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Abstract. Although lattice-based cryptography has proven to be a
particularly efficient approach to post-quantum cryptography, its secu-
rity against side-channel attacks is still a very open topic. There already
exist some first works that use masking to achieve DPA security. How-
ever, for public-key primitives SPA attacks that use just a single trace are
also highly relevant. For lattice-based cryptography this implementation-
security aspect is still unexplored.
In this work, we present the first single-trace attack on lattice-based
encryption. As only a single side-channel observation is needed for full
key recovery, it can also be used to attack masked implementations.
We use leakage coming from the Number Theoretic Transform, which is
at the heart of almost all efficient lattice-based implementations. This
means that our attack can be adapted to a large range of other lattice-
based constructions and their respective implementations.
Our attack consists of 3 main steps. First, we perform a template match-
ing on all modular operations in the decryption process. Second, we ef-
ficiently combine all this side-channel information using belief propaga-
tion. And third, we perform a lattice-decoding to recover the private key.
We show that the attack allows full key recovery not only in a generic
noisy Hamming-weight setting, but also based on real traces measured
on an ARM Cortex-M4F microcontroller.
Keywords: Lattice-Based Cryptography, Side-Channel Analysis, Single-
Trace Attack, Number Theoretic Transform

1 Introduction

The current public-key infrastructure is threatened by progress towards large-
scale quantum computing. Constructions based on RSA, DLP, or ECC, will
succumb to Shor’s algorithm [30], which is able to defeat these systems in poly-
nomial time. While estimates on the availability of powerful enough quantum
computers vary greatly–they range from 15 years [16] to never [29]–the threat
is still taken very seriously. This is demonstrated by, e.g., NIST’s current call
for post-quantum secure proposals [17] and official recommendations regarding
post-quantum security from the NSA [18].

When it comes to possible post-quantum secure algorithms, lattice-based
cryptography appears to be a promising option and has garnered a lot of atten-
tion over the past decade. It proved to be versatile and efficient, as there already
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exist practical lattice-based constructions offering basic services such as public-
key encryption, digital signatures, and key exchange. Furthermore, lattices also
serve as the basis for new primitives such as homomorphic encryption.

A very popular building block for lattice-based constructions is the ring-
variant of the Learning with Errors problem, RLWE [14]. Recent implementa-
tions of RLWE-based public-key encryption, e.g., [7,22,27], have shown that its
performance can compete with (or even exceed) that of RSA and ECC-based
systems on a large set of platforms.

While these results demonstrate practicality, the implementation security as-
pect of lattice-based cryptography is still a vastly unexplored and open topic.
Just like any other cryptographic algorithm, an unprotected implementation of
RLWE-based encryption will succumb to side-channel attacks such as Kocher’s
Differential Power Analysis (DPA) [12]. Due to the large number of linear oper-
ations in the en- and decryption process, masking [5] appears to be a natural fit
for protecting lattice-based cryptosystems against DPA. In fact, there already
exist masked implementations of lattice-based encryption [19,24,25,26]. They
also show that this countermeasure can be implemented with (relatively) little
resource overhead.

However, especially for public-key primitives the Simple Power Analysis (SPA)
security-aspect is also of high importance. This is demonstrated by, e.g., the large
number of single-trace attacks targeting implementations of RSA and ECC. Yet,
for lattice-based cryptography this aspect has never been analyzed thus far. As
implementation techniques for RLWE-based schemes differ drastically from those
of established public-key constructions, there are new potential venues for such
single-trace attacks.

Our Contribution. In this work, we are first to show that single-trace attacks
are indeed a threat to implementations of lattice-based cryptography. We present
a new side-channel attack on lattice-based encryption that can, given sufficient
leakage, recover the private key using just the side-channel observation of a single
decryption. Hence, it can also be applied to masked implementations to recover
each individual share, recombine them, and still perform full decryption-key
recovery.

Our attack targets the computation of the Number Theoretic Transform
(NTT), which is an essential building block for almost all efficient implementa-
tions of lattice-based cryptography. Thus, the attack can be ported to not only
different implementations of encryption, but also to implementations of other
lattice-based constructions. Furthermore, the NTT is not the first target for a
DPA attack and was thus less protected in earlier works [19].

Our attack is comprised of 3 main steps. First, we perform a side-channel
template matching [6] on each modular operation performed during the inverse
NTT in the decryption process. In the second step, we combine the information
(probabilities of intermediates) of every operation in the entire NTT. We do so
by representing the FFT-like structure of the NTT as a graph and then applying
the belief propagation algorithm (BP). While the use of BP in context of side-
channel attacks is not new [34], it hasn’t been used in the context of public-key
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encryption yet. In our setting, a simple implementation of BP would require an
impractical amount of time. Thus, we designed several optimizations that are
targeted specifically at the NTT analysis. In our third and final step, we combine
the knowledge of some secret intermediate values with the public key in order
to reveal the private key. Concretely, we recover the full decryption key by first
reducing the size of the public key and then performing a lattice decoding.

We evaluate our single-trace key-recovery attack in two different settings.
First, we determine the success rate in a generic Hamming-weight leakage model.
There, our attack has a high success rate, i.e., > 0.9, with noise parameters of
up to σ = 0.4. Second, to verify our findings in practice we use real traces from
EM measurements of an ARM Cortex-M4F software implementation. In this
latter scenario, we were always able to recover the decryption key. Finally, we
also show that our attack performs similarly well even if masking is used.

