
SOLVING MULTIVARIATE POLYNOMIAL SYSTEMS AND AN INVARIANT FROM
COMMUTATIVE ALGEBRA

ALESSIO CAMINATA AND ELISA GORLA

Abstract. The complexity of computing the solutions of a system of multivariate polynomial
equations by means of Gröbner bases computations is upper bounded by a function of the
solving degree. In this paper, we discuss how to rigorously estimate the solving degree of a
system, focusing on systems arising within public-key cryptography. In particular, we show
that it is upper bounded by, and often equal to, the Castelnuovo Mumford regularity of the
ideal generated by the homogenization of the equations of the system, or by the equations
themselves in case they are homogeneous. We discuss the underlying commutative algebra
and clarify under which assumptions the commonly used results hold. In particular, we
discuss the assumption of being in generic coordinates (often required for bounds obtained
following this type of approach) and prove that systems that contain the field equations or their
fake Weil descent are in generic coordinates. We also compare the notion of solving degree
with that of degree of regularity, which is commonly used in the literature. We complement
the paper with some examples of bounds obtained following the strategy that we describe.

Introduction

Polynomial system solving plays an important role in many areas of mathematics. In this
paper, we discuss how to solve a system of multivariate polynomial equations by means
of Gröbner bases techniques and estimate the complexity of polynomial system solving.
Our motivation comes from public-key cryptography, where the computational problem of
solving polynomial systems of equations plays a major role.

In multivariate cryptography, the security relies on the computational hardness of finding
the solutions of a system of polynomial equations over a finite field. One can use similar
strategies in order to produce public-key encryption schemes and digital signature algo-
rithms, whose security relies on this problem. For signature schemes, e.g., the public key
takes the form of a polynomial map

P : Fn
q −→ Fr

q
(a1, . . . , an) 7−→ ( f1(a1, . . . , an), . . . , fr(a1, . . . , an))

where f1, . . . , fr ∈ Fq[x1, . . . , xn] are multivariate polynomials with coefficients in a finite field
Fq. The secret key allows Alice to easily invert the system P. In order to sign the hash b
of a message, Alice computes a ∈ P−1(b) and sends it to Bob. Bob can readily verify the
validity of the signature by checking whether P(a) = b. An illegitimate user Eve who wants
to produce a valid signature without knowing Alice’s secret key is faced with the problem
of solving the polynomial system of r equations in n variables

f1(x1, . . . , xn) = b1
...

fr(x1, . . . , xn) = br

Even without knowing Alice’s secret key, Eve may be able to exploit the structure of P in
order to solve the system. Such an approach is largely used and the adopted strategies vary
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significantly from one cryptographic scheme to another. Moreover a direct attack is always
possible, i.e., Eve may try to solve the system by computing a Gröbner basis of it. Therefore,
being able to estimate the computational complexity of solving a multivariate polynomial
system gives an upper bound of the security of the corresponding cryptographic scheme,
and is therefore highly relevant. In this context, the complexity of solving a polynomial
system is typically large enough to make the computation unfeasible, since being able to
compute a solution would enable the attacker to forge a digital signature or to decrypt an
encrypted message. We emphasize that the security of multivariate cryptographic schemes
is a theme of high current interest. For example, the National Institute of Standards (NIST) is
in the process of selecting post-quantum cryptographic schemes for standardization. Three
digital signature algorithms were selected as finalists in Round 3 by NIST in July 2020 [NIST],
one of which is a multivariate scheme.

Multivariate polynomial systems also appear in connection with the Discrete Logarithm
Problem (DLP) on an elliptic or hyperelliptic curve. An index calculus algorithm for solving
the DLP on an abelian variety was proposed in [Gau09]. The relation-collection phase of
the algorithm relies on Gröbner bases computations to solve a large number of polynomial
systems. These systems usually do not have any solutions, but, whenever they have one,
they produce a decomposition of a point of the abelian variety over the chosen factor base.
In contrast with polynomial systems arising within multivariate cryptography, it is feasible
to solve the polynomial systems arising within index calculus algorithms. Nevertheless, it is
important to be able to accurately estimate the complexity of solving them. In fact, the com-
plexity of solving these systems has a direct impact on the complexity of the corresponding
index calculus algorithm to solve the DLP.

Estimating the complexity of solving multivariate polynomial systems is relevant within
public-key cryptography. In this context, we usually wish to compute the solutions over a
finite field of a system of multivariate polynomial equations. Typically, the systems have
one, or few, or no solutions, not only over the chosen finite field, but also over its algebraic
closure. Moreover, the equations are usually not homogeneous. The degrees of the equations
is often small for systems coming from multivariate cryptography, but it can be large for
systems arising within index calculus algorithms. Similarly, the number of equations and
of variables can vary. Therefore, in this paper we concentrate on finite fields and on non
homogeneous systems, which have a finite number of solutions over the algebraic closure.
We however do not make assumptions on the number of variables, the number of equations
and their degrees.

This paper is devoted to an in-depth discussion of how to estimate the complexity of
computing a Gröbner basis for a system of multivariate polynomial equations. Our focus
is on finite fields and on systems that have a finite number of solutions over the algebraic
closure. At the same time, we try to keep the discussion more general, whenever possible.
We often concentrate on systems which are not homogeneous, not only because this is the
relevant case for cryptographic applications, but also because it is the most difficult case to
treat.

After recalling in Section 1 the commutative algebras preliminaries that will be needed
throughout the paper, in Section 2 we discuss in detail the relation between computing
Gröbner bases and solving polynomial systems. This connection is often taken for granted
within the cryptographic community, as are the necessary technical assumptions. In Section 2
we discuss in detail what these technical assumptions are and what can be done when they
are not satisfied. We also show in Theorem 2.3 that, under the usual assumptions, solving
a polynomial system of equations is polynomial-time-equivalent to computing a Gröbner
basis of it. We conclude with Subsection 2.1, where we discuss the feasibility of adding the
field equations to a system. This is usually taken for granted in the cryptographic literature,
however we argue that it is not always feasible.
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Section 3 is the core of the paper. After establishing the setup that we will be adopting, we
prove some results on Gröbner bases and homogenization/dehomogenization. They allow
us to compare, in Theorem 3.14, the solving degree of a system, the solving degree of its
homogenization, and the solving degree of the homogenization of the ideal generated by its
equations. Combining these results with a classical theorem by Bayer and Stillman [BS87],
we obtain Theorem 3.22 and Theorem 3.23, where we show that the Castelnuovo-Mumford
regularity upper bounds the solving degree of a system, and recover Macaulay’s Bound
in Corollary 3.25. These results hold under the assumption that the homogenized system
of equations is in generic coordinates, an assumption that is often overlooked in the cryp-
tographic literature and that we discuss in Section 1. In Theorem 3.26 we prove that any
system that contains the field equations or their fake Weil descent is in generic coordinates.

In Section 4 we discuss the relation between solving degree and degree of regularity. The
latter concept is commonly used in the cryptographic literature and often used as a proxy
for the solving degree. In Section 4 we discuss the limitations of this approach. In particular,
Example 4.7 and Example 4.8 are examples of systems coming from index calculus for which,
respectively, the degree of regularity is strictly smaller than the solving degree and the degree
of regularity is not defined.

Finally, Section 5 is meant as an example of how the results from Section 3, in combination
with known commutative algebra results, easily provide estimates for the solving degree. In
particular, Theorem 5.2 and Theorem 5.4 give bounds for the solving degree of polynomial
systems coming from the MinRank Problem.

Acknowledgements: The authors are grateful to Albrecht Petzoldt for help with MAGMA
computations, to Wouter Castryck for pointing out some typos in an earlier version of this
paper, and to Marc Chardin, Teo Mora, Christophe Petit, and Pierre-Jean Spaenlehauer for
useful discussions on the material of this paper. This work was made possible by funding
from Armasuisse.

1. Preliminaries

In this section we introduce the basic notations and terminology from commutative algebra
that we need in the rest of the paper. All the definitions and the proofs of the results that
we quote here can be found with expanded details in the books [KR00], [KR05], [KR16], and
[CLO07].

1.1. Polynomial rings and term orders. We work in a polynomial ring R = k[x1, . . . , xn] in
n variables over a field k. An element f ∈ R is a polynomial, and may be written as a finite
sum f =

∑
ν aνxν, where ν ∈ Nn, aν ∈ k, and xν = xν1

1 · · · x
νn
n . A polynomial of the form aνxν

is called a monomial of degree |ν| = ν1 + · · ·+ νn. In particular, every polynomial f is a sum
of monomials. The degree of f , denoted by deg( f ), is the maximum of the degrees of the
monomials appearing in f . If all these monomials have the same degree, say d, then f is
homogeneous of degree d. A monomial aνxν with aν = 1 is monic. A monic monomial is also
called a term.

Notation 1.1. Given a system of polynomials F = { f1, . . . , fr} ⊆ R we denote by (F ) =
( f1, . . . , fr) the ideal that they generate, that is ( f1, . . . , fr) = {

∑r
i=1 pi fi : pi ∈ R}.

The list F = { f1, . . . , fr} is called a system of generators of the ideal I = (F ). F is a minimal
system of generators for I if the ideal generated by any non-empty proper subset ofF is strictly
contained in I. If the polynomials f1, . . . , fr are homogeneous, then we say that the system
F and the ideal I are homogeneous.

Remark 1.2. Let I be an ideal of R minimally generated by homogeneous polynomials
f1, . . . , fr. Then every homogeneous minimal system of generators of I consists of r polyno-
mials of the same degrees as f1, . . . , fr.
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For any degree d ∈ Z+, denote by Rd the d-th homogeneous component of R. Rd is
generated as a k-vector space by the monomials of R of degree d. If I ⊆ R is homogeneous,
we let Id = I ∩Rd be the k-vector space of homogenous polynomials of degree d in I.

We denote by T the set of terms of R. A term order on R is a total order τ on the set T,
which satisfies the following additional properties:

(1) m ≤τ n implies p ·m ≤τ p · n for all p,m,n ∈ T;
(2) 1 ≤τ m for all m ∈ T.

If in addition m <τ n whenever deg(m) < deg(n), we say that the term order τ is degree-
compatible.

Example 1.3 (Lexicographic order). Let xα and xβ be two terms in R. We say that xα >LEX xβ
if the leftmost non-zero entry in the vector α − β ∈ Zn is positive. This term order is called
lexicographic and it is not degree-compatible. We denote it by LEX.

Example 1.4 (Degree reverse lexicographic order). Let xα and xβ be two terms in R. We
say that xα >DRL xβ if |α| > |β|, or |α| = |β| and the rightmost non-zero entry in α − β ∈ Zn

is negative. This term order is called degree reverse lexicographic (DRL for short) and it is
degree-compatible.

