
1

Implementation and Evaluation of a Lattice-Based
Key-Policy ABE Scheme

Wei Dai∗, Yarkın Doröz∗, Yuriy Polyakov†, Kurt Rohloff†, Hadi Sajjadpour†, Erkay Savaş†‡ and Berk Sunar∗
∗ Worcester Polytechnic Institute, Worcester, MA, USA 01609

Email: {wdai, ydoroz, sunar}@wpi.edu
† NJIT Cybersecurity Research Center

New Jersey Institute of Technology, Newark, NJ, USA 07102
Email: {polyakov,rohloff,ss2959,savas}@njit.edu
‡ Sabancı University, Tuzla, Istanbul, Turkey 34956

Email: erkays@sabanciuniv.edu

Abstract—In this paper, we report on our implementation of a
lattice-based Key-Policy Attribute-Based Encryption (KP-ABE)
scheme, which uses short secret keys. The particular KP-ABE
scheme can be used directly for Attribute-Based Access Control
(ABAC) applications, as well as a building block in more involved
applications and cryptographic schemes such as audit log encryp-
tion, targeted broadcast encryption, functional encryption, and
program obfuscation. We adapt a recently proposed KP-ABE
scheme based on the Learning With Errors (LWE) problem
to a more efficient scheme based on the Ring Learning With
Errors (RLWE) problem, and demonstrate an implementation
that can be used in practical applications. Our state-of-the-
art GPU implementation shows that the homomorphic public
key and ciphertext evaluation operations, which dominate the
execution time of the KP-ABE scheme, can be performed in
a reasonably short amount of time. Our practicality results also
hold when scaled to a relatively large number of attributes. To the
best of our knowledge, this is the first KP-ABE implementation
that supports both ciphertext and public key homomorphism
and the only experimental practicality results reported in the
literature.

Index Terms—lattice-based cryptography, attribute-based en-
cryption, GPU computing, RLWE

I. INTRODUCTION

Attribute-Based Encryption (ABE) is a public key crypto-
graphic scheme that enables the decryption of a ciphertext by
a user only if a certain access policy defined over attributes
is satisfied. ABE is introduced by Sahai and Waters in [1] as
a generalization of identity based encryption (IBE) [2]. The
concept of ABE is improved to incorporate fine-grain access
control in [3], [4]. By enforcing more general access policies,
ABE schemes are becoming a source of interest in academia
and industry as ABE restricts access to sensitive data without
relying on a central access control system. Besides supporting
access control applications, ABE can be used to implement
other interesting applications such as audit log encryption and
targeted/broadcast encryption [3].

ABE has two main flavors of constructions: Ciphertext-
Policy ABE (CP-ABE) and Key-Policy ABE (KP-ABE). CP-
ABE has been more widely studied and implemented in the
literature [4]–[8]. In CP-ABE, an access policy is incorporated
into a ciphertext, and a secret decryption key is generated for a

subset of attributes held by a user. If a user holds attributes that
satisfy the access policy, she can decrypt ciphertext encrypted
under that policy. In this model, access policy needs to be
known before the encryption and secret keys are bound to a
subset of attributes. On the other hand, KP-ABE [1], [3], [9],
allows a message to be encrypted using the attribute values
as public keys, and a secret key is generated for a particular
access policy defined over the set of attributes, potentially
after encryption. (See Figure 1 for a representation of this
workflow.) Importantly, the access policy may not be known
at the time of encryption and can be defined later.

Two classes of cryptographic primitives are generally used
in the construction of ABE schemes: bilinear pairings and
lattices. The majority of ABE schemes are based on bilinear
pairings [2], including [3], [6], [10]–[12]. Software implemen-
tations of pairing-based ABE constructions are reported in [4],
[8], [13]. Most prior bilinear pairing implementations support
CP-ABE schemes. Other ABE schemes are based on lattices
with hardness assumptions of Learning With Errors (LWE),
Short Integer Solution (SIS), or inhomogenous SIS [14]–[17].
Several lattice-based ABE schemes are known, including a
CP-ABE scheme in [18] and a KP-ABE scheme in [19].

A key concept in the KP-ABE scheme from [19] is a
key homomorphism property which supports homomorphic
computations over public keys associated with attributes. By
leveraging this property, ciphertexts and public keys can be
homomorphically evaluated over a circuit determined by an
access policy (represented as a policy circuit) to compute a
new (and compressed) public key and ciphertexts which can
only be decrypted under that policy. In Figure 1, a ciphertext
C is homomorphically evaluated over the policy circuit f to
obtain a new ciphertext under f (Cf ) that can be decrypted
only by using the policy secret key αf .

In this work, we present a Ring Learning With Errors
(RLWE) variant of the KP-ABE scheme proposed in [19],
which leads to practical implementation. The particular con-
struction has several novel properties, which constitutes our
main motivation of its selection for implementation. First,
the key homomorphism property allows public keys and
ciphertexts to be evaluated over an access policy. Second,
the scheme’s complexity depends on its depth rather than



Acces Policy Key Generator
f

Policy Keys

EvaluationEncryption CMessage

Attributes
f

Decryption
Cf

αf

Message

Fig. 1: Block diagram of KP-ABE Scheme

on the size of the policy circuit, which is beneficial to its
efficient implementation and ultimately its usability in real
world applications. Third, the scheme supports different appli-
cations such as garbled circuits as suggested in [19], functional
encryption [20] and token-based program obfuscation [21].
Last, the construction is considered post-quantum as it is based
on lattice problems that are believed to be secure against
quantum computer attacks.
Our Contribution To the best of our knowledge, we provide
the first implementation of the KP-ABE scheme proposed
in [19]. An efficient implementation of this scheme is a
technical challenge due to the difficulty of implementing the
powerful key and ciphertext homomorphism properties. The
primary goal of this paper is therefore to demonstrate that the
KP-ABE construction can be practical by leveraging accelera-
tion techniques at both algorithmic and implementation levels.

To this end, we first propose an RLWE-based construction
of KP-ABE, which is originally constructed using LWE prob-
lem in [19]. The RLWE construction provides two main ad-
vantages: 1) it is more efficient and 2) supports the encryption
of multiple bits in a single ciphertext. Our KP-ABE scheme
enjoys the RLWE hardness assumptions.

Second, we design and implement parallel algorithms tai-
lored to take full advantage of Graphics Processing Unit
(GPU) processors. We particularly focus on using GPU algo-
rithms and techniques to accelerate the ABE encryption and
homomorphic evaluation operations because these operations
are computational bottlenecks. The other ABE operations
are either already fast (i.e., decryption) or performed occa-
sionally (i.e., private key generation or setup). We compare
our experimental GPU results for bottleneck ring operations
with prior results in the literature. Our comparison shows
that our GPU implementation of ring multiplication, which
dominates all ABE operations, outperforms all other similar
GPU implementations. Our results clearly confirm our claim
that a sophisticated KP-ABE scheme such as the one in [19]
can, indeed, be made practical.

We also quantify the noise growth in the ciphertext, which
can be a factor that limits the feasibility of the scheme. We
observe that the noise grows faster than the estimates based on
Central Limit Theorem because the main exponential term in
the correctness constraint is not zero-centered. To reduce the
noise growth, we propose a new technique based on balanced
non-adjacent form (NAF) of integers to transform the main
exponential term to zero-centered representation.

II. RELATED WORK

The original KP-ABE construction [19] is based on the
LWE problem, which is believed to be as hard as worst-case

lattice problems such as the shortest vector problem (SVP)
and the shortest independent vector problem (SIVP) [22]. The
constructions based on ideal lattices, referred to as RLWE-
based constructions, are shown to be more efficient than
LWE-based constructions, in terms of both execution time
and memory requirement [23]. Also, the RLWE problems are
proved to be hard due to a quantum reduction from worst-case
approximate SVP on ideal lattices to the search version of
RLWE [24], [25]. It is also proved that the RLWE distribution
is pseudorandom if the RLWE search problem is hard [24].

KP-ABE schemes are generally much more complicated to
implement than CP-ABE schemes as the latter requires no
homomorphic computation over public keys or ciphertexts. As
a recent CP-ABE scheme based on the LWE problem [18] uses
a similar construction to [19], we can extend our construction
to implement a CP-ABE scheme. The key and ciphertext
homomorphisms efficiently implemented in our scheme are
novel properties that make the KP-ABE scheme suitable for a
much more diverse set of applications.

An important advantage of our construction based on the
original scheme [19] is that the secret key size is much smaller
than those of similar constructions, in which the secret key size
is proportional to the size of the policy circuit [26], [27]. Also,
constructions based on multi-linear maps [28] such as [27] and
the second scheme in [19] are beyond the scope of our paper.

To the best of our knowledge, all implementations reported
in the literature [4], [8], [13], [29] are CP-ABE constructions
based on bilinear pairings [2]. Since we implement a KP-
ABE construction based on lattice primitives, a direct and fair
comparison is not possible.

Like many other ABE schemes in the literature, our con-
struction utilizes the concept of lattice trapdoors introduced
in [14]. In trapdoor based ABE schemes, a secret key cor-
responding to an access policy (KP-ABE) or a subset of
attributes (CP-ABE) is generated by a trusted third party
known as a private key generator (PKG) that is in possession of
trapdoor information. Some works in the literature are devoted
to improve the efficiency of trapdoor generation [30], [31].
Applications of lattice trapdoors such as signature schemes
are proved to be practical [23] as the timing results of actual
software implementations are highly promising. In our con-
struction, we utilize the lattice trapdoor sampling optimizations
recently developed in [32], [33].

As shown in [34], the secret key for a function f that repre-
sents the access policy in KP-ABE corresponds to the garbled
circuit for f and the ciphertext encrypting attribute vector x
similarly corresponds to the garbled input in the reusable gar-
bled circuit scheme. In conjunction with obfuscation schemes
such as the one in [21], KP-ABE can be used as a building
block to implement token-based obfuscation. Considered as
a generalization of ABE, predicate-based encryption (PBE)
schemes [35] benefit from efficient implementation of KP-
ABE.

III. PRELIMINARIES

In this section, we provide mathematical background and
preliminaries that are necessary to follow the discussions in

2



the paper. We also present algorithms and techniques behind
our implementation and briefly introduce the basics of CUDA-
enabled GPUs.

A. Mathematical Notations And Definitions

Let R = Z[x]/ (xn + 1) be a cyclotomic ring, where the
ring elements are polynomials of at most degree n − 1 with
integer coefficients. Here, the ring dimension n is a power of 2
for efficient ring arithmetic. And let alsoRq = R/qR be a ring
where the arithmetic operations on polynomial coefficients
are performed modulo q and coefficients are represented as
integers in the interval

(
−
⌊
q
2

⌋
,
⌊
q
2

⌋]
. R2 is the ring of binary

polynomials. Also, R1×m
q , Rm×1

q , and Rm×mq stand for row
vector, column vector and matrix of ring elements in Rq ,
respectively, for an integer m > 1. Finally k = dlog2 qe stands
for the number of bits in q.

Let Zq = Z/qZ be integers in the interval [0, q − 1].
Then, Fq = Z/qZ, if q is a prime power, forms a finite field.
Throughout the paper, we use boldfaced symbols to denote
vectors and matrices, e.g. a = (a0, a1, . . . , an−1), where
ai ∈ Zq or ai ∈ Rq , while small case letters usually denote
single elements.

Let [·]q be modulo q reduction on an integer or on coeffi-
cients of a vector, that is, [a]q = a mod q ∈ Zq or [a]q = a
mod q ∈ Znq . A polynomial in Rq can be represented as a
vector in Znq with its coefficients lifted to the interval [0, q−1]:
if a < 0, q is added to a.

We also denote the infinity norm of a polynomial or a vector
as || · ||∞ (only || · || for simplicity, i.e. the largest absolute
value of coefficients). When the infinity norm of a polynomial
is below a relatively small upper bound, it is referred to as a
short polynomial. Also a vector of short polynomials is called
a short vector.
DΛ,c,σ denotes n-th dimensional discrete Gaussian distri-

bution over a lattice Λ ⊂ Rn, where c ∈ Rn is the center and
σ ∈ R is the distribution parameter. Lattice sampling operation
x ← DΛ,c,σ assigns the probability ρ(x)/

∑
z∈Λ ρc,σ(z) for

x ∈ Λ, where ρ = exp(−π||x − c||/σ2). When omitted,
c = 0 and σ = 1.0. The discrete Gaussian distribution
DZ,c,σ is defined over integers and used as the primitive
in all discrete Gaussian sampling operations. The Gaussian
distribution DR,c,σ = DZn,c,σ denotes the discrete Gaussian
sampling operation applied to cyclotomic rings.

The notation a ←U Zq , (or a ←U Znq , a ←U Rq) is used
for discrete uniformly random distribution.

B. Ring Learning with Errors

Let s be an arbitrary (and unknown) polynomial in Rq . We
consider a number of pairs of the form (ai, ais + ei) ∈ R2

q ,
where ai ←U Rq and ei ← DR,σ with a relatively small
σ > 1.0. We then define RLWE hardness assumptions used in
the security proofs of the construction in this paper.

Definition 3.1: The search RLWE assumption is that it is
hard to find s given a list of pairs (ai, ais+ei) for i = 0, . . . , t.

Definition 3.2: The decision RLWE assumption is that it
is hard to distinguish polynomials (ais + ei) and bi for i =
0, . . . , t, where each bi is uniformly randomly chosen in Rq .

Informally speaking, in both definitions, t stands for the
number of samples a polynomial-time adversary or distin-
guisher can obtain. Related to Def 3.2, ais+ ei is sometimes
said to be from a pseudorandom distribution as it is difficult
to distinguish it from a uniformly randomly chosen bi.

The hardness of the RLWE assumptions depends on the
choice of ring dimension n, the size of q and a bound ∆ for
the coefficients of ei, which is determined by the distribution
parameter of DR,σ .