Outline. In Section 2, we recall lattice-based encryption, efficient implementa-
tions, as well as proposed side-channel protection mechanisms. Then, in Section 3
we recall soft-analytical side-channel attacks and belief propagation as its main
tool. The three steps of the attack are then described in the following sections.
The first step, a side-channel analysis of the NTT, is given in Section 4. Then,
in Section 5 we efficiently combine all information using belief propagation. The
third and final step, i.e., lattice decoding, is given in Section 6. We present and
discuss the outcome and performance of our attack in Section 7.

2 Lattice-Based Encryption and Implementation

In this section, we recall lattice-based encryption, efficient implementation tech-
niques, and previous works on side-channel countermeasures.

2.1 Lattice-Based Public-Key Encryption

In this work, we use the RLWE-based public-key encryption scheme proposed
by Lyubashevsky, Peikert, and Regev [14]. It operates with polynomials over the
ring Rq = Zq[x]/〈xn + 1〉 and is parameterized by the tuple (n, q, σ). n denotes
the dimension of the polynomials, q is the modulus for the base field Zq, and σ is
the standard deviation for a discrete Gaussian distribution Dσ. We use boldface
lowercase letters to interchangeably denote polynomials in Rq as well as their
respective coefficient vectors. We now recall the basic encryption scheme.

Key generation. For key-pair generation, two polynomials r1 and r2 are sam-
pled from the discrete Gaussian distribution Dσ. Next, the public key p is
computed as p = r1 − ar2. The uniformly-random polynomial a is either
a global domain parameter or is also included in the public key. r2 is the
private key, r1 is simply discarded.

Encryption. First, the plaintext m is encoded as m ∈ Rq. In a simple vari-
ant of encoding, the bits of m are simply multiplied by q/2. Then, three
error polynomials e1, e2, e3 ∈ Dσ are sampled. The ciphertext is a pair of
polynomials (c1, c2) with c1 = ae1 + e2 and c2 = pe1 + e3 + m.
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Decryption. The private key r2 is used to compute m? = c1r2 + c2. The
original message m is then retrieved by feeding m? to a decoder. There, one
computes the distance of each coefficient in m? to q/2. If this distance is
< q/4, then the decoder outputs 1, otherwise 0.

The above scheme only offers CPA security [8]. Recently, Oder et al. [19] pre-
sented an extension that also offers protection against adaptive chosen-ciphertext
attacks (CCA2). However, the core encryption and decryption algorithms are
identical, which is why we do not further discuss their CCA2 transformation
here.

2.2 Efficient Implementation

There already exists a somewhat large body of work targeting efficient implemen-
tation of the above encryption scheme. They range from FPGAs to low-resource
microcontrollers and desktop CPUs (e.g., [7,11,13,21,22,27]).

In our work we use the parameter set (n = 256, q = 7681, σ = 4.51), which
was introduced by Göttert et al. [11] and is used by all of the above implementa-
tions. The concrete security level provided by this instance is still under debate
and estimates vary (see, e.g., [2,10,19]). However, all our later analysis can be
extended to other parameters.

Number Theoretic Transform (NTT). If q is prime, n a power of two, and
q ≡ 1 mod 2n (which is the case for virtually all previously proposed parameter
sets), then there exist primitive n-th roots of unity ωn in Zq. This fact allows
to efficiently compute polynomial multiplication in Rq by means of the Number
Theoretic Transform (NTT).

The NTT is essentially a Discrete Fourier Transform (DFT) in a prime field
Zq instead of over the complex numbers C. Thus, this transformation is efficiently
computed using the same optimizations found in, e.g., the Cooley-Tukey FFT,
and runs in time O(n log n). The basic building block is a butterfly, which is
comprised of a modular multiplication with a certain power of the chosen primi-
tive root, a modular addition, and a modular subtraction. A total of n log2(n)/2
butterflies are computed during the NTT, as shown in Fig. 1 with the example of

a 4-coefficient NTT. The required powers of the primitive root, i.e., ω0
n . . . ω

n/2
n ,

are typically called twiddle factors. The inverse transformation (INTT) is com-
puted by simply invoking the NTT with ω−1n mod q. We denote ã as the NTT
transformed of a.

Multiplication of two polynomials a,b can now be implemented as c =
INTT(NTT(a)∗NTT(b)), where ∗ denotes a point-wise multiplication1. Thus, a
product can be computed in time complexity O(n log n) (compared to O(n2) for
non-ring-based LWE constructions). This is one of the main arguments behind
the choice of the particular ring2 Rq = Zq[x]/〈xn + 1〉.
1 This explanation is slightly simplified and omits, e.g., the scaling required for the

negative-wrapped convolution. For a more thorough explanation, we refer to [27].
2 There do exist proposals that are consciously avoiding the ring Rq and thus cannot

use the NTT [3,4]. Still, NTT-enabled variants are the large majority.
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Fig. 1. A 4-coefficient NTT network comprised of 4 butterflies.