Let f =
∑

i∈I aimi ∈ R \ {0} be a polynomial, where ai ∈ k \ {0}, and mi ∈ T are distinct terms.
We fix a term order τ on R. The initial term or leading term of f with respect to τ is the largest
term appearing in f , that is inτ( f ) = m j, where m j > mi for all i ∈ I \ { j}. The support of f is
supp( f ) = {mi : i ∈ I}. Given an ideal I of R, the initial ideal of I is

inτ(I) = (inτ( f ) : f ∈ I \ {0}).

Definition 1.5. Let I be an ideal of R. A set of polynomials G ⊆ I is a Gröbner basis of I with
respect to τ if inτ(I) = (inτ(g) : g ∈ G). A Gröbner basis is reduced if m < (inτ(h) : h ∈ G \ {g})
for all g ∈ G and m ∈ supp(g).

Sometimes we will need to consider a field extension. At the level of the ideal, this
corresponds to looking at the ideal generated by the equations in a polynomial ring over the
desired field extension.

Definition 1.6. Let I = ( f1, . . . , fr) ⊆ R = k[x1, . . . , xn], let K ⊇ k be a field extension. We denote
by IK[x1, . . . , xn] the extension of I to K[x1, . . . , xn], i.e. the ideal of K[x1, . . . , xn] generated by
f1, . . . , fr. In symbols, IK[x1, . . . , xn] = ( f1, . . . , fr) ⊆ K[x1, . . . , xn].

1.2. Zero loci of ideals. We are mostly interested in ideals, whose zero locus is finite.

Definition 1.7. The affine zero locus of an ideal I = ( f1, . . . , fr) ⊆ R over the algebraic closure k̄
of k is

Z(I) = {P ∈ k̄n : f (P) = 0 for all f ∈ I} = {P ∈ k̄n : f1(P) = . . . = fr(P) = 0}.

We also denote it byZ( f1, . . . , fr).

Definition 1.8. The projective zero locus of a homogeneous ideal I = ( f1, . . . , fr) ⊆ R over the
algebraic closure k̄ of k is

Z+(I) = {P ∈ P(k̄)n : f (P) = 0 for all f ∈ I} = {P ∈ P(k̄)n : f1(P) = . . . = fr(P) = 0}.

We also denote it byZ+( f1, . . . , fr).

Remark 1.9. The following are equivalent for a homogeneous ideal I ⊆ R:

|Z(I)| < ∞⇔Z(I) = {(0, . . . , 0)} ⇔ Z+(I) = ∅.

These conditions are equivalent to the fact that the Krull dimension of R/I is zero. This is in
turn equivalent to R/I being a finite dimensional k-vector space.
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In Definition 1.7 and Definition 1.8 it is important to look at the zero locus of I or F over
the algebraic closure of the base field. For cryptographic applications, often the base field k
is a finite field. In this case the condition that the zero locus is finite over k is trivially satisfied
by any ideal or system of equations.

1.3. Infinite fields and the Zariski topology. Let k be a field. The Zariski topology on the
affine space kn is the set of complements of solution sets of systems of polynomial equations
over R, that is {kn

\ Z( f1, . . . , fr) | f1, . . . , fr ∈ R}. If k is an algebraically closed field, or at
least an infinite field, then every non-empty open set in the Zariski topology is dense, i.e., its
closure is equal to the entire space. A non-empty open subset of kn is often called a generic
set and a property which holds on a non-empty open set is generic. Intuitively, a generic set
is almost the whole space and a generic property holds almost everywhere in kn.

If k is a finite field, on the other side, the Zariski topology is the discrete topology on kn. In
other words, any subset of kn is both open and closed, and the algebraic-geometric intuition
of genericity fails. In particular, one can no longer say that a non-empty open subset of kn

is almost the whole space, as the closure of any subset of kn is the subset itself. Therefore,
as genericity loses its meaning over a finite field, we always will need to assume that the
ground field is infinite when dealing with generic sets or properties.

1.4. Generic changes of coordinates. Fix a term order τ on R = k[x1, . . . , xn]. We denote by
GL(n, k) the general linear group of n × n invertible matrices with entries in k. This group
acts on R via linear changes of coordinates. Namely, a matrix g = (gi, j) ∈ GL(n, k) acts on the
variable x j as g(x j) =

∑n
i=1 gi, jxi. We refer to g also as a linear change of coordinates. We observe

that GL(n, k) ⊆ kn2
is an open subset with respect to the Zariski topology.

It is easy to find examples of g ∈ GL(n, k) such that inτ(gI) , inτ(I), that is, initial ideals are
not independent of coordinate changes. However, a famous theorem by Galligo states that,
applying a generic change of coordinates to an ideal I, the initial ideal stays the same.

Theorem 1.10. [Gal74] Assume that k is infinite. Let I be a homogeneous ideal of R, then there
exist a non-empty Zariski-open set U ⊆ GL(n, k) and a monomial ideal J such that inτ(gI) = J for all
g ∈ U.

This motivates the following definition.

Definition 1.11. Let k be an infinite field. An ideal I ⊆ R is in generic coordinates if 1 ∈ U, i.e.,
if

inτ(gI) = inτ(I)
for all g ∈ U.

Let k be any field and let K ⊇ k with K infinite. I is in generic coordinates over K if
IK[x1, . . . , xn] ⊆ K[x1, . . . , xn] is in generic coordinates.

Notice that, over an infinite field k, gI is by definition in generic coordinates for any ideal I
and g ∈ U, that is, for any ideal I and for a generic g. Informally, any homogeneous ideal can
be put in generic coordinates by applying a random change of coordinates to it. If k is finite,
it suffices to apply to I a random change of coordinates over a field extension of sufficiently
large cardinality.

1.5. Homogeneous ideals associated to a system. Let R = k[x1, . . . , xn] and let S = R[t].
Given a polynomial f ∈ R, we denote by f h

∈ S the homogenization of f with respect to the
new variable t. For F = { f1, . . . , fr} ⊆ R, we let F h

⊆ S denote the system obtained from F
by homogenizing each fi with respect to t, that is F h = { f h

1 , . . . , f h
r }.

For an ideal I ⊆ R, the homogenization of I with respect to t, or simply the homogenization
of I, is the ideal

Ih = ( f h : f ∈ I) ⊆ S.
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If I = (F ) ⊆ R, then Ih is a homogeneous ideal of S which contains (F h). It is easy to produce
examples where the containment is strict.

Remark 1.12. Let G be a Gröbner basis of I with respect to a degree-compatible term order
on R. It can be shown thatGh = {gh : g ∈ G} is a Gröbner basis of Ih with respect to a suitable
term order on S, see e.g. [KR05, Section 4.3]. In particular Ih = (gh : g ∈ G), hence the degrees
of a minimal system of generators of Ih are usually different from those of a minimal system
of generators of I. Instead, the degrees of a minimal system of generators of (F h) coincide
with the degrees of f1, . . . , fr.

The dehomogenization mapφ is the standard projection on the quotientφ : S→ R � S/(t− 1).
For any system of equations F ⊆ R generating an ideal I = (F ) we have φ(Ih) = (φ(F h)) = I.
Notice that one also has φ((F h)) = (φ(F h)) = I.

For a polynomial f ∈ R, we denote by f top its homogeneous part of highest degree. For a
system of equations F = { f1, . . . , fr}we denote by

F
top = { f top

1 , . . . , f top
r }.

Both the ideal (F h) and the ideal (F top) depend on F , and not only on the ideal I = (F ).

2. The importance of being LEX

The main goal of this section is clarifying the relation between solving a system of polyno-
mial equations F and computing a Gröbner basis of the ideal I generated by the system. In
the cryptographic literature it is often stated that, thanks to the Shape Lemma, the problem
of finding the solutions of F can be reduced to that of computing a lexicographic Gröbner
basis of I. This statement is however not rigorous, since the Shape Lemma only holds under
certain assumptions, which are not always verified for cryptographic systems. We start by
stating the assumptions under which the Shape Lemma holds and showing that, when they
are satisfied, the problem of solving the system F is polynomial-time-equivalent to that of
computing a lexicographic Gröbner basis of I. Then we discuss what can be done in the case
when the assumptions of the Shape Lemma are not satisfied. We come to the conclusion that,
in all situations, one can easily compute the solutions of F from a lexicographic Gröbner
basis of I. We stress that we are not stating that directly computing the reduced lexicographic
Gröbner basis is the most efficient way to solve a system (see also Section 3). We conclude
the section with a brief discussion of when it is feasible to add the field equations to a system
F and how that affects the computation of a Gröbner basis of it.

Throughout the section we focus on systems of equations which have a finite number of
solutions over the algebraic closure of the field of definition, since systems that arise in public
key cryptography are usually of this kind. Moreover, we always assume that our systems
have at least one solution. In fact, if the system has no solutions, the corresponding ideal
is equal to the polynomial ring, that is the reduced Gröbner basis with respect to any term
order is equal to {1}. In this case, therefore, computing the reduced lexicographic Gröbner
basis allows us to decide that the system has no solutions, without any additional work.

We start by recalling the Shape Lemma.

Theorem 2.1 (Shape Lemma – [KR00], Theorem 3.7.25). Let k be a field and let f1, . . . , fr ∈ R be
such that the corresponding ideal I = ( f1, . . . , fr) is radical, in normal xn-position, and |Z(I)| = d < ∞.
The reduced lexicographic Gröbner basis of I is of the form

{gn(xn), xn−1 − gn−1(xn), . . . , x1 − g1(xn)},

where g1, . . . , gn are univariate polynomials in xn and deg(g1), . . . ,deg(gn−1) < deg(gn) = d.

The Shape Lemma assumes that the ideal I is radical and in normal xn-position. An ideal
I is radical if f ` ∈ I for some ` > 0 implies f ∈ I. This assumption is not always verified for
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ideals generated by systems arising in cryptography. Later in the section, we will show how
one can use a more general version of the Shape Lemma in order to overcome this problem.

Being in normal xn-position means that any two distinct zeros (a1, . . . , an), (b1, . . . , bn) ∈ Z(I)
satisfy an , bn. Notice that every ideal I with finite affine zero locus can be brought into
normal xn-position by a suitable linear change of coordinates, passing to a field extension
if needed (see [KR00, Proposition 3.7.22]). A field extension may indeed be needed, as the
next example shows.

Example 2.2. Let F = {x2
1 + x1, x1x2, x2

2 + x2} ⊆ R = F2[x1, x2]. Then I = (x2
1 + x1, x1x2, x2

2 + x2)
is a radical ideal andZ(I) = {(0, 0), (0, 1), (1, 0)}. We claim that I cannot be brought in normal
x2-position by a linear change of coordinates over F2. In fact, a linear change of coordinates
over F2 sends x2 to either x1, x2, x1 + x2, x1 + 1, x2 + 1, or x1 + x2 + 1. However, all these linear
forms take the same value on at least two of the elements ofZ(I).

