
Leighton-Micali Hash-Based Signatures in the
Quantum Random-Oracle Model

Edward Eaton

ISARA Corporation <ted.eaton@isara.com>

and University of Waterloo, Canada

Abstract. Digital signatures constructed solely from hash functions of-
fer competitive signature sizes and fast signing and verifying times. More-
over, the security of hash functions against a quantum adversary is be-
lieved to be well understood. This means that hash-based signatures
are strong candidates for standard use in a post-quantum world. The
Leighton-Micali signature scheme (LMS) is one such scheme being con-
sidered for standardization. However all systematic analyses of LMS have
only considered a classical adversary. In this work we close this gap by
showing a proof of the security of LMS in the quantum random-oracle
model. Our results match the bounds imposed by Grover’s search al-
gorithm within a constant factor, and remain tight in the multi-user
setting.

Keywords: Post-Quantum Cryptography, Digital Signatures, Random Oracles,
Hash Functions, Multi-User Setting

1 Introduction

Hash-based signature schemes have their origins in the paper “Constructing Dig-
ital Signatures from a One Way Function”, by Leslie Lamport [10]. The security
of these schemes is based solely on the security properties of a standard hash
function, as opposed to schemes whose security relies on problems such as the
discrete-logarithm problem on finite groups, or the learning with errors problem.
After Lamport’s one-time scheme, Ralph Merkle improved upon the construction
with the Winternitz one-time scheme and the ability to sign multiple messages
with Merkle trees [13, 14]. The Leighton-Micali scheme, or LMS, proposed some
modifications of Merkle’s construction to improve speed and security [11].

Recently, there has been a renewed interest in hash-based signatures in gen-
eral, and LMS in particular. This is partially due to the expiration of the patents
LMS was covered by [14, 11], but more importantly because hash-based schemes
are believed to remain secure against a quantum adversary. LMS has been pro-
posed for standardization in a recent IETF draft [12]. In a recent paper, Jonathan
Katz analyzed the security of LMS [9].

Katz’s analysis used the random-oracle model to establish the security of
LMS. However, as the random-oracle model is insufficient for establishing the

security of a protocol against an adversary with access to a quantum computer,
we must move to the quantum random-oracle model [3].

In this paper, we reformulate and update Katz’s random-oracle model proof
of security for LMS to the quantum random-oracle model. As LMS is a hash-
based scheme, this is particularly important as it is a strong candidate for post-
quantum standardization. We also discuss some of the difficulties that need to be
overcome in order to establish this proof in the quantum random-oracle model.

1.1 The Quantum Random-Oracle Model

Katz’s classical proof of the security of LMS takes place in the random-oracle
model. In his proof, he considers an experiment with an adversary A, who is
attacking the existential-unforgeability of the scheme. Whenever this adversary
wishes to evaluate the n-bit hash function H on a point x, they must instead
query an oracle for the evaluation, and are provided a response which is indistin-
guishable from random. Katz shows that for any adversary that makes q queries,
the probability that A can break the existential-unforgeability of LMS is at most
3q/2n. He establishes this by showing that for the adversary to win a game, one
of a series of events must occur. Then by upper bounding the probability of these
events happening, the upper bound follows.

As the random oracle is meant to replace a hash function, an adversary should
be able to interact with this oracle in a similar way to how they interact with
a hash function. However it has been noted that an adversary with a quantum
computer can interact with a hash function in ways very different from a ‘make
a single query, get a response’ model [3]. If a hash function is implemented on a
quantum computer, then they are able to evaluate the function in superposition,
giving them access to the quantum mapping

UH :
∑
x,y

αx,y|x〉|y〉 7→
∑
x,y

αx,y|x〉|y ⊕H(x)〉. (1)

A model of security in which we provide access to this mapping to an adversary
is called the quantum random-oracle model.

New issues arise in this model however, and Katz’s proof no longer works.
Katz’s events are defined by considering the queries that the adversary makes
and the responses they receive. However in the quantum random-oracle model,
the queries the adversary makes no longer need be classical, and so the defini-
tion of these events is no longer meaningful. Instead the events must be defined
by considering what classical information the adversary is able to find, rather
than just what they query. Classically, the information the adversary has about
an oracle is entirely specified by the queries being made. But against a quan-
tum adversary, the information an adversary has about an oracle is much more
challenging to classify.

1.2 The Multi-User Setting

The security of a protocol is generally defined in terms of a game between a
challenger C and an adversary A. If the adversary is unable to win the game

with a reasonable number of resources, the protocol is considered secure. For
example in our situation, C may be a signing oracle with a public key, and A
may be trying to create a forged signature on that public key.

However in the real world, attackers do not always want to break a specific
individual’s security. They may be happy to break the security of any of a large
number of entities. To model this, we consider an adversary A that plays a game
with a large number of independent challengers C1, . . . , CU . If A is able to win
the game with any one of these challengers, they are considered to have won.
The multi-user setting was first considered in [2].

For many schemes, it is unknown if an adversary’s task in winning a game
in the multi-user setting is easier or not. In fact there are schemes for which
the adversary’s chances of winning a game increase linearly with the number of
challengers [5]. If a scheme is intended for widespread use, even a linear increase
can be a cause for concern that can necessitate an increase in the security pa-
rameters. Therefore it is very desirable that any adversary gains no advantage
in breaking the security of a scheme in the multi-user setting.

1.3 Our Contributions

– We consider a Lemma by Unruh [16] on distinguishing quantum oracles.
We make a small modification that generalizes Unruh’s result and addresses
oracles that are more commonly considered.

– Develop a heuristic approach to study the properties of a series of composed
random oracles.

– Consider the property of undetectability in the random-oracle model.
– Discuss how these can be applied to LMS in order to upper bound any

quantum adversary’s abilities to break the security of the scheme in the
quantum random-oracle model.

– Consider how these results apply to the multi-user setting, where an adver-
sary attempts to break the security of one of many independent instances of
the scheme.

1.4 Related Work

The approach for proving LMS in the quantum random-oracle model was largely
inspired by the approach in [9], reworking and incorporating modified results
from [16, 17]. The quantum-random oracle model was originally defined in [3].
The quantum security of other hash-based constructions, such as Merkle trees
and XMSS (another proposed hash-based standard) has been considered before
in works such as [4, 8]. In particular [8] considered quantum query bounds on
multi-target search problems. A comprehensive report comparing XMSS and
LMS [15] has also discussed the need for a quantum random-oracle model proof of
LMS. Other works exploring post-quantum signature schemes whose security is
established in the quantum random-oracle model include [1, 7, 3]. Undetectability
has been considered before to consider the security of the Winternitz one-time
signature scheme [6].

2 Scheme Description

2.1 One-Time Scheme

The basic component of the full scheme is the one-time (OT) LMS signature
scheme, also known as the Winternitz OT signature scheme. This scheme con-
sists of OT key generation, signing, and verifying algorithms. It uses, as a basic
component, a hash function H : {0, 1}∗ → {0, 1}n, where n is the security pa-
rameter. In our analysis, we will model H as a random oracle.

The parameters are:

– n, the security parameter.
– w, the Winternitz parameter, which is a small divisor of n less than or equal

to eight.

These parameters define the following values:

– E = 2w − 1
– u1 = n/w
– u2 = dblog2 (u1 · E) + 1c/we
– p = u1 + u2.

For our purposes, string concatenation is denoted by ||.
We can parse a string of n bits as the concatenation of u1 strings, each w

bits long and representing an integer from 0 to E. This allows us to define the
checksum : ({0, 1}w)u1 → ({0, 1}w)u2 function as

checksum(h1, . . . , hu1
) =

u1∑
i=1

(E − hi). (2)

We can then see that u2 was chosen so that w · u2 is the maximum bit length of
the result of the checksum function.

