. Sample random α, β, γ, δ←$ F∗ and τ ←$ F conditioned on Z(τ) 6= 0.

3. Set pk = (pkα, pkβ,pk
′
β,pkδ,pk

′
δ, pkH , pk

′
H ,pkK ,pkZ), where

pkα := αP1 pkβ := βP1 pk′β := βP2 pkδ := δP1 pk′δ := δP2

for i = 0, . . . , d− 1 : pkH,i := τ iP1 pk′H,i := τ iP2

for i = n+ 1, . . . ,m : pkK,i := δ−1
(
βAi(τ) + αBi(τ) + Ci(τ)

)
P1

for i = 0, . . . , d− 2 : pkZ,i := δ−1τ iZ(τ)P1

4. Set vk = (Gr, vkT , vk
′
γ , vk

′
δ, vkL), where

vkT := e(P1, P2)
αβ vk′γ := γP2 vk′δ := δP2

for i = 0, . . . , n : vkL,i := γ−1
(
βAi(τ) + αBi(τ) + Ci(τ)

)
P1

5. Return crs := (pk, vk).

CRS verification. On input (R,pk, vk), letting {ai,j}, {bi,j}, {ci,j}, {zk} denote the coefficients
of Ai(X), Bi(X), Ci(X) and Z(X), respectively, for 0 ≤ i ≤ m and 0 ≤ j ≤ d− 1 and 0 ≤ k ≤ d.

1. Compute (p,G1,G2,GT , e) ← aGen(1λ) and check that it is the same as the group in Gr
contained in vk; check P1 6= 0G1 and P2 6= 0G2 .

2. Check that α, β, γ and δ, Z(τ) are non-zero: pkα 6= 0G1 , pkβ 6= 0G1 , vk′γ 6= 0G2 , pkδ 6= 0G1 ,
pkZ,0 6= 0G1

3. Check consistency of pkH and pk′H : check pkH,0 = P1 and pk′H,0 = P2. For i = 1, . . . , d:

e(pkH,i, P) = e(pkH,i−1,pk
′
H,1) e(P1,pk

′
H,i) = e(pkH,i, P2)

4. Check consistency of the remaining pk elements:

e(P1,pk
′
β) = e(pkβ, P2) e(P1, pk

′
δ) = e(pkδ, P2)

for i = n+ 1, . . . ,m :

e(pkK,i, pk
′
δ) = e

(∑d−1
j=0ai,jpkH,i, pk

′
β

)
· e
(
pkα,

∑d−1
j=0bi,jpk

′
H,i

)
· e
(∑d−1

j=0ci,jpkH,i, P2

)
for i = 0, . . . , d− 2 : e(pkZ,i, pk

′
δ) = e

(∑d−1
j=0zj pkH,i,pk

′
H,i

)
5. Check consistency of the remaining vk elements: for i = 0, . . . , n:

e(pkL,i,pk
′
γ) = e

(∑d−1
j=0ai,jpkH,i, pk

′
β

)
· e
(
pkα,

∑d−1
j=0bi,jpk

′
H,i

)
· e
(∑d−1

j=0ci,jpkH,i, P2

)
vkT = e(pkα,pk

′
β) vk′δ = pk′δ

25

6. If all checks in 1.–5. succeeded then return true and otherwise false.

Prove. On input R, (pk, vk) and ~s ∈ Fm s.t. Eq. (6) is satisfied:

1. If (R,pk, vk) does not pass verification, as defined above, return ⊥.

2. Compute H(X) such that Eq. (6) is satisfied and let (h0, . . . , hd−2) ∈ Fd−1 be its coefficients.

3. Sample r, s←$ F and define

πA := pkα +
∑d−1

j=0

(
a0,j + si

∑m
i=1ai,j

)
pkH,j + r pkδ

π′B := pk′β +
∑d−1

j=0

(
b0,j + si

∑m
i=1bi,j

)
pk′H,j + spk′δ

πC :=
∑m

i=n+1si pkK,i +
∑d−2

j=0hj pkZ,i + s πA + r πB,aux − rs πδ

with πB,aux := pkβ +
∑d−1

j=0

(
b0,j + si

∑m
i=1bi,j

)
pkH,j + spkδ

4. Return π := (πA, π
′
B, πC).

Verify. On input R, vk, ~x ∈ Fn and proof π ∈ G2
1 ×G2:

1. Compute vkx := vkL,0 +
∑n

i=1 xivkL,i.