Finally, the Shape Lemma assumes that |Z(I)| < ∞. If k is a finite field, then one can add
the field equations to I and obtain an ideal J which is radical and such thatZ(J) = Z(I)∩ kn,
in particular |Z(J)| < ∞. This is however not always advantageous or even feasible, as we
discuss in Section 2.1.

Whenever the assumptions of the Shape Lemma are satisfied, computing the solutions
of a system of equations has the same complexity as computing the reduced lexicographic
Gröbner basis of the ideal generated by the system.

Theorem 2.3. Let F = { f1, . . . , fr} ⊆ R be a polynomial system such that the corresponding ideal
I = ( f1, . . . , fr) is radical and in normal xn-position. Assume that |Z(I)| = d < ∞ and Z(I) ⊆ Fn

q .
Consider the LEX order. The set of solutions of F can be computed from the reduced Gröbner basis
of I probabilistically in time polynomial in log q,n and d. Conversely, the reduced Gröbner basis of I
can be computed from the set of solutions of F deterministically in time polynomial in log q,n and d.

Proof. By the Shape Lemma, the reduced lexicographic Gröbner basis of I has the form:

(1) {gn(xn), xn−1 − gn−1(xn), . . . , x1 − g1(xn)},

where gi(xn) are polynomials in the variable xn only, and deg(g j) < deg(gn) = d for 1 ≤ j < n.
If we know the reduced lexicographic Gröbner basis of I, then we can factor the polynomial

gn(xn) to find its roots. Each root α of gn(xn) corresponds to a solution (g1(α), . . . , gn−1(α), α)
of f1 = . . . = fr = 0. Notice that the only operation required, apart from the arithmetic over
Fq, is factoring univariate polynomials, which can be done in probabilistic polynomial time
over a finite field.

Viceversa, assume that we know Z(I) = {P1, . . . ,Pd} ⊆ F
n
q of F . Write Pi = (ai,1, . . . , ai,n)

for i = 1, . . . , d. We wish to compute the reduced lexicographic Gröbner basis of I, knowing
that it is of the form (1). Since the roots of gn are exactly a1,n, . . . , ad,n we can compute
gn(xn) =

∏d
i=1(xn − ai,n). Now fix j ∈ {1, . . . ,n − 1}. Since g j(ai,n) = ai, j for i = 1, . . . , d and

deg(g j) < d, we can compute g j(xn) by using Lagrange interpolation:

g j(xn) =

d∑
i=1


∏

1≤λ≤d
λ,i

xn − aλ,n
ai,n − aλ,n

 ai, j.

�

We now discuss the situation in which the assumptions of the Shape Lemma do not hold.
In particular, we consider the case when I is not radical. Some authors state that, since
I + (xq

1 − x1, . . . , x
q
n − xn) ⊆ Fq[x1, . . . , xn] is always radical, up to adding the field equations

one may assume without loss of generality that I is radical. However, adding the field
equations to the system is not always computationally feasible, even in the case of systems



8 ALESSIO CAMINATA AND ELISA GORLA

coming from cryptography. Therefore, being able to deal with the situation when the ideal I
is not radical is relevant for cryptographic applications. We discuss this issue in more detail
in Section 2.1.

Before continuing our discussion, we give an example of system coming from multivariate
cryptography for which the corresponding ideal is not radical, adding the field equations
to the system is not feasible, and one ends up with a reduced lexicographic Gröbner basis
which does not have the shape predicted by the Shape Lemma. Indeed, this was the case
for most of the instances of the ABC cryptosystem [TDTD13, TXPD15] that we computed.
Since the field sizes proposed in [TXPD15] for achieving 80-bits security are 28, 216, and 232,
adding the field equations to the system is not feasible. In our next example we disregard
the linear transformations used in the ABC cryptosystem to disguise the private key, since
they do not affect the property of the system to generate a radical ideal.

Example 2.4. We consider R = F2[x1, x2, x3, x4] with the LEX term order and a toy instance
of an ABC cryptosystem with

A =

(
x1 x2
x3 x4

)
, B =

(
x1 + x2 + x3 x1 + x2
x1 + x3 + x4 x3

)
, C =

(
x1 + x2 + x3 + x4 x1 + x4

x1 + x4 x1

)
.

We let p1, . . . , p8 be the entries of the matrices AB and AC. We take a random plaintext
b = (0, 1, 1, 0) ∈ F4

2 and we evaluate the polynomials p1, . . . , p8 at b to obtain the cyphertext
a = (1, 1, 0, 1, 0, 0, 0, 0) ∈ F8

2. We then consider the system F = {pi − ai : i = 1, . . . , 8} and the
corresponding ideal I = (F ) ⊆ R. The ideal I is not radical as (x3 + 1)2

∈ I, but x3 + 1 < I.
A computation with MAGMA shows that the reduced lexicographic Gröbner basis of I is
{x1, x2 + x3, x2

3 + 1, x4}.

We now discuss how one can efficiently compute the solutions of a polynomial system
from its lexicographic Gröbner basis, without assuming that the ideal generated by the
equations is radical. We stress that we always assume that the system has finitely many
solutions over the algebraic closure. The next result will be central to our discussion, as we
will use it as a substitute of the Shape Lemma.

Theorem 2.5 (Elimination Theorem – [CLO07], Chapter 3.1, Theorem 2). Let I ⊆ R be an ideal
and letG be a lexicographic Gröbner basis of I. Then for every 1 ≤ ` ≤ n− 1 the setG∩ k[x`+1, . . . , xn]
is a Gröbner basis of I ∩ k[x`+1, . . . , xn] with respect to the LEX order on k[x`+1, . . . , xn].

In the next result we use Theorem 2.5 to prove that one can easily compute the solutions
of F from the reduced lexicographic Gröbner basis of I.

Theorem 2.6. Let I be a proper ideal of R = k[x1, . . . , xn] with finite affine zero locus. The reduced
lexicographic Gröbner basis of I has the form

pn,1(xn),
pn−1,1(xn−1, xn), . . . , pn−1,tn−1(xn−1, xn),
pn−2,1(xn−2, xn−1, xn), . . . , pn−2,tn−2(xn−2, xn−1, xn),
· · ·

p1,1(x1, . . . , xn), . . . , p1,t1(x1, . . . , xn),

where pi,t j ∈ k[xi, . . . , xn] for every i ∈ {1, . . . ,n}, j ∈ {1, . . . , ti} and t1, . . . , tn−1 ≥ 1. Moreover, for
any 1 ≤ ` ≤ n, let a = (a`+1, . . . , an) ∈ kn−` be a solution of the equations

pn,1(xn),
pn−1,1(xn−1, xn), . . . , pn−1,tn−1(xn−1, xn),
· · ·

p`+1,1(x`+1, . . . , xn), . . . , p`+1,t`+1(x`+1, . . . , xn),
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and let
p`(x`) = gcd{p`,1(x`, a`+1, . . . , an), . . . , p`,t` (x`, a`+1, . . . , an)}.

Then p`(x`) < k.

Proof. Let G be the reduced lexicographic Gröbner basis of I. The set G∩ k[x`, . . . , xn] is of
the form

G∩ k[x`, . . . , xn] = {pi, j(xi, . . . , xn) | ` ≤ i ≤ n, 1 ≤ j ≤ ti}

for some t1, . . . , tn ≥ 0. Moreover, for any 1 ≤ ` ≤ n such that p`(x`) , 0, one has t` ≥ 1.
Hence it suffices to show that p`(x`) < k for 1 ≤ ` ≤ n.

We prove the thesis by descending induction on ` ≤ n. Let ` = n, then G ∩ k[xn] is the
reduced lexicographic Gröbner basis of I ∩ k[xn] by Theorem 2.5. Let pn,1(xn) be a monic
generator of I ∩ k[xn], then G∩ k[xn] = {pn,1(xn)} and tn = 1. Since the affine zero locus of I is
finite, pn,1(xn) , 0. Moreover, pn(xn) = pn,1(xn) < k \ {0}, since ∅ , Z(I) ⊆ Z(pn).

We suppose now that the thesis holds up to ` + 1 and we prove that p`(x`) < k. By
Theorem 2.5, G∩ k[x`, . . . , xn] is the reduced lexicographic Gröbner basis of I ∩ k[x`, . . . , xn],
in particular

I ∩ k[x`, . . . , xn] = (pi, j | ` ≤ i ≤ n, 1 ≤ j ≤ ti).

Let a ∈ Z(I ∩ k[x`+1, . . . , xn])∩ kn−` and define

I(`, a) = (p`,1(x`, a`+1, . . . , an), . . . , p`,t` (x`, a`+1, . . . , an)) = (p`(x`)).

By [CLO07, Chapter 3.2, Theorem 3] and sinceZ(I) is a finite set, one has that

Z(I ∩ k[x`, . . . , xn]) = πn−`+1(Z(I)),

where πi : kn
→ ki is the projection on the last i coordinates. In particular,Z(I ∩ k[x`, . . . , xn])

is finite. If p`(x`) is the zero polynomial, thenZ(I(`, a)) = k̄ and

{(a`, a`+1, . . . , an) | a` ∈ k̄} ⊆ Z(I ∩ k[x`, . . . , xn]),

contradicting the finiteness ofZ(I ∩ k[x`, . . . , xn]). If instead p`(x`) ∈ k \ {0}, thenZ(I(`, a)) =
∅. However, a = (a`+1, . . . , an) ∈ Z(I ∩ k[x`+1, . . . , xn]) = πn−`(Z(I)), where equality holds
by [CLO07, Chapter 3.2, Theorem 3]. So there exist a1, . . . , a` ∈ k̄ such that (a1, . . . , an) ∈ Z(I).
Therefore, πn−`+1(a1, . . . , an) = (a`, . . . , an) ∈ Z(I ∩ k[x`, . . . , xn]), that is a` ∈ Z(I(`, a)) = ∅, a
contradiction. �

We use the previous result to build an algorithm which computes the affine zero locus of an
ideal I from its reduced lexicographic Gröbner basis. We adopt the notation of Theorem 2.6.

Corollary 2.7. Let I ⊆ R = k[x1, . . . , xn] be an ideal with finite affine zero locus Z(I). Then Z(I)
can be computed as follows:

(1) Compute the reduced lexicographic Gröbner basis G of I to obtain the monic polynomial
pn ∈ k[xn] such that (pn) = I ∩ k[xn].