For the RLWE hardness assumptions to hold, the values of
n and q can be selected using the inequality derived in [36],
namely,

n ≥ log2 (q/σ)

4 log2 (δ)
. (1)

Here, σ refers to the distribution parameter used in DR,σ and δ
is the root Hermite factor: a measure of the lattice security that
can be mapped to the number of bits of security. In a seminal
work by Chen and Nguyen [37], it is claimed that the lattice
security is largely determined by the root Hermite factor. In
another work by Lindner and Peikert [38], a formulation is
given for the lattice security based on δ as

tBKZ =1.8/ log2(δ)− 110, (2)

where tBKZ is the estimated running time of the BKZ algo-
rithm [39]. For instance, the value of δ = 1.006 corresponds
to about 100 bits of security.

The smoothing (distribution) parameter σ can be estimated
as

σ ≈
√

ln(2nm/ε)/π,

where nm is the maximum ring dimension and ε is the
bound on the statistical error introduced by each randomized-
rounding operation [30]. For nm ≤ 214 and ε ≥ 2−80, the
value of σ ≈ 4.578.

C. Gaussian Sampling for Lattice Trapdoors
A trapdoor is an extra piece of information that enables

the computation of a solution to an otherwise hard problem.
In this paper, we rely on the lattice trapdoors introduced
in [30]. Let A ∈ R1×m

q be a row vector of ring elements
generated using uniformly random distribution, where m is
a parameter specific to the chosen trapdoor construction.
Informally speaking, for an arbitrarily chosen β ∈ Rq , it is
computationally hard to find a vector of short polynomials
α ∈ Rm×1

q that satisfies Aα = β. Furthermore, the vectors
in the solution must be spherically distributed with a Gaussian
function and a distribution parameter s; namely, we should
have α← DΛ,s.

Finding such short vectors is usually referred to as a preim-
age (Gaussian) sampling operation for an arbitrary syndrome
β. The hardness assumption can be based on the hardness of
the approximate shortest independent vector problem, namely
SIVPγ . On the other hand, a trapdoor TA for A can be used
to compute such short vectors efficiently.

We use a ring-based trapdoor construction proposed in [23]
(depicted in Algorithm 1). The trapdoor consists of two row
vectors of short ring elements sampled using a Gaussian distri-
bution with the distribution parameter σ, TA = (ρ,υ). While

3



the trapdoor TA is secret, the public key A is pseudorandom
and enjoys the RLWE hardness assumptions. All parameters
needed for trapdoor generation, namely, σ, q, k, and n, are
selected based on the security parameter λ.

The vector gT = (20, 21, . . . , 2k−1) is introduced in [30]
and is referred to as the primitive vector. Using a primitive
vector g we can generate a G-lattice, for which preimage
sampling can be efficiently computed. The work in [30]
provides a very efficient preimage sampling algorithm for
a modulus q that is a power of two. However, for many
cryptographic schemes such as IBE and ABE a prime modulus
is more common. Therefore, the preimage sampling algorithm
for G-lattices with arbitrary modulus proposed in [40] is used
in this work.

Algorithm 1 Trapdoor generation using RLWE [23]

function TRAPGEN(λ)
Determine σ, q, k and n
a←U Rq
ρ← [ρ1, . . . , ρk] where ρi ← DR,σ for i = 1, . . . , k
υ ← [υ1, . . . , υk] where υi ← DR,σ for i = 1, . . . , k
A← [1, a, g1 − (aρ1 + υ1), . . . , gk − (aρk + υk)]
return (A,TA = (ρ,υ))

end function

If preimage sampling is efficiently computable for G-lattice,
we can show that it is also efficiently computable for the public
key A given the trapdoor TA. For an arbitrary syndrome β ∈
Rq , it is easy to see that y = (xTυ,xTρ, x1, x2, . . . , xk) is
a short solution to Ay = β, where gTx = β and x is a short
solution.

On the other hand, the framework in [14] requires the preim-
age sampling algorithm to produce a spherically distributed
solution for a given syndrome β ∈ Rq . It is shown in [23] that
solutions in the form of y = (xTυ,xTρ, x1, x2, . . . , xk) are
not spherically distributed but ellipsoidal, and therefore leak
information about the trapdoor. To this end, a perturbation
is added to y. Algorithm 2 gives a high level description
of our secure preimage sampling algorithm, which is called
Gaussian preimage sampling. The algorithm relies on the
preimage sampling on G-lattices, but it perturbs the preimage
sampled via the primitive vector g. This requires a perturbation
generation function PERTURB to produce a perturbation vector
p, which is then added to the solution α to ensure spherical
Gaussian distribution.

Algorithm 2 Gaussian preimage sampling [30]

function GAUSSSAMP(A, (ρ,υ) , β, σ, s)
p← PERTURB(n, q, s, 2σ, (ρ,υ))
z← SAMPLEG(σ, β −Ap, q)
α← [p1 + υz, p2 + ρz, p3 + z1, . . . , pk+2 + zk]
return α

end function

To summarize, we have Aα = β, where α follows a zero-
centered Gaussian distribution with distribution parameter s,
where p ∈ Rm×1, z ∈ Rk×1, and m = k + 2.

The parameter s in PERTURB operation is referred to as the
spectral norm, which quantifies the norm of the solution and
is computed as

s > C · σ2 ·
(√

nk +
√

2n+ 4.7
)
,

where C is a constant that can be found empirically. In our
experiments we used C = 1.80. For more insight into the
trapdoor construction used in this paper, one can profitably
refer to [40] for theoretical explanation and to [33] for specific
construction details.

D. Efficient Polynomial Multiplications

As our construction necessitates thousands of multiplica-
tions in Rq , where q can be a multiprecision integer, we
take advantage of number-theoretic transform (NTT) and the
Chinese Remainder Theorem (CRT) to accelerate polynomial
multiplications in our implementation.

NTT is obtained by performing the discrete Fourier trans-
form over a finite field FP , where P is a prime number.
Let wN ∈ FP be a primitive N -th root of unity, which
exists under the condition that N divides P − 1. The N -
point NTT/INTT conversions with wN are defined as: â =
NTTNwN

(a), where âi =
∑N−1
j=0 ajw

ij
N and a = INTTNwN

(â),
where ai = 1

N

∑N−1
j=0 âjw

−ij
N .

A polynomial multiplication c(x) = a(x)b(x) in R that
requires modulo reduction with xn + 1, can be achieved by
the negative wrapped convolution [41] that directly computes
ci =

∑i
j=0 ajbi−j −

∑n−1
j=i+1 ajbn+i−j . The method utilizes

a primitive 2n-th root of unity w2n that exists if 2n divides
P − 1. Then wn = w2

2n is a primitive n-th root of unity. Let
v = (1, w2n, . . . w

n−1
2n ) and v−1 = (1, w−1

2n , . . . w
−(n−1)
2n ).

We use NTT(a) for NTTnwn
(a � v) and INTT(â) for

INTTnwn
(â) � v−1 for simplicity, where � denotes the

coefficient-wise dot product. A multiplication in R is com-
puted by c = INTTnwn

(
NTTnwn

(a� v)� INTTnwn
(b� v)

)
�

v−1. The negative wrapped convolution still supports additions
in NTT domain.

The CRT is adopted to handle large integers. Given t
pairwise coprime numbers q0, q1, . . . qt−1 and their product
Q =

∏t−1
i=0 qi, there exists an isomorphism CRT(): ZQ →

Zq0×Zq1×· · ·×Zqt−1
. For an integer a, the CRT conversion

and its inverse (ICRT) are defined as
(
ã(0), ã(1), . . . ã(t−1)

)
=

CRT(a) → ãj = [a]pj and a = ICRTj∈Zt(ã
(j)) =[∑t−1

j=0

[
ã(j) qj

Q

]
qj

Q
qj

]
Q

.

The combination of NTT and the CRT has been commonly
adopted to compute multiplications of polynomials with large
coefficients, for example in [42] and [43].

When a ring element a ∈ Rq (in polynomial representation)
is transformed into ã using NTT, the latter is referred as
the evaluation representation, whereby the multiplication is
extremely efficient as it is performed component-wise. The
transformation operations themselves (NTT and INTT) are
usually the computational bottlenecks. Therefore, provided
that the cryptographic computations permit, it is better to keep
operands in the evaluation representation as long as possible.

4



We use this approach to accelerate cryptographic computations
in this paper.

E. CUDA GPU Background

CUDA abstracts the hardware architecture for developers.
A CUDA-enabled GPU partitions thousands of cores into an
array of streaming multiprocessors (SMMs). Each SMM is
built with function units, registers, private memory, data cache
and instruction buffers. An SMM executes threads in groups
of 32 parallel CUDA threads (warps) in an SIMT (Single-
Instruction, Multiple-Thread) style.

CUDA programs offload intensive computation to the device
(i.e., a GPU), while the rest of application remains on the
host (i.e., a CPU). The host launches a kernel which is a
C function executed n times in parallel by n threads on
the device. A kernel is executed by a grid of thread blocks:
threads are grouped into blocks; blocks are organized into a
grid. Threads within a block can cooperate through shared
memory and synchronize their execution. The dimension of
a block is preferred to be a multiple of 32 (warp size). Grid
configuration is set at kernel launches and is important for
the better utilization of computing resources. Both the host
and the device maintain their own separate memory spaces
in DRAM, referred to as host memory and device memory,
respectively. Hence, a program transfers data between host
and device memory for computation on the device.

Three types of device memory are listed from fast to slow:
• Constant memory is read-only to all grids, cached and

broadcast to all involved threads when requested. How-
ever, its size cannot exceed 64 KB.

• Shared Memory is shared by threads in the same block.
It may have bank conflicts that cause accesses to be
serialized. Bank conflicts should be minimized. Shared
memory size cannot exceed 48 KB per block.

• Global Memory is slow and visible to all threads. It
favors a coalesced access pattern that avoids or minimizes
overfetch. As it is adequate in size (several gigabytes) the
global memory is where data are stored in general.

IV. KP-ABE BASICS

In a KP-ABE scheme, plaintext is encrypted under a set of
attribute values, which serves as the public key of the system
whereas a private key corresponds to a specific access policy.
For sake of simplicity, we work with binary attributes, thus a
set of attributes is X = {x1, x2, . . . , x`} where xi ∈ {0, 1}.

An access policy, usually expressed as a circuit over a
set of attributes, defines the rules as to who can decrypt the
ciphertexts in the ABE scheme.

In our construction of KP-ABE, an access policy corre-
sponds to a Boolean circuit, which outputs logical-0 when its
input takes the required set of attribute values. An example
access policy and the corresponding circuit are given in
Example 4.1.

Example 4.1: An employee in a software company can
decrypt source files in a software development project if she
meets the following requirements: If she is a developer and
working on the project; or if she is an employee of the

company and has power user capabilities. Here we can obtain
four binary attributes from these requirements, namely
• x1: Is the user a developer? (YES or NO)
• x2: Is the user working on the project? (YES or NO)
• x3: Is the user employee of the company? (YES or NO)
• x4: Is the user a power user? (YES or NO)

Then, the Boolean expression for the corresponding policy
circuit is
f(x1, x2, x3, x4) = (x1 ∧ x2) ∨ (x3 ∧ x4).
In our KP-ABE construction, however, we search for a

circuit that outputs logical-0 when these attributes take the
required values; namely, only when x1 = x2 = 1 or
x3 = x4 = 1. The Boolean expression for such circuit is
then f(x1, x2, x3, x4) = (1−x1x2)(1−x3x4). For simplicity
and generality, we adopt an arithmetic notation for Boolean
expressions.

A KP-ABE scheme requires a trusted third party, PKG, that
generates private keys corresponding to access policies. For
this, PKG knows some master secret, or more technically a
trapdoor, to generate a private key for any access policy.

A KP-ABE scheme is a family of functions, namely Setup,
Encrypt, KeyGen, and Decrypt, which are explained in
the following.
• SETUP(1λ, `)→ {MPK, MSK}: Given a security parameter
λ and the number of attributes `, PKG generates a master
public key MPK and a master secret key MSK. MPK
contains the ABE public parameters while MSK consists
of the trapdoor, with which PKG generates secret keys
for access policies.

• ENCRYPT(µ,x,MPK) → C: Using MPK and attribute
values x ∈ {0, 1}`, sender encrypts the message µ,
outputs the ciphertext C.

• KEYGEN(MSK, MPK, f ) → αf : Given MSK and a policy
(implemented by a Boolean circuit f : {0, 1}` → {0, 1}),
PKG generates the secret key αf corresponding to f .
PKG sends αf to the receiver that is authorized to decrypt
ciphertexts encrypted under f .

• DECRYPT(C,αf , x̃) → µ̄: The decryption process con-
sists of two phases: i) the homomorphic evaluation pro-
cess that transforms ciphertext C to Cf so that the latter
can be decrypted by αf and ii) the actual decryption
operation that results in µ̄, which is equal to the original
message µ if receiver has αf .

Naturally, decryption succeeds only if the same attribute
values are used in ENCRYPT and DECRYPT operations, namely
x = x̃.

A distinctive and powerful property of KP-ABE is that
the policy can be determined after the encryption operation.
This requires, on the other hand, two technically challenging
operations: homomorphic evaluation of the public keys and
ciphertext. Our work demonstrates that they can be efficiently
performed via our state-of-the-art GPU implementation.

V. OUR CONSTRUCTION

In this section we present our construction of KP-ABE and
explain KP-ABE operations in detail. We omit some public
parameters such as standard deviation σ, the modulus q, its
bit length k etc. from the algorithms for sake of simplicity.

5



A. Setup

In the setup phase, PKG generates a master public key
(MPK) and the corresponding master secret key MSK using
Algorithm 3. The master public key contains the ring vectors
Bi corresponding to the attributes. As previously explained,
TA is a trapdoor associated with the vector A used to find a
short solution α to Aα = β for an arbitrary β ∈ Rq , where
α is short in the sense that it follows a zero-centered Gaussian
distribution with a relatively small distribution parameter.
Consequently, TA enables PKG to generate a secret key for
a given access policy as explained in Section V-D.

