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Abstract

In recent years several papers have appeared investigating the classical discrete
logarithm problem for elliptic curves by means of the multivariate polynomial
approach based on the celebrated summation polynomials, introduced by Se-
maev in 2004. However, with a notable exception by Petit et al. in 2016, all
numerous papers have investigated only the composite-field case, leaving apart
the laborious prime-field case. In this paper we propose a variation of Semaev’s
original approach for the prime-field case. Our proposal outperforms both the
original Semaev’s method and Petit et al. specialized algorithm. The improve-
ment is reached by reducing the necessary Groebner basis computations to only
one basis calculation.

Keywords: Elliptic curve, Discrete logarithm problem (DLP), Prime field,
Summation polynomials, Groebner basis.

1 Introduction

Several cryptographic schemes base their security upon the hardness of the dis-
crete logarithm problem for elliptic curves (ECDLP) [12,14]. For an elliptic curve
E defined over a finite field Fq, an instance of the ECDLP is the following:

given P,Q ∈ E(Fq), compute an integer w, if it exists, s.t. Q = wP .

The best known algorithms for the ECDLP are algorithms that work on ar-
bitrary cyclic groups - like Pollard’s Rho algorithm [18], which runs in time
O(
√
|E(Fq)|) if |E(Fq)| is prime - exception made for algorithms that are spe-

cific for some families of weak curves (as, for example, [13]).

In 2004 I. Semaev introduced [19] a family of polynomials, named summa-
tion polynomials, proposing their exploitation for an index calculus algorithm for
elliptic curves. The Index Calculus is originally a subexponential algorithm to
compute discrete logarithms in the multiplicative groups of finite fields. However,
?? This work was supported by CARITRO Foundation
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it is customary to use the name index calculus algorithm to refer to any algo-
rithm that computes discrete logarithms in a cyclic group G by collecting linear
relations first and using linear algebra afterwards. Following [6] and restricting
to the case G = E(Fq), with r = |E(Fq)| a prime integer, the simplest version
of index calculus algorithm consists of two main steps: the relation collection
step and the linear algebra step. In the relation collection step:

1. a factor base F ⊂ E(Fq) is defined;
2. for random integers u, v, the point R = uP + vQ is computed;
3. if possible, R is written as a sum of multiples of points of F :

R = uP + vQ =
∑
F∈F

`FF, (1)

with the integers `F ’s ranging in a small coefficient set;
4. u, v and the vector (`F ) are stored as a row of a matrix M ;
5. the procedure from item 2 to item 4 is repeated until at least |F| points R

as in (1) are found.

After the collection of a large enough number of relations, the linear algebra step
solves the discrete logarithm problem:

1. using linear algebra on M , a linear dependency of points R is computed,
obtaining the relation λP + µQ =∞ with λ, µ ∈ Z;

2. w is recovered from the linear congruence λ + µw = 0 (mod r), which is
solvable except the extremely unlikely case when µ = 0.

The complexity of an index calculus algorithm mainly lies in the decompo-
sition of a point R as sum of multiples of points in F , usually known as the
point decomposition problem (PDP). The solution of the PDP must be efficient
(including the decision on the decomposability of a point R) and with a high
success rate. Both these features are deeply affected by how F is defined and by
its size.

In the third section of Semaev’s paper [19], he proposed to reduce the PDP
to the problem of finding specific solutions of a multivariate polynomial equation
deduced from summation polynomials. Semaev sketched his proposal in the case
of elliptic curves defined over prime fields, suggesting to define F as the set of
rational points whose x-coordinates are small when taken as integers in the stan-
dard complete residue system [0, . . . , p − 1]. Furthermore, in Remark 2 of [19],
Semaev also outlined a variation of his proposal to binary elliptic curves defined
over extension fields. This variation involves the Weil descent, which cannot be
applied to prime fields.