2. Return true if and only if the following holds:

e(πA, π
′
B) = vkT + e(vkx, vk

′
γ) + e(πC , vk

′
δ)

Theorem 6.1 ([Gro16]) The above scheme is knowledge-sound against adversaries that only use
a polynomial number of generic bilinear group operations. Moreover, it has perfect zero knowledge.

Subversion Zero Knowledge

CRS verifiability. Let τ, α, β, γ, δ denote the logarithms of pkH,1, pkα, pkβ, vk′γ , pkδ. By
Check 2. in CRS verification, α, β, γ, δ, Z(τ) are non-zero. It follows by inspection that if all
checks in 3.–5. pass then the remaining elements of pk and vk are correctly computed.

Trapdoor extraction. Let X be a CRS subvertor that outputs (pk, vk). Define X′(1λ; r) that
runs (pk, vk) ← X(1λ; r), parses pk as above and returns (P1, pkH,1,pkH,2, P2, pk

′
H,1). For a valid

CRS this corresponds to (P1, τP1, τ
2P1, P2, τP2) for some P1 ∈ G1, P2 ∈ G2 and τ ∈ F. By SKE

there exists a PT algorithm EX′ which from a valid tuple extracts τ with overwhelming probability.
Define another algorithm X′′(1λ; r) that runs (pk, vk)← X(1λ; r) and τ ←$ EX′(1λ, r), computes

Z(τ) (which is non-zero in a valid CRS) and sets P ′1 := Z(τ)−1 pkZ,0 (which for a valid CRS
yields P ′1 = δ−1P1). Finally, X′′ returns (P ′1, P1, pkδ, P2, pk

′
δ). For a valid CRS this corresponds

to
(
P ′1, (P

′
1)
δ, (P ′1)

δ2 , P2, P
δ
2

)
. By SKE there exist a PT EX′′ that returns δ with overwhelming

probability.
Using EX′ and EX′′ , we define the CRS simulator S.crs as follows: On input 1λ do the following:

1. Sample randomness for X: r←$ {0, 1}X.rl(λ)

2. Run (pk, vk)← X(1λ; r)

3. If (R,pk, vk) passes verification then τ ←$ EX′(1λ, r) and δ←$ EX′′(1λ, r); else (τ, δ)← (⊥,⊥)

4. Return ((pk, vk), r, τ)

Proof simulation. Given pk, trapdoor (τ, δ) and a statement x ∈ Fn, the proof simulator S.pf
does the following:

26

1. If (τ, δ) = (⊥,⊥) then return ⊥.

2. Choose a, b←$ F and define the proof π := (πA, π
′
B, πC) as follows

πA := aP1 + pkα π′B := bP2 + pk′β

πC := δ−1
(
ab− C0(τ)−

∑n
i=1xiCi(τ)

)
P1 + δ−1

(
b−B0(τ)−

∑n
i=1xiBi(τ)

)
pkα

+ δ−1
(
a−A0(τ)−

∑n
i=1xiAi(τ)

)
pkβ

Theorem 6.2 Let R be a QAP and aGen be a bilinear-group generator. Then Groth’s SNARK
[Gro16] with CRS verification satisfies subversion zero knowledge under SKE.