As proposed by Roy et al. [27], the encryption scheme described in Section 2.1
can be optimized by keeping the ciphertext in the NTT domain, i.e., transmitting
(c̃1, c̃2). This requires that the same primitive root ωn is used for both encryption
and decryption. Thus, it must be agreed upon and is public.

2.3 Side-Channel Protection of RLWE Encryption

Implementation security of lattice-based primitives is still a very new and open
topic. Yet, there already exists some previous work that studies potential pro-
tection mechanisms. We now discuss these proposals.

Masking. Due to the linearity of the main operations, i.e., polynomial addition
and multiplication, the masking countermeasure [5] is a natural fit for lattice-
based public-key encryption. As proposed by Reparaz et al. [25,26] and shown
in Fig. 2, the private key r2 can be split into two shares r′2, r

′′
2 such that r2 =

r′2+r′′2 mod q. Then, polynomial multiplications, additions, and the inverse NTT
can be computed on each share individually.

The final decoding step, i.e., recovering m from m?, is nonlinear and requires
more care. Reparaz et al. designed a masked decoder which outputs two binary
shares of the message, i.e., m = m′ ⊕m′′, which can then be used as a shared
key in a protected implementation of, e.g., the AES.

r2'

c2

r2''

c1

INTT

INTT

D
ecoding

m'

m''

Fig. 2. Basic masking scheme for decryption
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Shuffling and blinding. In addition to masking, Oder et al. [19] propose to
use further countermeasures. First, they suggest to use shuffling to protect the
point-wise operations, i.e., point-wise addition and multiplication. They state
that these operations are the most likely target for a DPA attack. Hence, the
NTT is still computed in an unshuffled manner.

And second, they also use a randomization technique previously proposed by
Saarinen [28]. They pick random values a, b ∈ [1, q − 1] and then multiply the
coefficients a · c̃1, b · r̃2 and ab · c̃2 mod q. Due to the linearity of the NTT, the
mask can be removed by multiplying the output of the INTT with (ab)−1 mod q.

Additively homomorphic masking. In a later work, Reparaz et al. [24]
present a different masking approach which exploits the additively homomor-
phic property of LWE. This, however, has some caveats. First, Reparaz et al. do
not claim theoretical first-order security. And second, decoding errors are more
likely. This makes their method incompatible with the CCA2-transformation
presented by Oder et al. [19]. Due to these reasons, we do not further analyze
the susceptibility of this approach to our attack.

3 Soft-Analytical Side-Channel Attacks

In this section, we describe Soft-Analytical Side-Channel Attacks (SASCA),
which were proposed by Veyrat-Charvillon et al. [34] and are one of our main
attack tools. The main goal of SASCA is to bridge the gap between divide-and-
conquer approaches such as Kocher’s Differential Power Analysis (DPA) [12] and
algebraic/analytical side-channel attacks [23]. DPA offers low time and memory
complexity as well as high noise tolerance, but is suboptimal in terms of data
complexity (number of observed traces). Algebraic attacks are better in this sec-
ond regard, but are very sensitive to errors and often require exact information.

Veyrat-Charvillon et al. first perform a side-channel template matching [6]
on all intermediates computed during an AES encryption. For each intermediate
T , the template matching returns a vector of conditional probabilities Pr(T =
t|`), where ` denotes the observed side-channel leakage and t runs through all
realizations of the random variable T . Then, they construct a factor graph of
the AES and its specific implementation. This graph models the relationship
between all intermediates. Finally, they use the belief propagation algorithm
(BP) on this graph and the corresponding conditional probabilities to efficiently
combine the information of all leakage points. We now give a brief description
of this BP algorithm.

3.1 Belief Propagation

The belief propagation algorithm, originally proposed by Pearl et al. [20], allows
to efficiently compute the marginalization of a function given its factorization.
Our description and notation is largely based on that of MacKay [15, Chap-

ter 26]. Given a function P ∗ of a set of N variables x ≡ {xn}Nn=1 which is the
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product of M factors:

P ∗(x) =

M∏
m=1

fm(xm),

where each of the factors fm(xm) is a function of a subset xm of x and the
xn are defined over a domain D, the problem of marginalization is defined as
computing the marginal function Zn of any variable xn:

Zn(xn) =
∑

{xn′},n′ 6=n

P ∗(x),

or its normalized marginal Pn(xn) = Zn(xn)/Z with the normalization constant

Z =
∑

x

∏M
m=1 fm(x). The computational cost of marginalization is believed to

grow exponentially with the number of variables N . The BP algorithm aims at
reducing it by exploiting the factorization of the given function. BP is based
on the message-passing principle. It requires a representation of the given func-
tion as a bipartite factor graph consisting of variable nodes and factor nodes.
A variable node represents one of the variables xi ∈ x, whereas a factor node
corresponds to one of the factors fm. Edges are drawn between xi and fm iff the
factor fm depends on the variable xi. The number of variables fm depends on
is the factors degree deg(fm). The BP algorithm can be used to determine the
marginal functions by iteratively executing the following two steps:

From variable to factor:

qn→m(xn) =
∏

m′∈M(n)\{m}

rm′→n(xn), (1)

where M(n) denotes the set of factors in which n participates.