Semaev’s paper triggered a deep interest in summation polynomials. Start-
ing from them, Diem claimed that the ECDLP for some elliptic curves could
be solved with a subexponential-time complexity (rather than exponential) in
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his 2006 talk [2]. However, the first papers developing Semaev’s approach ap-
peared only in 2009, by Gaudry [8], and then in 2011 by Diem [1]. In [8] Gaudry
shows that Semaev’s proposal can be used to solve, in heuristic time Õ(q2− 2

n ),
the ECDLP for elliptic curves defined over fields of size q = qn (from now on,
ECDLP(q,n)), with q prime or a prime power and n ≥ 2. However, Gaudry’s re-
sults cannot be extended to the prime-field case. Diem [1] proved that the same
problem can be solved in an expected time of eO(max(log q,n2)). Unfortunately,
when q = 2 and n is large (one of the two common cases in leading crypto-
graphic standards), the above works do not lead to an algorithm more effective
than Pollard’s Rho algorithm. In 2012 Faugère, Perret, Petit and Renault [5]
claimed that, under a heuristic assumption, the ECDLP over any binary field
F2n can be solved in time O(2ωt), with t ≈ n/2 and where 2.376 ≤ ω ≤ 3 is the
linear algebra constant. Petit and Quisquater [16] revisited polynomial systems
proposed by Faugère et al. in [5], introducing a heuristic assumption, named
first fall degree assumption, under which the ECDLP(2,n) can be solved in time
O(2cn2/3 logn), where c is a constant smaller than 2.
Further relevant results were then accomplished exploiting symmetries in the
works of Huang, Petit, Shinohara and Takagi [9], of Faugère, Gaudry, Huot and
Renault [4], and of Galbraith and Gebregiyorgis [7]. In the latter paper, the au-
thors propose to use disjoint factor basis Fi and require Pi ∈ Fi in (1).
In 2015, Semaev [20] and Karabina [11] had independently the idea to lower the
degrees of polynomial equation systems, appearing in the PDP, at the cost of
a larger number of variables. Both [20] and [11] provided experimental results
suggesting that their idea can lead to smaller running times.

There is no doubt that the listed results (and many others not cited here)
determined a huge improvement over the index calculus algorithms for elliptic
curves. However, the question whether the index calculus algorithm proposed by
Semaev in 2004 can lead to a subexponential algorithm for binary elliptic curves
is nowadays still open.

Even if the original proposal in Semaev’s paper directly considered the case of
elliptic curves defined over prime fields, only one recent paper ([17], 2016) takes
such demanding case into account. Among the main obstacles that one may en-
counter when facing this case, it is worth mentioning the difficulty to endow F
with an algebraic structure, and the impossibility to exploit the Weil descent
in the PDP. Nevertheless, elliptic curves defined over prime fields are nowadays
widely spread in cryptographic applications, as for example the Bitcoin system
[15]. In [17] Petit et al. deal with the identification of a suitable F by introducing
rational (or algebraic) maps L, obtained by a preprocessing specific for a given
curve E, and defining F as the set of rational points {(x, y) ∈ E(Fp)|L(x) = 0}.

In this paper we propose a new variant of index calculus algorithm for the
prime-field case. At the beginning of our algorithm (item 1 in the relation collec-
tion step), we define the size of F but not F itself, which instead will be defined
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on the run. Indeed, every point R produced in item 2 in the relation collection
step is appended to F , giving a trivial decomposition of R in item 3. We proceed
in this fashion until F contains the predetermined size. At this point a linear
dependency among points in F is obtained solving a point decomposition prob-
lem by means of summation polynomials. Consequently, our proposal reduces
the index calculus algorithm for elliptic curves over prime fields to the solution
of a single multivariate polynomial equation system.
We compare the complexity of our algorithm with that by Petit et al. showing
that we improve the complexity of the algorithm in [17]. Nevertheless, more work
is needed in order to reach a possible enhancement on Pollard’s Rho algorithm.
We hope that our proposal can encourage further discussions on the prime-field
case which has been somewhat neglected so far.

The paper is organized as follows. In Section 2 we provide some background
on summation polynomials and the relevant index calculus algorithm for elliptic
curves. In Section 3 we introduce our index calculus algorithm for the prime-field
case, providing some complexity evaluations and experimental results. Section 4
concludes the paper with comments and future perspectives.

2 Summation polynomials and the index calculus
algorithm for elliptic curves

In 2004 Semaev introduced summation polynomials in order to use them to
build an index calculus algorithm for elliptic curves. Let K be a field of any
characteristic. Given an elliptic curve E defined over K, for each m ≥ 2 the m-th
summation polynomial Sm is defined as follows:

Definition 1 Let K be the algebraic closure of the field K. For any integer
m ≥ 2, the m-th summation polynomial Sm is an element of K[X1, . . . , Xm]
and it is such that, given x1, . . . , xm ∈ K, then Sm(x1, . . . , xm) = 0 if and only
if there exist y1, . . . , ym ∈ K for which (x1, y1), . . . , (xm, ym) ∈ E(K) and

(x1, y1) + . . .+ (xm, ym) =∞

The existence of summation polynomials is proved by providing recursive for-
mulae along the following properties.