Proof. Let E denote the event that (R,pk, vk) passes verification but either EX′ or EX′′ fails
to extract τ and δ. Since a correct (pk, vk) satisfies e(pkH,1, P2) = e(P1, pk

′
H,1) as well as

e(pkH,2, P2) = e(pkH,1,pk
′
H,1), by SKE (Definition 2.15), the probability that EX′ fails when X′

outputs (P1,pkH,1,pkH,2, P2,pk
′
H,1) is negligible. A correct CRS also satisfies both e(P1, P2) =

e(Z(τ)−1pkZ,0, pk
′
δ) and e(pkδ, P2) = e(P1,pk

′
δ), thus again by SKE, the probability that EX′′

fails when X′′ outputs
(
Z(τ)−1 pkZ,0, P1,pkδ, P2,pk

′
δ

)
is also negligible. By a union bound, the

probability of E is thus negligible.

It suffices thus to show that, conditioned on E not happening, game S-ZK when b = 0 is distributed
as as game S-ZK when b = 1.

If (pk, vk) does not pass verification then (τ, δ) = (⊥,⊥) and both the prover and the proof
simulator return ⊥.

If (pk, vk) verifies then we show that the outputs of the prover and the proof simulator are dis-
tributed equivalently. Above we argued that for some non-zero α, β, γ, δ and τ with Z(τ) 6= 0 we
have that pk and vk are defined as in 3. and 4. in Key generation.

Since for a valid CRS both pkδ and pk′δ are non-zero, for honestly generated proofs the elements
rpkδ in πA, and spk′δ in π′B, make πA and π′B uniformly random. For fixed vk, πA and π′B, the
verification equation uniquely determines πC , since vk′δ 6= 0.

In a simulated proof πA and π′B are also uniformly random, so it suffices to show that the simulated
πC satisfies the verification equation:

e(πC , vk
′
δ) =

= e
((
ab− C0(τ)−

∑
xiCi(τ) + α

(
b−B0(τ)−

∑
xiBi(τ)

)
+ β

(
a−A0(τ)−

∑
xiAi(τ)

))
P1, P2

)
= e(abP1, P2) + e(aβP1, P2) + e(αbP1, P2) + e(αβP1, P2)− e(αβP1, P2)

− e
((
βA0(τ) +

∑
xiβAi(τ) + αB0(τ) +

∑
xiαBi(τ) + C0(τ) +

∑
xiCi(τ)

)
P1, P2

)
= e(πA, π

′
B)− vkT − e(vkx, vk

′
γ)

This concludes the proof.

Corollary 6.3 Let R be a QAP and aGen be a bilinear-group generator. Then Groth’s SNARK
[Gro16] with CRS verification satisfies perfect witness-indistinguishability.

Proof. In Theorem 6.2 we showed that proofs under a (possibly maliciously generated but) valid
CRS are uniform group elements subject to satisfying the verification equation. Proofs using
different witnesses are thus equally distributed.

27

Acknowledgments

The author would like to thank Mihir Bellare and Rosario Gennaro for helpful discussions.

References

[AF07] Masayuki Abe and Serge Fehr. Perfect NIZK with adaptive soundness. In Salil P. Vadhan,
editor, TCC 2007, volume 4392 of LNCS, pages 118–136. Springer, Heidelberg, February 2007.

[BB04] Dan Boneh and Xavier Boyen. Short signatures without random oracles. In Christian Cachin
and Jan Camenisch, editors, EUROCRYPT 2004, volume 3027 of LNCS, pages 56–73. Springer,
Heidelberg, May 2004.

[BBS04] Dan Boneh, Xavier Boyen, and Hovav Shacham. Short group signatures. In Matthew Franklin,
editor, CRYPTO 2004, volume 3152 of LNCS, pages 41–55. Springer, Heidelberg, August 2004.

[BCCT12] Nir Bitansky, Ran Canetti, Alessandro Chiesa, and Eran Tromer. From extractable collision
resistance to succinct non-interactive arguments of knowledge, and back again. In Shafi Gold-
wasser, editor, ITCS 2012, pages 326–349. ACM, January 2012.

[BCG+13] Eli Ben-Sasson, Alessandro Chiesa, Daniel Genkin, Eran Tromer, and Madars Virza. SNARKs
for C: Verifying program executions succinctly and in zero knowledge. In Ran Canetti and
Juan A. Garay, editors, CRYPTO 2013, Part II, volume 8043 of LNCS, pages 90–108. Springer,
Heidelberg, August 2013.