(2) If pn = 1, thenZ(I) = ∅. Else, factor pn.
(3) For every root α of pn compute pn−1(xn−1) = gcd{pn−1,1(xn−1, α), . . . , pn−1,tn−1(xn−1, α)}.
(4) Factor pn−1.
(5) For every rootβ of pn−1 compute pn−2(xn−2) = gcd{pn−2,1(xn−2, β, α), . . . , pn−2,tn−2(xn−2, β, α)}.
(6) Proceed similarly, until all the elements ofZ(I) are found.

Notice that the computation is even more efficient under the assumption that the system
F , or equivalently the ideal I, has only one zero over the algebraic closure. This is often
the case for polynomial systems coming from multivariate cryptosystems, where we usually
require that for each ciphertext b there is a unique plaintext a such that fi(a) = b for every
i = 1, . . . r. In such a situation, one does not need to factor any univariate polynomial, since
each one of them has exactly one solution, which, for a monic polynomial of degree d, can
be computed by multiplying the coefficient of xd−1 by (−1)d−1d−1.
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Remark 2.8. Assume that k is either a finite field or has characteristic zero. If I admits only
one solution (a1, . . . , an) ∈ k̄n, then in fact (a1, . . . , an) ∈ kn. This is true even if the solution
has multiplicity higher than one. In fact, gn(xn) = (xn − an)d

∈ k[xn], hence dan ∈ k. If k has
characteristic zero, then an ∈ k. Else, let p be the characteristic of k and write d = p`e where

p - e. Then gn(xn) =
(
xp`

n − ap`
n

)e
∈ k[xn], so eap`

n ∈ k. This implies ap`
n ∈ k, hence an ∈ k, since k

is a finite field. One proceeds similarly to prove that ai ∈ k for all i.

Remark 2.9. By [CLO07, Chapter 3.2, Theorem 3] and sinceZ(I) is a finite set, one has that

Z(I ∩ k[x`, . . . , xn]) = πn−`+1(Z(I))

for 1 ≤ ` ≤ n, where πi : kn
→ ki is the projection on the last i coordinates. This implies

that each path from the roots to the leaves in the tree-shaped computation of Corollary 2.7
produces a solution. In particular, Corollary 2.7 does not perform useless computations.

2.1. Adding the field equations to a system. Let Q = {xq
1 − x1, . . . , x

q
n − xn} be the system

consisting of the field equations relative to Fq. Clearly, for any system of equations F =
{ f1, . . . , fr} ⊆ R = Fq[x1, . . . , xn] one has

Z(F ∪Q) = Z(F )∩Fn
q .

The systems F and F ∪Q, however, often have different algebraic properties. It is easy
to show that the ideal generated by F ∪Q is always radical, while the ideal generated by
F may not be. The structure of the reduced Gröbner bases of the ideals generated by the
two systems and the degrees of the elements appearing in them are often different as well.
As a consequence, adding the field equations to a system often affects the complexity of
computing a Gröbner basis.

Therefore, passing from F to F ∪Q may or may not provide an advantage. It typically
provides an advantage for fields of small size, since the equations of Q have low degree and
adding them to F makes the ideal radical, a necessary hypothesis for the Shape Lemma
(Theorem 2.1) to apply. Over fields of large size, however, adding the field equations may
make the computation of a Gröbner basis practically infeasible. This is due to the fact that we
are adding to the system equations of large degree, which are involved in the computation
of a Gröbner basis, therefore increasing the degree of the computation. In the next example,
we show that the solving degree may increase when passing fromF toF ∪Q (see Definition
3.1 for the definition of solving degree).

Example 2.10. Let F = {x2
3 − x2, x3

2 − x1} ⊆ F5[x1, x2, x3] and let I = (F ). The affine zero locus
of I over F5 is infinite. If we add the field equations Q = {x5

1 − x1, x5
2 − x2, x5

3 − x3} of F5 to F ,
we obtain the ideal J = (F ∪Q), which has Z(J) = {(0, 0, 0), (1, 1, 1), (4, 4, 2), (4, 4, 3), (1, 1, 4)}.
The elements of F are a Gröbner basis of I with respect to the LEX order, while the reduced
Gröbner basis of J with respect to the same order also contains x5

3 − x3. In particular, the
Gröbner basis of J contains a polynomial of higher degree and one can easily verify that

solv.deg(F ∪Q) = 5 > 3 = solv.deg(F ).

Even if we restrict our attention to polynomial systems arising in public-key cryptography,
one may not always assume that the field equations can be added to the system. An example
coming from multivariate cryptography was given in Example 2.4. Another example are
systems coming from the relation-collection phase of index calculus on elliptic or hyperel-
liptic curves, since the field size is very large (e.g., the field size required for 80-bit security
is at least q ∼ 2160 for an elliptic curve and q ∼ 280 for a hyperelliptic curve of genus two). In
such a situation, adding equations of degree q to the system would make it unmanageable.



SOLVING MULTIVARIATE POLYNOMIAL SYSTEMS AND AN INVARIANT FROM COMMUTATIVE ALGEBRA 11

3. Solving degree of polynomial systems

In Section 2 we discussed how one can compute the solutions of a polynomial system,
starting from a lexicographic Gröbner basis of the ideal that it generates. In this section,
we address the problem of estimating the complexity of computing a lexicographic Gröbner
basis. In practice, one observes that computing a Gröbner basis with respect to LEX is usually
slower than with respect to any other term order. On the other side, computing a Gröbner
basis with respect to DRL is often faster than with respect to any other term order. Therefore,
computing a degree reverse lexicographic Gröbner basis and converting it to a lexicographic
Gröbner basis using FGLM or a similar algorithm is usually more efficient than computing a
lexicographic Gröbner basis directly. For this reason, in this section we discuss the complexity
of computing a Gröbner basis of an ideal I in a polynomial ring R = k[x1, . . . , xn] over a field
k with respect to the DRL order. We refer the reader to [FGLM93] for a description of the
FGLM algorithm and an estimate of its complexity.

3.1. Macaulay matrices and solving degree. We have two main classes of algorithms for
computing Gröbner bases: Buchberger’s Algorithm and linear algebra based algorithms, which
transform the problem of computing a Gröbner basis into one or more instances of Gaussian
elimination. Examples of linear algebra based algorithms are: F4 [Fau99], F5 [Fau02], the XL
Algorithm [CKPS00], and MutantXL [DBMMW08]. Buchberger’s Algorithm is older, and its
complexity has been extensively studied. Linear algebra based algorithms are often faster in
practice and have contributed to breaking many cryptographic challenges. However, their
complexity is less understood, especially when the input consists of polynomials which are
not homogeneous.

In this section, we discuss the complexity of linear algebra based algorithms, which is
dominated by Gaussian elimination on the Macaulay matrices. First we describe them for
homogeneous systems, following [BFS15, p. 54]. Let F = { f1, . . . , fr} ⊆ R be a system of
homogeneous polynomials and fix a term order. The homogeneous Macaulay matrix Md of F
has columns indexed by the terms of Rd sorted, from left to right, according to the chosen
order. The rows of Md are indexed by the polynomials mi, j f j, where mi, j ∈ R is a term such
that deg(mi, j f j) = d. Then the entry (i, j) of Md is the coefficient of the monomial of column j
in the polynomial corresponding to the i-th row.

Now let f1, . . . , fr be any polynomials (not necessarily homogeneous). For any degree
d ∈ Z+ the Macaulay matrix M≤d of F has columns indexed by the terms of R of degree
≤ d, sorted in decreasing order from left to right. The rows of M≤d are indexed by the
polynomials mi, j f j, where mi, j is a term in R such that deg(mi, j f j) ≤ d. The entries of M≤d are
defined as in the homogeneous case. Notice that, if f1, . . . , fr are homogeneous, the Macaulay
matrix M≤d is just a block matrix, whose blocks are the homogeneous Macaulay matrices
Md, . . . ,M0 associated to the same equations. This is the reason for using homogeneous
Macaulay matrices in the case that f1, . . . , fr are homogeneous.

The size of the Macaulay matrices M≤d and Md, hence the computational complexity of
computing their reduced row echelon forms, depends on the degree d. Therefore, following
[DS13], we introduce the next definition.

Definition 3.1. Let F = { f1, . . . , fr} ⊆ R and let τ be a term order on R. The solving degree of F
is the least degree d such that Gaussian elimination on the Macaulay matrix M≤d produces a
Gröbner basis of F with respect to τ. We denote it by solv.degτ(F ). When the term order is
clear from the context, we omit the subscript τ.

If F is homogeneous, we consider the homogeneous Macaulay matrix Md and let the
solving degree of F be the least degree d such that Gaussian elimination on M0, . . . ,Md
produces a Gröbner basis of F with respect to τ.

Some algorithms perform Gaussian elimination on the Macaulay matrix for increasing
values of d. An algorithm of this kind has a termination criterion, which allows to decide
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whether a Gröbner basis has been found and the algorithm can be stopped. For example, F5
uses the so-called signatures for this purpose. Other algorithms perform Gaussian elimina-
tion on just one Macaulay matrix, for a large enough value of d. For such an algorithm, a
sharp bound on the solving degree provides a good estimate for the value of d to be chosen.
In both cases, the solving degree produces a bound on the complexity of computing the
desired Gröbner basis. In particular, one may choose to artificially stop a Gröbner basis
computation in the degree corresponding to the solving degree. For this reason, we use the
solving degree to measure the complexity of Gröbner bases computations and we do not
discuss termination criteria.

Remark 3.2. If F is not homogeneous, then Gaussian elimination on M≤d may produce a
row that corresponds to a polynomial f such that deg( f ) < d and in( f ) was not the leading
term of any row of M≤d before performing Gaussian elimination. If this is the case, then
some variants of the algorithms add to M≤d the rows corresponding to the polynomials m f ,
where m is a monomial and deg(m f ) ≤ d. Then they proceed to compute the reduced row
echelon form of this larger matrix. If no Gröbner basis is produced in degree ≤ d, then they
proceed by adding to this matrix the appropriate multiples of its rows in the next degree and
continue as before. This potentially has the effect of enlarging the span of the rows of M≤d, for
all d. Introducing this variation may therefore reduce the computational cost of computing a
Gröbner basis with respect to a given term order, since we might be able to obtain a Gröbner
basis in a smaller degree than the solving degree, as defined in Definition 3.1. Throughout
the paper, we consider the situation when no extra rows are inserted. Notice that the solving
degree is an upper bound on the degree in which the algorithms adopting this variation
terminate.

Definition 3.3. Let I ⊆ R be an ideal and let τ be a term order on R. We denote by
max.GB.degτ(I) the maximum degree of a polynomial appearing in the reduced τ Gröbner
basis of I. If I = (F ), we sometimes write max.GB.degτ(F ) in place of max.GB.degτ(I).

It is clear that
max.GB.degτ(F ) ≤ solv.degτ(F ),

for any system of polynomials F and any term order τ. Equality does not hold in general,
as we show in Example 3.16.