Theorem 2 ([19]) Let E be an elliptic curve defined over a field K, with
char(K) 6= 2, 3, by the Weierstrass equation

y2 = x3 +Ax+B

The summation polynomials for E are given as follows:

S2(X1, X2) = X1 −X2,

S3(X1, X2, X3) = (X1 −X2)
2X2

3 − 2[(X1 +X2)(X1X2 +A) + 2B]X3+

+ (X1X2 −A)2 − 4B(X1 +X2)
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and, for all m ≥ 4 and 1 ≤ k ≤ m− 3, it holds

Sm(X1, . . . , Xm) = ResX(Sm−k(X1, . . . , Xm−k−1, X), Sk+2(Xm−k, . . . , Xm, X))

where ResX denotes the resultant polynomial of Sm−k and Sk+2 with respect to
the variable X. Moreover, the polynomial Sm is symmetric of degree 2m−2 in
each variable Xi, it is absolutely irreducible and

Sm(X1, . . . , Xm) = S2
m−1(X1, . . . , Xm−1)X

2m−2

m + . . .

for any m ≥ 3.

In the case of elliptic curves defined over fields of characteristics 2 or 3, it
turns out that summation polynomials exist and have a similar form (and the
same properties, see [19], [1]).

2.1 Index calculus algorithm for elliptic curves

In [19], Semaev proposed to use summation polynomials for an index calculus
algorithm solving the discrete logarithm problem for elliptic curves. Semaev’s
idea was firstly developed by Gaudry [8] and Diem [1], and then many other
papers on this topic followed. We describe here the current approach to these
ideas. As we pointed out previously, all works subsequent to [19], except one,
take into account only elliptic curves defined over extension fields.

Consider an elliptic curve E defined over a finite field Fqn , where q is a prime
or a prime power. Let P ∈ E(Fqn) \ {∞} and Q ∈< P >, where < P > denotes
the cyclic group generated by P . It is standard to restrict attention to points P
of prime order r. Concerning the relation collection step, the general procedure
is the following:

1. An Fq-vector subspace V of Fqn is fixed, with #V = q` where 1 ≤ ` < n.
Then the factor base F is defined as:

F = {F ∈ E(Fqn) | x(F ) ∈ V } (2)

where x(F ) denotes the x-coordinate of F .
2. Two random integers u, v are generated and the point R = uP + vQ is com-
puted.
3. For a fixed integer m, points Pi ∈ F with i ∈ {1, . . . ,m} and such that

R = P1 + · · ·+ Pm (3)

are searched. Such Pi’s are obtained by solving the polynomial equation

Sm+1(X1, . . . , Xm, x(R)) = 0 (4)
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and considering solutions of the form (x1, . . . , xm) ∈ V m. Hence the Point De-
composition Problem is reduced to the solution of a multivariate polynomial
equation thanks to summation polynomials. If R is not decomposable as a sum
of points of F , it is replaced by a new R.
4. To every x ∈ V , one point in F having x as abscissa is chosen. Consequently,
R can be written as R = ±P1±· · ·±Pm, where Pi ∈ F and with signs depending
on the selected points. A matrix M with |V | + 2 columns is then constructed:
each of the first |V | columns corresponds to a single element of V , while the
two last columns correspond to the coefficients u and v, respectively. Given the
relation R = ±P1 ± · · · ± Pm, a row of M is filled with the coefficients of the
chosen points and the coefficients u, v such that R = uP + vQ.
5. The three steps above are repeated until at least |V | relations have been com-
puted, i.e. at least |V | rows of M have been filled.

At this point the integer w such that Q = wP can be computed by executing
the linear algebra step:

1. via Gauss’ elimination, a linear dependency among someM ’s rows is obtained,
and then its corresponding linear dependency of points R This leads to the
sought-after relation

λP + µQ =∞ (5)

with λ, µ ∈ Z.
2. w is recovered from the modular equation λ+µw = 0 (mod r) if it is solvable.