The checksum function is constructed so that when we compare two vectors
of u1 integers from 0 to E, (h1, . . . , hu1

) and (h′1, . . . , h
′
u1

), if hi ≤ h′i for each
i (and there is at least one index where they are not equal), then when the
checksum is viewed as a vector of u2 integers from 0 to E, (c1, . . . , cu2

) and
(c′1, . . . , c

′
u2

), there is an index i such that ci > c′i. This follows from the fact
that if hi ≤ h′i for all i (and there is at least one index where they are not equal),
then

∑
(E − hi) >

∑
(E − h′i), and so when the checksums are converted into

integer vectors, at least one of the ci must be greater than the corresponding c′i.
We define a function F as a repeated application of H, with each application

also adding some additional information, such as the number of times H has
been applied. We also include s = I||Q||i, a string consisting of an identifying
string I for the owner of the public key, a string Q indicating which instance of
the scheme is being used, and a number i indicating which chain of hashes we
are referring to. This information is used in the multi-user and multi-instance
analysis of the scheme. For 0 ≤ b ≤ f ≤ E, define

Fs(x; b, f) =

{
x if b = f

Fs(H(x||s||b||00); b+ 1, f) if b < f.
(3)

The OTLMS algorithms for key generation, signing, and verifying are then
described as follows.

Algorithm 1 OTLMSKeyGen

Input: Security parameter 1n, Winternitz parameter w, identity I, and instance num-
ber Q.

Output: Public key pk, secret key sk.

1: Choose p values x01, x
0
2, . . . , x

0
p ∈ {0, 1}n, uniformly at random.

2: For i = 1 to p, let s = I||Q||i and compute xEi = Fs(x0i ; 0, E).
3: Let pk = H(xE1 ||xE2 || . . . ||xEp ||I||Q||01).
4: The one-time public key is pk, and the secret key is sk = (x01, . . . , x

0
p).

Algorithm 2 OTLMSSign

Input: Message M ∈ {0, 1}∗, secret key sk, identity I, and instance number Q.
Output: Signature σ.

1: Choose a uniformly random r ∈ {0, 1}n.
2: Compute h = H(M ||r||I||Q||02) and c = checksum(h). Set v := h||c and parse v as
p w-bit integers in {0, . . . , E}, v = (v1, v2, . . . , vp).

3: For i = 1 to p, let s = I||Q||i and compute σi = Fs(x0i ; 0, vi).
4: Output signature σ = (r, σ1, . . . , σp).

Algorithm 3 OTLMSVrfy

Input: Message M ∈ {0, 1}∗, public key pk (if being used as a standalone scheme),
signature σ = (r, σ1, . . . , σp), identity I, and instance number Q.

Output: accept or reject if being used as a standalone signature scheme, value pk′ if
being used as part of the full LMS scheme.

1: Compute h′ = H(M ||r||I||Q||02) and c′ = checksum(h′). Set v′ = h′||c′, and parse
v′ as p w-bit integers in {0, . . . , E}, v′ = (v′1, v

′
2 . . . , v

′
p).

2: For i = 1 to p, let s = I||Q||i and compute x′
E
i = Fs(σi; v

′
i, E).

3: Let pk′ = H(x′
E
1 ||x′

E
2 || . . . x′

E
p ||I||Q||01). If the scheme is used as part of the full

scheme, output pk′. If it is being used as a standalone signature scheme, output
‘accept’ if and only if pk′ = pk.

The correctness property can verified by inspection. While the OTLMS scheme
can seem complicated by its description it is conceptually simple. The values
x01, . . . , x

0
p are hashed E times to generate the values xE1 , . . . , x

E
p , which are

hashed together to make the public key pk. Any message (along with a ran-
dom salt r) implies a series of p integers from 0 to E. These are interpreted as p

positions in a ‘Winternitz chain’ - the number of times x0i is hashed for each i.
These are revealed as a signature. To verify a signature, the revealed values are
then hashed the correct number of times more to recover xE1 , . . . , x

E
p .

2.2 Full Scheme

In the full scheme, we combine the one-time scheme as a subroutine with a
Merkle tree construction in order to have a full (stateful) signature scheme.

In addition to the parameters for the one-time scheme, we have the parameter
G. We will create 2G separate instances of the one-time scheme.

Algorithm 4 LMSKeyGen

Input: Security Parameter 1n, Winternitz parameter w, Merkle tree height 1G, iden-
tity I

Output: Public key pk, secret key sk

1: For i = 1 to 2G, obtain (pki, ski)← OTLMSKeyGen(1n, w, I).
2: For i = 1 to 2G, compute y0i := H(pki||I||i||03).
3: For j = 1 to G:

1. For k = 1 to 2G−j , compute yjk := H(yj−1
2k−1||y

j−1
2k ||k||j||I||04).

4: Output pk = yG1 as the public key, and sk = (sk1, . . . , sk2G) as the secret key.
5: Initialize Q = 0.

Algorithm 5 LMSSign

Input: Message M ∈ {0, 1}∗, secret key sk, identity I
Output: Signature σ

1: Increment Q by 1. If Q = 2G + 1, STOP; all signatures have been used.
2: Obtain σ′ ← OTLMSSign(M, skQ, I, Q).
3: Let c← Q. Update σ ← σ′||Q.
4: For j = 0 to G− 1:

1. If c is even, let σ ← σ||yjc−1 and c← c/2.

2. If c is odd, let σ ← σ||yjc+1 and c← (c+ 1)/2.
5: Output σ.

Again, correctness can be verified by inspection. To understand the full
scheme, we consider a binary tree, the leaves of which are the public keys of
individual one-time schemes. When a message is signed with a one-time scheme,
we include the signature of the one-time scheme (in order to generate the public
key of that instance), as well as the values of the adjacent nodes on each level of
the binary tree in order to be able to recover the value of the root node, which
is the overall public key. These values form what is known as the Merkle tree
verification path.

Algorithm 6 LMSVrfy

Input: Message M ∈ {0, 1}∗, public key pk, signature σ = σ′||Q||y0||y1|| . . . ||yG−1,
identity I

Output: accept or reject

1: Obtain pk′ ← OTLMSVrfy(M,σ′, I, Q).
2: Compute y = H(pk′||I||Q||03).
3: Let c← Q.
4: For j = 0 to G− 1:

1. If c is even, let y ← H(yj ||y||c/2||j + 1||04) and c← c/2.
2. If c is odd, let y ← H(y||yj ||(c+ 1)/2||j + 1||04) and c← (c+ 1)/2.

5: Output accept if and only if y = pk. Output reject otherwise.

3 The (Quantum) Random Oracle

In order to analyze the security of LMS, we need to formulate a few results
about the hardness of various problems in the quantum random-oracle model.
In Section 3.1 we establish upper bounds on the success probability in standard
games such as (second-) preimage resistance in a multi-instance and multi-target
setting. In Section 3.2, we consider the difficulty of a slight variant of second-
preimage resistance, and in Section 3.3, we consider the properties of functions
defined by a composition of random oracles.

3.1 Oracle distinguishing and marked item searching

To establish the hardness of certain fundamental problems, we need a lemma to
upper bound a quantum adversary’s ability to obtain any relevant information
from an oracle. In order to do this, we upper bound an adversary’s ability to
distinguish two oracles, one which has marked items and one which does not.
Furthermore, we would like this upper bound to hold when the adversary has
access to multiple independent oracles.

For ~x = (x1, . . . , xK) ∈ ({0, 1}n)K , and z ∈ {0, 1}n, let

δ~x(z) :=

{
1 if z = xi for some i

0 otherwise.
(4)

Lemma 1. For X = (~x1, . . . , ~xM) ∈ (({0, 1}n)K)M , z ∈ {0, 1}n, j ∈ {1, . . . ,M},
and b ∈ {0, 1}, let UX be the mapping

UX : |z〉|j〉|b〉 7→ |z〉|j〉|b⊕ δ~xj
(z)〉. (5)

Let A be a quantum algorithm making at most q queries to a mapping. Let
ρb denote X along with the final state of A in the following experiment: Select

X = (~x1, . . . , ~xM)
$←− (({0, 1}n)K)M . Run A(UX)

b

(). Then

Tr (ρ0, ρ1) ≤ 2q

√
K

2n
. (6)

This lemma is a straightforward generalization of [16, Lemma 13]. Its proof
is very similar, and can be found in Appendix A.