Algorithm 3 KP-ABE Setup Operation

function SETUP(λ, `)
(A,TA)← TRAPGEN(λ)
Bi ←U R1×m

q for i = 0, 1, . . . , l
β ←U Rq
MPK ← {A, (Bi)

`
i=0, β}

MSK ← {TA}
return MPK, MSK

end function

Here, the public key A is pseudorandom and enjoys the
hardness of RLWE as demonstrated in [23]. This basically
means that it is computationally infeasible to obtain TA given
A and therefore only PKG can generate private keys.

B. Encryption

In our KP-ABE construction, the encryption operation, as
described in Algorithm 4, takes as input MPK, the attribute
values x ∈ {0, 1}`, and the plaintext message µ ∈ R2 and
outputs the ciphertext pair Cin ∈ R

(`+2)m
q and c1 ∈ Rq .

The encryption algorithm is a variation of the dual Regev
encryption algorithm, which is originally proposed for IBE
schemes in [14] and adapted to ring setting in [24]. In the
dual Regev algorithm, the security is based on RLWE hardness
assumptions given in Definitions 3.1 and 3.2. The search
RLWE hardness asssumption prevents adversary from com-
puting s ∈ Rq used in the encryption whereas the ciphertext
components are pseudorandom due to the decision RLWE
assumption.

Algorithm 4 ABE Encryption Algorithm

function ENCRYPT(µ,x, MPK)
s←U Rq; e1 ← DR,σ; eA ← DR1×m,σ

Si ←U {±1}m×m for i = 0, . . . , `
e0 ← (eTA|eTAS0|eTAS1| . . . |eTAS`)

T

Cin ← (A|(G + B0)|(x1G + B1)| . . . |(x`G + B`))
T
s+ e0

c1 ← βs+ e1 + µd q2e
return (Cin, c1)
end function

In Algorithm 4, G = (1, 2, 22, . . . , 2k−1, 0, 0) is the prim-
itive row vector of constant polynomials extended by two
0s to match the dimension of other vectors of polynomials
since m = k + 2. The ring element e1 and the vector of
polynomials eA are both sampled from the same discrete

Gaussian distribution and they are occasionally referred as
error or noise components in the ciphertext, making the
decryption impossible when exceeding a certain threshold.

For easy reference, we adopt the notation CA = AT s+e0,A

and Ci = (xiG + Bi)
T s+ e0,i for i = 0, 1, . . . , `, where the

latter encrypts the attribute vector x. Here, x0 = 1 is not
an attribute itself, but a necessary component to implement
logical gates in the policy circuit.

C. Evaluation of Public Keys and Ciphertext

Both public keys (Bi) and the ciphertexts (Ci) correspond-
ing to attributes are homomorphically evaluated over an access
policy circuit f . This way, we can obtain a public key Bf and
a ciphertext Cf that correspond to f . Hence, we have two
functions:

• Public Key Evaluation: EVALPK(x,Bi, f)→ Bf ,
• Ciphertext Evaluation: EVALCT(x,Ci, f)→ Cf ,

where Bi,Bf ∈ R1×m
q , Ci,Cf ∈ Rmq for i = 0, 1, . . . , ` and

x ∈ {0, 1}`.
Considering Example 4.1, we can visualize the policy f

as a Boolean circuit with two NAND gates whose outputs
are connected to an AND gate. Evaluation of ciphertext leads
to noise increase in the error vectors (i.e., e0,i), and the
noise level should not exceed the threshold for the chosen
ciphertext modulus q to ensure correct decryption. All the
details of homomorphic evaluation for our benchmark circuit
are explained in Section VI.

D. Key Generation

The vector Cf obtained after homomorphic evaluation
in the previous section can be considered as a ciphertext
encrypted under the public key Bf . Since both Cf and Bf cor-
respond to the access policy f , we can write Cf = BT

f s+ef ,
where ||ef || > ||e0,i||.

PKG uses Algorithm 5 to generate a secret key αf cor-
responding to (A|Bf ). Note that (A|Bf )αf = β, where
αf ∈ R2m is a vector of short ring elements. Algorithm 5
is the ring version of the algorithm in [19].

Algorithm 5 ABE Key Generation Algorithm [19]

function KEYGEN(A,Bf , β, MSK)
αB ← DRm,σ

t← β −BfαB

αA ← GAUSSSAMP(A,TA, t)
αTf ← (αA

T |αB
T )

return αf
end function

6



E. ABE Decryption

Decryption operation can be perfomed using µ̄ = c1 −
αTf (CA

T |CT
f )T . We can prove the correctness as follows:

µ̄ =c1 −αTf (CA
T |CT

f )T

=c1 − (αA
T (AT s+ e0,A) + αB

T (BT
f s+ ef ))

=c1 − ((AαA + BfαB)T s+ αA
Te0,A + αB

Tef )

=βs+ e1 + µdq/2e − (βs+ αA
Te0,A + αB

Tef )

=µdq/2e+ e1 −αA
Te0,A −αB

Tef

If the terms e1 −αA
Te0,A −αB

Tef have sufficiently small
norms, a simple thresholding operation yields the correct plain-
text: if the i-th coefficient µ̄i < q/4, the decryption operation
outputs 1; otherwise 0, for i = 0, . . . , n − 1. Therefore,
correctness of the decryption operation is determined by the
norm of the secret key generated by GAUSSSAMP and of the
error term ef in Cf . The latter error term ef is the result of
homomorphic EVALCT process.

In Section VI, we explain homomorphic evaluation of public
keys and ciphertext over simple Boolean circuits and show
how it increases the noise of ciphertexts. The noise analysis
is important to determine the system parameters such as ring
dimension and modulus size to ensure correctness and targeted
security level.

The proposed KP-ABE scheme is selectively secure, where
the definition of the selective security is introduced in [3].
Informally speaking, in selective security a polynomial time
adversary first commits to a challenge attribute value x∗, then
receives KP-ABE public key MPK and has access to a key
generation oracle that returns a secret key αf corresponding
to any access policy f provided that f(x∗) 6= 0. The selective
security requires that the adversary cannot distinguish, with
a non-negligible advantage, between the ciphertexts of two
different messages encrypted under the challenge attribute x∗.
For selective security proof, an essential hardness assumption
is the decisional RLWE problem. The formal security proof is
provided in Section IX-B of Appendix.

VI. EVALUATION OF PUBLIC KEYS AND CIPHERTEXT ON
GATES

When a (arithmetic or logic) gate is evaluated for an access
policy f we obtain a new public key Bf and a new ciphertext
Cf for the output of the gate. As a result, the noise level in
the resulting ciphertext becomes larger than the noise level in
the input ciphertext. We need to keep the noise growth under
control for correct decryption, whereby the noise level in the
resulting ciphertext must remain under the threshold q/4, as
shown in the preceding section.

For the sake of simplicity, we deal with only the first part
of the ciphertext Cin as the other part c1 is not affected by
the evaluation process.

A. Arithmetic Addition/Subtraction

Suppose we have two attributes x1 and x2, then the
KP-ABE encryption of message µ ∈ R2 is computed as
Cin = (A|(G + B0)|(x1G + B1)|(x2G + B2))

T
s + e0,

where e0 =
(
eT0,A|eT0,0|eT0,1|eT0,2

)T ∈ R4m
q . We can also

partition the ciphertext as CA = AT s + e0,A and Ci =
(xiG + Bi)

T s + e0,i for i = 0, 1, 2 and x0 = 1. If the
access policy is a single addition or subtraction operation,
the circuit evaluation is straightforward C± = C1 ± C2,
B± = B1 ±B2. We can also formulate the increase in noise
level in error vectors as e0,± = e0,1±e0,2. As easily observed,
the evaluation is inexpensive and the increase in noise level is
additive (very limited).

B. Multiplication or Logical AND Operation

As we work with binary attributes, the multiplication and
logical AND operations are identical. Using the ciphertext
inputs in Section VI-A, the multiplication operation is per-
formed homomorphically and we obtain C× = x2C1+ΨTC2

and B× = B2Ψ, where Ψ = BITDECOMP(−B1) and
BITDECOMP stands for the bit decomposition operation over
the polynomials of −B1 such that −B1 = GΨ.

Suppose that bi = bi,0 + bi,1x + . . . + bi,n−1x
n−1 with

bi,j ∈ Zq is the i-th polynomial in −B1 and bi,j,h is h-th bit
of the j-th coefficient of bi. Then the binary polynomial ψh,i
in the i-th column and h-th row of Ψ can be computed as

ψh,i = bi,0,h + bi,1,hx+ . . .+ bi,n−1,hx
n−1,

where 0 ≤ i, h ≤ m−1. Therefore, Ψ is a matrix of dimension
m×m, where elements are binary polynomials of degree n−1
or less, namely Ψ ∈ Rm×m2 .

The noise in the output ciphertext C× has the following
form e0,× = x2e0,1 +ΨTe0,2. The dominating factor in noise
growth is due to the term ΨTe0,2, which is a vector-matrix
product of ring elements. The statistical properties of the
binary decomposition matrix result in fast increase in the noise.
As Ψ consists of vectors inR2 and recalling B1 is a uniformly
randomly generated vector of polynomialsthe coefficients of
the polynomials in Ψ are distributed with the mean of 0.5 and
standard deviation of 0.5. Therefore, a small non-zero mean
in e0,2 will contribute to a considerable increase in the mean
and standard deviation of e0,×.

To limit the noise growth, we use binary non-adjacent form
(NAF) of integers in the construction of bit decomposition
matrix as explained in Algorithm 6. Binary NAF, which uses
-1 in addition to 0 and 1 to represent integers, produces a
Ψ in which coefficients of the polynomials are distributed
with zero mean, since binary non-adjacent form is a balanced
representation. For a better understanding of how binary NAF
helps control the noise growth one can profitably refer to
Section IX in Appendix.

NAND gates are universal in the sense that any Boolean
functions can be realized using only NAND gates. Homo-
morphic evaluation of a NAND gate can be performed in
a very similar way to NAND gates, which is shown in
Section VIII-A in Appendix. Thus, we are interested in a
benchmark circuit consisting of only NAND gates. More
specifically, our benchmark circuit has a topology of a binary
tree, an example of which is given with four binary attributes
in Section VIII-B in Appendix. A generic algorithm of public
key and ciphertext evaluation of binary NAND tree circuits

7



Algorithm 6 NAF Bit Decomposition Operation

function NAFDECOMP(B)
for i = 0 to m− 1 do

for j = 0 to n− 1 do
y ← bi,j; h← 0
while y > 0 do

if y is odd then
z ← 2− (y mod 4); y ← y − z

else
z ← 0

end if
ψh,i,j ← z; y ← y/2; h← h+ 1

end while
end for

end for
return Ψ

end function

is illustrated in Algorithm 7. For the noise analysis and
correctness and security constraints of the benchmark circuit,
one can refer to Section IX in Appendix. See also Table V for
our estimates of modulus sizes and ring dimensions for some
given numbers of attributes.

Algorithm 7 Public Key and Ciphertext Evaluation for NAND
Trees

function EVALBENCHMARK(CA,Ci,Bi, x̄, `)
for i = 1 to `− 1 do

x̄`+i ← (1− x̄2i−1x̄2i)
Ψi ← NAFDECOMP(−B2i−1)
B`+i ← B0 −B2iΨi

C`+i ← C0 − x̄2iC2i−1 −ΨT
i C2i

end for
Bf = B2`−1

Cf = C2`−1

return Bf ,Cf

end function

Our NAND gate circuit provides an ultimate benchmark as
only the depth of the policy circuit determines the complexity
of the KP-ABE scheme implemented here. To assess the
performance of the KP-ABE scheme for any other policy
circuit, all that one needs to do is to consider its depth and
check the implementation results of the benchmark circuit of
the same depth provided in this paper.

VII. IMPLEMENTATION DETAILS AND RESULTS

In this section we explain our GPU implementation of the
RLWE KP-ABE scheme and provide performance measure-
ments. As no other similar ABE implementation is found in
the literature, we only compare the throughput of our ring
multiplication implementation with previous state-of-the-art
implementations.

Table I shows the CPU execution times of KP-ABE oper-
ations obtained using the PALISADE library [33], [44], [45].
The timing figures suggest that the homomorphic ciphertext

and public key evaluation (Algorithm 7) and encryption (Al-
gorithm 4) operations do not scale well on a CPU. Decryption
operation is already fast. Key generation can be made faster
using a GPU, but as it is only performed occasionally per
policy it is not a performance bottleneck in the KP-ABE
implementation. Therefore, we focus on implementing only
homomorphic evaluation and encryption operations on a GPU.

TABLE I: Execution times (in ms) of KP-ABE operations on a
computer with Intel(R) Core(TM) i7-4720HQ CPU @2.6 GHz
running Ubuntu 16.04 TLS using the PALISADE library
in [33], [44], [45]

` KEYGEN ENCRYPT EVALCT + EVALPK DECRYPT
2 94 69 311 3.6
4 156 123 1,081 5.48
8 166 259 3,365 6.19

Before delving into technical details, we start with a high-
level outline. ABE encryption and evaluation operations both
perform many multiplication operations in Rq . A GPU is
the ideal platform since ABE requires thousands of multi-
plications, which are amenable to parallelization. We decide
to follow the approach in [46], [43] and [47] rather than
several other floating-point (fp) based GPU implementations
such as [48], [49], [42], for the former relies on integer
arithmetic and is faster than nearly all methods based on fp
arithmetic. Although the performance reported in [46] seems
to be slower than [42], our implementation is faster than
[46] and outperforms any other implementations reported in
the literature including [42]. A more detailed comparison of
this work to cuFFT-based algorithms and [42] is provided in
Section VII-D.