[BCG+14a] Eli Ben-Sasson, Alessandro Chiesa, Christina Garman, Matthew Green, Ian Miers, Eran
Tromer, and Madars Virza. Zerocash: Decentralized anonymous payments from bitcoin. In
2014 IEEE Symposium on Security and Privacy, pages 459–474. IEEE Computer Society Press,
May 2014.

[BCG+14b] Eli Ben-Sasson, Alessandro Chiesa, Daniel Genkin, Eran Tromer, and Madars Virza. libsnark,
2014. Available at https://github.com/scipr-lab/libsnark.

[BCG+15] Eli Ben-Sasson, Alessandro Chiesa, Matthew Green, Eran Tromer, and Madars Virza. Secure
sampling of public parameters for succinct zero knowledge proofs. In 2015 IEEE Symposium
on Security and Privacy, pages 287–304. IEEE Computer Society Press, May 2015.

[BCI+10] Eric Brier, Jean-Sébastien Coron, Thomas Icart, David Madore, Hugues Randriam, and Mehdi
Tibouchi. Efficient indifferentiable hashing into ordinary elliptic curves. In Tal Rabin, editor,
CRYPTO 2010, volume 6223 of LNCS, pages 237–254. Springer, Heidelberg, August 2010.

[BCI+13] Nir Bitansky, Alessandro Chiesa, Yuval Ishai, Rafail Ostrovsky, and Omer Paneth. Succinct
non-interactive arguments via linear interactive proofs. In Amit Sahai, editor, TCC 2013,
volume 7785 of LNCS, pages 315–333. Springer, Heidelberg, March 2013.

[BCTV14] Eli Ben-Sasson, Alessandro Chiesa, Eran Tromer, and Madars Virza. Succinct non-interactive
zero knowledge for a von Neumann architecture. In Kevin Fu and Jaeyeon Jung, editors,
USENIX Security Symposium, pages 781–796. USENIX Association, 2014.

[BDSMP91] Manuel Blum, Alfredo De Santis, Silvio Micali, and Giuseppe Persiano. Noninteractive zero-
knowledge. SIAM Journal on Computing, 20(6):1084–1118, 1991.

[BF01] Dan Boneh and Matthew K. Franklin. Identity-based encryption from the Weil pairing. In
Joe Kilian, editor, CRYPTO 2001, volume 2139 of LNCS, pages 213–229. Springer, Heidelberg,
August 2001.

[BFM88] Manuel Blum, Paul Feldman, and Silvio Micali. Non-interactive zero-knowledge and its appli-
cations (extended abstract). In 20th ACM STOC, pages 103–112. ACM Press, May 1988.

28

https://github.com/scipr-lab/libsnark

[BFS16] Mihir Bellare, Georg Fuchsbauer, and Alessandra Scafuro. NIZKs with an untrusted CRS:
Security in the face of parameter subversion. In Jung Hee Cheon and Tsuyoshi Takagi, editors,
ASIACRYPT 2016, Part II, volume 10032 of LNCS, pages 777–804. Springer, Heidelberg,
December 2016.

[BG93] Mihir Bellare and Oded Goldreich. On defining proofs of knowledge. In Ernest F. Brickell,
editor, CRYPTO’92, volume 740 of LNCS, pages 390–420. Springer, Heidelberg, August 1993.

[BP04] Mihir Bellare and Adriana Palacio. The knowledge-of-exponent assumptions and 3-round zero-
knowledge protocols. In Matthew Franklin, editor, CRYPTO 2004, volume 3152 of LNCS,
pages 273–289. Springer, Heidelberg, August 2004.

[BR93] Mihir Bellare and Phillip Rogaway. Random oracles are practical: A paradigm for designing
efficient protocols. In V. Ashby, editor, ACM CCS 93, pages 62–73. ACM Press, November
1993.