From factor to variable:

rm→n(xn) =
∑
xm\n

fm(xm)
∏

n′∈N (m)\m

qn′→m(xn), (2)

where N (m) denotes the indices of the variables that the m-th factor depends
on and xm\n denotes the set of variables in xm without xn.

After convergence, the marginal function Zn(xn) can be computed as:

Zn(xn) =
∏

m∈M(n)

rm→n(xn),

and the normalized marginals can be obtained from: Pn(xn) = Zn(xn)/Z, where
the normalizing constant Z is given by: Z =

∑
xn
Zn(xn)

If the factor graph is tree-like (acyclic), then the above algorithm returns the
exact marginals. Unfortunately, in many real life applications the factor graphs
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contains cycles. To overcome this problem, the so called loopy BP algorithm has
been proposed. It uses the same update rules and also iterates until convergence
is reached, but uses a slightly different initialization. While it is not guaran-
teed that the loopy BP algorithm will return correct values or even converge, it
usually gives sufficiently precise approximations of the marginals in many real-
world applications. The exact conditions under which the loopy BP algorithm
converges are still unknown. However, some sufficient conditions that ensure BP
convergence have been stated by, e.g., Su et al. [33].

4 Attack Step 1: Side-Channels in an NTT Butterfly

After having covered all required preliminaries, we now start the description of
our attack. As the first step of the attack, we exploit side-channel leakage during
the computation of the inverse NTT in the decryption algorithm. Concretely, we
first perform a profiling and then, for the actual attack, we match the recorded
templates at each modular operation. As outcome, we obtain information in
form of a probability vector for each such operation.

In order to understand how much information a side-channel adversary can
realistically expect in this first step, and to also allow attack evaluation in a real-
istic scenario, we performed a side-channel analysis of the NTT on a real device.
We now discuss our targeted implementation and platform, the measurement
setup, and some results of this analysis. We additionally introduce a generic and
simpler Hamming-weight leakage model, which will later be used in addition to
real traces. First, however, we explain the choice of the NTT as the primary
target for our attack.

4.1 The NTT as Side-Channel Target

The Number Theoretic Transform (NTT) is a main building block of virtually all
efficient instantiations and implementations of lattice-based cryptography. Yet,
thus far it has not been target of any side-channel analysis.

One potential reason is that the point-wise operations, i.e., multiplications
and additions while computing c̃1 ∗ r̃2 + c̃2, are the prime target for DPA attacks
as they allow easy coefficient-wise prediction of intermediates [19]. However, this
makes it tempting to use less protection in other parts, i.e., the NTT.

Also, the NTT is an interesting target for algebraic side-channel attacks. As
seen in Fig. 1, it is comprised of many potentially leaking modular operations
which are additionally connected by relatively simple algebraic rules. This makes
it possible to combine the information of all leaking computations.

4.2 Measurement Setup and Implementation

We performed side-channel measurements on a Texas Instruments MSP432 (ARM
Cortex-M4F) microcontroller on a MSP432P401R LaunchPad development board.
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A Cortex-M4F was also used by many other (protected) implementations of
RLWE encryption [7,19,25].

We exploit the EM side channel. As shown in Fig. 3, we placed a Langer
RF-B 3-2 near-field probe in proximity to the external core-voltage regulation
circuitry. This setup does not require any on-chip spatial profiling. Also, we
expect similar outcomes for a power analysis. Our microcontroller was clocked
at its maximum possible frequency of 48 MHz.

Fig. 3. EM probe placed near the voltage-regulation circuitry of an ARM Cortex-M4F

We base our analysis on the implementation techniques used in the open-
sourced Cortex-M4F implementation of de Clercq et al. [7], which is also the
basis of the masked software implementation of Reparaz et al. [25]. They imple-
mented modular multiplication with division, i.e., a mod q = a−qba/qc, and use
the integrated hardware multiplier and divider. On our platform, the multipli-
cation runs in constant time, but the DIV instruction does not. Reduction after
addition and subtraction is implemented using ARM conditional statements (IT
instruction), which run in constant time.

4.3 Real-Device Side-Channel Analysis

The NTT is comprised of repeated applications of a butterfly. It is a reason-
able assumption that all invocations utilize the same hardware, e.g., on-chip
multiplier and divider, which results in loop-invariant leakage. To simplify our
later analysis and attack evaluation, we thus opt for the following approach.
We analyzed the butterfly operations, i.e., modular multiplication and addi-
tion/subtraction, independently. For the analysis, the operands were preloaded
into registers and no leakage of loading and storing in memory was used. We
prerecorded a set number of traces for each possible operand combination. For
attack evaluation, we pick a random key, perform encryption/decryption, and for
each of the n log2(n)/2 = 1024 butterflies invoked during decryption randomly
pick one of the prerecorded traces that corresponds to the processed intermedi-
ate. We now describe our results for each operation in the butterfly.
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Modular addition and subtraction. de Clercq et al. implement modular
addition and subtraction with conditional ARM statements. While these run in
constant time, they still leak their state through other side-channels. With a
template matching, we were able to correctly classify virtually all, i.e., > 0.99,
of the taken branches. In the following, we simply assume that an attacker can
correctly detect whether a reduction happened or not. Alternatively, one could
also include the probability that a reduction happened in the later analysis.