We implemented an NTT-based fast negative wrapped con-
volution algorithm for multiplication in Rq that is customized
for our scheme, based on the code in the CUDA Homomorphic
Encryption Library (cuHE) [43] on GitHub. However, as the
method has a general limitation on coefficient size we adopted
the CRT to break any high-norm polynomial into t parallel
low-norm polynomials. Any arithmetic computation in Rq is
now mapped to corresponding operations over integer vectors
in Znp0 ,Z

n
p1 , . . .Z

n
pt−1

. The result is later converted to a single
vector by ICRT and then reduced back to Rq .

For a polynomial addition/subtraction, rather than perform-
ing it in CRT or NTT domain, it is more efficient to use
polynomial representation in Rq , if the arithmetic circuit does
not involve multiplications. And an addition/subtraction can
be embedded as a simple step in other functions. NAF bit
decomposition yields polynomials in R3. We skip the CRT
conversions by mapping −1 coefficients to P − 1 and feeding
them directly to NTT.

We instantiate the Box-Muller method on GPU that samples
e0 in Algorithm 4 from a discrete Gaussian distribution
much more efficiently than on a CPU. All these modules
are assembled to implement ABE encryption and evaluation
operations.

8



A. Fast NTT for Negative Wrapped Convolution

For arithmetic in ring Rq , we use an NTT-based approach
and represent polynomials as vector of integers, namely in
Zn. NTT conversions are performed in FP , where we choose
P = 264−232+1 for fast modulo arithmetic as in [50]. As 8 is
a primitive 64-th root of unity modulo P , any NTT with size
n ≤ 64 uses wn = 8

64
n as a primitive root of unity. This way,

the multiplications of the input coefficients with the powers of
root of unity (twiddle factors) are replaced with much cheaper
bit-wise left shifts, e.g. a ·w3

16 = (a� 12). The reduction of
the result (a large integer) modulo P can be achieved with 32-
bit additions and subtractions. An example is given in Table
VIII in Appendix.
Eliminating Conditional Branches. Suppose that we perform
modulo P reduction on a (less than) 224-bit integer e.g.
x = x′ × 849 = x′ � 147 where xi denotes the i-th least
significant 32-bit word of x and x′ ∈ FP . We observe that
x0 = x1 = 0 and compute it as x ≡ (−x2−x3)+(x2−x4)·232

mod P . Carry-out or borrow-in occurring at the 65-th bit
will corrupt the result. Handling them normally involves
conditional branches.

If threads in a single warp branch to different instructions,
these threads will execute in sequence, which is inefficient.
Thus, we predict the conditions where carry-out or borrow-in
occurs, for every possible left shift offset, and handle them
without branches. Since we know x4 ∈ [0, 255], we may
compute the formula as r = x2 · 232 − (x2 + x3 + x4 · 232)
without any carry-out. And the integer value of the Boolean
type element r > x2 ·232 is used to handle the borrow-in case.
Then we apply a similar trick with the Boolean type element to
obtain x mod P = r−P when r ≥ P . Pseudo code for this
is provided in Table VIII in Appendix. This effort eliminates
conditional branches.
Parallelizing NTT/INTT on Multiple Threads. The main
idea in our particular method for NTT operation is to (recur-
sively) apply the four-step Cooley-Tukey algorithm [51] until
NTT size drops below 64. Similar to [50] in the first level
of recursion, we arrange an integer vector of n = 2048 (or
n = 4096) as a two-dimensional vector of 64×32 (or 64×64).
In NTT(), we multiply each vector element with a power of
w2n for the negative wrapped convolution. Then we perform
NTT64

8 () on each column, transpose the 2D-vector, multiply
them with twiddle factors (powers of wn) and eventually
perform NTT32

82() (or NTT64
8 ()) on each row. In INTT(), we

perform NTT32
8−2() (or NTT64

8−1()) on each row first, multiply
them with twiddle factors (powers of w−1

n ), transpose the 2D-
vector and then perform NTT64

8−1() on each column. Finally,
we multiply each vector element with a power of w−1

2n and
1
n . We exclude transposes in both forward and backward
conversions. The column-wise and row-wise conversions are
computed separately with two kernels. Each kernel uses n

8
threads which are divided into at most n

512 blocks, whereby
each thread reads/writes 8 vector elements.
Minimized Thread Communication Overhead. 64-point
or 32-point conversions are handled by 8 or 4 threads and
require only a single synchronization of threads. Each thread
is assigned 8 column elements to perform NTT8

88() recursively

and multiplies them with powers of 8 as twiddle factors
(implemented as simple left shifts). Then it transposes the
vector elements of 8×8, reads column elements and performs
NTT8

88() again. Note that the transpose operation benefits
from the shared memory as mapping functions are optimized
to minimize bank conflicts. A single synchronization of all
threads is required only after writing to the shared memory.

Further Optimizations. We pre-compute (wn)i, (w−1
n )i,

(w2n)i and (w−1
2n )i for i = 0, . . . , n − 1 and store them

as four separate vectors in the global memory. Although
the same vector is stored twice in different order since
w−in = wn−in ∀i ∈ Zn, it ensures coalesced global memory
access. Also, we store 1

nw
−1
2n instead of w−1

2n to save 8 integer
multiplications per thread in every INTT conversions.

B. CRT Configurations

The NTT method defined above only applies on polynomials
whose norm is smaller than P . We utilize CRT to break down
an integer in Zq into a vector of smaller integers smaller.
We generate t CRT primes, namely {p0, p1, . . . , pt−1},
to convert a vector f ∈ Znq into its CRT domain value(
f̃ (0), f̃ (1), . . . , f̃ (t−1)

)
where f̃ (j) = [f ]pj ∈ Znpj . Suppose

we compute h(x) =
∑τ−1
i=0 fi(x)gi(x) in Rq for any τ . We lift

polynomials to their vector forms h, fi,gi ∈ Znq . h is reduced
modulo q from ICRT result h′, where h′ is computed as:

h′ = ICRTj∈Zt

(
h̃′

(j)
)

= ICRTj∈Zt

(
τ−1∑
i=0

f̃
(j)
i g̃

(j)
i

)
(3)

= ICRTj∈Zt

(
INTT

(
τ−1∑
i=0

NTT
(
f̃

(j)
i

)
� NTT

(
g̃

(j)
i

)))
.

(4)

Constraints on the Size and Number of CRT Primes. Since
the method utilizes different mathematical objects, namely Zq ,
Fpj ’s and FP , it works correctly only if the following two
constraints are satisfied:

P >

∥∥∥∥∥
τ−1∑
i=0

f̃
(j)
i g̃

(j)
i

∥∥∥∥∥ , ∀i ∈ Zτ , ∀j ∈ Zt; (5)

t−1∏
j=0

pj >

∥∥∥∥∥
τ−1∑
i=0

fi(x)gi(x)

∥∥∥∥∥ , ∀i ∈ Zτ . (6)

ABE encryption and evaluation operations impose different
constraints on CRT parameter selection. A summary is pre-
sented in Table II. The constant factor 2 exists in all inequali-
ties due to the negative wrapped convolution. For example in
ENCRYPT (Algorithm 4), the coefficients of a product of two
CRT domain polynomials fall within the interval [−n(pj −
1)2, n(pj − 1)2], or that of a product of two Rq polynomials
fall within the interval [−n(q − 1)2, n(q − 1)2] when a prime
modulus is in use. EVALBENCHMARK (Algorithm 7), on the
other hand, consist of vector-matrix multiplication in the form
Rmq ← Rmq ×Rm×m3 (e.g., B2iΨi). Here, R3 is due to non-
adjacent form decomposition in Algorithm 6. Consequently,
EVALCT or EVALPK (EVALXX) provides a smaller upper-

9



TABLE II: Constraints on the CRT Primes’ Size and Count
Are Given by pj and

∏t−1
j=0 pj (a.k.a.

∏
pj), Respectively.

Prime q Composite q
pj

∏
pj pj

∏
pj

ENCRYPT ≤
√
P/2n > 2n(q − 1)2 ≤

√
P/2n

= q
EVALXX ≤

√
P/2mn > 2mn(q − 1) ≤

√
P/2mn

bound for CRT prime sizes (see Table II) and decreases the
number of CRT primes (see Table V), compared to ENCRYPT.

Impact of Using Fewer CRT Primes. We assume that pj’s
have similar sizes: dlog2 pje. For each set of ABE parameters,
Eq. 5 can be used to determine an upper bound on dlog2 pje.
Then after choosing pj’s as large as possible, we determine a
minimum t with Eq. 6. Compared to the value of t, dlog2 pje
has a very limited influence on performance as it affects the
speed of NTT() (modulo pj is performed at the end of NTT())
only to a certain extent. However, as a multiplication requires
2t NTT()’s and t INTT()’s, increasing t from 3 to 4 reduces
performance by 33%. Therefore, we first pick as a small value
as possible for t, then set dlog2 pje ≈ m

t .
To further take advantage of this, when a prime modulus is

chosen and fixed, we generate different sets of CRT primes for
encryption and evaluation, since evaluation obviously requires
fewer number of primes. On the contrary, when generating a
composite modulus as the product of CRT primes, we have
to pick the prime size under the tighter bound given in the
evaluation stage.

Using a Composite Modulus. We can alternatively select
q =

∏t−1
j=0 pj to eliminate Eq. 6.

As shown in Table II, for a composite q, we have fewer
number of CRT primes1. As a result, using fewer CRT primes
(see Table V) simplifies the computation. Besides, in our
benchmark circuit for ABE evaluation operation, we are able
to avoid unnecessary CRT and ICRT operations, since we
apply CRT only on circuit inputs and apply ICRT only to
recover the final result. For both cases where q is either prime
or composite, we compute the values of t and take timing
results, which are listed in Table V. The timing results confirm
our expectation.

Further Optimizations. We use the NTL library2 to perform
pre-computations needed for CRT conversions for both ABE
encryption and evaluation, including pj’s, M =

∏t−1
j=0 pj ,

Mj = M
pj

and [M−1
j ]pj for all j ∈ Zt. The precomputed

values are, then, transferred to GPU and stored in its constant
memory. Employing n threads, CRT() converts each vector
in Znq to t vectors by reducing them modulo pj’s. An ICRT
kernel obtains vectors in ZnM and then reduces them to ZNq
(if M > q) using Barrett reduction. All accesses to vectors
in global memory are coalesced. Large integer arithmetic
operations are specifically optimized for our parameters to
provide the best performance.

1The size of CRT primes is determined by the Evaluate step rather than
the Encrypt step, although the latter can use larger and fewer CRT primes,
because q remains the same in both steps.

2http://www.shoup.net/ntl/

The outputs of NAFDECOMP() skip the CRT conversions.
We could perform CRT on each of the m polynomials in R3

by mapping −1 coefficients to pj − 1 for all j ∈ Zt, as in
Eq. 4. But that would require space for m × t polynomials
and perform m× t NTT conversions. Instead, we map −1 to
P − 1 once for all j ∈ Zt and perform NTT directly:

h′ = ICRTj∈Zt

(
INTT

(
τ−1∑
i=0

NTT
(
f̃

(j)
i

)
� NTT (g̃i)

))
,

(7)

where gi ∈ R3. This requires only m polynomials and m NTT
conversions.

C. Minimizing Memory Consumption

Although we allocate linear memory on the host and
the device to store polynomials, we create a data struc-
ture Array3D_t to access coefficients virtually as a 3D
array. It contains a pointer uint64_t *ptr to the start-
ing address and keeps its dimensions in a 3-tuple uint3
dim. Mathematically speaking, an Array3D_t element is
in Zdim.z×dim.y×dim.x. Coefficients are addressed consecutively
in memory by first x, then y, and at last z dimension,
i.e. ptr[idx.z][idx.y][idx.x]. As dim.x is fixed
to the ring dimension n, idx.x gives the index of a coef-
ficient within the vector. Also, for dim.z vectors are packed,
idx.z-th is the index of a vector in the pack. The data
domains are described in Table III.

The particular design of data structures in our implementa-
tion ensures coalesced access to global memory, enables the
launch of a huge kernel to keep all CUDA cores busy and
is then able to overlap global memory accesses with GPU
computation. For example, to perform bit-decomposition and
NTT conversions, i.e. Ψ̂ ← NAFDECOMP NTT(−B2i−1)

TABLE III: Usage of Array3D_t for dim.z = τ full vectors
of length dim.x = n in various domains. Integers are stored
in uint64_t words. The word-length of q is then s =

⌈
k
64

⌉
with word-base b = 264.

Domain dim.y Form ptr[z][y][x]

Regular ZNq s Zτ×s×nb

The y-th 64-bit word of
the x-th coefficient of the
z-th full vector.

CRT t Zτ×t×N
The x-th coefficient of
the y-th CRT vector
from the z-th full vector
(reduced modulo py).

CRT+NTT t Fτ×t×NP

The x-th coefficient of
the NTT vector from the
y-th CRT vector from
the z-th full vector.

BD+NTT m Fτ×m×nP

The x-th coefficient of
the NTT vector con-
verted from the y-th bit-
decomposed vector of
the z-th plain vector (the
y-th bit of each coeffi-
cient in Zq).

10



in Algorithm 7, we launch a grid of dimension (m, m,
n

512 ) with 64 threads per block (m2 n
512 threads in total) to

perform m2 NTT conversions. Since the ring dimension is
1024, 2048 or 4096, the data structure naturally aligns global
memory addresses. If we create an element for CRT+NTT
domain, it has sufficient space for other domains (except
NAFDECOMP+NTT) as well. CRT and NTT conversions read
and write in the same Array3D_t element. This way we
reduce memory consumption significantly.