As observed, while considering elliptic curves defined over extension fields,
the subset V ⊂ Fqn is usually chosen as an Fq-vector subspace of Fqn . Conse-
quently, the Weil descent can be exploited to replace the system of the PDP
with an equivalent one, which have polynomial equations over Fq. Systems that
arise are then usually solved with Groebner basis methods [5], [16], [10], [21], [4].

2.2 The prime-field case

The case when the considered elliptic curve E is defined over a prime field Fp
was originally taken into account by Semaev in [19], where he defines V as the
subset {x ∈ Fp | x < p1/m+δ} for some small δ > 0. However, Semaev did not
provide an algorithm to solve the systems arising in the point decomposition
problem and this case was somewhat neglected so far.

In 2016, Petit et al. were the first, after Semaev, to face the prime-field case.
In [17], they primarily observe that the constraints xi ∈ V of item 3 in the above
relation collection step are equivalent to the constraints L(Xi) = 0 where L(z)
is a polynomial defined as:

L =
∏
v∈V

(z − v)
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This observation can be exploited to transform Semaev’s prime-field proposal
into an actual algorithm. Furthermore, Petit et al. generalise it considering suit-
able algebraic (or rational) maps L over Fp (i.e. maps L that are composition
of low degrees maps L1, . . . , Lt) and defining V as the set {x ∈ Fp | L(x) = 0}.
Accordingly, the factor base F is then defined as {F ∈ E(Fp) | x(F ) ∈ V },
where x(F ) is the abscissa of F . To obtain a suitable map L, they introduce a
pre-computation, which is specific for every elliptic curve E.

The index calculus algorithm considered by Petit et al. to solve the ECDLP
in the prime-field case is the same described in the previous section. However,
given a point R = uP + vQ ∈ E(Fp), in order to solve the point decomposition
problem for R with respect to F , they suggest to solve the following polynomial
equation system: Sm+1(X11, . . . , Xm1, x(R)) = 0

Xi,j+1 = Lj(Xi,j) i = 1, . . . ,m; j = 1, . . . , t− 1
Lt(Xi,t) = 0 i = 1, . . . ,m

(6)

where x(R) is the x-coordinate of R. In their work, Petit et al. provide some
experimental results and partial complexity analysis, with which we are going
to compare.

3 Our proposal

In this section we introduce a new variant, for elliptic curves defined over prime
fields, of the index calculus algorithm based on summation polynomials. Our
proposal differs significantly from the algorithm reported in Section 2.2, since
after the relation collection step we do not have a linear algebra step, but rather
a relation solving step, as we detail in the following.

Let us consider an elliptic curve E defined over a prime field Fp and having
a prime number of rational points, i.e. #E(Fp) = r with r prime integer. With
P and Q we denote again two points of E(Fp) such that Q = wP .

Relation collection step
1. The factor base F is not fixed, rather it is initialized as the empty set. The
final size s of F is fixed together with an integer m, named decomposition con-
stant. As usual (see for example [17, pag.7]) we take sm ≈ p.
2. For random integers u, v, the point R = uP + vQ is computed and added to
the factor base F .
3. R does not need to be written as a sum of multiples of points in F , since R
itself is a point of F .
4. The procedure in item 2 is repeated until at least s different points are added
to F .
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Relation solving step
1. Using summation polynomials, a linear dependency among points in F is de-
termined, but not with linear algebra. To be more precise, we consider the multi-
variate polynomial equation Sm(X1, . . . , Xm) = 0, where Sm is the m-th summa-
tion polynomial for E, and we search solutions of the form (x1, . . . , xm) ∈ V m

where:
V = {x | x = x(R) for some R ∈ F}. (7)

Once that such a solution has been found, it is trivial to determine m points Pi
such that −Pi ∈ F or Pi ∈ F , and

P1 + · · ·+ Pm =∞. (8)

Hence, the linear congruence λP + µQ =∞, with λ, µ ∈ Z, is deduced.
2. The discrete logarithm w of Q with respect to P is recovered solving the
modular equation λ+ µw = 0 (mod r).