Remark 3.4. Assume that F = { f1, . . . , fr} is homogeneous. Gaussian elimination on Md
exclusively produces rows that correspond to polynomials of degree d. Therefore

solv.degτ(F ) = max.GB.degτ(F )

for any τ.

Notice moreover that the solving degree of a system F may be strictly smaller than the
largest degree of an equation of F . This may happen, e.g., when F contains redundant
equations.

Example 3.5. Let F = {x2 + x, xy, y2 + y, x2y + x2 + x} ⊆ F2[x, y]. The reduced DRL Gröbner
basis of I = (F ) is {x2 + x, xy, y2 + y} and solv.degDRL F = 2.

3.2. Homogenization of ideals and extensions of term order. We consider a polynomial
ring R = k[x1, . . . , xn] and its extension S = R[t] with respect to a new variable t. We compare
term orders on R and S.

Definition 3.6. Let σ be a term order on R, let τ be a term order on S = R[t], and let φ : S→ R
be the dehomogenization map. We say that τ φ-extends σ, or that τ is a φ-extension of σ, if
φ(inτ( f )) = inσ(φ( f )) for every f ∈ S homogeneous.

The next theorem relates Gröbner basis and dehomogenization.
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Theorem 3.7. Let σ be a term order on R, and let τ be a φ-extension of σ on S. Let I be an ideal in
R, let J be a homogeneous ideal in S such that φ(J) = I. The following hold:

(1) inσ(I) = φ(inτ(J));
(2) if {g1, . . . , gs} is a homogeneous τ Gröbner basis of J, then {φ(g1), . . . , φ(gs)} is a σ Gröbner

basis of I.

Proof. We prove (1). Notice that inτ(J) = (inτ( f ) : f ∈ J, f homogeneous), because J is a
homogeneous ideal. Then we have

φ(inτ(J)) =
(
φ(inτ( f )) : f ∈ J, f homogeneous

)
=

(
inσ(φ( f )) : f ∈ J, f homogeneous

)
.

To conclude the proof of (1), it suffices to show that {φ( f ) : f ∈ J, f homogeneous} = I. The
inclusion from left to right follows from the assumption that φ(J) = I. To prove the other
inclusion, we fix a system of generators f1, . . . , fr of I and consider f =

∑r
i=1 pi fi ∈ I, with

pi ∈ R. Let hi ∈ J be homogeneous such that φ(hi) = fi for all i and define p̃ =
∑r

i=1 tαiph
i hi.

The polynomial p̃ belongs to J and it is homogeneous for a suitable choice of the αi’s. Since
φ(p̃) =

∑r
i=1 φ(tαiph

i hi) =
∑r

i=1 pi fi = f , the inclusion follows.
To prove (2), observe that

φ(inτ(J)) =
(
φ(inτ(gi)) : i = 1, . . . , s

)
=

(
inσ(φ(gi)) i = 1, . . . , s

)
,

sinceφ is a homomorphism and τ φ-extends σ. This shows that {φ(g1), . . . , φ(gs)} is a Gröbner
basis of φ(inτ(J)) with respect to σ, which is equal to inσ(I) by (1). �

There is a natural way to φ-extend a term order σ on R to a term order σ̄ on S.

Definition 3.8. Let m,n be terms in R, let σ be a term order on R. Define a term order σ̄ on S
via: tαm >σ̄ tβn if and only if (m >σ n) or (m = n and α > β).

Lemma 3.9. σ̄ is a term order on S which φ-extends σ.

Proof. First we prove that σ̄ is a term order. The fact that 1 <σ m for every term m ∈ R implies
1 <σ̄ m. We have also 1 = t0 <σ̄ t.

Now, let tαm >σ̄ tβn, with m,n terms in R, and α, β ∈ N. We show that >σ̄ respects
multiplication by terms. We have two possibilities: 1) m >σ n or 2) m = n and α > β. If 1)
holds, then we have xim >σ xin for every i = 1, . . . ,n since σ is a term order, which implies
xitαm >σ̄ xitβn. Clearly tα+1m >σ̄ tβ+1n. If 2) holds, then xim = xin for every i = 1, . . . ,n,
therefore xitαm >σ̄ xitβn since α > β. Moreover we have tα+1m >σ̄ tβ+1n, because m = n and
α+ 1 > β+ 1.

Now we prove that σ̄ φ-extends σ, that is φ(inσ̄( f )) = inσ(φ( f )) for every f ∈ S homoge-
neous. Let f =

∑d
i=1 aitαimi be a homogeneous polynomial, with mi ∈ R distinct terms, αi ∈N,

and ai ∈ k \ {0}. Then φ( f ) =
∑d

i=0 aimi and deg mi = deg f − αi. If there is any cancellation
in the sum defining φ( f ), then the monomials cancelling have the same degree, then they
have already been cancelled in f . Hence, there is no cancellation in φ( f ). Without loss of
generality, let m1 = inσ(φ( f )), that is m1 >σ mi for every i = 2, . . . , d. Then tα1m1 = inσ̄( f ), and
φ(inσ̄( f )) = m1 = inσ(φ( f )). �

Example 3.10. The equality φ(inσ̄( f )) = inσ(φ( f )) does not necessarily hold for f not ho-
mogeneous. For example consider f = tx − x + ty ∈ S = k[x, y, t], and let σ = LEX. Then
inσ̄( f ) = tx, φ( f ) = y, and inσ(φ( f )) = y , x = φ(inσ̄( f )).

The next is an important example of φ-extension of a term order.

Lemma 3.11. Fix the DRL order on R and extend it to the DRL order on S by letting t be the smallest
variable. Then the DRL order on S φ-extends the DRL order on R.
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Proof. Let f =
∑d

i=1 aitαimi be a homogeneous polynomial, with mi ∈ R distinct terms, αi ∈N,
and ai ∈ k \ {0}. Then φ( f ) =

∑d
i=0 aimi and deg mi = deg f − αi. As in the proof of Lemma 3.9

there is no cancellation in φ( f ).
Without loss of generality, let inDRL(φ( f )) = m1, that is m1 >DRL mi for all i = 2, . . . , d. For

each i ∈ {2, . . . , d} we have two possibilities: either deg m1 > deg mi or deg m1 = deg mi. If
deg m1 > deg mi then we have α1 < αi, since deg m j + α j = deg f for every j. This implies
tα1m1 >DRL tαimi. If deg m1 = deg mi then we have α1 = αi, and tα1m1 >DRL tαimi follows from
m1 >DRL mi. Therefore we have inDRL( f ) = tα1m1, and φ(inDRL( f )) = m1 = inDRL(φ( f )). �

Remark 3.12. Fix the DRL order on R. The DRL order on S is different from the order DRL
obtained by applying Definition 3.8. For example, let R = k[x, y] with x > y, S = R[t], and
consider the monomials t3x and ty2. We have t3x <DRL ty2 because x <DRL y2 in R. In
particular, DRL is not degree-compatible, while DRL is. Notice however that the two orders
coincide on pairs of terms of the same degree.

3.3. Solving degree and homogenization. Let R = k[x1, . . . , xn] with the DRL order and
let S = R[t] with the DRL order with t as smallest variable. Let F = { f1, . . . , fr} ⊆ R, let
I = (F ) ⊆ R, let Ih

⊆ S be the homogenization of I with respect to t, and let (F h) ⊆ S be the
ideal generated byF h = { f h

1 , . . . , f h
r }. The goal of this section is comparing the solving degree

of F , F h, and Ih with respect to the chosen term orders. We start with a preliminary result
on Gröbner bases and homogenization.

Proposition 3.13. Let R = k[x1, . . . , xn] and let S = R[t]. Fix the DRL term order on R and extend
it to the DRL term order on S by letting t be the smallest variable. Let I be an ideal of R with Gröbner
basis {g1, . . . , gs}. Then {gh

1, . . . , g
h
s } is a Gröbner basis of Ih.

Proof. First we show that gh
1, . . . , g

h
s generate Ih. Clearly we have gh

1, . . . , g
h
s ∈ Ih. For the other

inclusion, consider f ∈ I of degree d with standard representation f =
∑s

i=1 figi for some
fi ∈ R, that is in( f ) ≥ in( figi) for all i = 1, . . . , s.

Since in( f ) ≥ in( figi) and DRL is degree-compatible, we have d ≥ deg fi + deg gi. Therefore
we can write

(2) f h =

s∑
i=1

td−deg fi−deg gi f h
i gh

i ,

which shows that f h
∈ (gh

1, . . . , g
h
s ).

To prove that {gh
1, . . . , g

h
s } is a Gröbner basis, it is enough to show that (2) is a standard

representation for f h, i.e. in( f h) ≥ in(td−deg fi−deg gi f h
i gh

i ) for all i = 1, . . . , s. We observe that
in( f h) = in( f ) does not contain the variable t and we distinguish two cases.

(1) If d − deg fi − deg gi > 0, then a power of t appears in td−deg fi−deg gi f h
i gh

i , and in its
initial term as well. It follows that in( f h) ≥ in(td−deg fi−deg gi f h

i gh
i ) since t is the smallest

variable in the DRL term order of S.
(2) If d − deg fi − deg gi = 0, then no power of t appears in in( f h

i gh
i ). Therefore we have

in( f h
i gh

i ) = in( figi) ≤ in( f ) = in( f h).
�

The next result relates the solving degrees of F and F h. It also clarifies why the largest
degree of an element in a reduced Gröbner basis ofF may be smaller than its solving degree.

Theorem 3.14. Let F = { f1, . . . , fr} ⊆ R = k[x1, . . . , xn] and let F h = { f h
1 , . . . , f h

r } ⊆ S = R[t] be
obtained from F by homogenizing f1, . . . , fr with respect to t. Let Ih

⊆ S be the homogenization of
I = (F ) ⊆ R with respect to t. Consider the term order DRL on R and S, with t as smallest variable.
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Then

max.GB.deg(F h) = solv.deg(F h) = solv.deg(F )

≥max.GB.deg(F ) = max.GB.deg(Ih) = solv.deg(Ih).