D. Performance

We experimented with our implementation using an Nvidia
GeForce Titan X graphics card with the Maxwell architecture
(“Titan X” in short) as well as an Nvidia GeForce Titan Xp that
is built with the Pascal architecture (“Titan Xp” in short). Titan
X was priced for about $1000 in early 2016 and Titan Xp has
a similar price in 2017. The host computer also has an Intel
Core i7-3770k processor with 4 cores running at 3.50 GHz
and system memory (host memory) of 32 GB. The host runs
Ubuntu 16.04 LTS and the programs are compiled with g++
5.4.0 and CUDA compilation tools v8.0.44 (See Table IV).

TABLE IV: Experimental Environment

Titan X Titan Xp
CUDA cores 3072 3840
Base Clock 1.22 GHz 1.58 GHz
Memory Bandwidth 336.5 GB/s 547.7 GB/s
Memory Size 12 GB 12 GB

A Comparison of Polynomial Multiplication Speed. We
approximate the latency of a full polynomial multiplication
to the latency of two NTTs and one INTT to provide a fair
comparison. We developed programs for both our method and
the cuFFT-based method in [48], and measure the average
latency of 256× 128× 4 multiplications, with respect to [48].
We fix ring dimension as 2048 and assume coefficients are less
than 24-bit. Our multiplication takes 0.34×2+0.26 = 0.94 µs
on Titan X.

A cuFFT-based method requires 4096-point FFTs for such
a ring dimension. The work in [48] compared several methods
and concluded that a cuFFT-based multiplication is more
efficient for n ≥ 2048. Our sample cuFFT-based code shows
that each multiplication takes 7.62 µs on Titan X. It turns out
that a cuFFT based-method is 68 times slower than our integer
based method.

The method in [42] does not involve negative wrapped con-
volution. For ring dimension 2048, it requires 4096-point FFTs
whose performance was not reported. Based on its complexity
n log2 n, we estimate that 4096-point FFTs are 2.18 slower
than 2048-point FFTs. Using the fourth bar of the third subplot
of Figure V in [42], we can conclude that each multiplication
would take 2.18 × 40 ms ÷ (256 × 128) ÷ 4 ≈ 0.665 µs.
They adopt an Nvidia GeForce GTX 280 graphics card which
has a peak performance of 933 GFlops/s. According to their
calculation, they reach 444 GFlops/s. If their code ran on
out device and (not likely) reached the peak 192 GFlops/s
performance, it would take 444

192 ≈ 2.31 times longer, that is,
0.665 × 2.31 ≈ 1.54 µs, which is 64% slower than ours. If

we consider their GPU to be 933
192 ≈ 4.86 times more powerful

than ours in term of peak GFlops/s, their code would take
0.665 × 4.86 ≈ 3.23 µs, which is 3.44 times slower than
ours. Based on these comparisons, our GPU implementation
for multiplication in Rq compares favorably with all other
implementations reported in the literature.

Performance of ABE Encryption and Evaluation. We enu-
merated timing results together with parameter selections in
Table V. These parameters are selected based on our security
and correctness analysis in Section IX in Appendix. We
provide two sets of measurements based on the configuration
whereby either a prime or a composite q is used. The number
of CRT primes generated is listed under column “t” for each
scenario. “Time”, “Fixed” and “Changing” show timing results
in milliseconds. “Fixed” assumes that the circuit has a fixed
policy (EVALCT only) while “Changing” assumes a changing
policy (EVALCT+EVALPK). From these two tables, Titan Xp
yields roughly 1.6 times speedup over Titan X, due to the fact
that Titan Xp has 1.6 times faster memory bandwidth.

The measurements of ABE encryption (“Enc”) include all
steps but the sampling of s←U Rq in Algorithm 4. Discrete
Gaussian noise is sampled on the device while s is sampled
on the host and transfered to the device. The output Cin is
transfered from the device to the host.

The measurements of ABE evaluation (“Fixed”) assume that
Bi’s for all i ∈ [l+1, 2l−1] are pre-computed. In other words,
we skip the step, where B`+i ← B0−B2iΨi is computed in
Algorithm 7. This is a reasonable assumption when the policy
circuit is fixed. Memory consumption on the device or on the
host is similar, since we either store {B0,B1, . . .Bl} or pre-
compute and store {B1,B3, . . . ,B2l−1}. Computing Bi’s has
the same cost as computing Ci’s. To include the computation
of Bi’s for a changing policy circuit, we present the time cost
under column “Changing”. In each gate of ABE evaluation,
we transfer Bi’s and Ci’s required by this gate from the host,
perform arithmetic operations in the device and send back a
single vector Ci to the host.

Although memory transfers between host memory and de-
vice memory occur at run time, their latency is hidden behind
computation. This is achieved by creating CUDA streams to
pipeline data transfers and computation tasks. Timing results
in Table V has no overhead caused by data transfer.

We also consider the implementation scenario where not
only Bi’s are pre-computed for each gate, but also are their bit-
decomposed forms Ψi’s converted to NTT domain as Ψ̂i’s. By
doing this, we exclude m2 forward NTT conversions in each
gate. However, memory consumption increases by roughly 64
times since each bit in Bi is now a 64-bit integer in FP .
As storing Ψ̂i in host memory requires transferring them to
the device memory, which in fact is slower than m2 NTT
conversions, they are therefore stored on device memory. As
we run out of device memory for a small number of attributes
(i.e. 32), we exclude the timing results in this scenario. But its
performance can be accurately estimated as 2×TFixed−TChanging
from the timings listed under those two columns. For example,
potentially the evaluation for 16 or 32 attributes would take
only 13.6 ms or 91.8 ms, respectively.

11



TABLE V: Performance of selected parameters on Titan X / Titan Xp.

Parameters Prime q Composite q

l k n
ENCRYPT EVALCT + EVALPK ENCRYPT EVALCT + EVALPK

t Time (ms) t Changing (ms) Fixed (ms) t Time (ms) t Changing (ms) Fixed (ms)
2 36 1024 4 1.10 / 0.76 3 0.62 /0.41 0.34 /0.23 2 0.77 / 0.57 2 0.53 / 0.36 0.26 / 0.19
4 51 2048 5 4.28 / 2.85 3 6.48 /3.76 2.76 /1.70 3 2.60 / 1.71 3 6.33 / 3.94 2.62 / 1.62
8 60 2048 6 9.31 / 6.28 4 22.3 /13.6 10.5 / 6.55 3 4.98 /3.51 3 19.5 / 12.0 7.90 / 4.91

16 69 2048 6 20.1 /13.3 4 61.9 /38.2 25.8 / 17.6 3 11.2 / 7.79 3 55.5 / 35.1 21.3 / 13.6
32 82 4096 7 106 / 67.5 5 419 / 264 188 /112 4 60.6 /39.7 4 386 / 245 152 / 91.8
64 92 4096 8 232 / 137 6 1,113 / 642 461 / 271 4 119 /72.0 4 957 / 594 377 / 224
128 102 4096 9 614 / 354 6 2,681 /1,668 1,253 / 749 5 339 / 196 5 2,521 / 1,555 1,078 / 643
256 112 4096 10 1,459 / 834 6 6,477 / 3,860 2,961 /1,697 5 745 / 424 5 6,015 / 3,579 2,495 / 1,437
512 122 4096 11 3,627 / 2.027 7 16,762 /10,183 8,472 /4,928 6 2,014 / 1,084 6 15,177 / 9,149 6,879 / 3,971

1024 132 4096 11 8,387 / 4,705 7 40,570 / 24,503 19,948 / 11,455 6 4,749 / 2,565 6 36,671 / 22,396 16,301 / 9,411

To give an idea of the magnitude and complexity of com-
putations, one can consider that an ABE evaluation operation
requires about (l − 1)m2 polynomial multiplications and ad-
ditions in Rq . Our GPU implementation achieves a very high
throughput. For instance, for 1024 attributes (ring dimension
is 4096) with a prime q, we achieve less than 2.21 µs (Titan
X) or 1.33 µs (Titan Xp) per multiplication and accumulation
in Rq; for 16 attributes (ring dimension is 2048) with a prime
q, it takes less than 0.82 µs (on Titan X) or 0.51 µs (on Titan
Xp).

The impact of choosing a composite q can be captured by
comparing the measurements under “Prime q” and “Composite
q” sections of Table V. CRT and ICRT do not weigh much
in the computation of ABE evaluation. Although we eliminate
( l2 − 1) CRTs and (l − 2) ICRTs by choosing a composite
q, for most parameter sets we gain little benefits. However, a
composite q requires a smaller t compared to a prime q (i.e.
performance of all ABE evaluations and all ABE encryptions),
which provides some improvement.

A scheme with up to 1024 attributes is supported by our
implementation and this number will be larger with more
system memory. The performance results are very promising
considering the fact that our GPU now costs around or below
$1000. A more advanced GPU definitely will yield better
performance.

A quick comparison of the execution times in Table I (CPU)
and Table V (GPU) shows that our GPU implementation of
KP-ABE encryption operation at least 259/9.31 = 27.8 times
faster for 8 attributes than CPU implementation whereas the
acceleration ratio can be as high as 73.8. For homomorphic
evaluation operations with 8 attributes the acceleration ratios
will be at least 151 and as high as 685.

VIII. CONCLUSION

We present a construction and implementation of the first
RLWE KP-ABE scheme and experimentally demonstrate that
it can be efficiently implemented by leveraging commercial-
off-the-shelf compute resources, notably a moderately priced
GPU. Since the key ABE operations require numerous poly-
nomial multiplications amenable to parallel computations, we
focus on improving their throughput. To this end, we develop
special-purpose algorithms and data structures to optimize
memory access. A comparison with previous works shows our

polynomial multiplication with ring dimension N = 2048 is
at least 64% faster than the fastest implementation reported in
the literature.

Our KP-ABE scheme requires highly expensive homomor-
phic operations over public keys and ciphertext. However,
despite these perceived challenges, our implementation yields
highly favorable timing results. We show that the most time-
consuming ABE evaluation operation can be performed in
as low as 13.6 ms and 91.8 ms, for 16 and 32 attributes,
respectively. These runtime results would be even smaller, and
scale to a larger number of attributes, with newer, increasingly
more capable GPUs. The fact that our implementation supports
up to 1024 attributes is very promising for the efficient
implementation of more advanced cryptographic algorithms,
which require ABE as a building block, such as functional
encryption and token-based program obfuscation.

ACKNOWLEDGMENT

We would like to gratefully acknowledge the input and
feedback from Vinod Vaikuntanathan.

Dai, Doröz and Sunar’s work was in part provided by the
US National Science Foundation CNS Award #1561536.

Polyakov, Rohloff, Sajjadpour and Savaş’s sponsorships are
as follows: Sponsored by the Defense Advanced Research
Projects Agency (DARPA) and the Army Research Labora-
tory (ARL) under Contract Numbers W911NF-15-C-0226 and
W911NF-15-C-0233. The views expressed are those of the
authors and do not necessarily reflect the official policy or po-
sition of the Department of Defense or the U.S. Government.
Project sponsored by the National Security Agency under
Grant H98230-15-1-0274. This research is based upon work
supported in part by the Office of the Director of National
Intelligence (ODNI), Intelligence Advanced Research Projects
Activity (IARPA). The views and conclusions contained herein
are those of the authors and should not be interpreted as
necessarily representing the official policies, either express or
implied, of ODNI, IARPA, or the U.S. Government. The U.S.
Government is authorized to reproduce and distribute reprints
for governmental purposes notwithstanding any copyright an-
notation therein.

REFERENCES

[1] A. Sahai and B. Waters, “Fuzzy identity-based encryption,” in Advances
in Cryptology - EUROCRYPT 2005, 24th Annual International

12



Conference on the Theory and Applications of Cryptographic
Techniques, Aarhus, Denmark, May 22-26, 2005, Proceedings,
ser. Lecture Notes in Computer Science, R. Cramer, Ed., vol.
3494. Springer, 2005, pp. 457–473. [Online]. Available: http:
//dx.doi.org/10.1007/11426639 27

[2] D. Boneh and M. K. Franklin, “Identity-based encryption from the
weil pairing,” SIAM J. Comput., vol. 32, no. 3, pp. 586–615, 2003.
[Online]. Available: http://dx.doi.org/10.1137/S0097539701398521

[3] V. Goyal, O. Pandey, A. Sahai, and B. Waters, “Attribute-based encryp-
tion for fine-grained access control of encrypted data,” in Proceedings of
the 13th ACM Conference on Computer and Communications Security,
ser. CCS ’06. New York, NY, USA: ACM, 2006, pp. 89–98.

[4] J. Bethencourt, A. Sahai, and B. Waters, “Ciphertext-policy attribute-
based encryption,” in 2007 IEEE Symposium on Security and Privacy
(SP ’07), May 2007, pp. 321–334.