The most straightforward application of this Lemma is to upper bound any
adversary’s success probability in identifying a marked item in any of a set of
oracles that can be queried in superposition.

Lemma 2. Let H1, . . . ,HM be independent random oracles with domains D1, . . . , DM

onto a common range. Let UH be the unitary mapping

UH :
∑
x,y,i

αx,y,i|x〉|i〉|y〉 7→
∑
x,y,i

|x〉|i〉|y ⊕Hi(x)〉. (7)

Let S1, . . . , SM be random subsets of the respective Di, such that membership in
Si can be tested by a query to Hi. We call Si the marked items of Hi. Then for
any quantum adversary making q queries to UH , the probability that they find
an x ∈ Si for any i is at most

2q

√
max
i

{
|Si|
|Di|

}
. (8)

This lemma follows from Lemma 1 by noting that any adversary that is able
to find a marked item can certainly distinguish whether a marked item exists.
So the bounds on any adversary in Lemma 1 apply, with K being determined
by the maximum fraction of marked items.

3.2 Second-preimage Resistance with Adversary Prefixes

Also important to the analysis of LMS is a slight modification of second-preimage
resistance, where the adversary is able to specify a prefix of the element whose
second preimage they seek. We define this in terms of a game.

Game 1 (Second-preimage Resistance with Adversary Prefixes).

1. C chooses a random function H : {0, 1}∗ → {0, 1}n from all possible map-
pings, as well as a random suffix r′ ← {0, 1}n. C provides A1 with oracle
access to H.

2. A1 makes some queries to H, and then outputs some quantum state ρ and
a classical message M ′.

3. C runs A2, with access to H,M ′, r′, and ρ.
4. A2 makes some queries to H, and then submits an M∗, r∗ ∈ {0, 1}∗×{0, 1}n,

with M ′ 6= M∗.

We say that the adversary A = (A1,A2) has won if H(M∗||r∗) = H(M ′||r′).
Classically, it is not difficult to show that an adversary does not obtain much

of an advantage. In Katz’s paper [9], he tackles this issue through the use of ran-
dom oracle reprogramming. Specifically, he considers the challenger that, when
the adversary submits their prefix M ′, modifies H to H ′ so that H ′(M ′||r′) = h′,

where r′ and h′ are uniformly random n-bit strings that were chosen at the be-
ginning of the game. The adversary will only notice that C isn’t playing by the
‘real’ rules of the game if they had previously queried M ′||r′, and since r′ is
not disclosed to the adversary in advance, this happens with probability ≤ q

2n .
Then the probability that an adversary queries a different M∗||r∗ such that
H(M∗||r∗) = h′ is simply q/2n. So we upper bound the probability that the
adversary wins this game by 2q/2n.

It is much more difficult to prove a similar statement in the quantum setting
however. In Katz’s proof, an essential step was to reprogram the oracle to reduce
to something that more closely resembled second-preimage resistance. Since the
adversary has a limited number of queries, they don’t have any information about
what is reprogrammed with high probability. In the quantum case however, this
is much more challenging. Since the adversary can make a quantum superposition
of queries, an adversary can make a query giving them some information about
the entire oracle. However, the basic approach is still sound — if C selects a
(r′, h′) and sets H ′(M ′||r′) = h′, any adversary should be unable to notice this
reprogramming.

For any oracle H, let HM ′||r′ 7→h′ denote the oracle identical to H except that
the input M ′||r′ maps to h′.

Game 2.

1. C chooses a random function H : {0, 1}∗ → {0, 1}n from all possible map-
pings, as well as a random suffix and outputs r′, h′ ← {0, 1}n. C provides A1

with oracle access to H.
2. A1 makes some queries to H, and then outputs some quantum state ρ and

a classical message M ′.
3. C runs A2, with access to HM ′||r′ 7→h′ ,M

′, r′, and ρ.
4. A2 makes some queries toHM ′||r′ 7→h′ , and then submits anM∗, r∗ ∈ {0, 1}∗×
{0, 1}n, with M ′ 6= M∗.

A2 wins Game 2 if H(M∗||r∗) = h′.

Lemma 3. For any A = (A1,A2) making collectively at most q queries to a
random oracle H, ∣∣∣ Pr

Game 1
[A2wins]− Pr

Game 2
[A2wins]

∣∣∣ ≤ 4q

2n/2
. (9)

Roughly speaking, the proof of this lemma follows a technique also seen
in [16]. The idea is to introduce two subgames, and show that the difference
in the adversary’s success probabilities for these games and Games 1 and 2 is
at most 2q/2n/2. This follows from Lemma 1 by showing that any adversary
distinguishing between the subgames can also win the game in Lemma 1 with
the same probability. The full proof can be found in Appendix B.

We can also imagine the situation where a single adversary A plays Game 1
with multiple challengers C1, . . . , CU with access to multiple independent quan-
tum random oracles H1, . . . ,HU . Then note that the adversary’s chances of

success do not increase at all with U . This can be established by considering the
same subgames in this multi-user setting. The arguments relating how close the
sub-games are still apply, because Lemma 1 does not depend on the number of
oracles, as long as each oracle is independent.

3.3 Random Oracle Composition

In the description of LMS, and occasionally in other constructions, a function is
defined by a composition of independent random oracles. It would be convenient
for this function to itself be a random oracle, or at least have certain properties of
a random oracle, from the perspective of both classical and quantum adversaries.
However, this is not quite the case.

LetO1, . . . ,OE be independent random oracles mapping n-bit strings to n-bit
strings. Consider the oracle O = OE ◦OE−1 ◦ · · · ◦O1, O : {0, 1}n → {0, 1}n. We
want to consider properties of the combined oracle O with respect to standard
properties such as preimage resistance.

Lemma 4. Let O be a random mapping from a domain D of size N to a
codomain R of size M . Then the expected size of the image of D under O is

M

(
1−

(
1− 1

M

)N)
. (10)

Proof. Let R = {1, . . . ,M}. For each 1 ≤ i ≤ M , let Xi be a binary random
variable where Xi is 1 if there is an x ∈ D such that O(x) = i, and 0 otherwise.
It is not hard to see that E[Xi] = 1 − (M−1M)N . Then the expected number of
elements in the codomain that are hit is E[X1 + X2 + · · · + XM] = E[X1] +
E[X2] + · · ·+ E[XM], from which the result follows.

Writing N = α ·M , for sufficiently large N and M , Lemma 4 tells us that
the fraction of the codomain that is hit is very close to(

1− 1

eα

)
, (11)

where e ≈ 2.71828 is Euler’s constant. So when k oracles, each of which maps to
a codomain of size 2n, are composed, the overall oracle maps to an image that
has size roughly

2n ·

(
1−

(
1

e

)1−(1/e)1−(1/e)...}
k

)
. (12)

For example, for k = 256, this tells us that after 256 applications of inde-
pendent random oracles, the final range will be very close to 2−7 the size of the
original domain. For k = 1024, we have the size of the final range is close to 2−9

of the original size.

Remark 1. For the rest of this document we will assume that the actual com-
pression for the composed oracles in LMS does not shrink more than four times
the expected rate. We will also assume that no more than 256 oracles are used,
as this is the most used in any proposed set of LMS parameters. We will assume
that the size of the range of 256 applications of an oracle is larger than 2−10 ·2n,
which is four times smaller than the expected size of 2−7 · 2n. This amount of
compression is very unlikely to actually occur, and as actually distinguishing the
number of marked items in an oracle is also a exponentially difficult problem,
this approach greatly overestimates the compression and the adversary’s ability
to take advantage of that compression. A much more careful analysis could re-
sult in a slightly tighter bound in Theorem 1. However, as this would provide
at most a few bits of security in the analysis, we leave this for future work. For
further details on the compression of oracles, we refer to Appendix C.