Proof. We claim that the Macaulay matrix M≤d of F with respect to DRL is equal to the
homogeneous Macaulay matrix Md of F h with respect to DRL, for every d ≥ 1. In fact,
the monomials of S of degree d are exactly the homogenizations of the monomials of R
of degree ≤ d. Similarly, if mi, j f h

j is the index of a row of Md, i.e., deg(mi, j f h
j ) = d, then

φ(mi, j f h
j ) = φ(mi, j) f j has degree ≤ d, hence it is the index of a row of M≤d. Conversely, every

index mi, j f h
j of a row of Md, can be obtained from an index of a row of M≤d by homogenizing

and multiplying by an appropriate power of t. In a nutshell, the statement on the columns
follows from the fact that I≤d = φ

(
(F h)d

)
. One also needs to check that the order on the

columns of Md and M≤d is the same. We consider M≤d. Since DRL is degree-compatible, the
columns are ordered in non-increasing degree order from left to right. The columns of the
same degree j ∈ {1, . . . , d} are then ordered according to DRL. Similarly, since t is the smallest
variable in the DRL order on S, the columns of Md are ordered in increasing order (from left
to right) of powers of t, which is equivalent to decreasing order of the degree of the variables
x1, . . . , xn. Then, the columns with the same power of t are ordered according to DRL on the
variables x1, . . . , xn. This proves that the matrices M≤d and Md coincide.

Let I = (F ) and J = (F h). Since the matrices M≤d and Md coincide and since the deho-
mogenization of a Gröbner basis of F h produces a Gröbner basis of F by Theorem 3.7, one
has

solv.degDRL(F ) ≤ solv.degDRL(F h).

To check that they are equal, for each minimal generator m of in(I), we consider the least
degree d for which a polynomial f with in( f ) = m appears among the rows of the reduced
row echelon form of M≤d. Since Md = M≤d, the polynomial td−deg( f ) f h appears among
the rows of the reduced row echelon form of Md. We claim that no polynomial g with
in(g) | td−deg( f )m = in(td−deg( f ) f h) appears as a row of the reduced row echelon form of Me
for some e < d. In fact, if this were the case then, by Theorem 3.7, the dehomogenization of
in(g) would be equal to m and appear as a row of Me. This contradicts the assumption that
d is the least degree for which a polynomial with leading term m appears among the rows
of the reduced row echelon form of M≤d. This shows that the least degree d in which the
leading terms of the rows of the reduced row echelon form of the matrix M≤d generate the
initial ideal of I is the same as the the least degree e in which the leading terms of the rows
of the reduced row echelon form of the matrix Me generate in(J)e. Therefore

solv.degDRL(F ) = solv.degDRL(F h).

The equality max.GB.deg(F ) = max.GB.deg(Ih) follows from the following two facts:

• By Lemma 3.11 and Theorem 3.7 the dehomogenization of a DRL Gröbner basis of Ih

produces a DRL Gröbner basis of I.
• The homogenization of a DRL Gröbner basis of I produces a DRL Gröbner basis of Ih

by Proposition 3.13.

In particular, no leading term of an element of the reduced Gröbner basis of Ih is divisible by
t, so dehomogenization does not decrease the degrees of the elements of the Gröbner basis.

Finally, the two equalities max.GB.deg(F h) = solv.deg(F h) and max.GB.deg(Ih) =

solv.deg(Ih) follow from Remark 3.4. �

Remark 3.15. Theorem 3.14 clarifies why, when the systemF is not homogeneous, the largest
degree of an element in a reduced Gröbner basis may be strictly smaller than the solving
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degree. This is due to the difference between the ideals (F h) and Ih, and more specifically
between max.GB.deg(F h) and max.GB.deg(Ih).

The following is an example where solv.deg(F ) > max.GB.deg(F ). See also Example 4.7
for a cryptographic example.

Example 3.16. Let R = k[x, y] and let S = R[t] = k[x, y, t], both with the DRL order. We
consider the system F = { f1, f2} ⊆ R with f1 = x2

− 1, f2 = xy + x, and let I = (F ). Then
F

h = { f h
1 , f h

2 } = {x2
− t2, xy + xt}, and Ih = (x2

− t2, y + t). Writing the Macaulay matrices
of F , F h, and {x2

− t2, y + t} and doing Gaussian elimination, one sees that solv.deg(F ) =

solv.deg(F h) = 3. By computing Gröbner bases, one can check that max.GB.deg(F h) = 3
and max.GB.deg(F ) = max.GB.deg(Ih) = 2.

3.4. Solving degree and Castelnuovo-Mumford regularity. In what follows, we compare
the solving degree of a homogeneous ideal with a classic invariant from commutative algebra:
the Castelnuovo-Mumford regularity. We recall the definition of this invariant and its basic
properties before illustrating the link with the solving degree.

Let R = k[x1, . . . , xn] be a polynomial ring in n variables over a field k and let I be a
homogeneous ideal of R. For any integer j we recall that R j denotes the k-vector space of
homogeneous elements of R of degree j.

Choose a minimal system of generators f1, . . . , fβ0 of I. We recall that, since I is homo-
geneous, the number β0 and the degrees di = deg fi are uniquely determined. We fix an
epimorphism ϕ : Rβ0 → I sending the canonical basis {e1, . . . , eβ0} of the free module Rβ0 to
{ f1, . . . , fβ0}. The map ϕ is in general not homogeneous of degree 0, so we introduce degree
shifts on R: For any integer d, we denote by R(−d) the R-module R, whose j-th homogeneous
component is R(−d) j = R−d+ j. For example, the variables x1, . . . , xn have degree 2 in R(−1),
and degree 0 in R(1). The map

ϕ :
β0⊕
j=1

R(−d j)→ I

is homogeneous of degree 0, that is deg(ϕ( f )) = deg f for every f .
Now consider the submodule kerϕ ⊆

⊕β0

j=1 R(−d j). It is again finitely generated and
graded, and is called (first) syzygy module of I. We choose a minimal system of generators
of kerϕ and we continue similarly defining an epimorphism from a free R-module (with
appropriate shifts) to kerϕ and so on.

Hilbert’s Syzygy Theorem guarantees that this procedure terminates after a finite number
of steps. Thus, we obtain a minimal graded free resolution of I:

0→ Fp → · · · → F1 → F0
ϕ
−→ I→ 0,

where the Fi are free R-modules of the form

Fi =

βi⊕
j=0

R(−di, j)

for appropriate shifts di, j ∈ Z. By regrouping the shifts, we may write the free R-modules of
the minimal free resolution of I as

Fi =
⊕
j∈Z

R(− j)βi, j .

The numbers βi, j = βi, j(I) are the (graded) Betti numbers of I.

Definition 3.17. The Castelnuovo-Mumford regularity of I is

reg(I) = max{ j− i : βi, j(I) , 0}.
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If F is a homogeneous system of generators of I, we set also reg(F ) = reg(I).

Example 3.18. We consider the ideal I = (x2, xy, xz, y3) in R = k[x, y, z]. A minimal free
resolution of I is given by

0→ R(−4)
ϕ2
−−→ R(−3)3

⊕R(−4)
ϕ1
−−→ R(−2)3

⊕R(−3)
ϕ0
−−→ I→ 0,

with R-linear maps given by the following matrices

ϕ0 = (x2, xy, xz, y3), ϕ1 =


−y −z 0 0
x 0 −z −y2

0 x y 0
0 0 0 x

 , ϕ2 =


z
−y
x
0

 .
So the non-zero Betti numbers of I are β0,2 = 3, β0,3 = 1, β1,3 = 3, β1,4 = 1, β2,4 = 1, and the
Castelnuovo-Mumford regularity is reg(I) = 3.

For more on regularity and its properties, the interested reader may consult [Eis94, Chapter
20] or [Cha07]. In the sequel we only mention the facts that are relevant for our purposes.

Remark 3.19. In many texts in commutative algebra or algebraic geometry it is assumed
that the field k is algebraically closed or infinite. However, the definition of regularity
makes perfect sense over a finite field. The construction of a minimal free resolution that we
illustrated can be carried out over a finite field. Moreover, it shows that the Castelnuovo-
Mumford regularity is preserved under field extensions. In particular, if I is an ideal in a
polynomial ring R = Fq[x1, . . . , xn] over a finite fieldFq and J is its extension to the polynomial
ring S = Fq[x1, . . . , xn] over the algebraic closure of Fq, then regR(I) = regS(J).

The next theorem is due to Bayer and Stillman. It relates the regularity of a homogeneous
ideal to the regularity of its DRL initial ideal. Combined with our Theorem 3.14, it will allow
us to bound the solving degree of any system.

Theorem 3.20 ([BS87], Theorem 2.4 and Proposition 2.9). Let J ⊆ k[x1, . . . , xn] be a homogeneous
ideal. Assume that J is in generic coordinates over k, then

reg(J) = reg(inDRL(J)).

Remark 3.21. Let J be a homogeneous ideal in generic coordinates. If k has characteristic zero,
then reg(inDRL(J)) = max.GB.degDRL(J), as shown in [BS87]. If k has positive characteristic,
one still has that max.GB.degDRL(J) ≤ reg(inDRL(J)) and the inequality is often an equality.
In fact this was the case in all the examples that we computed while working on this
paper. Nevertheless, in positive characteristic one can find examples of ideals J in generic
coordinates for which the inequality is strict. E.g. J = (xp, yp) ⊆ Fp[x, y] is in generic
coordinates, max.GB.degDRL(J) = p, and reg(J) = 2p− 1.

Combining Theorem 3.14 and Theorem 3.20, one obtains bounds on the solving degree.
Our bounds assume that the ideal generated by the (homogenized) system is in generic coor-
dinates. Notice that this assumption is likely to be satisfied for systems of equations coming
from multivariate cryptography, at least over a field of sufficiently large cardinality. In fact,
multivariate schemes are often constructed by applying a generic change of coordinates (and
a generic linear transformation) to the set of polynomials which constitutes the private key.

For the sake of clarity, we give a homogeneous and a non-homogeneous version of the re-
sult. Since the proofs are very similar, and in fact more complicated in the non-homogeneous
case, we only give the proof in the latter case.

Theorem 3.22. Let F ⊆ R be a system of homogeneous polynomials and assume that (F ) is in
generic coordinates over k. Then

solv.degDRL(F ) ≤ reg(F ).
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The following result allows us to bound the complexity of computing a Gröbner basis of a
system of equations by establishing a connection with the Castelnuovo-Mumford regularity
of the homogenization of the system.

Theorem 3.23. Let F = { f1, . . . , fr} ⊆ R be a system of polynomials, which is not homogeneous. Let
F

h = { f h
1 , . . . , f h

r } ⊆ S = R[t] and assume that the ideal (F h) is in generic coordinates over k. Then

solv.degDRL(F ) ≤ reg(F h).

Proof. For a homogeneous ideal J in R or S, max.GB.degDRL(J) and reg(J) are invariant under
field extension. So we may extend all ideals to the algebraic closure k of k. By Theorem 3.14
and Theorem 3.20 we have the chain of equalities and inequalities

solv.degDRL(F ) = solv.degDRL(F h) = max.GB.degDRL(F h) ≤ reg(inDRL(F h)) = reg(F h).