The algorithm described above differs in two key points from the standard
index calculus algorithm usually considered when exploiting summation polyno-
mials. First, F is not fixed deterministically at the beginning of the algorithm.
Instead, it is constructed step by step adding the random points R progressively.
This prevents the computation of many relations (i.e resolutions of the PDP),
which traditionally requires expensive Grobner basis computations. Second, in
our second step (which is traditionally the linear algebra step) we actually do not
execute linear algebra. On the other hand, the linear dependency among points R
is obtained by looking for suitable solutions of the equation Sm(X1, . . . , Xm) = 0.
To do that, we do need to compute one Groebner basis, but it is just one. We
now specify which is the ideal basis that we use for our Groebner basis compu-
tation.

3.1 The system to be solved

In order to deduce a linear relation among points in F we solve the poly-
nomial equation Sm(x1, . . . , xm) = 0 considering only solutions of the form
(x1, . . . , xm) ∈ V m. Formally, this is reached solving the polynomial equation
system 

Sm(X1, . . . , Xm) = 0

f(X1) = 0

. . .

f(Xm) = 0

(9)

where f(z) is the polynomial generating the vanishing ideal of V ⊂ Fp. In par-
ticular:

f(z) =
∏
v∈V

(z − v)



On the discrete logarithm problem for prime-field elliptic curves 9

Although we would be content with any solution of Sm(X1, . . . , Xm) = 0 of the
form

(x1, . . . , xm) ∈ V m,

we add further constraints on the corresponding variablesX1, . . . , Xm in order to
lower the degrees in system (9). Indeed, given any partition {Fi | i = 1, . . . ,m}
of F , the sets

Vi = {x | x = x(R) for some R ∈ Fi} i = 1, . . . ,m

can be trivially deduced and the following polynomials constructed:

fi(Xi) =
∏
v∈Vi

(Xi − v) i = 1, . . . ,m. (10)

The idea of partitioning F is similar to what Galbraith and Gebregiyorgis pro-
posed in [7] and it allows us to limit the degrees of the univariate polynomials in
X1, . . . , Xm. Therefore, the system to be solved in item 1 of the Relation solving
step of our algorithm is the following:

Sm(X1, . . . , Xm) = 0

f1(X1) = 0

. . .

fm(Xm) = 0.

(11)

The constraints on X1, . . . , Xm of system (11) break the simmetry, since
m disjoint factor bases are used and only Pi ∈ Fi (or −Pi ∈ Fi) are then
allowed in (8). This will obviously impact the probability of finding a solution
of system (11): a complexity analysis is reported in the next subsection.

3.2 Complexity analysis

The whole complexity of the proposed algorithm relies on the solution of a single
polynomial equation system. Let T (E,m, V ) be the computational cost of solving
the system (11). Under the assumption that the sizes of the Fi’s are about the
same (which is in practice what we always enforce), the expected number of
linear combinations P1 + · · ·+ Pm (with Pi or −Pi in Fi) is about( s

m

)m
.

Then the probability that a random point of E(Fp) could be written as a sum
P1 + · · ·+ Pm (with Pi or −Pi in Fi) is nearly

sm

p mm
.

Therefore, the total cost of the algorithm is given by:

p mm

sm
T (E,m, V ).
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In order to reach an improvement with respect to algorithms for generic cyclic
groups, this complexity should be smaller than p1/2. We do not claim this result.
Indeed our complexity analysis is partial, since we are unable to estimate the
complexity of solving our polynomial equation system. We compare our com-
plexity with that of the algorithm of Petit et al. which, following the notation
of our paper, can be expressed as:

p m!

sm−1
T ′(E,m, V )

where T ′(E,m, V ) is the cost to solve one of the systems proposed in [17], which
are of the form of system (6). We can assume

T (E,m, V ) ≈ T ′(E,m, V ).

As a consequence, for a fixed m our algorithm outperforms that of Petit et al.
when p increases. In particular, the outperforming happens when

s(m!) > mm , that is, m
√
p >

mm

m!

Considering m ∈ {3, 4, . . . , 8} (S8 is nowadays the summation polynomial with
the highest index that has been computed [3]), the following table shows from
which bit size of p our algorithm would outrun that in [17].

m 3 4 5 6 7 8
bit size 7 14 24 37 52 70

We underline that the bit sizes of p reported in the above table are all smaller
than the bit sizes used in cryptographic applications.

