
Homomorphic Encryption without Gaussian Noise

Anamaria Costache and Nigel P. Smart

Dept. Computer Science,
University of Bristol,

United Kingdom.

Abstract. We propose a Somewhat Homomorphic Encryption (SHE) scheme
based on the Learning With Rounding (LWR) problem. The LWR problem is
somewhat similar to the more classical Learning With Errors (LWE) and was
proposed as a deterministic variant of it and setting up an LWR instance does not
require the generation of gaussian noise. Thus our SHE scheme can be instanti-
ated without the need for expensive Gaussian noise sampling. Our initial scheme
provides lower ciphertext sizes for small plaintext spaces than existing leading
schemes such as BGV.

1 Introduction

Fully Homomorphic Encryption (FHE) was initially introduced as a concept shortly
after the development of the RSA cryptosystem, by Rivest et al. [30]. Although long
sought after, the first functional scheme was only proposed over thirty years later by
Gentry [18, 19] in 2009. The same blueprint to construct FHE has been followed in all
subsequent work. First a scheme is constructed which can evaluate arithmetic circuits
of a limited depth, a so-called Somewhat Homomorphic Encryption (SHE) scheme. If
the complexity of the circuits which the SHE scheme can evaluate is slightly more than
the complexity of the decryption circuit for the SHE scheme, then (by placing a SHE
encryption of the scheme’s private key inside the public key) one can bootstrap the SHE
scheme into a FHE scheme. This bootstrapping operation is obtained by homomorphi-
cally evaluating the decryption circuit on input of the ciphertext to be bootstrapped and
the encryption of the secret key.

So far, there have been roughly three generations of SHE schemes. The first gen-
eration consisted of Gentry’s original scheme, which was based on having two repre-
sentations of a basis of an ideal of a number field, one easy basis and one hard basis.
Gentry’s original scheme was simplified and implemented in [20, 32], where the ideal
was chosen to be principal, with the easy basis being the principal generator and the
hard basis being the standard two element representation of this ideal. A second fam-
ily in the first generation of schemes was based on the approximate-GCD problem,
and consisted of so-called “integer based” schemes [15]. The first family in the initial
generation schemes is now considered insecure due to work of Cramer et al [13], who
extended the work of Campbell et al [9] to solve the problem of finding small generators
of principal ideals in cyclotomic number fields. The second family, despite having nu-
merous optimizations applied to it - such as [10, 11] - is still not considered competitive
compared to the second generation schemes.

2 Anamaria Costache and Nigel P. Smart

The second generation schemes were all based on the Learning With Errors (LWE)
problem, and its generalisation to rings (the Ring-LWE problem) [6–8]. These schemes,
generally referred to as BGV, were extensively optimized and implemented in a series
of works by Gentry et al [21–24], with an implementation (HELib) being given in [26].
A variant of BGV, called FV, was presented in [17] which embeds the message into
the upper bits of the underlying ring. The second generation systems also include those
based on the NTRU assumption [5, 28], although the security of these has since been
called into question [1].

A third generation of schemes, based on standard LWE and encoding messages via
matrix eigenvalues, was presented in [25]. These schemes have an interesting property
of asymmetric noise growth; and as such have given rise to some interesting theoret-
ical applications and a fast method to perform boostrapping [16]. However, they are
particularly focused on bit-encryption and hence evaluation of binary circuits on en-
crypted data; thus in practice their efficiency does not match that of the second genera-
tion schemes.

We therefore focus our attention on the second generation scheme based on the
Learning With Errors problem (LWE). The LWE problem consists of distinguishing
between the distribution of uniformly random pairs (a, b) of elements in Znq × Zq and
the distribution of pairs of the form (a, 〈a, s〉+e (mod q)). Here s is a secret vector and
e some error vector drawn from a given distribution χ (usually a discrete Gaussian of
small variance). The search version of the LWE problem is to recover the secret s. There
is a ring version of this problem, called Ring-LWE, where one is given a polyomial
ring Rq modulo q and the task is to distinguish uniformly random pairs of elements
(a, b) ∈ Rq × Rq from the distribution of pairs of elements (a, a · s+ e) where a, s ∈
Rq with s a fixed secret polynomial and e is a polynomial chosen from a distribution
χ (which is usually the distribution of polynomials with coefficients selected from a
discrete Gaussian of small variance).

As remarked above, the LWE problem has been used to construct a number of SHE
schemes. In this paper we examine basing SHE schemes on a different, but closely re-
lated, problem; the Learning With Rounding (LWR) problem. The LWR problem was
initially introduced by Banerjee et al. [3] as a deterministic alternative to Learning With
Errors (LWE). The decision variant of the problem concerns the hardness of distinguish-
ing samples selected from the distribution(

x,
⌈
〈x, s〉

⌋
q1,q2

)
∈ Znq1 × Zq2 , (1)

from samples from the uniform distribution over Znq1 × Zq2 . The function
⌈
·
⌋
q1,q2

rep-

resents the scaled rounding function:⌈
·
⌋
q1,q2

: Zq1 → Zq2

x 7→
⌈q2
q1
· x
⌋
.

The search problem is, as usual, the problem of recovering the secret s given samples
of the form (1). Note that in LWR we have an implicit interaction between two moduli
q1 > q2, whereas in LWE there is only a single modulus q.

Homomorphic Encryption without Gaussian Noise 3

The generalisation to rings for LWR is immediate. We extend the function
⌈
·
⌋
q1,q2

to apply to coefficients of polynomials, and then the task is to distinguish uniformly
random elements in Rq1 ×Rq2 , from pairs selected via(

a,
⌈
a · s

⌋
q1,q2

)
,

where s is a uniformly random secret polynomial in Rq1,i .

To encrypt messages in both schemes we use a constant∆q2 =
⌊
q2
p

⌋
, where p is the

plaintext modulus. We write ∆q2 = q2
p − εq2 where 0 ≤ εq2 < 1. An LWE encryption

of a message m ∈ Zp will look like an element of the form

(a, 〈a, s〉+ e+∆q ·m (mod q)) ,

whereas a LWR encryption will look like an element of the form(
x,
⌈
〈x, s〉

⌋
q1,q2

+∆q2 ·m (mod q2)

)
.

It is clear how to generalise both of these encryptions via Ring-LWE (resp. Ring-LWR)
to enable encryptions of arbitrary elements inRp. The ring versions of the two problems
we will denote by RLWE and RLWR.

In this paper we explain how the above LWR/RLWR based encryption scheme can
be used to build a SHE scheme which is similar to the FV scheme based on RLWE [17].
In particular the scheme uses the above embedding of the plaintext into the upper bits
of the ring modulo q2, as opposed to the embedding into the lower bits used in schemes
such as BGV [6]. We describe in this paper the RLWR version, the extension to the
LWR version is immediate. Our main focus is developing a SHE scheme. The extension
via bootstrapping to a FHE scheme is immediate, since it will be clear that the same
bootstrapping blueprint used in other schemes will apply to our methodology. Indeed,
the decryption “circuit” of our scheme is very similar to that of BGV or FV; thus all the
“standard” methodologies used in these other schemes will apply to our scheme.