3.4 Undetectability

Often in protocols with random oracles, a value y is selected by choosing a
uniformly random point x in the domain of the random oracle H, and setting
y = H(x). While the distribution of y is certainly uniform (as H is uniform),
the joint distribution of (H, y) is not uniform. Therefore an adversary A that
has access to the random oracle may be able to tell if a point in the codomain
was chosen uniformly at random or if it was chosen by hashing a uniform point
in the domain. This is known as the undetectability property.

Game 3 (Undetectability).

1. C generates a random oracle H : {0, 1}n → {0, 1}n, and selects a uniformly

random bit b
$←− {0, 1}.

2. – If b = 0, C sends a uniformly random y ∈ {0, 1}n to A and provides
oracle access to H.

– If b = 1, C selects a uniformly random x ∈ {0, 1}n and sends y = H(x)
to A, and provides oracle access to H.

3. After some queries to H, A outputs a bit b′.

A is said to have won Game 3 if b′ = b.

Lemma 5. Let A be a quantum algorithm with oracle access to a random oracle
H, making at most q queries. Then∣∣∣ Pr

Game 3
[A wins]− 1/2

∣∣∣ ≤ 2q/2n/2. (13)

Roughly speaking, this lemma is shown by establishing that the only real way
to distinguish whether a point in the codomain was chosen uniformly at random
or by first choosing a preimage is to actually find that preimage. Finding the
preimage can then be tightly reduced to Lemma 1. Furthermore, as Lemma 1
does not depend on the number of instances of the problem, as long as each

oracle is independent, the result stays the same when A is playing multiple,
independent instances of Game 3. The full proof can be found in Appendix D.

Similar to Lemma 3, we can imagine an adversary A playing multiple in-
stances of Game 3 with independent oracles. Then note that this gives no ad-
vantage to the adversary’s success probability, even if b is chosen to be the same
in each game. This is because the reduction to Lemma 1 still holds, with separate
marked items in separate independent oracles.

4 Scheme Proof

4.1 OTLMS Proof

Throughout this section, a variable with a ∗ will refer to a value derived from
the forgery (M∗, σ∗). A variable with ′ refers to a value derived in the course
of the signing query. If neither are present, it refers to a value derived in the
key generation algorithm. We define security in terms of the standard notion of
existential unforgeability under chosen-message attack. This standard notion of
security is defined in terms of the following interaction between an adversary A
and a challenger C.

Game 4 (One-time existential-unforgeability under chosen-message at-
tack (OTeucma)).

1. C chooses a random oracle H : {0, 1}∗ → {0, 1}n from all possible mappings
(considering that there is in principle an upper bound on the length of binary
strings A will ask for evaluation on). C then creates a quantum random oracle
that provides quantum access to H as in equation 1.

2. C runs OTKeyGen(1n, w, I,Q), obtaining (pk, sk), and sends pk to A.
3. A makes some queries to the quantum random oracle and then submits a

message M ′ for signing.
4. C runs OTSign(M ′, sk, I,Q) and sends the resulting signature, σ′ to A.
5. Amakes some queries to the quantum random oracle, then submits a message-

signature pair, (M∗, σ∗), such that M∗ 6= M ′.

We say that A has won the OTeucma game if OTVrfy(M∗, σ∗, pk, I,Q) →
accept. To bound the adversary’s ability to win this, we introduce a separate
game:

Game 5 (One-time Simulation).

1. C Chooses a random oracle H : {0, 1}∗ → {0, 1}n, as well as random strings
r′, h′ ∈ {0, 1}n.

2. C computes c′ = checksum(h′) and sets (v′1, . . . , v
′
p) = h′||c′. C chooses p

values x
v′1
1 , . . . , x

v′p
p uniformly at random from {0, 1}n.

3. For i = 1 to p, let s = I||Q||i and compute xEi = Fs(x
v′i
i ; v′i, E).

4. Send pk = H(xE1 || . . . ||xEp ||I||Q||01) to A and provide oracle access to H.
5. A makes oracle queries and submits a message M ′ for signing.

6. C modified H so that H(M ′||r′||I||Q||02) = h′, and sends (r′, x
v′1
1 , . . . , x

v′p
p)

as the signature.
7. After further oracle queries, A submits a message-signature pair (M∗, σ∗)

such that M∗ 6= M ′.

As before, A wins this game if OTLMSVrfy(M∗, σ∗, pk, I,Q)→ accept.

Lemma 6 (Simulation Difference). Let A be a quantum adversary, making
at most q queries to a quantum oracle H. Then∣∣∣∣ Pr

Game 4
[A wins]− Pr

Game 5
[A wins]

∣∣∣∣ ≤ 516q/2n/2 (14)

Proof. The difference between these two games is established by applications of
Lemmas 3 and 5. There are two differences between Games 4 and 5. The first is
that the value h′ for the signing query is chosen uniformly at random, and H is
later modified so that H(M ′||r′||I||Q||02) = h′. This introduces a difference of

at most 4q/2n/2 by Lemma 3. The second difference is that values x
v′i
i are chosen

uniformly at random, rather than as the output of F (x0i ; 0, v′i) for i = 1 to p.
This introduces a difference of at most 256 ·2q/2n/2. This can be seen by a game

hopping argument. In the original game, x
v′i
i is chosen by computing F (x0i ; 0, v′i)

for a uniform x0i . In the next game, it is chosen by computing F (x1i ; 1, v′1) for
a uniform x1i . By Lemma 5, this only introduces a difference of 2q/2n/2. Then

we repeatedly apply this lemma until we choose x
v′i
i uniformly. As E is at most

256, this needs to be applied at most 256 times, and so the difference is at
most 2 · 256q/2n/2. Thus the overall separation between these games is at most
(4 + 2 · 256)q/2n/2.

Theorem 1. For any adversary A, making at most q quantum queries to the
random oracle, the probability that they win Game 4 is at most

580q/2n/2. (15)

Proof. This proof is established by showing that the probability an adversary
wins Game 5 is at most 64q/2n/2 so that the result follows from Lemma 6.

To upper bound A’s chances of winning Game 5, we define a few subsets of
the domain of H.

– S0,i,j := {x ∈ {0, 1}∗ : x = x′||I||Q||i||j||00, FI||Q||i(x; j, E) = xEi }
– S1 := {x ∈ {0, 1}∗ : x = x′

E
1 || . . . ||x′

E
p ||I||Q||01, H(x) = pk,

(x′
E
1 || . . . ||x′

E
p) 6= (xE1 || . . . ||xEp)}

– S2 := {x ∈ {0, 1}∗ : x = M ||r||I||Q||02, H(x) = h′,M 6= M ′}.

Then we define the following three events that may occur over the course of
the game OTeucma.

– E0 is the event that A has complete knowledge of some x ∈ S0,i,j for some
i and j where v′i > j.

– E1 is the event that A has complete knowledge of some x ∈ S1.
– E2 is the event that A has complete knowledge of some x ∈ S2.

These sets correspond to the (second-) preimages that an adversary will have
to find in order to break the security of LMS. These events then represent an
adversary actually finding such a preimage. Classically, an adversary finding
a relevant preimage is exactly characterized by the adversary querying such a
point to the random oracle. In a quantum setting however, this equivalence fails
as superposition queries are allowed. Instead we characterize the event of an
adversary finding such a preimage by whether such a value is derived when run-
ning the verification algorithm OTLMSVrfy. This is what we mean by “complete
knowledge”.

We will establish that if (M∗, σ∗) is a valid forgery, at least one of the three
events has occurred. We do this by establishing that in the event of a forgery
where events E1 and E2 did not occur, E0 must have happened.

We are assuming that A has succeeded in submitting a forgery and that
events E1 and E2 have not occurred. We will examine the properties of (M∗, σ∗)
and show that E0 must have occurred.

When the adversary submits a forgery (M∗, σ∗), we can run the verification
algorithm on this pair. Then the following values are derived in the process of
running the verification algorithm:

– M∗||r∗||I||Q||02
– x∗E1 || . . . ||x∗Ep ||I||Q||01
– σ∗i ||I||Q||i||v∗i ||00, for i = 1 to p.