[BR06] Mihir Bellare and Phillip Rogaway. The security of triple encryption and a framework for code-
based game-playing proofs. In Serge Vaudenay, editor, EUROCRYPT 2006, volume 4004 of
LNCS, pages 409–426. Springer, Heidelberg, May / June 2006.

[CFN+14] Stephen Checkoway, Matthew Fredrikson, Ruben Niederhagen, Adam Everspaugh, Matthew
Green, Tanja Lange, Thomas Ristenpart, Daniel J Bernstein, Jake Maskiewicz, and Hovav
Shacham. On the practical exploitability of Dual EC in TLS implementations. In USENIX
Security, 2014.

[Dam92] Ivan Damg̊ard. Towards practical public key systems secure against chosen ciphertext attacks.
In Joan Feigenbaum, editor, CRYPTO’91, volume 576 of LNCS, pages 445–456. Springer,
Heidelberg, August 1992.

[DDO+01] Alfredo De Santis, Giovanni Di Crescenzo, Rafail Ostrovsky, Giuseppe Persiano, and Amit
Sahai. Robust non-interactive zero knowledge. In Joe Kilian, editor, CRYPTO 2001, volume
2139 of LNCS, pages 566–598. Springer, Heidelberg, August 2001.

[DFGK14] George Danezis, Cédric Fournet, Jens Groth, and Markulf Kohlweiss. Square span programs
with applications to succinct NIZK arguments. In Palash Sarkar and Tetsu Iwata, editors, ASI-
ACRYPT 2014, Part I, volume 8873 of LNCS, pages 532–550. Springer, Heidelberg, December
2014.

[FHS15] Georg Fuchsbauer, Christian Hanser, and Daniel Slamanig. Practical round-optimal blind
signatures in the standard model. In Rosario Gennaro and Matthew J. B. Robshaw, editors,
CRYPTO 2015, Part II, volume 9216 of LNCS, pages 233–253. Springer, Heidelberg, August
2015.

[FLS90] Uriel Feige, Dror Lapidot, and Adi Shamir. Multiple non-interactive zero knowledge proofs
based on a single random string (extended abstract). In 31st FOCS, pages 308–317. IEEE
Computer Society Press, October 1990.

[FS87] Amos Fiat and Adi Shamir. How to prove yourself: Practical solutions to identification and
signature problems. In Andrew M. Odlyzko, editor, CRYPTO’86, volume 263 of LNCS, pages
186–194. Springer, Heidelberg, August 1987.

[Gen04] Rosario Gennaro. Multi-trapdoor commitments and their applications to proofs of knowledge se-
cure under concurrent man-in-the-middle attacks. In Matthew Franklin, editor, CRYPTO 2004,
volume 3152 of LNCS, pages 220–236. Springer, Heidelberg, August 2004.

[GGPR13] Rosario Gennaro, Craig Gentry, Bryan Parno, and Mariana Raykova. Quadratic span programs
and succinct NIZKs without PCPs. In Thomas Johansson and Phong Q. Nguyen, editors,
EUROCRYPT 2013, volume 7881 of LNCS, pages 626–645. Springer, Heidelberg, May 2013.

[GMR89] Shafi Goldwasser, Silvio Micali, and Charles Rackoff. The knowledge complexity of interactive
proof systems. SIAM Journal on Computing, 18(1):186–208, 1989.

29

[GO94] Oded Goldreich and Yair Oren. Definitions and properties of zero-knowledge proof systems.
Journal of Cryptology, 7(1):1–32, 1994.

[Gol93] Oded Goldreich. A uniform-complexity treatment of encryption and zero-knowledge. Journal
of Cryptology, 6(1):21–53, 1993.

[GOS06a] Jens Groth, Rafail Ostrovsky, and Amit Sahai. Non-interactive zaps and new techniques
for NIZK. In Cynthia Dwork, editor, CRYPTO 2006, volume 4117 of LNCS, pages 97–111.
Springer, Heidelberg, August 2006.