So one should ask what are the benefits of basing a scheme on the LWR problem
as opposed to the LWE problem? Firstly, we can dispense with the costly Gaussian
noise sampling required in the LWE based schemes. This is often a large computational
bottleneck in RLWE based schemes. Secondly, when comparing to the BGV scheme,
we find that our parameters result in slightly smaller ciphertexts for small plaintext
modulus.

2 Preliminaries

In this section we formally introduce the LWR problem, introduced by Banerjee, Peikert
and Rosen [3] and discuss some of the properties of this problem and its relation to
LWE. As discussed in the introduction, both problems entail distinguishing between
pairs of carefully constructed elements and uniformly random elements. In the LWE
problem we hide an inner product by adding a small noise perturbation, whilst in the
LWR problem we use rounding to hide the inner product.

4 Anamaria Costache and Nigel P. Smart

2.1 Problem Definitions

We first introduce the LWE problem.

Definition 1. Let n ≥ 1 and q be an integer, and define the LWE function as follows:
For a fixed vector s ∈ Znq , we let a← Znq be chosen uniformly at random, and output

(a, 〈a, s〉+ e) ∈ Zn+1
q ,

where e is chosen from some error distribution χ over Zq; usually a discrete Gaussian
of small standard deviation σ. The decision-LWEn,q,χ problem is to distinguish (with
non-negligible advantage) between independent samples drawn according to the LWE
function and uniform and independent samples drawn from Zn+1

q . The search problem
is to recover s given independent samples drawn according to the LWE function.

The LWR problem is formally given by the following analogous definition1.

Definition 2. Let n ≥ 1 and q1 ≥ q2 be integers, and define the LWR function as
follows: For a fixed vector s ∈ Znq1 , we let a ← Znq1 be chosen uniformly at random,
and output

(a,
⌈
〈a, s〉

⌋
q1,q2

) ∈ Znq1 × Zq2 .

The decision-LWRn,q1,q2 problem is to distinguish (with non-negligible advantage) be-
tween independent samples drawn according to the LWR function and uniform and
independent samples drawn from Znq1 × Zq2 . The search problem is to recover s given
independent samples drawn according to the LWR function.

We can also define ring vairants of the LWE and LWR problems; which we call the
RLWE and RLWR problems. As usual in the literature we work in a cyclotomic ring
R = Z[x]/(Φm(x)) of degree φ(m). For an integer q, define Rq := Z[x]/(Φm(x), q),
i.e. the ring R modulo q. We give the definition of RLWR, with the analogous definition
for RLWE being immediate.

Definition 3. Let q1 ≥ q2 be integers, and define the RLWR function as follows: For
an element s ∈ Rq1 , we let a← Rq1 be chosen uniformly at random, and output

(a,
⌈
a · s

⌋
q1,q2

) ∈ Rq1 ×Rq2 .

The decision-RLWRq1,q2 problem is to distinguish (with non-negligible advantage) be-
tween independent samples drawn according to the RLWR function and uniform and
independent samples drawn from Rq1 × Rq2 . The search problem is to recover s given
independent samples drawn according to the RLWR function.

1 We use (q1, q2) rather than the traditional (q, p) as we want to reserve the letter p for our
plaintext modulus.

Homomorphic Encryption without Gaussian Noise 5

2.2 Relationships Between LWR and LWE

The LWE problem is well studied in cryptography, but the LWR one less so. In order
to have confidence in schemes built on top of LWR, various authors have presented
results which link the two problems. The reductions enable us to link the hardness of
LWEn,q1,χ to the hardness of RLWRn,q1,q2 . Many of the reductions call a distribution
B-bounded if it takes values over the integer interval {−B, · · · , B}, B ≤ q−1

2 . A B-
bounded distribution χ is said to be balanced if Pr[χ ≤ 0] ≥ 1

2] and Pr[χ ≥ 0] ≥ 1
2].

We can take B = 6 · σ in the case of discrete Gaussians of standard deviation σ in
practice.

In their original paper [3] Bannerjee et al showed that if one can solve LWR with
advantage ε then one can solve LWE with advantage ε−O(m·B·q2/q1), where χ selects
values from a B-bounded distribution, and m is the number of samples. However this
result only holds when q1 is an exponential function of the security parameter. In [2],
another reduction of LWR from LWE is given which removes the exponential restriction
on q1, but replaces it with other number theoretic conditions.

This is improved upon in [4] which gives the following hardness result, with a
similar result relating Ring-LWR and Ring-LWE being given. The main reduction [4,
Theorem 1] shows that any algorithm which recovers s from t independent random
LWR samples with probability ε can also be used to recover the secret s from m inde-

pendent random samples of the form
(
x,
⌈
〈x, s〉+ e

⌋
q1,q2

)
with probability at least

ε2/(1 + 2 · B · q2/q1)t, as long as q1 ≥ 2 · B · q2. Thus we can solve LWE modulo

q1 by embedding the LWE instance in a LWR problem via
(
x,
⌈
〈x, s〉+ e

⌋
q1,q2

)
and

then applying our existing algorithm for LWR. Assuming q1 ≥ 2 · B · q2 the search
problem for LWE (modulo q1) must therefore be no harder than the search problem for
LWR (modulo (q1, q2)). More formally,

Theorem 1. For q1, q2, n, t andB integers such that q1 > 2 ·q2 ·B, for every algorithm
Learn,

PrA,s[Learn(A,
⌈
As+ e

⌋
q1,q2

) = s] ≥ 1

(1 + 2 · q2 ·B/q1)t

· PrA,s[Learn(A,
⌈
A · s

⌋
q1,q2

) = s]2,

where A← Zt×nq1 , e is B-bounded and balanced and s is chosen from (Z∗q1)
n.

The condition on s will be satisified with overwhelming probability if q1 is prime. The
ring variant of this result is similar except the right hand side is divided by (1 + 2 · q2 ·
B/q1)

t·φ(m), and s is restricted to be chosen from any subset of units in Rq . When q is
prime this implies that the secret key can be selected to have small Hamming weight,
as is sometimes done in homomorphic encryption schemes [24, 12].

The authors of [4] also give a hardness result for the decision version of the LWR
problem. In particular they show that any distinguisher Dist for LWR can be used to
solve the search version of LWE, assuming the secret is selected from {0, 1}n. More
formally,

6 Anamaria Costache and Nigel P. Smart

Theorem 2. For every ε > 0, n, t, q1 > 2 · q2 ·B and an algorithm Dist such that

|PrA,s[Dist(A,
⌈
A · s

⌋
q1,q2

) = 1]− PrA,u[Dist(A,
⌈
u
⌋
q1,q2

) = 1]| ≥ ε,

where A ← Zt×nq1 , s ← {0, 1}n and u ← Ztq1 , there exists an algorithm Learn that
runs in polynomial time in n, t, the number of divisors of q and the running time of Dist
such that

PrA,s[Learn(A,As+ e) = s] ≥
(ε

4 · q1 · t
− 2n

qt2

)2 · 1

(1 + 2 ·B · q2/q1)t
.

Alas no RLWR variant of this result is currently known.