As E1 did not occur, and since the verification algorithm accepts (M∗, σ∗),
then we must have that H(x∗E1 || . . . ||x∗E1 ||I||Q||01) = pk. So we must have that
x∗E1 || . . . ||x∗Ep ||I||Q||01 /∈ S1, and so x∗E1 || . . . ||x∗Ep = xE1 || . . . ||xEp .

Similarly, E2 did not occur, and since M∗ 6= M ′, it must be the case that
H(M∗||r∗||I||Q||02) 6= h′.

So we know that h∗ 6= h′, and that x∗E1 || . . . ||x∗Ep = xE1 || . . . ||xEp . Note that
by the construction of the checksum, when we compare v∗ and v′, there must be
an index i for which v∗i < v′i. But then since we have that x∗Ei = xEi , we can see
that this means that σ∗i ||I||Q||i||v∗i ||00 ∈ S0,i,v∗i

and E0 has occurred.
All we need to do now is provide an upper bound on the probability of any

of the events occurring. To do this, we establish that for any of these events to
occur A must solve some quantum search problem on a distinct search space.

Event E0 For event E0, we want to consider the adversary’s ability to find
any new x, i, and j, with j < v′i and x ∈ S0,i,j . Note that finding an x ∈ S0,i,j

implies complete knowledge of some x′ ∈ S0,i,k, for j ≤ k < E. In particular, it
implies complete knowledge of some x ∈ S0,i,v′i−1. So we need to upper bound
the adversaries ability to find such an x.

From the signing query, the adversary knows precisely one element of S0,i,v′i
.

However, we can imagine an adversary who knows this set entirely. We will show
that finding an element of S0,i,v′i−1 is still difficult.

From section 3.3, we know that when considering the function F as a com-
position of random oracles, we have an expectation on the overall compression
from the domain to the codomain, based on the number of applications of H in
the construction of F . For typical parameter sets, this is less than 256 times,
which corresponds to a compression of roughly 27 times. As noted in remark
1, we will take a conservative approach and use a compression factor of four
times this, 210. One consequence is that S0,i,v′i

will have size less than 210 (as
the remaining oracles then compress this down to a point).

So we can imagine an adversary that for each i, knows entirely the set S0,i,v′i
.

The adversary then needs to find an element in {0, 1}n that H(·||I||Q||i||v′i−1||0)
maps that point to an element in S0,i,v′i

. As S0,i,v′i
has size less than 210, a fraction

less than 210 of the domain maps to these points. So the adversary needs to find
a marked item where the fraction of marked items is at most 210−n.

Event E1 Event E1 is simply the adversary’s ability to find some distinct
x 6= xe1|| . . . ||xep that maps to pk under H(·||I||Q||01), when the adversary is
already given such an element. This is a game of second-preimage resistance, so
the adversary must find a marked item in the oracle H(·||I||Q||01), where the
fraction of marked items is 2−n.

Event E2 Event E2 refers to the adversary’s ability to find a distinct M∗ and
any r∗ such that H(M∗||r∗||I||Q||02) = H(M ′||r′||I||Q||02), where M ′ is chosen
by the adversary and r′ is chosen uniformly at random. But this is precisely the
game of second-preimage resistance with adversary prefixes with respect to the
random oracle H(·|| · ||I||Q||02). So, the adversary’s chances of succeeding differ
at most by 4q/

√
2n from the challenge of finding a marked item in the oracle

H(·|| · ||I||Q||02), where h′ is chosen in advance, and the oracle is reprogrammed.
In this case the fraction of marked items is 2−n.

We have that the adversary’s chances of succeeding are at most 4q/2n/2 from
attempting to find a marked item in any of the distinct oracles defined by I, Q,
and i||v′i − 1 for i = 1 to p. As the fraction of marked items in any of these
oracles is at most 210−n, the chances of any adversary’s success are at most

Pr
Game 5

[A wins] ≤ 2q
√

210−n = 64q/2n/2. (16)

And so

Pr
Game 4

[A wins] ≤ 516q/2n/2 + 64q/2n/2 = 580q/2n/2. (17)

4.2 Security Proof for full version and in the multi-user setting

Proving the security of the full version is quite simple having developed the
techniques and lemmas used to prove the security of the one-time scheme. By
the construction of LMS, all oracles contain different identifying information. We
can thus prove security by showing that for an adversary to break the security,

they must find a marked item in one of these oracles, and calculating the largest
fraction of marked items.

To do this we can use Lemmas 5 and 3 to simulate a signing algorithm
similar to how we did in Game 5, but instead for each one-time instance of
the signature scheme. As these lemmas can be applied in a multi-instance model
without affecting the parameters, we can split up the domain by instance number
and identifier information to complete the proof in the full version of the scheme
and in the multi-user setting without additional theory.

Theorem 2. Let A be an adversary attacking the security of the full LMS
scheme in the multi-user setting. If A makes at most q queries, then the proba-
bility they break the existential unforgeability of any of the instances of LMS is
at most

580q/2n/2. (18)

The complete proof of this theorem may be found in Appendices E and F.

Acknowledgments

Thanks to Gus Gutoski and Alfred Menezes for insightful discussion, as well as
their helpful editorial skills. Additional thanks to Philip Lafrance.

References

1. Alkim, E., Bindel, N., Buchmann, J., Dagdelen, Ö., Eaton, E., Gutoski, G.,
Krämer, J., Pawlega, F.: Revisiting TESLA in the quantum random oracle model
(2017)

2. Bellare, M., Rogaway, P.: Entity authentication and key distribution. In: Advances
in Cryptology – CRYPTO ’93. LNCS, vol. 775, pp. 232–249 (1994)

3. Boneh, D., Dagdelen, Ö., Fischlin, M., Lehmann, A., Schaffner, C., Zhandry, M.:
Random oracles in a quantum world. In: Advances in Cryptology – Asiacrypt 2011.
LNCS, vol. 7073, pp. 41–69. Springer (2011)

4. Boneh, D., Zhandry, M.: Secure signatures and chosen ciphertext security in a
quantum computing world. In: Advances in Cryptology – CRYPTO 2013. LNCS,
vol. 8043, pp. 461–478. Springer (2013)

5. Chatterjee, S., Menezes, A., Sarkar, P.: Another look at tightness. In: Selected
Areas in Cryptography – SAC 2011. LNCS, vol. 7118, pp. 293–319. Springer (2012)

6. Dods, C., Smart, N., Stam, M.: Hash based digital signature schemes. In: Cryp-
tography and Coding 2005. LNCS, vol. 3796, pp. 96–115. Springer (2005)

7. Eaton, E., Song, F.: Making existential-unforgeable signatures strongly unforge-
able in the quantum random-oracle model. In: 10th Conference on the Theory of
Quantum Computation, Communication, and Cryptography (TQC). pp. 147–162
(2015)

8. Hülsing, A., Rijneveld, J., Song, F.: Mitigating multi-target attacks in hash-based
signatures. In: Public-Key Cryptography – PKC 2016. LNCS, vol. 9614, pp. 387–
416. Springer (2016)

9. Katz, J.: Analysis of a proposed hash-based signature standard. In: Security Stan-
dardisation Research: Third International Conference, SSR 2016. LNCS, vol. 10074,
pp. 261–273. Springer (2016)

10. Lamport, L.: Constructing digital signatures from a one way function. Tech.
rep. (October 1979), https://www.microsoft.com/en-us/research/publication/
constructing-digital-signatures-one-way-function/

11. Leighton, F., Micali, S.: Large provably fast and secure digital signature schemes
based on secure hash functions (Jul 11 1995), https://www.google.com/patents/
US5432852, US Patent 5,432,852

12. McGrew, D., Curcio, M., Fluhrer, S.: Hash-Based Signatures. Internet-Draft
draft-mcgrew-hash-sigs-06, Internet Engineering Task Force (March 2017), https:
//datatracker.ietf.org/doc/html/draft-mcgrew-hash-sigs-06, work in progress

13. Merkle, R.C.: A certified digital signature. In: Advances in Cryptology – Crypto
’89. LNCS, vol. 435, pp. 218–238. Springer (1979)

14. Merkle, R.C.: Method of providing digital signatures (Jan 5 1982), https://www.
google.com/patents/US4309569, US Patent 4,309,569

15. Panos Kampanakis, S.F.: LMS vs XMSS: A comparison of the stateful hash-based
signature proposed standards. Cryptology ePrint Archive, Report 2017/349 (2017)

16. Unruh, D.: Quantum position verification in the random oracle model. In: Advances
in Cryptology – CRYPTO 2014. LNCS, vol. 8617, pp. 1–18. Springer (2014)

17. Unruh, D.: Revocable quantum timed-release encryption. Journal of the ACM
62(6), 49:1–49:76 (Dec 2015), http://doi.acm.org/10.1145/2817206

A Proof of Lemma 1

In order to prove Lemma 1, we will need another lemma bounding the distance
between states. This lemma appears as Lemma 7 in the full version of [17].