�

Remark 3.24. The upper bound in Theorem 3.22 and Theorem 3.23 is often an equality, since
max.GB.degDRL(F h) = reg(inDRL(F h)) if k has characteristic zero and often even if it has
positive characteristic (see Remark 3.21).

By combining Theorem 3.23 and classical results on the Castelnuovo-Mumford regularity
(see e.g. [Cha07, Theorem 12.4]), one immediately obtains the following bound on the
solving degree of systems which have finitely many solutions over k̄. The bound is linear in
both the number of variables and the degrees of the polynomials of the system.

Corollary 3.25 (Macaulay bound – [Laz83], Theorem 2). Let F = { f1, . . . , fr} ⊆ R be a system
of equations with di = deg fi and d1 ≥ d2 ≥ · · · ≥ dr. Set ` = min{n + 1, r}. Assume that
|Z+(F h)| < ∞ and that (F h) is in generic coordinates over k. Then

solv.degDRL(F ) ≤ d1 + . . .+ d` − ` + 1

and equality holds if f1, . . . , fr are a regular sequence. In particular, if r > n and d = d1, then

solv.degDRL(F ) ≤ (n + 1)(d− 1) + 1.

The condition that (F h) is in generic coordinates is not always easy to verify. Nevertheless,
if we add the field equations, or their fake Weil descent, to the generators of the ideal, then
we can prove that the homogenized system is in generic coordinates.

Theorem 3.26. Let p > 0 be a prime and let q = pe, e ≥ 1. Let k be a field of characteristic p
and let F = { f1, . . . , fr} ⊆ k[x1, . . . , xn] be a system of polynomial equations. Set di = deg fi with
d1 ≥ d2 ≥ · · · ≥ dr and ` = min{n + 1, r}. Assume that one of the following holds:

• xq
i − xi ∈ F for i = 1, . . . ,n, or

• xq
1 − x2, . . . , x

q
n−1 − xn, x

q
n − x1 ∈ F .

Then the ideal (F h) = ( f h
1 , . . . , f h

r ) is in generic coordinates over k̄. In particular

solv.degDRL(F ) ≤ d1 + . . .+ d` − ` + 1

and equality holds if f1, . . . , fr are a regular sequence. Moreover, if r > n and d = d1, then

solv.degDRL(F ) ≤ (n + 1)(d− 1) + 1.

Proof. According to [BS87, Theorem 2.4 and Definition 1.5], J = (F h) is in generic coordinates
over k̄ if and only if t is not a zero divisor on k̄[x1, . . . , xn, t]/Jsat, where Jsat is the saturation of J
with respect to the irrelevant maximal ideal (x1, . . . , xn, t). Substituting t = 0 in the equations
of J one obtains the equations x1 = . . . = xn = 0. Therefore the projective zero locus of J does
not contain any point with t = 0. This means that t - 0 modulo Jsat, hence proving that J is in
generic coordinates. The second part of the statement then follows from Corollary 3.25. �
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Remark 3.27. From the proof of Theorem 3.26 one sees that a systems is in generic coordinates
whenever it contains equations of the form xdi

i + pi(x1, . . . , xn) with deg(pi) < di, for i = 1, . . . ,n.

We may use the results established in this section to obtain bounds on the solving degree
of the ABC encryption scheme. We assume that the systems have finite affine zero loci,
which was the case for all the instances of the ABC cryptosystem that we computed.

Example 3.28. The system associated to the ABC cryptosystems [TDTD13, TXPD15] consists
of 2n quadratic equations in n variables. Therefore by assuming that the system is in generic
coordinates, or, if the ground field is F2, simply by adding the field equations to the system
we obtain

solv.deg(F ) ≤ n + 2.

4. Solving degree and degree(s) of regularity

In recent years, different invariants for measuring the complexity of solving a polynomial
system of equations were introduced. In particular, the notion of degree of regularity gained
importance and is widely used nowadays. In this section we discuss how the degree of
regularity is related with the Castelnuovo-Mumford regularity.

In the literature we found several definitions of degree of regularity. However, they are
mostly variations of the following two concepts:

(1) the degree of regularity by Bardet, Faugère, and Salvy [Bar04, BFS04, BFS15];
(2) the degree of regularity by Dubois and Gama, later studied by Ding, Schmidt, and

Yang [DG10, DS13, DY13].
In this section we recall both definitions of degree of regularity and compare them with the
Castelnuovo-Mumford regularity.

4.1. The degree of regularity by Bardet, Faugère, and Salvy. To the best of our knowledge,
the degree of regularity appeared first in a paper by Bardet, Faugère, and Salvy [BFS04]
and in Bardet’s Ph.D. thesis [Bar04]. However, the idea of measuring the complexity of
computing the Gröbner basis of a homogeneous ideal using its index of regularity can be
traced back to Lazard’s seminal work [Laz83]. Before giving the definition, we recall some
concepts from commutative algebra.

Let R = k[x1, . . . , xn] be a polynomial ring over a field k, let I be a homogeneous ideal of
R, and let A = R/I. For an integer d ≥ 0, we recall that Ad denotes the homogeneous part
of degree d of A. The function HFA(−) : N→ N, HFA(d) = dimk Ad is called Hilbert function
of A. It is well known that for large d, the Hilbert function of A is a polynomial in d called
Hilbert polynomial and denoted by HPA(d). The generating series of HFA is called Hilbert series
of A. We denote it by HSA(z) =

∑
d∈NHFA(d)zd. A classical theorem by Hilbert and Serre

says that the Hilbert series of A is a rational function, and more precisely has the form

(3) HSA(z) =
hA(z)

(1− z)`

where hA(z) is a polynomial such that hA(1) , 0, called h-polynomial of A.

Definition 4.1. The index of regularity of I is the smallest integer ireg(I) ≥ 0 such that HFR/I(d) =
HPR/I(d) for all d ≥ ireg(I). If F is a system of generators for I, we set also ireg(F ) = ireg(I).

The index of regularity can be read off the Hilbert series of the ideal, as shown in the next
theorem.

Theorem 4.2 ([BH98], Proposition 4.1.12). Let I ⊆ R be a homogeneous ideal with Hilbert series
as in (3) and let δ = deg hA. Then ireg(I) = δ− ` + 1.
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Let I ⊆ R be a homogeneous ideal. Applying the Grothendieck-Serre’s Formula [BH98,
Theorem 4.4.3] to R/I one obtains

(4) ireg(I) ≤ reg(I).

Moreover, if I is homogeneous and Id = Rd for d� 0, then ireg(I) = reg(I) by [Eis05, Corollary
4.15].

Definition 4.3. LetF = { f1, . . . , fr} ⊆ R be a system of equations and let
(
F

top) = ( f top
1 , . . . , f top

r )
be the ideal of R generated by the homogeneous part of highest degree of F . Assume that(
F

top)
d = Rd for d� 0. The degree of regularity of F is

dreg(F ) = ireg(F top).

Remark 4.4. If
(
F

top)
d = Rd for d � 0, then |Z(F )| < ∞. The converse, however, does not

hold in general. See Example 4.8 for an example where F has finitely many solutions over
k̄, but

(
F

top)
d , Rd for all d.

The following is an easy consequence of the definitions.

Proposition 4.5. Let F ⊆ R be a system of equations. Assume that
(
F

top)
d = Rd for d� 0. Then

dreg(F ) = reg(F top).

If in addition F is homogeneous, then F top = F and

dreg(F ) = reg(F ).

In the context of multivariate cryptosystems however, it is almost never the case that
F is homogeneous and (F )d = Rd for d � 0. In fact, this is equivalent to saying that
Z(I) = {(0, . . . , 0)} by Remark 1.9.

For a system F such that I = (F ) has finite affine zero locus, we may interpret the
condition

(
F

top)
d = Rd for d � 0 as a genericity assumption. This assumption guarantees

that the degree of regularity gives an upper bound on the maximum degree of a polynomial
in a Gröbner basis of I, with respect to any degree-compatible term order.

Remark 4.6. Let τ be a degree-compatible term order and assume that
(
F

top)
d = Rd for

d� 0. Let I = (F ) and J = (F top). Then HPR/J(z) = 0, hence Jd = inτ(J)d = Rd for d ≥ dreg(F ).
The inclusion inτ(J)d ⊆ inτ(I)d holds for any d, since τ is degree-compatible. So we obtain
inτ(I)d = Rd for d ≥ dreg(F ). This implies that every element of the reduced Gröbner basis of
I has degree at most dreg(F ), that is

(5) max.GB.degτ(F ) ≤ dreg(F ).

Notice however that (5) does not yield a bound on the solving degree of F , as we show in
the next example.

Example 4.7. The polynomial systems F obtained in [BG18] (see also [Bia17, Chapter 5]) for
collecting relations for index calculus following the approach outlined by Gaudry in [Gau09]
for n = 3 consist of three non-homogeneous equations f1, f2, f3 of degree 3 in two variables.
For 150’000 randomly generated examples of cryptographic size (3 different q’s, 5 elliptic
curves for each q, 10’000 random points per curve) we found that

(
F

top)
d = Rd for d� 0 and

solv.degDRL(F ) = reg(F h) = 5 > 4 = dreg(F ) = ireg(F top).

The computations were performed by G. Bianco with MAGMA [BCP97].

Notice moreover that there are systems F for which |Z(F )| < ∞ and
(
F

top)
d , Rd for all

d ≥ 0. Definition 4.3 and inequality (5) do not apply to such systems. This can happen also
for polynomial systems arising in cryptography.

When this happens, one may be tempted to consider ireg(F top) anyway, and use it to bound
the solving degree of F . Unfortunately this approach fails since ireg(F top) and solv.deg(F )
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might be far apart, as the next examples shows. On the other side, the Castelnuovo-Mumford
regularity of F h still allows us to correctly bound the solving degree of F .

Example 4.8. The polynomial systems obtained in [GM15] for collecting relations for index
calculus following the approach outlined by Gaudry in [Gau09] for n = 3 consist of three non-
homogeneous equations f1, f2, f3 in two variables, of degrees 7,7, and 8. Let F = { f1, f2, f3},
F

h = { f h
1 , f h

2 , f h
3 }, and F top = { f top

1 , f top
2 , f top

3 }. For 150’000 randomly generated examples
of cryptographic size (as in Example 4.7) we found that solv.degDRL(F ) = reg(F h) = 15,(
F

top)
d , Rd for all d ≥ 0, and ireg(F top) = 8. The computations were performed by G. Bianco

with MAGMA [BCP97].

Finally, given a polynomial system F = { f1, . . . , fr} there is a simple relation between the
ideals (F top) ⊆ R and (F h) ⊆ S, namely

(6) (F top)S + (t) = (F h) + (t).