3 A Ring-LWR Based Somewhat Homomorphic Encryption
Scheme

In this section we define our Somewhat Homomorphic Encryption (SHE) scheme based
on RLWR. As earlier, we let R denote the ring R = Z[x]/(Φm(x)), for the m-th cyclo-
tomic polynomial Φm(x); this ring has degree N = φ(m). As we define each operation
we analyse it for both correctness and for the associated “noise” growth. We will use
a levelled ciphertext space and thus, from here on, denote our moduli by q1,i and q2,i.
These represent the products

q1,L−1 = q1 ·
L−1∏
j=0

pj and q2,L−1 = q2 ·
L−1∏
j=0

pj .

The index i will be used to denote the level we are at. The pi are selected to be primes
such that pi ≡ 1 (mod p) for all i. We also require that q1 ≡ q2 ≡ 1 (mod p). This
is because we will define a modulus switch operation, as in [6], which is described in
Section 3.3.

Following [29], we use the canonical embedding norm as a way to measure poly-
nomials. We define the canonical embedding of a polynomial a ∈ R into the complex
sapce (for R a polynomial ring) as the φ(m)-vector σ(a) = (a(ζim))i. ζm is a complex
primitive m-th root of unity and the indexes i range over all of (Z/mZ)∗. We write∥∥∥a∥∥∥can

∞
=
∥∥σ(a)∥∥∞.

We will need to bound the canonical embedding norm of polynomials that are produced
by the what are essentially randomly chosen polynomials, well as products of such poly-
nomials. Following the work in [24] we use a heuristic approach, which we now recap.
Let a ∈ R be a polynomial chosen by independently selecting all the coefficients in a
from the same distribution. For a complex primitive m-th root of unity ζm, the evalua-
tion a(ζm) is the inner product between the coefficient vector of a and the fixed vector
zm = (1, ζm, ζ

2
m, . . .), whose Euclidean norm is exactly

√
φ(m). Hence the random

variable a(ζm) has variance V = σ2φ(m), where σ2 is the variance of each coefficient

Homomorphic Encryption without Gaussian Noise 7

of a. Specifically, when a is chosen uniformly with coefficients in [−q/2, . . . , q/2]
then each coefficient has variance (q − 1)2/12 ≈ q2/12, and so we obtain a variance
VU = q2 ·φ(m)/12. When choosing awith coefficients from {−1, 0, 1}with Hamming
weight h we obtain a variance of VH = h (but not φ(m), since a has only h nonzero
coefficients).

Just as in [12] we model all canonical embedding norms as if from a random dis-
tribution. In particular we shall assume that messages from the ring Rp, and similar
quantities, behave as if selected uniformly at random and hence estimate ‖m‖can∞ ≤
6 · p ·

√
φ(m)/12 = p ·

√
3 · φ(m).

Moreover, the random variable a(ζm) is a sum of many independent identically dis-
tributed random variables, hence by the law of large numbers it is distributed similarly
to a complex Gaussian random variable of the specified variance.We therefore use 6

√
V

(i.e. six standard deviations) as a high-probability bound on the size of a(ζm). Since the
evaluation of a at all the roots of unity obeys the same bound, we use six standard de-
viations as our bound on the canonical embedding norm of a. We chose six standard
deviations since erfc(6) ≈ 2−55, which is good enough for us even when using the
union bound and multiplying it by φ(m) ≈ 216.

In many cases, we need to bound the canonical embedding norm of a product of two
or more such “random polynomials”. In this case our task is to bound the magnitude of
the product of two random variables, both of which are distributed close to Gaussians,
with variances σ2

a, σ
2
b , respectively. For this case, we use 16 ·σa ·σb as our bound, since

erfc(4) ≈ 2−25, so the probability that both variables exceed their standard deviation
by more than a factor of four is roughly 2−50. For a product of three variables we use
40 · σa · σb · σc, since erfc(3.4) ≈ 2−19, and 3.43 ≈ 40; and for a product of four
variables we use 70 · σa · σb · σc · σd since erfc(2.9) ≈ 2−14, and 2.94 ≈ 70.

3.1 The Basic Encryption Scheme

Key Generation: We encrypt at the top level L − 1 and let s ∈ Rq1,L−1
be our secret

key sk := s. We select s to have coefficients in {−1, 0, 1}, with Hamming weight
h. This will be small enough so that we can think of s as being at any level i. This
choice of ‘sparse’ s is to keep the noise growth below small, and is comparable with
similar choices in [12, 24] made for other SHE schemes. The public key is made up of
` encryptions of zero; where ` is a security parameter (say ` = 80). To generate the
encryptions of zero we select vk ← Rq1,L−1

and then set

uk ←
⌈
vk · s

⌋
q1,L−1,q2,L−1

.

The final public key is the set pk := {(v1, u1), . . . , (v`, u`)}. For later use we write

ek = uk −
q2,L−1
q1,L−1

· vk · s =
⌈q2,L−1
q1,L−1

· vk · s
⌋
− q2,L−1
q1,L−1

· vk · s,

where we think of vk and uk as elements of R. The polynomials ek we can thus assume
are distributed uniformly with coefficients in [−1/2, . . . , 1/2] and hence we can assume
‖ek‖can∞ ≤ 6 ·

√
φ(m)/12 =

√
3 · φ(m).

8 Anamaria Costache and Nigel P. Smart

Encryption: To encrypt a message m ∈ Rp at level L− 1 we first select ` random bits
rk ∈ {0, 1} for k = 1, . . . , ` and then we set

Enc(m,pk) := ct = (v, w)

=

(∑̀
k=1

rk · vk (mod q1,L−1),

∆q2,L−1
·m+

∑̀
k=1

rk · uk (mod q2,L−1)

)
,

where we think of m as an element in Rq2,L−1
. Thus we obtain an encryption of m

by simply adding on a random subset of our collection of encryptions of zero. To a
ciphertext ct = (v, w) encrypting a message m we associate the following “noise”
value:

e = w − q2,L−1
q1,L−1

· v · s−∆q2,L−1
·m,

where we intepret all the component polynomials as being lifted in a trivial manner to
R, i.e. e ∈ R ⊗Z Q. For a fresh ciphertext we note that we have (interpreting all the
polynomials in R)

e =

(
∆q2,L−1

·m+
∑̀
k=1

rk · uk

)
− q2,L−1
q1,L−1

·

(∑̀
k=1

rk · vk

)
· s−∆q2,L−1

·m

=
∑̀
k=1

(rk · uk −
q2,L−1
q1,L−1

· rk · vk · s) =
∑̀
k=1

rk · ek.

Thus for a fresh ciphertext we have that we expect the error is bounded by ‖e‖can∞ ≤
` ·
√

3 · φ(m)/2 = B0.

Decryption: Decryption, given a ciphertext ct = (v, w) at level i proceeds as follows:

Dec(ct, sk) =
⌈ 1

∆q2,i

(
−q2,i
q1,i
· v · s+ w

)⌋
mod p,

where all operations within the rounding function are performed in the fieldR⊗ZQ. To
check correctness we notice that, where e is the noise value associated to the ciphertext
(v, w) defined above,

Dec(ct, sk) =
⌈ 1

∆q2,i

(
−q2,i
q1,i
· v · s+ w

)⌋
mod p

=
⌈ 1

∆q2,i

(
−q2,i
q1,i
· v · s+ q2,i

q1,i
· v · s+∆q2,i ·m+ e

)⌋
mod p

=
⌈ 1

∆q2,i

(
∆q2,i ·m+ e

)⌋
mod p.