Lemma 7. Let |Ψ1〉 and |Ψ2〉 be quantum states that can be written as |Ψi〉 =
|Ψ∗i 〉+ |Φ∗〉, with both |Ψ∗i 〉 orthogonal to |Φ∗〉. Then Tr (|Ψ1〉, |Ψ2〉) ≤ 2|||Ψ∗2 〉||.

The proof of the lemma can be found in the same source. We will now proceed
to prove Lemma 1. The proof closely follows the proof of [16, Lemma 13], which
addressed the case of one marked item and one oracle.

Proof (Proof of Lemma 1). Let Ui be the unitary that A makes on their private
state after the ith query to UX. If |Ψ0〉 is the initial state of A, we may write out

the state of A(UX)
b

() after i queries as

|Ψ b,Xi 〉 = UiU
b
XUi−1U

b
X . . . U1U

b
X|Ψ0〉. (19)

More completely, as the adversary is allowed to maintain private state, we should
write U bX as I ⊗ U bX, where I is the identity mapping on the adversary’s private
space. For visual simplicity, we omit this.

Then we can write out ρb as

ρb =
∑
X

1

2nKM
|X〉〈X| ⊗ |Ψ b,Xq 〉〈Ψ b,Xq |. (20)

Then,

Tr (ρ0, ρ1) (21)

=Tr

(∑
X

1

2nKM
|X〉〈X| ⊗ |Ψ0,X

q 〉〈Ψ0,X
q |,

∑
X

1

2nKM
|X〉〈X| ⊗ |Ψ1,X

q 〉〈Ψ1,X
q |

)
(22)

=
∑
X

1

2nKM
Tr
(
|Ψ0,X
q 〉〈Ψ0,X

q |, |Ψ1,X
q 〉〈Ψ1,X

q |
)

(23)

As a slight abuse of notation, for the sake of simplicity we will write Tr (|Ψ〉, |Φ〉)
when we more formally mean Tr (|Ψ〉〈Ψ |, |Φ〉〈Φ|). We compute

DX
i :=Tr

(
|Ψ1,X
i 〉, |Ψ

0,X
i 〉

)
(24)

=Tr
(
UiUX|Ψ1,X

i−1〉, Ui|Ψ
0,X
i−1〉

)
(25)

=Tr
(
UX|Ψ1,X

i−1〉, |Ψ
0,X
i−1〉

)
(26)

≤Tr
(
UX|Ψ1,X

i−1〉, UX|Ψ0,X
i−1〉

)
+ Tr

(
UX|Ψ0,X

i−1〉, |Ψ
0,X
i−1〉

)
(27)

=DX
i−1 + Tr

(
UX|Ψ0,X

i−1〉, |Ψ
0,X
i−1〉

)
, (28)

where equation 27 follows from the triangle inequality.
As DX

0 = 0 for all X, we have that

Tr
(
|Ψ1,X
q 〉, |Ψ0,X

q 〉
)

= DX
q ≤

q−1∑
i=0

Tr
(
UX|Ψ0,X

i 〉, |Ψ
0,X
i 〉

)
. (29)

We can write out X = (~x1, . . . ~xM) in full as

X =


x1,1 x2,1 . . . xM,1

x1,2 x2,2 . . . xM,2

...
...

. . .
...

x1,K x2,K . . . xM,K

 . (30)

Let QX be the projector on A’s state to the xj,k’s. That is,

QX =

M∑
j=1

K∑
k=1

I ⊗ |xj,k〉〈xj,k| ⊗ |j〉〈j| ⊗ I. (31)

Therefore,∑
X

1

2nKM
Tr
(
|Ψ1,X
q 〉, |Ψ0,X

q 〉
)
≤
∑
X,i

1

2nKM
Tr
(
UX|Ψ0,X

i 〉, |Ψ
0,X
i 〉

)
(32)

=
∑
X,i

1

2nKM
Tr
(
UXQX|Ψ0,X

i 〉+ (1−QX)|Ψ0,X
i 〉, QX|Ψ0,X

i 〉+ (1−QX)|Ψ0,X
i 〉

)
(33)

≤
∑
X,i

2

2nKM
||QX|Ψ0,X

i 〉|| (34)

≤2
∑
i

√
1

2nKM

∑
X

||QX|Ψ0,X
i 〉||2, (35)

where equation 34 comes from Lemma 7, and equation 35 comes from Jensen’s
inequality. Up to this point, the proof is essentially identical to Unruh’s proof.
Note that |Ψ0,X

i 〉 is the same for all X, as |Ψ0,X
i 〉 is independent of X. We drop

the X quantifier and expand the state out as

|Ψ0
i 〉 =

∑
z,j

αz,j,i|ϕz,j,i〉|z〉|j〉|φz,j,i〉. (36)

Then note that
∑
z,j ||αz,j,i||2 = 1, as this is a quantum state. We see that

QX|Ψ0
i 〉 =

M∑
j=1

K∑
k=1

αxj,k,j,i|ϕxj,k,j,i〉|xj,k〉|j〉|φxj,k,j,i〉, (37)

and

∑
X

||QX|Ψ0
i 〉||2 ≤

∑
X

M∑
j=1

K∑
k=1

||αxj,k,j,i||2 (38)

=

K∑
k=1

M∑
j=1

∑
xj,k

∑
xj′,k′

(j′,k′)6=(j,k)

||αxj,k,j,i||2 (39)

=2n(MK−1)
K∑
k=1

M∑
j=1

∑
xj,k

||αxj,k,j,i||2 (40)

=K2n(MK−1). (41)

Applying this to equation 35, we see that

∑
X

1

2nKM
Tr
(
|Ψ1,X
q 〉, |Ψ0,X

q 〉
)

(42)

≤2
∑
i

√
1

2nKM
K2n(MK−1) (43)

=2q

√
K

2n
. (44)

B Proof of Lemma 3

To prove the lemma, rather than considering the probability ofA2 winning Game
1 or 2, we consider an adversary A = (A1,A2) that only attempts to distinguish
which game they are playing. A2 will output a bit, and we will establish Lemma
3 by showing that

Pr
Game 1

[1← A2]− Pr
Game 2

[1← A2 : Game2] ≤ 4q/2n/2 (45)

We note that an adversary that wins Game 1 or 2 with different probabilities
can be used to distinguish the games, so a bound on the distinguishing advantage
also provides a bound on the difference in the probability of winning for any
adversary.

Proof. Recall that for any oracle H, we let HM ′||r′ 7→h′ denote the oracle identical
to H except that the input M ′||r′ maps to h′. Similarly, let H·||r′ 7→⊥ denote the
oracle identical to H except that on input of the string M ||r′ (for any M), we
output ⊥, a symbol distinguishable from any n-bit string. Consider the following
game.

We want to show that an adversary’s success probability in game 2 is nearly
the same as that of game 1. We do this by considering a distinguisher (A1,A2),

attempting to distinguish if they are playing game 1 or 2. We modify the games
so that rather than outputting a forgery attempt, A2 simply outputs a bit to in-
dicate their guess of what game they are playing. Following a technique of Unruh
in [16], we introduce two sub-games in order to establish the indistinguishability
of the games.