Here (F top)S denotes the extension of (F top) to S, i.e., the ideal of S generated by F top. Since
F

top
⊆ R, t - 0 modulo (F top)S. If t - 0 modulo (F h), then (F h) = (F )h is the homogenization

of (F ) and reg(F h) = reg(F top). Therefore, if t - 0 modulo F h and
(
F

top)
d = Rd for d � 0,

then
dreg(F ) = reg(F h)

by Proposition 4.5. However, one expects that in most cases t | 0 modulo (F h). In fact,
(F h) = (F )h only in very special cases, namely when f1, . . . , fr are a Macaulay basis of (F )
with respect to the standard grading (see [KR05, Theorem 4.3.19]). Therefore (6) usually
does not allow us to compare the regularity and the index of regularity of F h and F top. See
also [BDDGMT20, Section 4.1] for a more detailed discussion.

4.2. The degree of regularity by Ding and Schmidt. The second notion of degree of regu-
larity is more recent. To the extent of our knowledge it has been introduced by Dubois and
Gama [DG10], and later has been used by several authors such as Ding, Schmidt, and Yang
[DS13, DY13]. The definition we present here is taken from [DS13], and differs slightly from
the original one of Dubois and Gama.

Let Fq be a finite field. We work in the graded quotient ring B = Fq[x1, . . . , xn]/(xq
1, . . . , x

q
n).

Let f1, . . . , fr ∈ B be homogeneous polynomials of degree 2. We fix a B-module homo-
morphism ϕ sending the canonical basis e1, . . . , er of Br to { f1, . . . , fr}, that is for every
(b1, . . . , br) ∈ Br we have ϕ(b1, . . . , br) =

∑r
i=1 bi fi. We denote by Syz( f1, . . . , fr) the first syzygy

module of f1, . . . , fr, that is the kernel of ϕ. An element of Syz( f1, . . . , fr) is a syzygy of
f1, . . . , fr. In other words, it is a vector of polynomials (b1, . . . , br) ∈ Br such that

∑r
i=1 bi fi = 0.

An example of syzygy is given by the Koszul syzygies fie j − f jei, where i , j or by the
syzygies coming by the quotient structure of B, that is f q−1

i ei. Here ei denotes the i-th element
of the canonical basis of B. These syzygies are called trivial syzygies, because they are always
present and do not depend on the structure of f1, . . . , fr, but rather on the ring structure of
B. We define the module Triv( f1, . . . , fr) of trivial syzygies of f1, . . . , fr as the submodule of
Syz( f1, . . . , fr) generated by { fie j − f jei : 1 ≤ i < j ≤ r} ∪ { f q−1

i ei : 1 ≤ i ≤ r}.
For any d ∈ N we define the vector space Syz(F )d = Syz(F ) ∩ Br

d of syzygies of degree
d. We define the vector subspace of trivial syzygies of degree d as Triv(F )d = Triv(F )∩ Br

d.
Clearly, we have Triv(F )d ⊆ Syz(F )d.

Definition 4.9. Let F = { f1, . . . , fr} ⊆ B be a system of polynomials of degree 2. The degree of
regularity of F is

δreg(F ) = min{d ≥ 2 : Syz(F top)d−2/Triv(F top)d−2 , 0}.
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Remark 4.10. Dubois and Gama [DG10] work in the ring Fq[x1, . . . , xn]/(xq
1 − x1, . . . , x

q
n − xn)

and not in B = Fq[x1, . . . , xn]/(xq
1, . . . , x

q
n).

The degree of regularity is the first degree where we have a linear combination of multiples
of f1, . . . , fr which produces a non-trivial cancellation of their top degree parts. For this
reason, some authors refer to it as first fall degree.

One may wonder whether the degree of regularity by Ding and Schmidt is close to the
solving degree of a polynomial system of quadratic equations. Ding and Schmidt showed
that this is not always the case. In fact, it is easy to produce examples, the so-called degenerate
systems, for which the degree of regularity and the solving degree are far apart. For a detailed
exposition on this problem and several examples we refer the reader to their paper [DS13].

We are not aware of any results relating δreg(F ) (Definition 4.9) and dreg(F ) (Definition
4.3). Despite the fact that they share the name, we do not see an immediate connection. A
comparison between these two invariants is beyond the scope of this paper.

5. Solving degree of ideals of minors and theMinRank Problem

The goal of this section is giving an example of how the results from Section 3, in combi-
nation with known commutative algebra results, allow us to prove estimates for the solving
degree in a simple and synthetic way. We consider polynomial systems coming from the
MinRank Problem. For more bounds on the complexity of the MinRank Problem, see [CG19].

The MinRank Problem can be stated as follows. Given an integer t ≥ 1 and a set
{M1, . . . ,Mn} of s× s matrices with entries in a field k, find a non-zero tuple λ = (λ1, . . . , λn) ∈
kn such that

(7) rank

 n∑
i=1

λiMi

 ≤ t− 1.

This problem finds several applications in multivariate cryptography and in other areas of
cryptography as well. For example, Goubin and Courtois [GC00] solved a MinRank Problem
to attack Stepwise Triangular Systems, and Kipnis and Shamir [KS99] solved an instance of
MinRank in their cryptanalysis of the HFE cryptosystem.

Consider the matrix M =
∑n

i=1 xiMi, whose entries are homogeneous linear forms in R.
Condition (7) is equivalent to requiring that the minors of size t× t of M vanish. Therefore,
every solution of the MinRank Problem corresponds to a non-zero point in the zero locus in
kn of the ideal It(M) of t-minors of M. A similar algebraic formulation can be given for the
Generalized MinRank Problem, which finds applications within coding theory, non-linear
computational geometry, real geometry, and optimization. We refer the interested reader
to [FSS13] for a discussion of the applications of the Generalized MinRank Problem and a
list of references.

Generalized MinRank Problem. Given a field k, an r× s matrix M whose entries are poly-
nomials in R = k[x1, . . . , xn], and an integer 1 ≤ t ≤ min{r, s} find a point in kn

\ {(0, . . . , 0)} at
which the evaluation of M has rank at most t− 1.

The Generalized MinRank Problem can be solved by computing the zero locus of the
ideal of t-minors It(M). The minors of size t × t of the matrix M form an algebraic system
of multivariate polynomials, which one can attempt to solve by computing a Gröbner basis.
This motivates our interest in estimating the solving degree of this system for large classes
of matrices.

Ideals of minors of a matrix with entries in a polynomial ring are called determinantal ideals
and have been extensively studied in commutative algebra and algebraic geometry. Using
Theorem 3.22, we can take advantage of the literature on the regularity of determinantal
ideals to give bounds on the solving degree of systems of minors of certain large classes of
matrices. For simplicity, we focus on homogeneous matrices.
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Definition 5.1. Let M be an r × s matrix with r ≤ s, whose entries are elements of R. The
matrix M is homogeneous if both its entries and its 2-minors are homogeneous polynomials.

It is easy to see that the minors of any size of a homogeneous matrix are homogeneous
polynomials. Moreover, observe that a matrix whose entries are homogeneous polynomials
of the same degree is a homogeneous matrix, but there are homogeneous matrices whose
entries have different degrees. After possibly exchanging some rows and columns, we may
assume without loss of generality that the degrees of the entries of a homogeneous matrix
increase from left to right and from top to bottom. With this notation, we can compute the
solving degree of our first family of systems of minors. We refer the reader to [Eis94] for the
definition of height of an ideal.

Theorem 5.2. Let M = ( fi j) be an r× s homogeneous matrix with r ≤ s, whose entries are elements
of R, n ≥ s − r + 1. Let F be the polynomial system of the minors of size r of M and assume that
height(Ir(M)) = s− r + 1. Then the solving degree of F is upper bounded by

solv.deg(F ) ≤ deg( f1,1) + . . .+ deg( fm,m) + deg( fm,m+1) + . . .+ deg( fm,n)− s + r.

If deg( fi, j) = 1 for all i, j, then solv.deg(F ) = r.

Proof. Since the matrix M is homogeneous, the system of minorsF consists of homogeneous
polynomials. The regularity of the corresponding ideal Ir(M) = (F ) is

reg(Ir(M)) = deg( f1,1) + . . .+ deg( fr,r) + deg( fr,r+1) + . . .+ deg( fr,s)− s + r.

The formula can be found in [BCG04, Proposition 2.4] and is derived from a classical re-
sult of Eagon and Northcott [EN62]. The bound on the solving degree now follows from
Theorem 3.22. In particular, if deg( fi, j) = 1 for all i, j, then solv.deg(F ) ≤ r. Since Ir(M) is
generated in degree r, then solv.deg(F ) = r. �

Notice that the assumption on the height is satisfied by a matrix M whose entries are
generic homogeneous polynomials of fixed degrees. If n = s − r + 1, then Ir(M)d = Rd for
d � 0, hence dreg(F ) = reg(F ), where F is the set of maximal minors of M. Therefore,
Theorem 5.2 recovers the results of [FSS10, FSS13] for n = s − r + 1 and t = r, and extends
them to homogeneous matrices whose entries do not necessarily have the same degree.

We now restrict to systems of maximal minors of matrices of linear forms. The MinRank
Problem associated to this class of matrices is a slight generalization of the classical MinRank
Problem of (7). From the previous result it follows that, if the height of the ideal of maximal
minors is as large as possible, then the solving degree of the corresponding system is as
small as possible, namely r. We now give different assumptions which allows us to obtain
the same estimate on the solving degree, for ideals of maximal minors whose height is not
maximal. We are also able to bound the solving degree of the system of 2-minors.

Let R have a standard Zv-graded structure, i.e., the degree of every indeterminate of R is
an element of the canonical basis {e1, . . . , ev} of Zv.

Definition 5.3. Let M = ( fi, j) be an r × s matrix with entries in R, r ≤ s. We say that M is
column-graded if s ≤ v, and fi, j = 0 or it is homogeneous of degree deg( fi, j) = e j ∈ Z

v for
every i, j. We say that M is row-graded if r ≤ v, and fi, j = 0 or it is homogeneous of degree
deg( fi, j) = ei ∈ Z

v for every i, j.

Informally, a matrix is row-graded if the entries of each row are homogeneous linear forms
in a different set of variables. Similarly for a column-graded matrix.

Theorem 5.4. Let M be an r × s row-graded or column-graded matrix with entries in R . Assume
that r ≤ s and Ir(M) , 0. Then:

• if F is the system of maximal minors of M then solv.deg(F ) = r,
• if F is the system of 2-minors of M then solv.deg(F ) ≤ s in the column-graded case, and

solv.deg(F ) ≤ r in the row-graded case.
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Proof. It is shown in [CDG15, CDG20] that reg(Ir(M)) = r, reg(I2(M)) ≤ s in the column-
graded case, and reg(I2(M)) ≤ r in the row-graded case. The bounds on the solving degree
now follow from Theorem 3.22. �
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