[5] J. Zhang, Z. Zhang, and A. Ge, “Ciphertext policy attribute-based
encryption from lattices,” in 7th ACM Symposium on Information,
Compuer and Communications Security, ASIACCS ’12, Seoul, Korea,
May 2-4, 2012, H. Y. Youm and Y. Won, Eds. ACM, 2012, pp. 16–17.
[Online]. Available: http://doi.acm.org/10.1145/2414456.2414464

[6] B. Waters, “Ciphertext-policy attribute-based encryption: An expressive,
efficient, and provably secure realization,” in Public Key Cryptography
- PKC 2011 - 14th International Conference on Practice and
Theory in Public Key Cryptography, Taormina, Italy, March 6-
9, 2011. Proceedings, ser. Lecture Notes in Computer Science,
D. Catalano, N. Fazio, R. Gennaro, and A. Nicolosi, Eds.,
vol. 6571. Springer, 2011, pp. 53–70. [Online]. Available: http:
//dx.doi.org/10.1007/978-3-642-19379-8 4

[7] H. Deng, Q. Wu, B. Qin, J. Domingo-Ferrer, L. Zhang, J. Liu, and
W. Shi, “Ciphertext-policy hierarchical attribute-based encryption with
short ciphertexts,” Inf. Sci., vol. 275, pp. 370–384, 2014. [Online].
Available: http://dx.doi.org/10.1016/j.ins.2014.01.035

[8] E. Zavattoni, L. J. D. Perez, S. Mitsunari, A. H. Sánchez-Ramı́rez,
T. Teruya, and F. Rodrı́guez-Henrı́quez, “Software implementation
of an attribute-based encryption scheme,” IEEE Trans. Computers,
vol. 64, no. 5, pp. 1429–1441, 2015. [Online]. Available: http:
//dx.doi.org/10.1109/TC.2014.2329681

[9] R. Ostrovsky, A. Sahai, and B. Waters, “Attribute-based encryption with
non-monotonic access structures,” in Proceedings of the 2007 ACM
Conference on Computer and Communications Security, CCS 2007,
Alexandria, Virginia, USA, October 28-31, 2007, P. Ning, S. D. C.
di Vimercati, and P. F. Syverson, Eds. ACM, 2007, pp. 195–203.
[Online]. Available: http://doi.acm.org/10.1145/1315245.1315270

[10] V. Goyal, A. Jain, O. Pandey, and A. Sahai, “Bounded ciphertext policy
attribute based encryption,” in Automata, Languages and Programming,
35th International Colloquium, ICALP 2008, Reykjavik, Iceland, July
7-11, 2008, Proceedings, Part II - Track B: Logic, Semantics, and
Theory of Programming & Track C: Security and Cryptography
Foundations, ser. Lecture Notes in Computer Science, L. Aceto,
I. Damgård, L. A. Goldberg, M. M. Halldórsson, A. Ingólfsdóttir,
and I. Walukiewicz, Eds., vol. 5126. Springer, 2008, pp. 579–591.
[Online]. Available: http://dx.doi.org/10.1007/978-3-540-70583-3 47

[11] A. B. Lewko, T. Okamoto, A. Sahai, K. Takashima, and B. Waters,
“Fully secure functional encryption: Attribute-based encryption and
(hierarchical) inner product encryption,” in Advances in Cryptology
- EUROCRYPT 2010, 29th Annual International Conference on the
Theory and Applications of Cryptographic Techniques, French Riviera,
May 30 - June 3, 2010. Proceedings, ser. Lecture Notes in Computer
Science, H. Gilbert, Ed., vol. 6110. Springer, 2010, pp. 62–91.
[Online]. Available: http://dx.doi.org/10.1007/978-3-642-13190-5 4

[12] A. B. Lewko and B. Waters, “Decentralizing attribute-based
encryption,” in Advances in Cryptology - EUROCRYPT 2011 -
30th Annual International Conference on the Theory and Applications
of Cryptographic Techniques, Tallinn, Estonia, May 15-19, 2011.
Proceedings, ser. Lecture Notes in Computer Science, K. G. Paterson,
Ed., vol. 6632. Springer, 2011, pp. 568–588. [Online]. Available:
http://dx.doi.org/10.1007/978-3-642-20465-4 31

[13] A. H. Sánchez and F. Rodrı́guez-Henrı́quez, “NEON implementation
of an attribute-based encryption scheme,” in Applied Cryptography
and Network Security - 11th International Conference, ACNS 2013,
Banff, AB, Canada, June 25-28, 2013. Proceedings, ser. Lecture Notes
in Computer Science, M. J. J. Jr., M. E. Locasto, P. Mohassel,
and R. Safavi-Naini, Eds., vol. 7954. Springer, 2013, pp. 322–338.
[Online]. Available: http://dx.doi.org/10.1007/978-3-642-38980-1 20

[14] C. Gentry, C. Peikert, and V. Vaikuntanathan, “Trapdoors for hard
lattices and new cryptographic constructions,” in STOC, 2008, pp. 197–
206.

[15] M. Ajtai, “Generating hard instances of lattice problems,” Quaderni di
Matematica, vol. 13, pp. 1–32, 2004, preliminary version in STOC 1996.

[16] ——, “Generating hard instances of the short basis problem,” in ICALP,
1999, pp. 1–9.

[17] O. Goldreich, S. Goldwasser, and S. Halevi, “Public-key cryptosys-
tems from lattice reduction problems,” in Advances in Cryptology–
CRYPTO’97. Springer, 1997, pp. 112–131.

[18] J. Zhang and Z. Zhang, “A ciphertext policy attribute-based encryption
scheme without pairings,” in Information Security and Cryptology
- 7th International Conference, Inscrypt 2011, Beijing, China,
November 30 - December 3, 2011. Revised Selected Papers, ser.
Lecture Notes in Computer Science, C. Wu, M. Yung, and D. Lin,
Eds., vol. 7537. Springer, 2011, pp. 324–340. [Online]. Available:
http://dx.doi.org/10.1007/978-3-642-34704-7 23

[19] D. Boneh, C. Gentry, S. Gorbunov, S. Halevi, V. Nikolaenko,
G. Segev, V. Vaikuntanathan, and D. Vinayagamurthy, “Fully key-
homomorphic encryption, arithmetic circuit ABE and compact garbled
circuits,” in Advances in Cryptology - EUROCRYPT 2014 - 33rd
Annual International Conference on the Theory and Applications of
Cryptographic Techniques, Copenhagen, Denmark, May 11-15, 2014.
Proceedings, ser. Lecture Notes in Computer Science, P. Q. Nguyen and
E. Oswald, Eds., vol. 8441. Springer, 2014, pp. 533–556. [Online].
Available: http://dx.doi.org/10.1007/978-3-642-55220-5 30

[20] S. Goldwasser, Y. T. Kalai, R. A. Popa, V. Vaikuntanathan, and
N. Zeldovich, “Reusable garbled circuits and succinct functional
encryption,” in Symposium on Theory of Computing Conference,
STOC’13, Palo Alto, CA, USA, June 1-4, 2013, D. Boneh,
T. Roughgarden, and J. Feigenbaum, Eds. ACM, 2013, pp. 555–564.
[Online]. Available: http://doi.acm.org/10.1145/2488608.2488678

[21] N. Bitansky and V. Vaikuntanathan, “Indistinguishability obfuscation
from functional encryption,” in IEEE 56th Annual Symposium on
Foundations of Computer Science, FOCS 2015, Berkeley, CA, USA,
17-20 October, 2015, V. Guruswami, Ed. IEEE Computer Society,
2015, pp. 171–190. [Online]. Available: http://dx.doi.org/10.1109/
FOCS.2015.20

[22] O. Regev, “On lattices, learning with errors, random linear codes, and
cryptography,” J. ACM, vol. 56, no. 6, pp. 1–40, 2009, preliminary
version in STOC 2005.

[23] R. E. Bansarkhani and J. A. Buchmann, “Improvement and efficient
implementation of a lattice-based signature scheme,” in Selected Areas
in Cryptography - SAC 2013 - 20th International Conference, Burnaby,
BC, Canada, August 14-16, 2013, Revised Selected Papers, ser. Lecture
Notes in Computer Science, T. Lange, K. E. Lauter, and P. Lisonek,
Eds., vol. 8282. Springer, 2013, pp. 48–67. [Online]. Available:
http://dx.doi.org/10.1007/978-3-662-43414-7 3

[24] V. Lyubashevsky, C. Peikert, and O. Regev, “On ideal lattices and
learning with errors over rings,” in EUROCRYPT, 2010, pp. 1–23.

[25] ——, “A toolkit for ring-lwe cryptography.” in EUROCRYPT, vol. 7881.
Springer, 2013, pp. 35–54.

[26] S. Gorbunov, V. Vaikuntanathan, and H. Wee, “Attribute-based
encryption for circuits,” in Symposium on Theory of Computing
Conference, STOC’13, Palo Alto, CA, USA, June 1-4, 2013, D. Boneh,
T. Roughgarden, and J. Feigenbaum, Eds. ACM, 2013, pp. 545–554.
[Online]. Available: http://doi.acm.org/10.1145/2488608.2488677

[27] S. Garg, C. Gentry, S. Halevi, A. Sahai, and B. Waters, “Attribute-
based encryption for circuits from multilinear maps,” in Advances in
Cryptology - CRYPTO 2013 - 33rd Annual Cryptology Conference,
Santa Barbara, CA, USA, August 18-22, 2013. Proceedings, Part II,
ser. Lecture Notes in Computer Science, R. Canetti and J. A. Garay,
Eds., vol. 8043. Springer, 2013, pp. 479–499. [Online]. Available:
http://dx.doi.org/10.1007/978-3-642-40084-1 27

[28] D. Boneh and A. Silverberg, “Applications of multilinear forms to
cryptography,” IACR Cryptology ePrint Archive, vol. 2002, p. 80, 2002.
[Online]. Available: http://eprint.iacr.org/2002/080

[29] M. Scott, “On the efficient implementation of pairing-based protocols,”
in Cryptography and Coding - 13th IMA International Conference,
IMACC 2011, Oxford, UK, December 12-15, 2011. Proceedings,
ser. Lecture Notes in Computer Science, L. Chen, Ed., vol.
7089. Springer, 2011, pp. 296–308. [Online]. Available: http:
//dx.doi.org/10.1007/978-3-642-25516-8 18

[30] D. Micciancio and C. Peikert, “Trapdoors for lattices: Simpler, tighter,
faster, smaller,” in EUROCRYPT, 2012, pp. 700–718.

[31] L. Ducas and P. Q. Nguyen, “Faster Gaussian lattice sampling using
lazy floating-point arithmetic,” in Advances in Cryptology - ASIACRYPT
2012 - 18th International Conference on the Theory and Application
of Cryptology and Information Security, Beijing, China, December 2-6,
2012. Proceedings, ser. Lecture Notes in Computer Science, X. Wang

13



and K. Sako, Eds., vol. 7658. Springer, 2012, pp. 415–432. [Online].
Available: http://dx.doi.org/10.1007/978-3-642-34961-4 26

[32] N. Genise and D. Micciancio, “Faster gaussian sampling for trapdoor
lattices with arbitrary modulus,” IACR Cryptology ePrint Archive, vol.
2017, p. 308, 2017. [Online]. Available: http://eprint.iacr.org/2017/308

[33] K. D. Gur, Y. Polyakov, K. Rohloff, G. W. Ryan, and E. Savas,
“Implementation and evaluation of improved gaussian sampling for
lattice trapdoors,” IACR Cryptology ePrint Archive, vol. 2017, p. 285,
2017. [Online]. Available: http://eprint.iacr.org/2017/285

[34] S. Gorbunov, V. Vaikuntanathan, and H. Wee, “Attribute-based
encryption for circuits,” J. ACM, vol. 62, no. 6, pp. 45:1–45:33, 2015.
[Online]. Available: http://doi.acm.org/10.1145/2824233

[35] ——, “Predicate encryption for circuits from LWE,” in Advances in
Cryptology - CRYPTO 2015 - 35th Annual Cryptology Conference,
Santa Barbara, CA, USA, August 16-20, 2015, Proceedings, Part II,
ser. Lecture Notes in Computer Science, R. Gennaro and M. Robshaw,
Eds., vol. 9216. Springer, 2015, pp. 503–523. [Online]. Available:
https://doi.org/10.1007/978-3-662-48000-7 25

[36] C. Gentry, S. Halevi, and N. P. Smart, “Homomorphic evaluation of the
AES circuit,” in CRYPTO, 2012, pp. 850–867.

[37] Y. Chen and P. Q. Nguyen, “BKZ 2.0: Better lattice security estimates,”
in ASIACRYPT, 2011, pp. 1–20.

[38] R. Lindner and C. Peikert, “Better key sizes (and attacks) for LWE-based
encryption,” in CT-RSA, 2011, pp. 319–339.

[39] G. Hanrot and D. Stehlé, “Worst-case hermite-korkine-zolotarev reduced
lattice bases,” CoRR, vol. abs/0801.3331, 2008. [Online]. Available:
http://arxiv.org/abs/0801.3331

[40] N. Genise and D. Micciancio, “Faster gaussian sampling for trapdoor
lattices with arbitrary modulus,” In preparation, 2017, personal commu-
nication.

[41] D. D. Chen, N. Mentens, F. Vercauteren, S. S. Roy, R. C. C. Cheung,
D. Pao, and I. Verbauwhede, “High-speed polynomial multiplication
architecture for Ring-LWE and SHE cryptosystems,” IEEE Transactions
on Circuits and Systems I: Regular Papers, vol. 62, no. 1, pp. 157–166,
Jan 2015.

[42] P. Emeliyanenko, “Efficient multiplication of polynomials on graphics
hardware,” in Proceedings of the 8th International Symposium on
Advanced Parallel Processing Technologies, ser. APPT ’09. Berlin,
Heidelberg: Springer-Verlag, 2009, pp. 134–149. [Online]. Available:
http://dx.doi.org/10.1007/978-3-642-03644-6 11

[43] W. Dai and B. Sunar, “cuHE: A homomorphic encryption accelerator
library,” in Cryptography and Information Security in the Balkans
- Second International Conference, BalkanCryptSec 2015, Koper,
Slovenia, September 3-4, 2015, Revised Selected Papers, ser. Lecture
Notes in Computer Science, E. Pasalic and L. R. Knudsen,
Eds., vol. 9540. Springer, 2015, pp. 169–186. [Online]. Available:
http://dx.doi.org/10.1007/978-3-319-29172-7 11

[44] Y. Polyakov, K. Rohloff, G. Sahu, and V. Vaikuntanthan, “Fast
proxy re-encryption for publish/subscribe systems,” IACR Cryptology
ePrint Archive, vol. 2017, p. 410, 2017. [Online]. Available:
http://eprint.iacr.org/2017/410

[45] C. Borcea, A. D. Gupta, Y. Polyakov, K. Rohloff, and G. W.
Ryan, “PICADOR: end-to-end encrypted publish-subscribe information
distribution with proxy re-encryption,” Future Generation Comp.
Syst., vol. 71, pp. 177–191, 2017. [Online]. Available: https:
//doi.org/10.1016/j.future.2016.10.013

[46] G. S. Çetin, W. Dai, Y. Doröz, W. J. Martin, and B. Sunar, “Blind
web search: How far are we from a privacy preserving search engine?”
Cryptology ePrint Archive, Report 2016/801, 2016, http://eprint.iacr.
org/2016/801. [Online]. Available: http://eprint.iacr.org/2016/801

[47] W. Dai, Y. Doröz, and B. Sunar, “Accelerating NTRU based
homomorphic encryption using GPUs,” in High Performance Extreme
Computing Conference (HPEC), 2014 IEEE, Sept 2014, pp. 1–
6. [Online]. Available: http://ieeexplore.ieee.org/document/7041001/
?arnumber=7041001&tag=1

[48] S. Akleylek, Ö. Dağdelen, and Z. Yüce Tok, On the Efficiency of
Polynomial Multiplication for Lattice-Based Cryptography on GPUs
Using CUDA. Cham: Springer International Publishing, 2016, pp. 155–
168. [Online]. Available: http://dx.doi.org/10.1007/978-3-319-29172-7
10

[49] M. S. Lee, Y. Lee, J. H. Cheon, and Y. Paek, “Accelerating bootstrapping
in FHEW using GPUs,” in 2015 IEEE 26th International Conference on
Application-specific Systems, Architectures and Processors (ASAP), July
2015, pp. 128–135.