The systems arising in our algorithm need to be analyzed more deeply in
order to reach a more precise complexity evaluation and it should be also in-
spected whether algorithms different from Grobner basis methods are more
suitable to tackle such systems. Hence, proving theoretically the assumption
T (E,m, V ) ≈ T ′(E,m, V ) is a challenging issue. However, the experimental
results reported in next section show that the assumption has heuristic evidence.

3.3 Experimental results

We report some computer experiments, executed on elliptic curves defined over
prime fields Fp with the bit size of p lying in {11, 12, . . . , 22}. The possible values
for the decomposition constant m that we considered belong to the set {3, 4, 5}.
Following [11] and [20], for m = 4 we substituted S4(X1, X2, X3, X4) = 0 with{

S3(X1, X2, Y ) = 0

S3(X3, X4, Y ) = 0
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introducing the variable Y and obtaining the following system in place of (11):
S3(X1, X2, Y ) = 0

S3(X3, X4, Y ) = 0

f1(X1) = · · · = f4(X4) = 0.

Similarly, for m = 5 the equation S5(X1, X2, X3, X4, X5) = 0 was substituted
with {

S3(X1, X2, Y ) = 0

S4(X3, X4, X5, Y ) = 0

introducing the variable Y and obtaining the following system in place of (11):
S3(X1, X2, Y ) = 0

S4(X3, X4, X5, Y ) = 0

f1(X1) = · · · = f5(X5) = 0.

For every possible values of m and the bit size of p, we considered ten different
elliptic curves. For each of them, we use our algorithm to solve ten instances of
the discrete logarithm problem, taking the average execution time. From the ten
average times obtained (one for every elliptic curve), we considered the worst one.
All experiments were performed with MAGMA on a CPU with an Intel Xeon
Process 5460 at 3.16 GHz with a cache of 6 MB. The collected data are showed in
the following table, together with an extra column with the experimental results
reported in [17] and concerning the average time necessary to solve one of the
systems arising in Petit et al. algorithm. The data for even bit sizes are relatively
to primes of a specific form; the ones for odd bite sizes are relatively to generic
primes. All of them were obtained exploiting a computational power similar to
ours.

bit size m = 3 m = 4 m = 5 Petit et al. (m = 3)
11 0.018 0.032 0.153 0.02
12 0.034 0.059 0.185 0.15
13 0.079 0.077 0.408 0.13
14 0.146 0.118 0.256 1.16
15 0.401 0.350 0.383 1.14
16 1.248 0.931 0.742 9.08
17 3.777 1.669 2.895 9.09
18 7.452 6.298 7.783 51.87
19 23.291 17.983 45.291 59.87
20 60.135 85.127 139.006 438.57
21 447.245 619.166 594.751 454.79
22 600.324 1808.291 1607.601 5163.46

Comparing our results and those of Petit et al. for the case m = 3, it is easy to
observe that they are quite similar, heuristically corroborating the assumption
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T (E,m, V ) ≈ T ′(E,m, V ) that we considered in the complexity analysis. How-
ever, our results concern the whole resolution of the discrete logarithm problem
(as executing our algorithm just one system needs to be solved), while Petit
et al. results concern the time needed to tackle one out of s systems that need
to be solved in the execution of their algorithm. So the times reported in the
last column should be multiplied by s to obtain the time needed by Petit et al.
algorithm to solve the whole discrete logarithm problem. For example, if p has
a bit size equal to 11, our algorithm is at least 10 times faster than their. The
same remark holds considering Semaev’s original proposal in [19].

We perfomed many preliminary computations with several monomial order-
ings available in MAGMA. Since we did not find any which would clearly out-
performs the others with our systems, we decided to use only the “graded reverse
lexicographic order” for the computations reported in the table.

4 Conclusions

We have presented a new index calculus algorithm that exploits summation
polynomials for solving the discrete logarithm problem in elliptic curves defined
over prime fields. This algorithm significantly differs from the algorithm, for the
same case, proposed by Petit et al. at the beginning at 2016 and it reduces to one
the number of polynomial equation systems to be solved during its execution.
A preliminary complexity analysis suggests that our algorithm improves the one
of Petit et al. when m is fixed and p increases. However, the complexity of the
single system to be tackled in our algorithm is far to be well understood and
it needs to be deeply analyzed. Furthermore, it should be investigated whether
other algorithms different from Grobner basis algorithms are better to solve such
systems.
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