Homomorphic Encryption without Gaussian Noise 9

= m+
⌈ e

∆q2,i

⌋
.

Thus ct correctly decrypts to m if (and only if)
⌈

e
∆q2,i

⌋
= 0. This is guaranteed to

happen if the error term e has coefficients bounded by ∆q2,i/2, i.e. the∞-norm of e in
the coefficient embedding is less than q2,i/2. Since our error analysis will be in terms
of the canonical norm of e, this means we need to ensure that

‖e‖can∞ ≤ ∆q2,i/(2 · cm), (2)

where cm is the “ring-constant” associated toR; see [14] for a discussion of cm. Asymp-
totically cm can grow super-polynomially but for “small” values of m used in any
scheme the size of cm is relatively small.

Theorem 3. The encryption scheme (Enc,Dec) is IND-CPA secure assuming the (de-
cision) RLWR problem is hard.

Proof. A ciphertext (v, w) masks the value ∆q2,i ·m ∈ Rq2,i via the value of the form⌈
v ·s
⌋
q1,i,q2,i

. Assuming the RLWR problem is hard this latter value is indistinguishable

from a random value in Rq2,i , and thus ∆q2,i ·m is essentially one-time pad encrypted.
Thus, by a standard hybrid argument, one can bound the advantage of an adversary
which breaks the IND-CPA security of the encryption scheme, by twice the advantage
of an adversary in breaking decision RLWR. The details we leave to the reader.

3.2 Homomorphic Operations

Having defined our basic encryption scheme we now turn to defining the homomorphic
operations which it supports.

Addition: Suppose we are given two ciphertexts at the same level i, ct = (v, w) and
ct′ = (v′, w′) encrypting m and m′ with respective noise e and e′, i.e. we have that

w =
q2,i
q1,i
· v · s+∆q2,i ·m+ e

w′ =
q2,i
q1,i
· v′ · s+∆q2,i ·m′ + e′.

Then we define the ciphertext produced by the homomorphic addition operation as
simply

ctadd = (v + v′, w + w′) = (vadd, wadd),

where we will write madd = m+m′ mod p = m+m′ + ra · p, since the messages
may wrap around modulo p.

Dec(ct, sk) =
⌈ 1

∆q2,i

(
wadd −

q2,i
q1,i
· vadd · s

)⌋
mod p

10 Anamaria Costache and Nigel P. Smart

=
⌈ 1

∆q2,i

(
q2,i
q1,i
· (v + v′) · s+∆q2,i · (m+m′) + e+ e′

−q2,i
q1,i
· (v + v′) · s

)⌋
mod p

=
⌈ 1

∆q2,i

(
∆q2,i · (madd − ra · p) + e+ e′

)⌋
mod p

=
⌈ 1

∆q2,i

(
∆q2,i ·madd −∆q2,i · ra · p+ e+ e′

)⌋
mod p

= madd +
⌈e+ e

∆q2,i

⌋
− ra · p mod p,

= madd +
⌈e+ e

∆q2,i

⌋
.

We conclude that correct decryption occurs if and only if
⌈
e+e
∆q2,i

⌋
= 0. The above

analysis also allows us to conclude that eadd = e′ + e, i.e. that noise grows additively.

Multiplication: Just as in many FHE schemes, multiplication is a less straightforward
operation than addition. Here, this is worsened by the fact that the interplay between
the two moduli q1,i and q2,i - and their corresponding rings - means we need to pay
close attention to the domain of each operation. We follow the blueprint of most second
generation homomorphic encryption schemes and present multiplication as a four step
process. In the first two steps we form a tensor product of the two input ciphertexts -
both at the same level i - which will decrypt under the tensor of the secret key. These first
two steps are performed in the ring R, and result in a potential growth of the coefficient
sizes as well as the production of a ciphertext of dimension three. We address both these
issues in the final two steps. In the third step we perform reduction modulu q1,i and q2,i
so as to deal with coefficient growth. Then, in a final relinearisation step, we reduce
the ciphertext form and secret key back to the original form, essentially by performing
a key switching operation. Since our message is embedded in the upper bits of the
modulo q2,i space, like other scale invariant schemes such as FV [17] and YASHE [5],
we also need to scale by a factor of 1/∆q2,i . We will only present the methodology in
the main body of the paper. See Appendix A for proofs of correctness, and analysis of
the noise growth.

Multiplication Step 1: Tensoring: We can consider the standard decryption operation
in the following form: take a ciphertext ct = (v, w) and a secret key in the form sk =
(− q2,iq1,i

· s, 1). We consider these and the computations in this step in the general ring R.
We evaluate ⌈ 1

∆q2,i

(ct⊗ sk)
⌋

(mod p),

where ⊗ is the tensor product. For multiplication let ct = (v, w), ct′ = (v′, w′) be
our two input ciphertexts, with associated noise e and e′, respectively. We first form the

Homomorphic Encryption without Gaussian Noise 11

tensor product ciphertext

ct⊗ ct′ = (v · v′, v · w′, v′ · w, w · w′) ∈ R4,

which will decrypt by tensoring with the tensor secret key

sk⊗ sk =

(
q2,i
q1,i

2
· s2, − q2,i

q1,i
· s, − q2,i

q1,i
· s, 1

)
∈ (R⊗Z Q)4.

Simplifying, by combining the two middle terms in each quadruple we form the three
element ciphertext

ct0mult = (v · v′, w · v′ + w′ · v, w · w′) = (d′0, d
′
1, d
′
2) ∈ R3,

which will decrypt via the equation⌈ 1

∆2
q2,i

(
d′2 −

q2,i
q1,i
· d′1 · s+

(
q2,i
q1,i

)2

· d′0 · s2
)⌋
.

In what follows we will write mmult = m ·m′ mod p = m ·m′ + rb · p.

Multiplication Step 2: Reduction by ∆q2,i : Instead of the tensor ciphertext (d′0, d
′
1, d
′
2)

decrypting via the above equation, we would rather have a three element ciphertext
(d0, d1, d2) which decrypts via the equation⌈ 1

∆q2,i

(
d2 −

q2,i
q1,i
· d1 · s+

(
q2,i
q1,i

)2

· d0 · s2
)⌋

. (3)

As in [17], we multiply each d′k by p
q2,i

and then round to produce

dk =
⌈p · d′k
q2,i

⌋
∈ R.

This operation, performed globally, gives a decryption equation of,

d2 −
q2,i
q1,i
· d1 · s+

(
q2,i
q1,i

)2

· d0 · s2 = m ·m′ ·∆q2,i + emult.

For the analysis of the term emult see Appendix A. If B (resp. B′) is an upper bound on
the canonical norm of e (resp. e′) then the canonomical norm of emult grows essentially
as p·B ·B′/q2,i. Note that the noise term for multiplication for the FV scheme described
in [12] also grows essentially by the same amount. We bound the canonical norm of
emult by the function F (., .)

‖emult‖can∞ ≤ F (B,B′),

which we discuss in Appendix A. Thus, given upper bounds on the canonical norm of
the input noise to this step of the multiplication operation, we can bound the output noise
as well. So, at the end of this step, we have a ciphertext ct1mult = (d0, d1, d2) which
decrypts via equation (3), and whose associated noise term is bounded by F (B,B′).