[50] N. Emmart and C. C. Weems, “High precision integer multiplication
with a GPU using Strassen’s algorithm with multiple FFT sizes,”
Parallel Processing Letters, vol. 21, no. 03, pp. 359–375, 2011.

[Online]. Available: http://www.worldscientific.com/doi/abs/10.1142/
S0129626411000266

[51] J. W. Cooley and J. W. Tukey, “An algorithm for the machine calculation
of complex fourier series,” Mathematics of computation, vol. 19, no. 90,
pp. 297–301, 1965.

[52] D. Boneh, T. Roughgarden, and J. Feigenbaum, Eds., Symposium
on Theory of Computing Conference, STOC’13, Palo Alto, CA,
USA, June 1-4, 2013. ACM, 2013. [Online]. Available: http:
//dl.acm.org/citation.cfm?id=2488608

[53] M. R. Albrecht, “On dual lattice attacks against small-secret
LWE and parameter choices in helib and SEAL,” in Advances
in Cryptology - EUROCRYPT 2017 - 36th Annual International
Conference on the Theory and Applications of Cryptographic
Techniques, Paris, France, April 30 - May 4, 2017, Proceedings,
Part II, ser. Lecture Notes in Computer Science, J. Coron and J. B.
Nielsen, Eds., vol. 10211, 2017, pp. 103–129. [Online]. Available:
http://dx.doi.org/10.1007/978-3-319-56614-6 4

[54] D. Micciancio, “Generalized compact knapsacks, cyclic lattices, and
efficient one-way functions,” Computational Complexity, vol. 16, no. 4,
pp. 365–411, 2007, preliminary version in FOCS 2002.

[55] D. Stehlé, R. Steinfeld, K. Tanaka, and K. Xagawa, “Efficient public key
encryption based on ideal lattices,” in ASIACRYPT, 2009, pp. 617–635.

APPENDIX

A. Evaluating NAND Gate

Logical NAND gate is a universal gate in the sense that
any logic circuit can be realized using only NAND gates.
Analyzing NAND gates, therefore, is extremely important for
our benchmarks as we use NAND gates-only circuits wih a
tree structure.

NAND gate can be obtained using one AND gate and an
arithmetic subtraction operation, namely (xy)′ = 1 − xy.
Consequently, the circuit evaluation is only slightly different
than that of AND gate

CNAND = C0 − x2C1 −ΨT
1 C2

BNAND = B0 −B2Ψ1, (8)

where C0 is the encryption of logical-1, i.e., C0 = (G +
B0)T s + e0,0. The operations on the noise term is similar
e0,NAND = e0,0 − x2e0,1 −ΨT

1 e0,2. Any other logical gate
can be obtained in a similar manner. For instance, x ⊕ y =
x + y − 2xy and x ∨ y = x + y − xy for binary variables x
and y.

B. Evaluating a Simple Benchmark Circuit of NAND Gates

Suppose a tree-like circuit of NAND gates in Figure 2 with
four attributes, xi for i = 1, 2, 3, 4. Then the ciphertext for a
message µ ∈ R2 is as follows

Cin = (A|(G + B0)|(x1G + B1)| . . . |(x4G + B4))
T
s+ e0,

where c1 is the same as before (henceforth we will omit it
from our discussion for it is not affected by the evaluation
process). We now explain how the evaluation is performed
using a simple circuit illustrated in Fig.2.

The ciphertexts and public keys to be evaluated are
Ci = (xiG + Bi)

T s + e0,i and Bi for i = 1, 2, 3, 4,
respectively, where the corresponding inputs in the circuit
(Fig.2) are labeled with the index number i. The following
are the steps of the evaluation process:

14



1

2
5

3

4
6

7

G1

G2

G3

Fig. 2: A tree like NAND circuit with four attributes

1) Evaluation of gate G1

Ψ1 = NAFDECOMP(−B1)

C5 = C0 − y2C1 −ΨT
1 C2

B5 = B0 −B2Ψ1

y5 = 1− y1y2

2) Evaluation of gate G2

Ψ2 = NAFDECOMP(−B3)

C6 = C0 − y4C3 −ΨT
2 C4

B6 = B0 −B4Ψ2

y6 = 1− y3y4

3) Evaluation of gate G3

Ψ3 = NAFDECOMP(−B5)

C7 = C0 − y6C5 −ΨT
3 C6

B7 = B0 −B6Ψ3

y7 = 1− y5y6,

where Ψi = NAFDECOMP(−B2i−1) for i = 1, 2, 3. We can
also write Bf = B7. Note that yis are binary values used
during the evaluations and y7 = 0 following the construction
of the circuit for a given access policy. We change the notation
for the attributes used during the evaluation phase from xi to yi
for they may not be always identical. However, the decryption
works only if xi = yi for i = 1, . . . , `. For the noise terms
we can obtain the following expressions:

e0,5 = e0,0 − x2e0,1 −ΨT
1 e0,2

e0,6 = e0,0 − x4e0,3 −ΨT
2 e0,4

e0,7 = e0,0 − x6e0,5 −ΨT
3 e0,6

IX. CORRECTNESS AND SECURITY CONSTRAINTS OF A
POLICY CIRCUIT

The depth of a policy circuit can be defined as the number
of AND gates (or NAND gates in our benchmark circuit) in
cascade on its longest path from input to output. Therefore, as
already discussed in Section VI-B the dominating contributor
to the noise growth is the multiplication of noise vector e with
bit decomposition matrix Ψ = BITDECOMP(−B), namely
ΨTe, in every level of the circuit. The norm of the error vector
at the output of the circuit must be less than q

4 for correct
decryption. Before analyzing the effect of this multiplication
on the noise growth, basic properties of arithmetic on random
variables are recalled.

Suppose the mean and standard deviation of two indepen-
dent random variables x and y are (ωx, σx) and (ωy, σy),
respectively. We can write the following expressions for the
mean and standard deviation of z = x+ y and v = xy

(ωz, σz) =
(
ωx + ωy,

√
σ2
x + σ2

y

)
(ωv, σv) =

(
ωxωy,

√
σ2
xσ

2
y + σ2

xω
2
y + ω2

xσ
2
y

)
. (9)

Let (ωe, σe) represent a Gaussian distribution, from which
the polynomial coefficients in the error vectors are sampled
in the encryption operation. Ideally, ωe = 0 as the random
number generator (RNG) used in encryption implements a
zero-centered Gaussian distribution. Nothwithstanding, in an
actual implementation of the Gaussian RNG this may not be
the case, resulting in a relatively small, but nonzero, average
value for a limited number of samples. As will be shown
below, the noise growth in the error vector can be highly
sensitive to this initial small non-zero mean. As the public
vector Bi is sampled from a uniform distribution in ABE
setup, we can easily assume that the polynomial coefficients
in bit decomposition matrix Ψ are sampled from a binary
uniform distribution with (ωψ, σψ) = (0.5, 0.5).

The operation enew = ΨTe consists of polynomial mul-
tiplications followed by polynomial additions. For instance,
enew,i =

∑m−1
j=0 ejψj,i contains arithmetic operations on ran-

dom variables in three levels. In the first level, the coefficients
of the error and bit decomposition polynomials are multiplied.
Consequently, the mean and standard deviation of the resulting
integers, (ω1, σ1), can be computed using Eq. 9. As mentioned
previously, since ωe is non-zero in practical implementions, ω1

is also non-zero, whose value will be amplified significantly
by the subsequent addition operations.

In the second level, integers with (ω1, σ1) are summed
to compute the coefficients of each polynomial, ejψj,i for
i, j = 0, . . . ,m−1. One coefficient of the resulting polynomial
is the addition of n random integers with (ω1, σ1). Then the
coefficients are distributed with (ω2, σ2) = (nω1,

√
nσ1) by

Eq. 9. Finally in the third level, we sum m polynomials (recall∑m−1
j=0 ejψj,i). Consequently, the cofficients in the resulting

vector of polynomials are distributed with

(ω3, σ3) =
(
mnωeωψ,

√
mn(σ2

eσ
2
ψ + σ2

eω
2
ψ + ω2

eσ
2
ψ)
)
(10)

Although ωe can be very small, Eq. 10 clearly indicates that
the mean can grow faster than the standard deviation of the
error vector as demonstrated with the following example.

Example 9.1: Suppose our Gaussian random number gen-
erator has a small mean value ωe = 2−8 with σe = 4.57825.
Suppose also that n = 4096, k = dlog2 qe = 89 and the depth
of the policy circuit is 4. Table VI lists the estimated values
of mean and standard deviation for each level of the circuit.

Example 9.1 clearly shows that the error vectors at the
output of the circuit can have very large mean values that
dominate the noise growth. Having a better Gaussian RNG
would not greatly be useful for alleviating the mean growth
problem. For instance, with a really small mean value such as
ωe = 2−20, the mean and standard deviation of the noise at the

15



TABLE VI: Estimates for the noise growth in a policy circuit
of depth 4 using regular bit and NAF decomposition algorithm.

Level dlog2 ωee dlog2 σee
0 -8 / -8 2.19 / 2.19
1 9.51 / 2.51 10.95 / 10.66
2 27.02 / 13.02 19.75 / 19.13
3 44.52 / 23.52 35.27 / 27.60
4 62.03 / 34.03 52.78 / 36.07

output of the circuit in Example 9.1 will be 50.03 and 40.78,
respectively. Therefore, we need to accept a small nonzero
mean in our Gaussian RNG as natural and perform our noise
analysis accordingly.

There is, however, one method that can supress the growth
in noise significantly. Non-adjacent form (NAF) representation
of integers proves to be extremely useful in reducing the
increase in noise and consequently in improving the per-
formance of all ABE operations by allowing to work with
smaller moduli. In NAF representation of an integer, which
includes −1 in addition to 0 and 1, only one third of the
digits are non-zero, on average. Furthermore, the expected
numbers of 1 and -1 are equal to each other (hence, NAF
is balanced). As a result, if the bit decomposition operation
is performed using NAF (i.e., using NAFDECOMP), the bit
decomposition matrix Ψ will consist of polynomials whose
coefficients are uniformly random in the set {−1, 0, 1} with
ωψ = 0, σψ ≈ 0.58. Naturally, by the same argument ωψ is
expected to be non-zero, in practice. The following example
shows that using NAF decomposition helps limit the noise
growth.

Example 9.2: Suppose our Gaussian random number gen-
erator has a small mean value ωe = 2−8 with σe = 4.57825.
Suppose also that n = 4096, k = dlog2 qe = 89 and the depth
of the policy circuit is 4. Assuming a small nonzero mean
in our uniform RNG ωψ = 2−8, Table VI lists the estimated
values of mean and standard deviation for each level of the
circuit (to the right of symbol “/”). As can be observed from
the table, the mean is no longer the dominant factor in the
noise growth.

Since the noise growth in the ciphertext is now understood,
we can find a practical upper bound for the coefficients in
the error vectors. Assuming a Gaussian RNG with standard
deviation σ, the probability of sampling a value larger than
σ
√
ε is 2−ε. In practice, this probability is considered to be

negligible for ε = 128. Consequently, assuming the error
vector at the output of the policy cicuit, ef , is distributed with
(ωf , σf ), a practical upper bound for the norm of the output
noise can be estimated as ∆f = ωf + σf ·

√
ε

The above analysis accounts for only the noise growth
in the ciphertext after the ciphertext is evaluated over the
policy circuit. However, the ABE decryption operation (where
dual Regev scheme is used) also increases the noise in the
ciphertext. For the dual Regev scheme to decrypt correctly,
absolute values of the coefficients of the polynomial µ̄ should
be smaller than the modulus q

4 , i.e. ||µ̄|| < q
4 .

By the dual Regev encryption scheme, we can write for the

decrypted message

µ̄ = µdq
2
e+ e1 −αTf ef , (11)

where e1 is the error introduced in ABE encryption while ef
represents the error term in the ciphertext after the homomor-
phic evaluation over the policy circuit, whose norm is bounded
by ∆f as shown in the previous section. The term αTf ef stands
for ring multiplications followed by polynomial additions.

The secret key, αf , a vector of ring elements, is generated
as a result of the Gaussian sampling operation in Algorithm 2.
Therefore, its norm is also determined by the same process,
which yields a small norm solution to (A|Bf )αf = βf . An
upper bound (spectral bound henceforth) for the small norm
solution αf can be formulated as

∆α = c · χ, (12)

where χ = σ2(
√
nk +

√
2n + 4.7) and c stands for the

empirically obtained constant (e.g., c = 1.8). For more
information on trapdoor generation and Gaussian sampling
operations, the interested reader is referred to [33].