Game 6.

1. C chooses a random function H : {0, 1}∗ → {0, 1}n from all possible map-
pings, as well as a random suffix r′ ← {0, 1}n. C provides access to H·||r′ 7→⊥
to A1.

2. A1 makes some queries to H·||r′ 7→⊥, and then outputs some quantum state
ρ and a classical message M ′.

3. C runs A2, with access to H,M ′, r′, and ρ.
4. A2 makes some queries to H, and then returns a bit b.

Game 7.

1. C chooses a random function H : {0, 1}∗ → {0, 1}n from all possible map-
pings, as well as a random suffix and output r′, h′ ← {0, 1}n. C provides
access to H·||r′ 7→⊥ to A1.

2. A1 makes some queries to H·||r′ 7→⊥, and then outputs some quantum state
ρ and a classical message M ′.

3. C runs A2, with access to HM ′||r′ 7→h′ ,M
′, r′, and ρ.

4. A2 makes some queries to HM ′||r′ 7→h′ , and then submits a bit b.

Games 1, 6, 7, and 2 are all the same except for the oracle that A1 and
A2 are given access to. We summarize the differences between the games in the
following table:

Game Oracle for A1 Oracle for A2

1 H H
6 H·||r′ 7→⊥ H
7 H·||r′ 7→⊥ HM ′||r′ 7→h′

2 H HM ′||r′ 7→h′

First, note that

Pr
Game 6

[1← A2] = Pr
Game 7

[1← A2]. (46)

This follows from the fact that because the oracle A1 had access to contained
no information about H(M ||r′) for all M , the distribution of the adversary’s
output with oracle H or HM ′||r′ 7→h′ are exactly the same, even when given access
to H·||r′ 7→⊥ in order to prepare the private state ρ.

Next we note that

ε :=
∣∣ Pr
Game 1

[1← A2]− Pr
Game 6

[1← A2]
∣∣ ≤ 2q

2n/2
. (47)

Consider any adversary that distinguishes between game 1 and 6. Let M ′1, ρ1
denote the output of A1 in game 1, and M ′6, ρ6 denote the output of A1 in game
6. As A2 receives identical inputs and works with the same oracle in each game,
we can view it as an identical quantum channel acting on the state |M ′〉〈M ′|⊗ρ.
As any quantum channel can only decrease the distinguishability between two
states, we have that

ε ≤ Tr (|M ′1〉〈M ′1| ⊗ ρ1, |M ′6〉〈M ′6| ⊗ ρ6) . (48)

Notice that these states are the output of A1, which makes at most q queries
to either H or H·||r′ 7→⊥. We can show that the trace distance between these
states is small by showing that A1 can be used as a distinguisher in the game of
Lemma 1. Consider a reduction B which generates a random oracle O : {0, 1}∗×
{0, 1}n → {0, 1}n. The reduction is given quantum access to a function f which
either does nothing, or implements the function δx for some uniform x. Then B
constructs a hash oracle by

H(M ||r) =

{
O(M ||r) if f(r) = 0

⊥ if f(r) = 1
. (49)

Then B can play the game in the definition of Lemma 1, using A1 as a
subroutine, and making one query to f for each query to H that A1 makes. So
since the trace distance of B’s output is bounded by 2q/2n/2 (as K = 1 in this
case), we have that the same is true of the output of A1, and so ε ≤ 2q/2n/2.

For the same reason, we can note that∣∣∣ Pr
Game 7

[1← A2]− Pr
Game 2

[1← A2]
∣∣∣ ≤ 2q

2n/2
. (50)

This tells us that ∣∣∣ Pr
Game 1

[1← A2]− Pr
Game 2

[1← A2]
∣∣∣ ≤ 4q

2n/2
. (51)

C Notes on Oracle Compression

In Section 3.3, we found the expected size of the image of a random oracle
O : D → R, where |D| = N and |R| = M . We then used this to find the
expected amount of ‘compression’ that occurs from a composition of random
oracles. In Section 4.1, we used this to bound the fraction of marked items in an
oracle, by assuming that actual compression was no more than four times this
amount.

In this appendix, we provide a more formal argument that the compression
is extremely unlikely to be more than four times the expected value. We do this
by considering the variance in the size of the image of a random oracle, and
applying Chebyshev’s inequality.

Lemma 8. Let O be a random mapping from a domain D of size N to a
codomain R of size M . Let X be the size of the image of D under O. Then

V ar[x] =M

(
1− 1

M

)N
−M

(
1− 2

M

)N
(52)

+M2

(
1− 2

M

)N
−M2

(
1− 1

M

)2N

. (53)

Proof. Write R = {1, . . . ,M}. Similar to our proof of Lemma 4, for 1 ≤ i ≤M ,
let Xi be a binary random variable where Xi is 1 if there is a x ∈ D such that

O(x) = i, and 0 otherwise. We noted before that E[Xi] = 1−
(
M−1
M

)N
.

We now consider E[XiXj]. When i = j, this is E[X2
i], and as Xi is binary,

this is just E[Xi]. When i 6= j, we have

E[XiXj] = Pr[Xi = 1 and Xj = 1] (54)

=1− Pr[Xi = 0]− Pr[Xj = 0] + Pr[Xi = 0 and Xj = 0] (55)

=1− 2

(
1− 1

M

)N
+

(
1− 2

M

)N
. (56)

Then we calculate

V ar[X] = V ar[X1 + · · ·+XM] (57)

=E[(X1 + · · ·+XM)2]− E[X1 + · · ·+XM]2 (58)

=
∑
i

E[Xi] +
∑
i6=j

E[XiXj]−M2

(
1− 1

M

)2N

(59)

=M

(
1− 1

M

)N
+M(M − 1)

(
1− 2

(
1− 1

M

)N
+

(
1− 2

M

)N)
(60)

−M2

(
1− 1

M

)2N

(61)

=M

(
1− 1

M

)N
−M

(
1− 2

M

)N
(62)

+M2

(
1− 2

M

)N
−M2

(
1− 1

M

)2N

. (63)

Note that for large values of M and N , (1 − 2/M)N is extremely close to
(1 − 1/M)2N . This follows from using the approximation (1 + x/n)n ≈ ex, and
noting that the approximation converges very very quickly.

This allows us to simplify the variance to

M

(
1− 1

M

)N
−M

(
1− 2

M

)N
. (64)

Writing N = α ·M , and using the same approximation, we may further simplify
this to

1

eα
M(1− (1− 1

M
)N). (65)

In other words, the variance is approximately 1/eN/M times the expected value.
As N shrinks, we can see that this will approach 1. Therefore we put a general

bound on the variance and say that it is less than or equal to the expected value.
Let V ar[x] = σ2 and E[X] = µ. Then σ2 ≤ µ. Let β be a real number. Then

Chebyshev’s inequality tells us

Pr[|X − µ| ≥ βµ] ≤ 1

β2µ
. (66)

For LMS, the expected value of X is huge - a constant fraction of the codomain
{0, 1}n. So if β is also a constant fraction, this probability is negligible. When
we use the results of the oracle compression, we allow for an overall compression
from the domain to the final range four times the expected value. Since the
variance tells us that the actual compression stays much closer to the expected
value than this, this bound is very conservative.

D Proof of Lemma 5

In order to prove Lemma 5 we will reduce Game 3 to a reduction that attempts to
detect the existence of a marked item in an oracle as in Lemma 1. Specifically, we
have a reduction B that is given oracle access to a function O : {0, 1}n → {0, 1}
such that with probability 1/2 exactly one x ∈ {0, 1}n satisfies O(x) = 1, and
with probability 1/2 O maps all strings to 0. B must attempt to correctly guess
whether O has a marked item or not. Lemma 1 then tells us that B’s advantage
in q queries over 1/2 is at most 2q/2n/2.

Game 8.