12 Anamaria Costache and Nigel P. Smart

Multiplication Step 3: Modular Reduction: As mentioned earlier, this step is used
to ensure that computations are performed appropriately. Taking the previous ct1mult =
(d0, d1, d2), we set

f0 = d0 (mod q21,i) = d0 + ε0 · q21,i,
f1 = d1 (mod q1,i) = d1 + ε1 · q1,i,
f2 = d2 (mod q2,i) = d2 + ε2 · q2,i,

and output ct2mult = (f0, f1, f2). This will now decrypt via

⌈ 1

∆q2,i

(
f2 −

q2,i
q1,i
· f1 · s+

(
q2,i
q1,i

)2

· f0 · s2
)⌋

. (4)

Note that - as with general decryption - the inner bracket is computer globally. The
above gives

⌈ 1

∆q2,i

(
f2 −

q2,i
q1,i
· f1 · s+

(
q2,i
q1,i

)2

· f0 · s2
)⌋

= m ·m′ ·∆q2,i + emult + εmult.

We bound the canonical norm of εmult by Bε:

‖εmult‖can∞ ≤ Bε.

We give the analysis of the size of Bε in Appendix A. Therefore, at the end of this step,
we have a ciphertext ct2mult = (f0, f1, f2) which decrypts via equation (4), and whose
associated noise term is bounded by F (B,B′) +Bε.

Multiplication Step 4: Relinearization: We now want to rework our output ciphertext
into the form ct3mult = (c0, c1), with an associated decryption equation of⌈ 1

∆q2,i

(
−q2,i
q1,i
· c0 · s+ c1

)⌋
mod p.

This process is called relinearization. This is accomplished by adding so-called key
switching matrices into the public key. We pick a modulus T and sample pairs (aj , bj)
from j = 0, . . . , 2 · dlogT q1,ie such that aj is selected uniformly at random from Rq1,i
and

bj =
⌈q2,i
q1,i
· aj · s+

(
q2,i
q1,i

)2

· T j · s2
⌋

=
q2,i
q1,i
· aj · s+

(
q2,i
q1,i

)2

· T j · s2 + τj ∈ Rq2,i ,

where τj is the rounding error, i.e. a polynomial with coefficients in [−1/2, . . . , 1/2].
Note that the larger T , is the smaller the number of key switching matrices are required.

Homomorphic Encryption without Gaussian Noise 13

Thus the size of T has an effect on the size of the public key, although it has little effect
on the size of other parameters.

In relinearization we replace the ciphertext (f0, f1, f2) ∈ Rq21,i × Rq1,i × Rq2,i by
a ciphertext (c0, c1) ∈ Rq1,i × Rq2,i . The value f2 gets mapped to c1 and the value f1
gets mapped to c0; where the respective moduli sizes match up. This leaves us with the
processing of terms coming from f0 which need to be added into both c0 and c1 using
the key switching matrices above. The value f0 is given modulo q21,i; note in practice
the size of f0 will be much smaller than this, we just leave this bound here for ease of
analysis. Tighter bounds can be on the size of f0 and hence the level of decomposition
below can be found if desired.

To relinearize, we first take the element f0 and expand it into its base-T representa-
tion

f0 =

2·dlogT (q1,i)e∑
j=0

f0,j · T j ,

where each f0,j is a polynomial with coefficients in the range [−T/2, . . . , T/2]. We
then write

c0 = f1 +

2·dlogT (q1,i)e∑
j=0

f0,j · aj , (mod q1,i)

c1 = f2 +

2·dlogT (q1,i)e∑
j=0

f0,j · bj (mod q2,i).

Putting all four steps together we obtain a multiplication operation which increases the
noise inherent in the output ciphertext by a value bounded, in the canonical norm, by∥∥∥emult + εmult +

2·dlogT (q1,i)e∑
j=0

f0,j · τj
∥∥∥can
∞
≤ F (B,B′) +Bε

+ 2 · dlogT (q1,i)e · φ(m) · T/3
=: G(B,B′).

We refer to Appendix A for an analysis of the terms F (B,B′), Bε and G(B,B′).

3.3 Modulus Switch

In [6] the authors introduce a method called modulus switching, which allows the ci-
phertext modulus to be successively reduced. In practical implementations of the BGV
scheme, see e.g. [24], this is found to produce not only an optimization during execu-
tion of homomorphic operations, but it also aids in significantly reducing the parameter
sizes. It turns out, see for example [12], that a similar benefit in parameter reduction can
also be applied to the scale-invariant schemes such as FV.

We recall that to a ciphertext ct = (v, w) encrypting a message m at level i we
associate the following “noise” value:

e = w − q2,i
q1,i
· v · s−∆q2,i ·m,

14 Anamaria Costache and Nigel P. Smart

= 〈ct, s〉 (mod q2,i),

where we interpret all the component polynomials as being lifted to R and the secret
key being given by s = (− q2,iq1,i

sk, 1).
We define a Modulus Switch operation. The tricky aspect here is the interplay be-

tween our two ciphertext moduli q1,i and q2,i, as opposed to the single ciphertext mod-
ulus of other schemes such as BGV and FV.

Definition 4. For an integer vector x over Rq2,i+1 and integer moduli q2,i+1 > q2,i >
p, define

x′ ← Scale(x, q2,i+1, q2,i, p)

to be the integer vector in Rq2,i closest to 1
pi+1
· x that satisfies x ≡ x′ (mod p).

So let ct′ ← Scale(ct, q2,i+1, q2,i, p) and recall that for all j ∈ {1, 2}, i ∈ {1, · · ·L −
1}, we have qj,i ≡ 1 (mod p). In particular, this means that

q2,i+1 ≡ q2,i (mod p) (5)

We obtain the following theorem.

Theorem 4. Let ct and ct′ be ciphertexts in Rq2,i+1
and Rq2,i respectively, such that

ct′ ← Scale(ct, q2,i+1, q2,i, p). Then

(〈ct′, s〉 (mod q2,i)) (mod p) ≡ (〈ct, s〉 (mod q2,i+1)) (mod p)).

Further, if the input ciphertext has noise ν, then the output ciphertext ct′ will have noise
Bscale +

ν
pi+1

, where

Bscale := 8p ·
√
h · φ(m)/3.

Proof. Re-write the noise error e as

eq2,i+1
= 〈ct, s〉 (mod q2,i+1)

= 〈ct, s〉+ k · q2,i+1

= ν.

We also let δ be the following error term.

δ = ct′ − 1

pi+1
· ct.

Notice this has coefficients in the interval [−p/2, p/2). For some integer k, we then
have that

eq2,i ≡ (〈ct′, s〉 (mod q2,i)) (mod p)

≡ 〈ct′, s〉 − k · q2,i (mod p)

≡ 〈ct, s〉 − k · q2,i+i (mod p)

≡ (〈ct, s〉 (mod q2,i+1)) (mod p),

Homomorphic Encryption without Gaussian Noise 15

which follows from (5). It follows that

(〈ct′, s〉 (mod q2,i)) (mod p) ≡ (〈ct, s〉 (mod q2,i+1)) (mod p).

To simplify our noise analysis, write the polynomial δ as δ = (δ0, δ1). Both its compo-
nents have coefficients in the interval [−p/2, p/2). Recall s = (− q2,iq1,i

· sk, 1).