Then, the final formula of a practical upper bound for the
error term in the decrypted message can be given as

∆µ =
√
mn ·∆f ·∆α. (13)

Naturally as we must have ∆µ < q
4 for correct decryption

q > 4∆µ.
For security we adopt the following formula for the ring

dimension n,

n >
log2

q

σ
4 · log2 δ

, (14)

where δ is the root Hermite factor. For δ < 1.006 we assume
the underlying RLWE problem is hard providing sufficient
level of security. As we do not use low norm or sparse
secret keys, a case whose security is analyzed in [53], we
use the security argument provided in [37], [38] that the root
Hermite factor is the major factor to determine the security.
The formula given in [38] for the running time of the BKZ
algorithm [39]

tBKZ =
1.8

log2(δ)
− 110 (15)

suggests that δ ≈ 1.006 provides about 100-bit security.
ABE parameters for various number of attributes satisfying

both the correctness and security constraints are tabulated in
Table VII. In Table VII, the columns under “Binary” and
“NAF” list our estimates by Eq. 13 for modulus bit size
and ring dimension when conventional bit decomposition and
NAF decomposition are used, respectively. That the NAF
decomposition method allows using much smaller modulus
and ring dimension not only improves the execution timings
but also the memory requirements. The righmost two columns
under “Experimental values” list the actual values used in our
implementation. We tested our implementation with these val-
ues and found out that maximum error norm in the decrypted
message is at least 8 bit smaller than the selected modulus,
which is more than sufficient for correct decryption.

16



TABLE VII: ABE parameters for various number of attributes
with σ = 4.57825, δ = 1.0059, ε = 128, ωe = ωψ = 2−8.

` = 2d d Binary NAF Experimental
k n k n k n

2 1 36 1024 36 1024 36 1024
4 2 48 2048 45 2048 51 2048
8 3 65 2048 53 2048 60 2048
16 4 88 4096 61 2048 69 2048
32 5 108 4096 74 4096 82 4096
64 6 127 4096 83 4096 92 4096

128 7 155 8192 95 4096 102 4096
256 8 176 8192 107 4096 111 4096
512 9 197 8192 119 4096 122 4096
1024 10 218 8192 131 4096 132 4096

Figure 3 illustrates the sensitivity of noise growth to dif-
ferent mean values of the discrete Gaussian generator. In
conclusion, a high quality Gaussian RNG proves to be still
important for the overall performance of the ABE scheme.

2 4 6 8 10

50

100

150

200

` - Depth of the policy circuit

k
-

M
od

ul
us

bi
t

si
ze

ωe = 2−8

ωe = 2−7

ωe = 2−6

ωe = 2−5

ωe = 2−4

Fig. 3: Sensitivity of noise growth to non-zero mean value of
Gaussian RNG.

A. Example of Modulo Reduction in FP for NTT Converions

Table VIII shows reduction operation with special form
modulo P = 264 − 232 + 1 to accelerate NTT conversion
operations as discussed in Section VII.

B. Security of the KP-ABE Scheme

The proposed scheme mainly relies on RLWE hardness
assumptions as informally explained in Definitons 3.1 and 3.2,
namely search and decision RLWE assumptions [24]. For the
security of the trapdoor construction the reader is referred
to [23] for the ring version of the trapdoor and to [32] for the
specific instantiation of the trapdoor construction used in this
paper. The reader is also referred to the seminal works [24],
[25], [30] for deeper understanding of the ideal lattices and
lattice trapdoors.

We now demonstrate that the security proofs in [19] (i.e.,
selective security as defined in [3]) remain valid for our

RLWE-based construction of the KP-ABE scheme. The se-
curity proofs are provided in a series of games played by
a LWE solver B and an adversary A, who has access to
a key generation oracle. After A commits to a particular
set of attribute values x∗ = (x∗1, . . . , x

∗
` ) (henceforth the

challenge attribute) it can send queries for secret keys to the
key generation oracle which can respond only for functions
f(x∗) = 1.

The basic idea is that if A has a significant advantage
in distinguishing between the ciphertexts of two different
messages encrypted under the challenge attribute x∗, then
we can show that B can break the decision RLWE hardness
assumption in Definition 3.2. In the next section, we show
how the oracle responds to queries for functions f(x∗) = 1
using SAMPLELEFT algorithm .

1) SAMPLELEFT Algorithm: This algorithm is fundamental
to the ABE construction used in our work. In a nutshell, having
G as a primitive vector one can obtain a small-norm solution,
y ∈ R2m×1

q , for (A|AS − G)y = u, where u ←U Rq ,
A ←U Rmq , and S ← DRm×m,σ is a matrix of small norm
polynomials (e.g., following a Gaussian distribution). We can
formulate the algorithm as follows:

SAMPLELEFT(A,G,S, u)→ y.

Algorithm SAMPLELEFT relies on Construction 2 described
in [23] based on the findings in [54], [55]. In what follows, we
provide a brief explanation for our version of the construction
in [23].

The primitive vector G = (g1, g2, . . . , gk, 0, 0), where
gi = 2i−1 and as m = k + 2, G ∈ R1×m

q . The vector
A = (a1, a2, . . . , am), where ai ←U← Rq . Also si ∈ Rm×1

represents i-th column of S. Consequently, Asj =
∑m
i=1 aisji

is an element of Rq .

Let F = (A|AS−G) = (a1, . . . , am,As1−g1, . . . ,Ask−
gk,Ask+1,Ask+2), where the terms Asj for j = 1, . . . ,m are
uniformly distributed [54], [55]. It follows that F is uniformly
distributed and the vectors sj ∈ Rm×1

q form a trapdoor TF

for F.

To generate a preimage of a uniformly randomly selected
u ←U Rq , we first sample a vector x ∈ Λ⊥u (G) using the
trapdoor TG, where x is a vector of low norm polynomials and
hence

∑m
i=1 gixi = u. Then, one can easily verify that y =

(y1, . . . , ym, ym+1, . . . y2m) is a preimage of the syndrome u
for F, where yi =

∑m
j=1 xjsji for i = 1, . . . ,m and yi = −xi

for i = m+1, . . . , 2m. Note that yi are also polynomials with

17



TABLE VIII: An example of modulo P reduction.

Powers of 2 224-bit x x = x′ � 147 Pseudo Code
21 ≡ +1
232 ≡ +232

264 ≡ +232 −1
296 ≡ −1
2128 ≡ −232
2160 ≡ −232 +1
2192 ≡ +1

+x0
+x1
+x2 −x2

−x3
−x4
−x5 +x5

+x6

+x2 −x2
−x3

−x4

add.cc x3, x3, x2;
addc x4, x4, 0;
sub.cc r0, 0, x3;
subc r1, x2, x4;
r -= (uint32_t)(-((r>>32)>x2));
r += (uint32_t)(-(r>=P));

small norms. The following shows that Fy = u.

Fy = a1

m∑
j=1

xjsj1 + . . .+ am

m∑
j=1

xjsjm+ (16)

. . .+ x1(g1 −As1) + . . .+ xm(−Asm)

=

m∑
i=1

ai

m∑
j=1

xjsji +

m−2∑
i=1

gixi −
m∑
j=1

xjAsj

=

m∑
j=1

xj

m∑
i=1

aisji + u−
m∑
j=1

xjAsj

=

m∑
j=1

xjAsj + u−
m∑
j=1

xjAsj

= u.

However, since the distribution of y is ellipsoidal, not spherical
as required in [14], and leaks information about the trapdoor,
we need a spherically distributed preimage sample for u,
which can be obtained using the techniques in [23].

In the next section, we demonstrate that how the key
generation oracle responds to a secret key request for a circuit
f(x∗) = 1 for the challenge attribute x∗. The oracle only
needs to provide a small norm solution to a vector of the
form (A|f(x∗)G−ASf ), where Sf is a matrix of relatively
small norm polynomials, which is possible to obtain using
the method described in this section provided that f(x∗) 6= 0
(f(x∗) = 1 for binary attributes); with the only exception for
f(x∗) = 0, which defines our access policy and results in a
vector of the form (A|ASf ).

2) Simulated Circuit Evaluation: In some of the security
games in [19], the public vector A←U R1×m

q is chosen uni-
formly randomly, instead of using TRAPGEN function, which
produces a pseudorandom public vector. Conversely, instead of
selecting them uniformly randomly we use Bi = ASi−x∗iG
produced pseudorandomly, where x∗ is the challenge attribute.
And also Si ∈ {±1}m×m is chosen uniformly randomly
for i = 1, . . . , `. Without loss of generality, we assume that
the policy circuit consists of only multiplication and addi-
tion/subtraction gates; and thus we do not use B0 henceforth.

The idea is to evaluate Si matrices over the given circuit
f(x∗) 6= 0, where x∗ is committed to by adversary A before
the security games start. Evaluation of the matrices Si is
indeed very similar to the evaluation of the public vectors
Bi for i = 1, . . . , `. The only difference is the fact that Si is
a matrix consisting of either +1 or −1. We can even consider
that Si is a matrix of constant polynomials in Rm×mq . Then,
we can write evaluation algorithms of addition/subtraction and

AND gates for two such matrices Si1 and Si2

S± = Si1 + Si2

SAND = x∗i2Si2 + Si2 BITDECOMP(−Bi1), (17)

respectively. Here, the results are also matrices of the same
type, i.e., S±,SAND ∈ Rm×mq , possibly with larger norms,
for which one can provide upper bounds. To compute the
evaluation of Sis over the circuit, we first call, Bf =
EVALPK(f, (ASi − x∗iG)`i=1)), whereby we also store the
B vectors calculated for each gate. After using either one of
the formula in Eq. 17 for each gate in the circuit to perform
evaluations, we obtain a matrix Sf ∈ Rm×mq for the output
of the circuit. As Sf is obtained as a result of the evaluation
operation, we can write for the norm of Sf , ||Sf || < ∆f ,
where ∆f measures the increase in the noise magnitude in
a ciphertext Cf compared to the input ciphertexts Ci. As
we have f(x∗) = 1, we need to generate a low norm
solution to (A|ASf − G)αf , which is possible using the
technique described in Section IX-B1. Then the simulated
circuit evaluation algorithm is described as

EVALSIM(f, (x∗i ,Si)
`
i=1,A)→ Sf .

C. Security Games

In this section, we briefly explain Game 2 and Game 3
from [19], where the goal is to show that they are indistin-
guishable for a probabilistic polynomial time (PPT) adversary
A. Game 2 proceeds as follows:

1) Adversary A commits to a set of attribute values x∗.
2) β ←U Rq , A ←U R1×m

q , (i.e., uniformly randomly
chosen)

3) B performs the following:
a) Si ←U {±1}m×m for i = 1, . . . , ` (i.e., uniformly

randomly chosen)
b) Bi = x∗iG−ASi for i = 1, . . . , `
c) Public key MPK = (A,Bi, . . . ,B`, β) is sent to A

4) A cannot distinguish Bi’s in MPK and uniformly ran-
domly chosen Bi’s in normal execution of the ABE
algorithm.

5) A picks a plaintext pair (µ0, µ1) and sends it to B.
6) B encrypts one of them µb at random (b ∈ (0, 1)) and

sends the challenge ciphertext to A.
7) A can query the oracle for any function f provided that

f(x∗) = 1.
8) For any Boolean function f(x∗) = 1, the key generation

oracle does

18



• compute Bf = EVALPK((ASi, x
∗
iG)`i=1, f)

• compute Sf = EVALSIM(f, (x∗i ,Si)
`
i=1, A)

• return αf = SAMPLELEFT(A,G,S, β), where
(A|ASf −G)αf = β

9) However, it cannot answer any query for (A|ASf )αf =
β, which corresponds to the case f(x∗) = 0.

10) Thus, A has no significant advantage to tell whether
b = 0 or b = 1.

In Step 6, the ciphertext will be

Cin = (A|(x∗1G + B1)| . . . |(x∗`G + B`))
T s+ e0

= (A|(x∗1G+AS1−x∗1G)| . . . |(x∗`G+AS`−x∗`G))T s+e0

= (A|AS1| . . . |AS`)
T s+ e0

c1 = βs+ e1 + µbd
q

2
e

In Cin, (A, (AS1| . . . |AS`), e0) is statistically close to
(A, (A′1| . . . |A′`), e0) for a uniformly randomly selected
A′i. Therefore, A views all vectors ASi statistically close
to uniform.

Game 3 is identical to Game 2 except that the challenge
to A contains uniformly randomly selected pair and A cannot
distinguish it from the valid ciphertext generated as in Game
2. More specifically, B is given the pair (CA, c1) which are
either random, i.e., CA ←U R1×m

q and c1 ←U Rq or

CA = AT s+ e0

c1 = βs+ e1,

where s ←U Rq , e0 ← DRm,σ , and e1 ← DR,σ . The
game proceeds identically to Game 2 until Step 6, which is
performed by B in a slightly different manner. B picks one of
the plaintext at random µb and performs the following:

C∗in = (CA|ST1 CA| . . . |ST` CA)

c = c1 + µdq
2
e

A cannot distinguish whether it is Game 2 or Game 3 since
we would have

C∗in = ((AT s+eA)|((AS1)T s+ST1 eA)| . . . |((AS`)
T s+ST` eA)

= (A|AS1| . . . |(AS`)
T s+ e0

c∗1 = βs+ e1 + µbd
q

2
e,

which were a valid ciphertext generated in Game 2 if it were
being played.

Conversely, suppose adversary A can guess b with ε advan-
tage if it is given a valid ciphertext. This means A can win
Game 2 with ε advantage whereas its guess for b in Game 3
can only be correct with 1/2 probability (indicating it has zero
advantage in Game 3). In turn, B can distinguish between
Game 2 and Game 3, which indicates that B can solve the
decision RLWE problem.

As we only demonstrate that the same security arguments
are valid for our RLWE construction of KP-ABE, we deliber-
ately refrain from explaining all security games here and refer
the interested reader to [19] for a deeper insight.

19