1. B chooses a uniform y
$←− {0, 1}n. B constructs a uniformly random oracle

H : {0, 1}n → {0, 1}n, and constructs an oracle H ′ as

H ′(x) =

{
H(x) if O(x) = 0

y if O(x) = 1.
(67)

2. B sends y to A and provides oracle access to H ′.
3. A eventually submits a bit b′. If b′ = 0, B guesses that O has no marked

items, and if b′ = 1, B guesses that it does.

First note that

Pr
Game 3

[0← A|b = 0] = Pr
Game 8

[0← A|No marked item]. (68)

This can be seen by considering the joint distribution of the random oracle that
A has access to and y. In each case, the random oracle that A has access to is
entirely uniform, and y is a uniform n-bit string independent of H.

Similarly, we can see that

Pr
Game 3

[1← A|b = 1] = Pr
Game 8

[1← A|One marked item]. (69)

In both games, H can be thought of as a uniformly random and independent
series of 2n n-bit strings, while the distribution of y is specified by choosing a
uniform index and selecting the n-bit string at that index in H.

Then,

Pr
Game 3

[A wins] (70)

=
1

2
Pr

Game 3
[0← A|b = 0] +

1

2
Pr

Game 3
[1← A|b = 1] (71)

=
1

2
Pr

Game 8
[0← A|No marked item] +

1

2
Pr

Game 8
[1← A|One marked item] (72)

= Pr
Game 8

[B wins]. (73)

Therefore, ∣∣∣∣ Pr
Game 3

[A wins]− 1

2

∣∣∣∣ =
∣∣∣ Pr
Game 8

[B wins]− 1/2]
∣∣∣ ≤ 2q/2n/2. (74)

E Security Proof for LMS in the QROM

For the full version of LMS, we proceed in a similar fashion, defining a full game
of existential-unforgeability under chosen-message attack, and upper bounding
the success probability of any adversary in this game with respect to a random
oracle.

Game 9 (LMS Existential-unforgeability under chosen message attack
(eucma)).

1. C chooses a random function H : {0, 1}∗ → {0, 1}n from all possible map-
pings. C then creates a quantum random oracle that provides quantum access
to H as in equation 1.

2. C chooses an arbitrary identity I and runs LMSKeyGen(1n, w, 1G, I), obtain-
ing (pk, sk), and sends pk, I to A.

3. A makes some queries to the quantum random oracle and then submits a
message M ′1 for signing.

4. C runs LMSSign(M ′1, sk, I) and sends the resulting signature, σ′1 to A.
5. A continues to make random oracle queries, as well as signing queries M ′i

for i = 2, . . . , 2G.
6. A submits a message-signature pair, (M∗, σ∗), such that M∗ 6= M ′i for all i.

As before, A is said to win if and only if LMSVrfy(M∗, pk, σ∗, I)→ ‘accept’.

Theorem 3. For any adversary A, making at most q quantum queries to the
random oracle, the probability that they win Game 9 is at most

580q/2n/2. (75)

Proof. To upper bound A’s probability of winning game 9, we again character-
ize several subsets and events based on these subsets, and characterize what a
forgery may look like with respect to these subsets. We also consider a challenger
that simulates the signing algorithm for each one-time instance of the scheme,
independently, as in Game 5. Although we are now simulating the signing al-
gorithm 2G times, we still have that the difference in the adversary’s success
probability is at most 516q/2n/2. This follows from the fact that all of the ora-
cles are independent and so Lemma 3 and 5 are not altered in a multi-instance
setting.

Parse the forged signature as σ∗ = σ′∗, Q∗, y∗0, . . . , y∗H−1. σ′∗ is the signa-
ture for the one-time verification algorithm, Q∗ is the placement identifier, and
y∗0, . . . , y∗H−1 form the Merkle tree verification path. Let pk′∗ ← OTVrfy(M∗, σ′∗).
Define the following sets:

– S3Q∗ = {x ∈ {0, 1}∗ : x = pk′∗||I||Q∗||03, H(x) = y0Q∗ , pk
′∗ 6= pkQ∗}

– S4j,k = {x ∈ {0, 1}∗ : x = y1||y2||k||j||I||04, H(x) = yjk, y1||y2 6= yj−12k−1||y
j−1
2k }.

We will decompose the event of a forgery into one of three events:

– EOTQ∗ is the event that pk′∗ = pkQ∗ .
– E3Q∗ is the event that the adversary has perfect knowledge of some x ∈
S3Q∗ .

– E4j,k is the event that the adversary has perfect knowledge of some x ∈ S4j,k
for some j, k.

It is straightforward to establish, as we did for the one-time signature scheme,
that for a forgery to occur, one of these events must happen. We establish it in
the same way, that is, if EOT and E3Q∗ do not occur for a forgery, then E4j,k
must occur.

E3Q∗ and EOTQ∗ not occurring means that H(pk′∗||I||Q∗||03) 6= y0Q∗ , and

so setting this to x′, i = Q∗ and considering the y∗0, . . . , y∗H−1, we know that
since the signature verified, this verification path must lead to pk. Therefore, at
some point along the verification path, there is a collision onto a value Y jk , and
E4j,k has occurred.

Event EOTQ∗ This event corresponds to the possibility of an adversary break-
ing the one-time signature scheme for one of the Q∗ instances of the one-time
signature scheme. It therefore decomposes into the previously defined events E0,
E1, or E2, but in a multi-instance model, as the adversary now has the freedom
to choose any Q∗ ∈ {1, . . . , 2G}.

Event E3Q∗ This is the event that the adversary finds a second-preimage of one
of the leaf nodes of the Merkle tree. So this event corresponds to the adversary
finding a marked item in the oracle H(·||I||Q∗||03) for some Q∗ ∈ {1, . . . , 2G},
where the fraction of marked items is 2−n.

Event E4j,k In this event, the adversary has found a second-preimage to yjk
under the oracle H(·|| · ||k||j||I||04), for some j, k of their choosing. This again
corresponds to finding a marked item in one of the oracles H(·|| · ||k||j||I||04),
where the fraction of marked items is 2−n.

Similar to our analysis in Section 4.1, we have that any adversary’s chances
of succeeding are at most 516q/2n/2 from attempting to find a marked item in
any of the oracles. As the fraction of marked items in any of the oracles is still
at most 210−n, the chances of the adversary’s success are still at most

580q/2n/2. (76)

F Security Proof in the multi-user setting

We now consider LMS in a multi-user setting. We first define security in this
setting.

Game 10 (LMS eucma in the multi-user setting).

1. C chooses a random function H : {0, 1}∗ → {0, 1}n from all possible map-
pings. C then creates a quantum random oracle that provides quantum access
to H as in equation 1.

2. C chooses U distinct identity strings, I1, . . . IU . C runs LMSKeyGen(1n, w, 1G, Ii)
for i = 1, . . . , U , obtaining (pk1, sk1), . . . , (pkU , skU). C sends the public keys
to A.

3. A makes queries to the random oracle as well as message queries. For A’s
message queries, they must specify which public key i they want a signature
under.

4. C signs the message with LMSSign(M ′, ski, Ii), and sends the signature to
A.

5. A can request up to 2G signatures on each public key pki.

6. A submits a message M∗, a signature σ∗, and an index i∗ such that M∗ was
not one of the signed messages on pki∗ .

A is said to have won the game if LMSVrfy(M∗, pki, σ
∗, Ii)→ ‘accept’.

Theorem 4. For any adversary A, making at most q quantum queries to the
random oracle, the probability that they win Game 10 is at most

580q/2n/2. (77)

Proof. Any forgery can be decomposed into the event that an adversary forges
on public key pki for some i ∈ {1, . . . , U}. This event can in turn be broken up
into the forgery events for the LMS scheme and the one-time LMS scheme. We
have previously established that the probability of an adversary causing any of
these events is at most 516q/2n/2 from finding a marked item in some oracle.
As each of these oracles contains the identifier Ii, and each Ii is distinct, the
adversary gains no advantage in finding one of these marked items.

So similar to our analysis of LMS in the single-user setting, we have that the
probability A wins game 10 is at most 580q/2n/2.