‖eq2,i‖can∞ = ‖〈ct′, s〉 − k · q2,i‖can∞

= ‖〈ct′, s〉 − k · q2,i − 〈
1

pi+1
ct, s〉+ 〈 1

pi+1
ct, s〉‖can∞

= ‖〈ct′ − 1

pi+1
ct, s〉+ 〈 1

pi+1
ct, s〉 − k · q2,i‖can∞

≤ ‖〈δ, s〉‖can∞ +
1

pi+1
‖eq2,i+1‖can∞

≤ ‖δ1 −
q2,i
q1,i
· sk · δ0‖can∞ +

1

pi+1
‖eq2,i+1

‖can∞

≤ ‖δ1‖can∞ +
q2,i
q1,i
‖sk · δ0‖can∞ +

1

pi+1
‖eq2,i+1

‖can∞

≤ p
√
3φ(m) +

8p · q2,i
q1,i

·
√
h · φ(m)/3 +

ν

pi+1

:= Bscale +
ν

pi+1
.

4 Parameter Analysis

There are two methodologies to select parameters in cryptography; either to use pa-
rameters which arise from experimental cryptanalysis, or to use parameters which arise
from the tightness of cryptographic reductions. Since RLWR is a less studied problem,
we use a combination of these approaches. For our ‘conservative’ approach we will
use (the ring version of) Theorem 1 to relate the hardness of search RLWR to that of
search RLWE. In our ‘reckless’ approach we simply equate the security of RLWR to
that of RLWE and ignore the loss in tightness inherent in Theorem 12. In both cases, we
then use the analysis of Lindner and Peikert [27] to derive estimates for the hardness of
RLWE in this situation. We could have used more accurate estimates for the hardness
of RLWE, however we use the analysis in [27] so that our parameter size estimates for
our Somewhat Homomorphic Encryption scheme based on RLWR can be compared to
the parameters in other works such as [12, 24].

To compare our parameters with those of other schemes we use as our baseline the
parameter sizes published in [12] for the FV and BGV schemes and use the same anal-
ysis (see Section 4). For that reason we also select secret keys with Hamming weight
h = 64, ring constant cm = 1.3 and security parameter k = 80. We consider the simple
case where we are performing a balanced tree of multiplicative depth L, with ζ = 8
addition at each level.

2 After all this is exactly what happens in deployed cryptosystems in practice.

16 Anamaria Costache and Nigel P. Smart

Conservative Parameters: For the conservative parameters we obtain the following
equations from the analysis in Section 4, where we take σ = 3.2,

εRLWR ≤ (1 + 38.4 · q2,L−1/q1,L−1)t·φ(m)/2 ·
√
εRLWE < 2−k,

q1,L−1 > 38.4 · q2,L−1,

φ(m) ≥ log(q1,L−1/σ) · (−(log2 εRLWE) + 110)

7.2
(6)

where t is the number of RLWR samples which we give out. In our scheme this is the
number of elements in the public key which is given by

t = `+ dlogT q1,L−1e.

This then gives us a parameter space which we need to search to find suitable parameter
values.

Reckless Parameters: For the reckless parameters we obtain the following equations,
where again we take σ = 3.2,

q1,L−1 > 38.4 · q2,L−1,

φ(m) ≥ log(q1,L−1/σ) · (k + 110)

7.2
(7)

We are looking for parameters which satisfy the equations above and yield the
smallest possible ciphertext size. To do this we iterate through a list of possible values
for log2 qL−1. We then determine φ(m), as the smallest value which satisfies equation
(6) or (7).

We proceed to examine the noise bounds at each level: at level zero we have noise
B0 =

√
3 · ` · φ(m)/2, where we select ` = 80 since we are assuming a security level

of k = 80 bits. We then determine the size of pL−1, as follows: after ζ additions and
one multiplication we obtain a noise bound of

BL−1 = G(ζ ·B0, ζ ·B0).

We then reduce this via a Modulus Switch operation to a noise value of B = 2 ·BScale,
which will provide us with a lower bound on the prime pL−1. Repeating this for all
other levels we obtain

Bi = G(ζ · 2 ·BScale, ζ · 2 ·BScale).

This allows us, on reducing the noise back to an invariant of 2 · BScale, to define pi for
all other i. Thus we obtain the size of log2 qL−2, via

log2 q2,i = log2 q2,i+1 − log2 pi+1.

If we obtain log2 q2,i < 0 then we abort and pass to the next of log2 qL−1 value. To
decrypt correctly we will finally require, by equation 2, that

2 ·BScale ≤ ∆q2,0/(2 · cm),

Homomorphic Encryption without Gaussian Noise 17

which gives a lower bound on q2.
In the following tables we present the obtained values of N , q1,L−1 and q2,L−1 for

various levels L. We look at plaintext space sizes of p = 2 and p = 232; of course
the same parameter sizes will hold for any plaintext p of the same order of magnitude
as these. The value of T makes little difference to these main parameter values, so we
simply selected it to be equal to two. In a real implementation a larger value of T may
be preferred so as to reduce the size of the public key.

By way of comparison we also present in the table the equivalent values of φ(m)
and q for the BGV system found in [12]; whose methodology for assessing security we
have replicated in our analysis. We select BGV over the FV system for our analysis as
the BGV system outperforms FV for large plaintext moduli. We use the values from [12]
which correspond to our method of relinearization; a second method of relinearization
is presented for BGV in [12, 24]. Recall a BGV ciphertext consists of two elements in
Rq , thus the single q value takes the place of our values q1,L−1 and q2,L−1.

As a compact way of comparing our scheme with the BGV scheme we note that the
ciphertext size in our scheme is given by φ(m)·(log2 q1,L−1+log2 q2,L−1), whereas for
BGV it is given by 2·φ(m)·log2 q. Also recall that addition inRq requires φ(m)·log2 q
bit operations, and multiplication in Rq requires φ(m) · (log2 q)2 operations (assuming
elements are held in a DCRT like representation [24]). Thus ciphertext size is a good
proxy for computational efficiency. We gather our results in two tables, one representing
the reckless parameters 4 and one representing the conservative ones 4. We add to this
the ciphertex sizes (in Megabytes) for each set of parameters.