Modular multiplication. In a butterfly, one of the inputs is multiplied by
a known twiddle factor ω. There are qn/2 = 983 168 possible operand/twiddle
factor combinations, for each of them we prerecorded 100 traces. Thus, we use
roughly 100 million traces for evaluation. For the attack, for each multiplication
we randomly pick one out of the 100 traces corresponding to the processed value.

In the analysis, we use two steps to recover information on the unknown
input. First, we exploit that the runtime of division is data dependent. We found
that it depends on the bit size of the dividend, i.e., the value that is reduced
(the divisor is the constant q). By measuring this time, which we do with a
simple thresholding in the side-channel trace, we can immediately assign the
intermediate to one out of several disjoint sets.

In the second step, we perform a side-channel template matching [6] to further
narrow down the operand. For each multiplication, we use 99 (remaining) traces
to build templates for each currently possible operand. The points-of-interest
used for template building were determined with a t-test [9]. We then match all
templates with the previously picked trace and compute the probability vector
required for the next step of our attack.

In order to give a sense on the informativeness of our traces we use the metric
proposed in [32], i.e., give the average entropy left in the probability vectors
conditioned on the leakage Pr(T = t|`). Without leakage, we have an entropy of
log2(q) ≈ 12.9 bit. After performing the template matching, the average entropy
decreases to roughly 7 bit. However, we observed that the outcome somewhat
correlates with the value of the used twiddle factor. With ω0

n = 1 we have a
remaining entropy of about 10 bits. With larger values, we generally achieve
better results.

4.4 A Simplified Model

In order to allow reproducibility, we additionally analyze the performance of our
attack with a more generic and simpler model, namely the common noisy Ham-
ming weight leakage model. That is, apart from knowing if a reduction happened
after addition/subtraction, for each modular multiplication an attacker gets two
samples of the form:

l = (HW(a) +N (0, σl))||(HW(aωin mod q) +N (0, σl))

a is the unknown input and ωin the used twiddle factor. HW denotes the Ham-
ming weight function and N the Gaussian distribution with standard deviation
σl. For the experiments, we perform a 2-variate template matching on these
simulated traces.
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5 Attack Step 2: Belief Propagation in the NTT

In the above template matching, the adversary obtains side-channel information
on each computed butterfly. In the second step of the attack, we now combine
all this information over the entire (I)NTT. We efficiently do so by using belief
propagation. We construct a factor-graph representation of the NTT, include
the side-channel information in this graph, and then run BP until convergence is
reached. With the constructed factor graph the runtime of a straight-forward BP
implementation is impractical. Thus, we present optimizations designed specifi-
cally for the NTT factor-graph, which decrease the runtime drastically.

5.1 Factor-Graph Construction

A factor graph is a bipartite graph containing variable nodes and factor nodes.
For modeling the NTT, we add one variable node x for each input/output of a
butterfly. With n = 256, we thus have n(log2(n) + 1) = 2 304 variable nodes.

We then add three types of factor nodes: fADD, fSUB, and fMUL. As seen in
Fig. 4, each type of factor occurs once per butterfly. Thus, there are a total of
3n log2(n)/2 = 3072 factor nodes in the NTT model. Evidently, there are cycles
in the graph shown in Fig. 4, so the loopy BP algorithm is needed.

fMUL is only connected to x2 and thus has degree 1. Its purpose is to add the
side-channel information gathered from the modular multiplication of x2 with
the known twiddle factor ω. We performed a template matching in Step 1 and
therefore are given vector of probabilities conditioned on the leakage l. Thus we
have:

fMUL(xi2) = Pr(x2 = xi2 |l)

The factors fADD and fSUB represent the modular addition and subtraction,
respectively. They are connected to both butterfly-input nodes x1 and x2, and
one of the two output nodes x3 or x4. Thus, their degree is 3. These factors model
how variable nodes inside a butterfly are related, e.g., that x3 = x1+x2ω mod q.
Furthermore, we use these factors to include whether a reduction happened after
addition or subtraction, respectively. For addition with subsequent reduction

x1
x2

x3
x4-

+ω x3
x4

fMUL
fSUBx2
fADDx1

Fig. 4. Butterfly network (left) and our corresponding factor graph (right)
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step, we have:

fADD(xi1 , xi2 , xi3) =

{
1 if xi1 + xi2ω ≡ xi3 mod q and xi1 + (xi2ω mod q) ≥ q
0 otherwise

If no reduction happened, then the second clause xi1 + (xi2ω mod q) > q is
simply negated. For subtraction with subsequent reduction, we have:

fSUB(xi1 , xi2 , xi4) =

{
1 if xi1 − xi2ω ≡ xi4 mod q and xi1 − (xi2ω mod q) < 0

0 otherwise

Other leakage points. The factor-graph representation of the NTT is flexible,
thus it can be modified to accommodate other leaking operations. One could, e.g.,
additionally include side-channel information of loading and storing in memory
or leakage on operands of modular addition and subtraction.

5.2 BP Runtime Estimation without Optimization

As it turns out, the runtime of a straight-forward implementation of BP on
our constructed factor graph is impractically high. It depends on the number of
iterations, the number of variable nodes and the size of their domain D, as well
as the number of factor nodes and their degree.