[GOS06b] Jens Groth, Rafail Ostrovsky, and Amit Sahai. Perfect non-interactive zero knowledge for NP.
In Serge Vaudenay, editor, EUROCRYPT 2006, volume 4004 of LNCS, pages 339–358. Springer,
Heidelberg, May / June 2006.

[Gro06] Jens Groth. Simulation-sound NIZK proofs for a practical language and constant size group
signatures. In Xuejia Lai and Kefei Chen, editors, ASIACRYPT 2006, volume 4284 of LNCS,
pages 444–459. Springer, Heidelberg, December 2006.

[Gro10] Jens Groth. Short pairing-based non-interactive zero-knowledge arguments. In Masayuki Abe,
editor, ASIACRYPT 2010, volume 6477 of LNCS, pages 321–340. Springer, Heidelberg, De-
cember 2010.

[Gro16] Jens Groth. On the size of pairing-based non-interactive arguments. In Marc Fischlin and Jean-
Sébastien Coron, editors, EUROCRYPT 2016, Part II, volume 9666 of LNCS, pages 305–326.
Springer, Heidelberg, May 2016.

[GS08] Jens Groth and Amit Sahai. Efficient non-interactive proof systems for bilinear groups. In
Nigel P. Smart, editor, EUROCRYPT 2008, volume 4965 of LNCS, pages 415–432. Springer,
Heidelberg, April 2008.

[GW11] Craig Gentry and Daniel Wichs. Separating succinct non-interactive arguments from all falsi-
fiable assumptions. In Lance Fortnow and Salil P. Vadhan, editors, 43rd ACM STOC, pages
99–108. ACM Press, June 2011.

[HT98] Satoshi Hada and Toshiaki Tanaka. On the existence of 3-round zero-knowledge protocols. In
Hugo Krawczyk, editor, CRYPTO’98, volume 1462 of LNCS, pages 408–423. Springer, Heidel-
berg, August 1998.

[Lip12] Helger Lipmaa. Progression-free sets and sublinear pairing-based non-interactive zero-
knowledge arguments. In Ronald Cramer, editor, TCC 2012, volume 7194 of LNCS, pages
169–189. Springer, Heidelberg, March 2012.

[Mic00] Silvio Micali. Computationally sound proofs. SIAM J. Comput., 30(4):1253–1298, 2000.

[Nak09] Satoshi Nakamoto. Bitcoin: A peer-to-peer electronic cash system, 2009. http://bitcoin.

org/bitcoin.pdf.

[PHGR13] Bryan Parno, Jon Howell, Craig Gentry, and Mariana Raykova. Pinocchio: Nearly practical
verifiable computation. In 2013 IEEE Symposium on Security and Privacy, pages 238–252.
IEEE Computer Society Press, May 2013.

[Sch91] Claus-Peter Schnorr. Efficient signature generation by smart cards. Journal of Cryptology,
4(3):161–174, 1991.

[Sho97] Victor Shoup. Lower bounds for discrete logarithms and related problems. In Walter Fumy,
editor, EUROCRYPT’97, volume 1233 of LNCS, pages 256–266. Springer, Heidelberg, May
1997.

[SvdW06] Andrew Shallue and Christiaan van de Woestijne. Construction of rational points on elliptic
curves over finite fields. In Florian Hess, Sebastian Pauli, and Michael E. Pohst, editors, ANTS-
VII, volume 4076 of LNCS, pages 510–524. Springer, 2006.

[Zca] Zcash. http://z.cash.

30

http://bitcoin.org/bitcoin.pdf
http://bitcoin.org/bitcoin.pdf
http://z.cash

	Introduction
	Definitions
	Notation
	NP Relations and NI Systems
	Standard Notions: SND, KSND, WI and ZK
	Notions for Subverted CRS: S-SND, S-KSND, S-WI and S-ZK
	Bilinear Groups and Assumptions

	SNARKs
	GGPR's QAP-based SNARK
	Asymmetric Pinocchio
	Groth's near-optimal SNARKs
	References