Reckless BGV Values
p L φ(m) ≈ log2 q1,L−1 log2 q2,L−1 |ct| φ(m) ≈ log2 q |ct|
2 2 810 32 26 0.006 1000 45 0.01
2 5 1890 73 66 0.031 2000 105 0.05
2 10 3630 139 133 0.118 4000 215 0.20
2 20 7560 288 281 0.513 8000 430 0.82
2 30 11700 444 438 1.230 12000 665 1.90
232 2 3050 117 111 0.083 2000 110 0.05
232 5 6640 253 247 0.396 5000 265 0.31
232 10 12700 481 475 1.447 9500 530 1.20
232 20 25100 951 945 5.673 19500 1070 4.97
232 30 37200 1411 1405 12.488 29000 1598 11.04

Conservative BGV Values
p L φ(m) ≈ log2 q1,L−1 log2 q2,L−1 |ct| φ(m) ≈ log2 q |ct|
2 2 1790 47 27 0.016 1000 45 0.01
2 5 3410 91 68 0.065 2000 105 0.05
2 10 6240 166 141 0.228 4000 215 0.20
2 20 12200 322 295 0.897 8000 430 0.82
2 30 18000 479 450 1.993 12000 665 1.90
232 2 5150 136 112 0.152 2000 110 0.05
232 5 10450 276 250 0.655 5000 265 0.31
232 10 18900 504 474 2.203 9500 530 1.20
232 20 37000 975 945 4.469 19500 1070 4.97
232 30 54000 1437 1404 18.288 29000 1598 11.04

18 Anamaria Costache and Nigel P. Smart

We can see that selecting ‘reckless’ parameters nearly halves the ring dimension
needed, as can be expected as we are ignoring the square-root security loss in the secu-
rity reduction in this case. In comparing to BGV, we immediately notice that for small
plaintext moduli the ciphertext sizes are relatively comparable. Indeed even our con-
servative parameters seem to be better when looking at parameters which support high
depth evaluations for small plaintext moduli. The benefit is less clear for large plain-
text moduli. Our main bottleneck seems to be the size of the public key and how to
efficiently produce fresh randomness, an issue we discuss in Appendix B.

Acknowledgements

This work has been supported in part by ERC Advanced Grant ERC-2015-AdG-IMPaCT,
by EPSRC via grant EP/N021940/1 and by the European Union’s H2020 Programme
under grant agreement number ICT-644209 (HEAT). The authors would like to thank
Fucai Luo and Fre Vercauteren for helpful discussions whilst writing this paper.

References

1. Martin R. Albrecht, Shi Bai, and Léo Ducas. A subfield lattice attack on overstretched
NTRU assumptions - cryptanalysis of some FHE and graded encoding schemes. In Matthew
Robshaw and Jonathan Katz, editors, Advances in Cryptology - CRYPTO 2016 - 36th An-
nual International Cryptology Conference, Santa Barbara, CA, USA, August 14-18, 2016,
Proceedings, Part I, volume 9814 of Lecture Notes in Computer Science, pages 153–178.
Springer, 2016.

2. Joël Alwen, Stephan Krenn, Krzysztof Pietrzak, and Daniel Wichs. Learning with rounding,
revisited - new reduction, properties and applications. In Ran Canetti and Juan A. Garay,
editors, Advances in Cryptology - CRYPTO 2013 - 33rd Annual Cryptology Conference,
Santa Barbara, CA, USA, August 18-22, 2013. Proceedings, Part I, volume 8042 of Lecture
Notes in Computer Science, pages 57–74. Springer, 2013.

3. Abhishek Banerjee, Chris Peikert, and Alon Rosen. Pseudorandom functions and lattices. In
David Pointcheval and Thomas Johansson, editors, Advances in Cryptology - EUROCRYPT
2012 - 31st Annual International Conference on the Theory and Applications of Crypto-
graphic Techniques, Cambridge, UK, April 15-19, 2012. Proceedings, volume 7237 of Lec-
ture Notes in Computer Science, pages 719–737. Springer, 2012.

4. Andrej Bogdanov, Siyao Guo, Daniel Masny, Silas Richelson, and Alon. On the hardness
of learning with rounding over small modulus. In Eyal Kushilevitz and Tal Malkin, editors,
Theory of Cryptography - 13th International Conference, TCC 2016-A, Tel Aviv, Israel, Jan-
uary 10-13, 2016, Proceedings, Part I, volume 9562 of Lecture Notes in Computer Science,
pages 209–224. Springer, 2016.

5. Joppe W. Bos, Kristin E. Lauter, Jake Loftus, and Michael Naehrig. Improved security for
a ring-based fully homomorphic encryption scheme. In Martijn Stam, editor, Cryptography
and Coding - 14th IMA International Conference, IMACC 2013, Oxford, UK, December 17-
19, 2013. Proceedings, volume 8308 of Lecture Notes in Computer Science, pages 45–64.
Springer, 2013.

6. Zvika Brakerski, Craig Gentry, and Vinod Vaikuntanathan. Fully homomorphic encryption
without bootstrapping. In Innovations in Theoretical Computer Science (ITCS’12), 2012.

Homomorphic Encryption without Gaussian Noise 19

7. Zvika Brakerski and Vinod Vaikuntanathan. Efficient fully homomorphic encryption from
(standard) LWE. In FOCS’11. IEEE Computer Society, 2011.

8. Zvika Brakerski and Vinod Vaikuntanathan. Fully homomorphic encryption from ring-LWE
and security for key dependent messages. In Advances in Cryptology - CRYPTO 2011,
volume 6841 of Lecture Notes in Computer Science, pages 505–524. Springer, 2011.

9. P. Campbell, M. Groves, and D. Shepherd. SOLILOQUY: A cautionary tale. ETSI 2nd
Quantum-Safe Crypto Workshop, 2014.

10. Jean-Sébastien Coron, Avradip Mandal, David Naccache, and Mehdi Tibouchi. Fully ho-
momorphic encryption over the integers with shorter public keys. In Advances in Cryptol-
ogy - CRYPTO 2011, volume 6841 of Lecture Notes in Computer Science, pages 487–504.
Springer, 2011.

11. Jean-Sébastien Coron, David Naccache, and Mehdi Tibouchi. Public key compression and
modulus switching for fully homomorphic encryption over the integers. In Advances in
Cryptology - EUROCRYPT 2012, volume 7237 of Lecture Notes in Computer Science, pages
446–464. Springer, 2012.

12. Ana Costache and Nigel P. Smart. Which ring based somewhat homomorphic encryption
scheme is best? In Kazue Sako, editor, Topics in Cryptology - CT-RSA 2016 - The Cryptog-
raphers’ Track at the RSA Conference 2016, San Francisco, CA, USA, February 29 - March
4, 2016, Proceedings, volume 9610 of Lecture Notes in Computer Science, pages 325–340.
Springer, 2016.

13. Ronald Cramer, Léo Ducas, Chris Peikert, and Oded Regev. Recovering short generators
of principal ideals in cyclotomic rings. In Marc Fischlin and Jean-Sébastien Coron, editors,
Advances in Cryptology - EUROCRYPT 2016 - 35th Annual International Conference on
the Theory and Applications of Cryptographic Techniques, Vienna, Austria, May 8-12, 2016,
Proceedings, Part II, volume 9666 of Lecture Notes in Computer Science, pages 559–585.
Springer, 2016.

14. Ivan Damgård, Valerio Pastro, Nigel P. Smart, and Sarah Zakarias. Multiparty computation
from somewhat homomorphic encryption. In Safavi-Naini and Canetti [31], pages 643–662.

15. Marten van Dijk, Craig Gentry, Shai Halevi, and Vinod Vaikuntanathan. Fully homomorphic
encryption over the integers. In Advances in Cryptology - EUROCRYPT’10, volume 6110 of
Lecture Notes in Computer Science, pages 24–43. Springer, 2010.

16. Léo Ducas and Daniele Micciancio. FHEW: bootstrapping homomorphic encryption in less
than a second. In Elisabeth Oswald and Marc Fischlin, editors, Advances in Cryptology - EU-
ROCRYPT 2015 - 34th Annual International Conference on the Theory and Applications of
Cryptographic Techniques, Sofia, Bulgaria, April 26-30, 2015, Proceedings, Part I, volume
9056 of Lecture Notes in Computer Science, pages 617–640. Springer, 2015.