Each iteration of BP involves the invocation of the update rules q (variable
to factor, Eq. 1) and r (factor to variable, Eq. 2) for all variable nodes and
factor nodes, respectively. In our case the number of required iterations is small,
e.g., ≤ 25, and therefore does not have a significant impact on the asymptotic
runtime. The runtime of q is also fairly low.

However, the same cannot be said for r. For a factor f with degree deg(f)
and its inputs x1, . . . , xdeg(f) with domain D, one can compute the update rule

given in Eq. 2 by simply looping over all |D|deg(f) possible input combinations
of f . In our scenario, we have factors fADD, fSUB with deg(f) = 3 and variable
nodes with domain size |D| = q = 7681. When additionally multiplying with
the number of fADD and fSUB in our factor graph, then we reach a runtime
of ≈ 249 for a single iteration. Reducing from cubic to quadratic runtime can
be done by only considering triplets where fADD, fSUB can be 1, but this still
amounts to ≈ 237 operations. Obviously, both numbers are not very practical
and optimizations are needed.

5.3 Runtime Optimizations

In Algorithm 1, we show an optimization that can decrease the runtime of r for
all factor nodes of degree 3 in the factor graph, i.e. fADD and fSUB, drastically.
We show it on the example of a factor node of type fADD. A slight variation of
the presented algorithm can be used to optimize fSUB.
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Algorithm 1. Efficient BP for Modular Addition

Input:
qa, qb, qc Incoming messages from summands and result node
Reduction True if a reduction step was executed

Output:
ra, rb, rc Outgoing messages for summands and result node

1: ã = FFT2q(qa), b̃ = FFT2q(qb), c̃ = FFT2q(qc)
2: ta = IFFT2q(CONJ(b̃) ∗ c̃)
3: tb = IFFT2q(CONJ(ã) ∗ c̃)
4: tc = IFFT2q(ã ∗ b̃)
5: if Reduction then
6: ra = ta[q . . . 2q − 1], rb = tb[q . . . 2q − 1], rc = tc[q . . . 2q − 1]
7: else
8: ra = ta[0 . . . q − 1], rb = tb[0 . . . q − 1], rc = tc[0 . . . q − 1]

Our optimization uses the fact that update rules for input/output distribu-
tions of modular additions/subtractions can be efficiently expressed in matrix-
vector notation. Consider the addition a + b = c mod q, with qa, qb, qb the in-
coming messages from the corresponding variable nodes. Each such message is
a q-dimensional vector assigning a probability to each value in D, we say that
ai = qai = Pr(a = i). The output rc depends on qa, qb and an entry c∗k = rck can
be computed as the sum over all aibj with i + j ≡ k mod q. The whole update
can be written in matrix-vector notation:

a0 aq−1 · · · a2 a1
a1 a0 aq−1 a2
... a1 a0

. . .
...

aq−2
. . .

. . . aq−1
aq−1 aq−2 · · · a1 a0

 ·

b0
b1
...

bq−2
bq−1

 =


c∗0
c∗1
...

c∗q−2
c∗q−1

 ,
where the columns of the left matrix are circular shifts of qa. The above equa-
tion can be rewritten as a circular convolution qa ? qb, which can be efficiently
computed using the FFT and the circular convolution theorem. Thus, we have :

rc = qa ? qb = IFFTq(FFTq(qa) ∗ FFTq(qb)).

The update rules for ra and rb can be obtained similarly by additionally
using complex conjugations CONJ, as shown in Algorithm 1. Recall that we
also include whether a reduction happened during modular addition and sub-
traction. This can be efficiently done by replacing the q-coefficient FFT with a
2q-coefficient FFT and by using only either the upper or lower half of the IFFT
output.

The runtime of computing r for the degree-3 factor nodes is now reduced to
O(q log q), since the only runtime relevant operations are FFTs. This allows us
to perform one iteration of the BP algorithm for our whole factor graph in about
one minute using a single core of an Intel Core i7-5600U CPU.
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5.4 BP on Subgraphs

In our experiments, we found that applying BP to the whole NTT factor graph
does not yield satisfactory results. While we can narrow down values, the out-
come was not sufficient for key recovery. Yet, we were able to identify two prob-
lems and show how to circumvent them by applying BP only to subgraphs.

Uneven availability of side-channel information. The template attack on
multiplication is a primary source of information. Yet, multiplications are
not spread evenly across the NTT, as illustrated in Fig. 5a (also compare
to Fig. 1). Each cell of this figure corresponds to one variable node. White
variables are multiplied with a twiddle factor, black ones are not. Due to
the lack of multiplications and its side-channel information in the top-right
corner, the BP algorithm cannot recover these variable with high-enough
certainty.

Varying outcome of the template attack. As already pointed out in Sec-
tion 4.3, the performance of the template attack depends on the used twiddle
factor. In the first NTT layer, one always multiplies with ω0

n = 1. Even if this
multiplication is not optimized out, the fact that no reduction is performed
leads to little leakage.

We circumvent these two problems by applying BP not on the whole NTT
graph, but instead only on disjoint subgraphs. As depicted in Fig. 5b, we have
subgraphs FG 1, FG 2, and FG 3. These do not include the first layer and have
a higher ratio of observed to unobserved variables (compared to the full graph).
Thus, applying BP to these subgraphs gives significantly better results.

After convergence is reached on all 3 graphs, we perform a classification, i.e.,
pick the most likely value, on certain variable nodes. Concretely, we use variables
from layer 6 (output of layer 5 and input of layer 6). This is the last layer of
FG 1 and variables in later layers are usually recovered with higher confidence.
As shown in Fig. 5c, we use the 192 variables with indices 32...128 and 160...255.

If masking is used, then we have to perform BP twice to get the intermediates
in both invocations of the INTT. The unmasked intermediates can be computed
by simply adding the recovered values of both INTTs.

6 Attack Step 3: Lattice Decoding

Due to applying BP only on subgraphs, we cannot recover the full INTT input
c̃1 ∗ r̃2 + c̃2. Hence, the decryption key r̃2 (or equivalently r2) cannot be deter-
mined with simple linear algebra and another step is needed. In this third and
final attack step, we combine the recovered intermediates with the public key.
First, we create linear equations in the intermediates and r2 and use them to
decrease the rank of the lattice spanned by the public key (a,p). Then, we use
lattice-basis reduction and decoding to find r2 in the reduced-rank lattice.
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Fig. 5. Representation of the NTT and used factors

6.1 Generating Linear Equations in the Key

We use the recovered intermediates to construct linear equations in the private
key r2. Polynomial multiplication in Rq can be written as a matrix-vector prod-
uct. We write the INTT output as m? = c1r2 + c2 = C1r2 + c2, where the
columns of matrix C1 are nega-cyclic rotations of c1. All operations inside the
(I)NTT are linear, thus this system can be transformed to describe any of its
intermediates. Concretely, we transform it such that it describes the recovered
values of the sixth INTT layer.

We transform the system by performing a partial reversal of the INTT. We
revert 3 butterfly stages by computing x1 = (x3 + x4)/2 mod q and x2 = (x3 −
x4)/(2ω) (cf. Fig. 4). We end up with a system of form C′1r2 + c′2 = x, with x
being the 192 recovered intermediates and C′1, c′2 the transformed coefficients.

6.2 Key Recovery using Lattice Reduction

The decryption key r2 is finally recovered by combining the above system with
the information embedded in the public key (a,p). Recall that p = r1−ar2. As
r1 is small (it is sampled from a discrete Gaussian distribution with small σ), we
have that p ≈ −ar2. Thats is, p is close to the vector −ar2 which is part of the
q-ary lattice spanned by the columns of A (the matrix consisting of nega-cyclic
rotations of a). Hence, the recovery of r2 can be seen as a bounded-distance



16 Robert Primas, Peter Pessl, Stefan Mangard

decoding problem. The chosen system-parameters (n, q, σ) ensure that solving
this decoding problem is not feasible without further information.

However, by incorporating the linear equations from above the problem can
be reduced to a size that is solvable. We substitute the 192 equations C′1r2+c′2 =
x into p = r1 −Ar2 to get some p′ = r1 −A′r′2. The number of columns of A′,
and hence the rank of the spanned lattice, is now reduced to 256− 192 = 64.

We then search for the closest vector to p′ by solving a shortest-vector prob-
lem. Concretely, we search for the error term r1 (or −r1) as an unusually short
vector in the lattice generated by (A′||p′). This approach of solving the lattice
decoding problem is described by, e.g., Albrecht et al. [1]. The short vector is
recovered using the BKZ lattice basis reduction algorithm, we use the imple-
mentation provided by Shoup’s NTL [31]. We invoke BKZ with a blocksize of
25, but abort reduction as soon as a candidate for r1, i.e., a vector with a small
enough norm, is found.

After that, one can compute the private key r2 by solving the linear system
p = r1 − ar2 for both recovered r1 and −r1. The correct r2 is the one that
follows the distribution used for key generation. That is, we pick the smaller out
of the two solutions.

Performance of decoding. We tested the correctness and performance of this
key-recovery approach by performing well over 1 000 experiments. In each of
them we use the correct intermediates (cf. Fig. 5c) and only perform the decoding
step. All our experiments were successful. The average runtime on a single core
of a Xeon E5-2699v4 CPU is approximately 45 seconds.

This decoding approach is not limited to using exactly 192 recovered in-
termediates, it can be invoked with any number of coefficients. However, the
runtime of decoding will increase if fewer values are available. For instance, with
160 recovered intermediates the average runtime is 5 minutes and thus still well
within practicality. Below that, however, it increases drastically. With 150 val-
ues, it reaches multiple hours. Experiments with 146 or fewer coefficients were
not successful after 1 full day of computation.

7 Attack Results and Conclusion

Our attack consists of subsequent execution of the three attack steps described
in the previous sections. We now present the outcome. First, we evaluate the
attack using real traces. We illustrate an exemplary outcome and give a success
rate. Then, we give the success rate for the Hamming-weight model with varying
noise-parameter σl, both with and without masking applied.

7.1 Real Device

With real traces obtained from the setup described in Section 4, we have the
following results. Fig. 6 illustrates an exemplary outcome of template-matching
and the subsequent belief propagation on the subgraph FG 3 (cf. Section 5.4).
For each variable node, we color-code the entropy of the probability vector. For
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black nodes, the probability distribution is close to uniform, whereas for white
nodes one value has reached probability close to 1. After 1 iteration (Fig. 6a), the
probability distributions essentially correspond to the direct output of the tem-
plate matching. After 20 iterations of BP (Fig. 6c), the network has converged
and almost all intermediates are determined with very high probability.

Lattice decoding is successful if all of the 192 intermediates used for key-
recovery are correct. After observing Fig. 6, it should not come as a surprise
that all our key-recovery experiments in the real-trace setting were successful.
The success rate, i.e., the probability that all used coefficients are correct, is 1.
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Fig. 6. FG 3: entropy after set number of iterations of BP

7.2 Hamming-Weight Model

In order to get a broader and more generic analysis of our attack, we also tested
it with a noisy Hamming-weight model (cf. Section 4.4). We rerun all tests with
varying noise parameter σl. The outcome is illustrated in Fig. 7, where we show
the success rate and the average entropy (after template matching) for each
tested value of σl. We give the entropy to allow at least a rough comparison to
the real-trace setting.

In the non-masked case, we have a high single-trace success rate up to σl = 0.4
or 0.5, then it drops drastically. Note, however, that an attacker that can observe
multiple decryptions can decrease the observed σl by averaging the traces. In
the masked setting, key-recovery is successful if the correct intermediates are
recovered in both invocations of the inverse NTT (see Fig. 2). Only then their
sum is equal to the unmasked value. Thus, the expected success rate is squared,
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which is confirmed by our results. Obviously, averaging cannot be done if masking
is used.
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Fig. 7. Success rates in the Hamming-weight leakage model

7.3 Conclusion

Our attack clearly shows that SPA security of lattice-based schemes cannot be
neglected and that relying on masking alone is not sufficient. Implementation
techniques that are vastly different to established constructions such as RSA
and ECC open up new venues in this regard. In fact, the regular structure of
the NTT allows to efficiently combine leakage of the entire decryption process.
Furthermore, each recovered intermediate can be used to decrease the difficulty
of key-recovery with the public key. And while this work focuses on lattice-based
encryption, our attack can be adapted to any other implementation of lattice-
based cryptography which employs the NTT.

When it comes to potential countermeasures, masking appears to be effective
against DPA, yet it does not prevent our attack. Thus, additional countermea-
sures should be implemented and will now be discussed.

Possible countermeasures. One of the first measures to strengthen an im-
plementation against SPA attacks is to ensure a constant runtime and control
flow. In our side-channel analysis of a real device, we exploit timing differences
stemming from the DIV operation invoked during modular reduction. There do
exist constant-time alternatives, as already suggested by Oder et al. [19].

Like many other algebraic attacks, our key recovery can be thwarted by
employing shuffling. Concretely, the operations inside the NTT, e.g., the order
in which the butterflies are processed within one NTT layer, need to be shuffled.
Shuffling only point-wise operations, as proposed by Oder et al., clearly does not
hamper our attack. Other hiding countermeasures, such as the random insertion
of dummy operations inside the NTT, can also make our attack harder.
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Oder et al. also propose to use a blinding countermeasure (cf. Section 2.3).
Our attack still applies, but needs an additional step and potentially a differ-
ent selection of recovered intermediates. Concretely, it requires that a sufficient
amount of the INTT output coefficients are recoverable or can be computed
from the recovered intermediates. Then, one can test if the distribution of the
unblinded INTT output, i.e., after multiplication with ab−1 mod q, corresponds
to that of a valid m? (centered around 0 and q/2). For a non-masked implemen-
tation, or if the same blinding values a, b are reused for both shares, then one can
run through all q − 1 possibilities of ab mod q. If different a, b are used for both
shares, then one needs to try all (q − 1)2 combinations. With our parameters,
this can be easily done within a minute. When using 64 output coefficients, this
always returned the correct blinding values in our tests. Hence, this countermea-
sure does not significantly increase single-trace security. It, however, prevents
averaging in the non-masked scenario.
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by reduction to unique-svp. In H. Lee and D. Han, editors, ICISC 2013, volume
8565 of LNCS, pages 293–310. Springer, 2013.

2. M. R. Albrecht, R. Player, and S. Scott. On the concrete hardness of learning with
errors. J. Mathematical Cryptology, 9(3):169–203, 2015.

3. D. J. Bernstein, C. Chuengsatiansup, T. Lange, and C. van Vredendaal. NTRU
prime. IACR Cryptology ePrint Archive, 2016:461, 2016.

4. J. W. Bos, C. Costello, L. Ducas, I. Mironov, M. Naehrig, V. Nikolaenko, A. Raghu-
nathan, and D. Stebila. Frodo: Take off the ring! practical, quantum-secure key
exchange from LWE. In E. R. Weippl, S. Katzenbeisser, C. Kruegel, A. C. Myers,
and S. Halevi, editors, CCS 2016, pages 1006–1018. ACM, 2016.

5. S. Chari, C. S. Jutla, J. R. Rao, and P. Rohatgi. Towards sound approaches to
counteract power-analysis attacks. In M. J. Wiener, editor, CRYPTO ’99, volume
1666 of LNCS, pages 398–412. Springer, 1999.

6. S. Chari, J. R. Rao, and P. Rohatgi. Template attacks. In B. S. J. Kaliski,
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