17. Junfeng Fan and Frederik Vercauteren. Somewhat practical fully homomorphic encryption.
IACR Cryptology ePrint Archive, 2012:144, 2012.

18. Craig Gentry. A fully homomorphic encryption scheme. PhD thesis, Stanford University,
2009. http://crypto.stanford.edu/craig.

19. Craig Gentry. Fully homomorphic encryption using ideal lattices. In Michael Mitzenmacher,
editor, STOC, pages 169–178. ACM, 2009.

20. Craig Gentry and Shai Halevi. Implementing gentry’s fully-homomorphic encryption
scheme. In EUROCRYPT, volume 6632 of Lecture Notes in Computer Science, pages 129–
148. Springer, 2011.

21. Craig Gentry, Shai Halevi, Chris Peikert, and Nigel P. Smart. Ring switching in bgv-style ho-
momorphic encryption. In Ivan Visconti and Roberto De Prisco, editors, Security and Cryp-
tography for Networks - 8th International Conference, SCN 2012, Amalfi, Italy, September
5-7, 2012. Proceedings, volume 7485 of Lecture Notes in Computer Science, pages 19–37.
Springer, 2012.

20 Anamaria Costache and Nigel P. Smart

22. Craig Gentry, Shai Halevi, and Nigel Smart. Fully homomorphic encryption with polylog
overhead. In EUROCRYPT, volume 7237 of Lecture Notes in Computer Science, pages 465–
482. Springer, 2012.

23. Craig Gentry, Shai Halevi, and Nigel P. Smart. Better bootstrapping in fully homomorphic
encryption. In Marc Fischlin, Johannes A. Buchmann, and Mark Manulis, editors, Public
Key Cryptography - PKC 2012 - 15th International Conference on Practice and Theory
in Public Key Cryptography, Darmstadt, Germany, May 21-23, 2012. Proceedings, volume
7293 of Lecture Notes in Computer Science, pages 1–16. Springer, 2012.

24. Craig Gentry, Shai Halevi, and Nigel P. Smart. Homomorphic evaluation of the AES circuit.
In Safavi-Naini and Canetti [31], pages 850–867.

25. Craig Gentry, Amit Sahai, and Brent Waters. Homomorphic encryption from learning
with errors: Conceptually-simpler, asymptotically-faster, attribute-based. In Ran Canetti
and Juan A. Garay, editors, Advances in Cryptology - CRYPTO 2013, Part I, pages 75–92.
Springer, 2013.

26. Shai Halevi and Victor Shoup. Design and implementation of a homomorphic-encryption
library. manuscript, available at http://people.csail.mit.edu/shaih/pubs/
he-library.pdf, Accessed January 2015.

27. Richard Lindner and Chris Peikert. Better key sizes (and attacks) for lwe-based encryption.
In CT-RSA, volume 6558 of Lecture Notes in Computer Science, pages 319–339. Springer,
2011.

28. Adriana López-Alt, Eran Tromer, and Vinod Vaikuntanathan. On-the-fly multiparty com-
putation on the cloud via multikey fully homomorphic encryption. In Howard J. Karloff
and Toniann Pitassi, editors, Proceedings of the 44th Symposium on Theory of Computing
Conference, STOC 2012, New York, NY, USA, May 19 - 22, 2012, pages 1219–1234. ACM,
2012.

29. Vadim Lyubashevsky, Chris Peikert, and Oded Regev. On ideal lattices and learning with
errors over rings. In EUROCRYPT, volume 6110 of Lecture Notes in Computer Science,
pages 1–23, 2010.

30. Ron Rivest, Leonard Adleman, and Michael L. Dertouzos. On data banks and privacy ho-
momorphisms. In Foundations of Secure Computation, pages 169–180, 1978.

31. Reihaneh Safavi-Naini and Ran Canetti, editors. Advances in Cryptology - CRYPTO 2012
- 32nd Annual Cryptology Conference, Santa Barbara, CA, USA, August 19-23, 2012. Pro-
ceedings, volume 7417 of Lecture Notes in Computer Science. Springer, 2012.

32. Nigel P. Smart and Frederik Vercauteren. Fully homomorphic encryption with relatively
small key and ciphertext sizes. In Public Key Cryptography - PKC’10, volume 6056 of
Lecture Notes in Computer Science, pages 420–443. Springer, 2010.

A Multiplication Noise Analysis

In this section, we present the noise and correctness analyses corresponding to the mul-
tiplication steps.

Multiplication Step 1: Tensoring: We first verify that the three-element ciphertext
obtained after the first multiplication step does decrypt under s2 and after scaling by

1
∆2

q2,i

. The three element ciphertext formed in Section (3.2)

ct0mult = (v · v′, w · v′ + w′ · v, w · w′) = (d′0, d
′
1, d
′
2),

Homomorphic Encryption without Gaussian Noise 21

will indeed decrypt via the equation

⌈ 1

∆2
q2,i

(
d′2 −

q2,i
q1,i
· d′1 · s+

(
q2,i
q1,i

)2

· d′0 · s2
)⌋

=
⌈ 1

∆2
q2,i

(
w · w′ − q2,i

q1,i
(w · v′ + w′ · v) · s+

(
q2,i
q1,i

)2

· v · v′ · s2
)⌋

=
⌈ 1

∆2
q2,i

·
(
w − q2,i

q1,i
· v · s

)
·
(
w′ − q2,i

q1,i
· v′ · s

)⌋
=
⌈ 1

∆2
q2,i

·
(
∆q2,i ·m+ e

)
·
(
∆q2,i ·m′ + e′

)⌋
=
⌈ 1

∆2
q2,i

·
(
∆2
q2,i ·m ·m

′ +∆q2,i · (m · e′ +m′ · e) + e · e′
)⌋

= m ·m′ +
⌈m · e′ +m′ · e

∆q2,i

+
e · e′

∆2
q2,i

⌋
.

Multiplication Step 2: Reduction by ∆q2,i : Recall we re-wrote the elements d′k as

dk =
⌈p · d′k
q2,i

⌋
.

To analyse the noise growth in this step, we need to examine this rounding in more
detail via the equation

dk =
p · d′k
q2,i

+ δk,

where δi is a polynomial with coefficients in the range [−1/2, . . . , 1/2]. We write

δ = δ2 −
q2,i
q1,i
· δ1 · s+

(
q2,i
q1,i

)2

· δ0 · s2

and note that with high probability we expect that

‖δ‖can∞ ≤
√
3 · φ(m) + 8 · q2,i

q1,i
·
√
h · φ(m)/3 + 20 ·

(
q2,i
q1,i

)2

· h ·
√
φ(m)/3 = Bδ.

Recall we have ∆q2,i =
q2,i
p − εq2,i where 0 ≤ εq2,i < 1, which entails

d2 −
q2,i
q1,i
· d1 · s+

(
q2,i
q1,i

)2

· d0 · s2

=
p

q2,i

(
d′2 −

q2,i
q1,i
· d′1 · s+

(
q2,i
q1,i

)2

· d′0 · s2
)

+ δ

=
p

q2,i
·
(
∆2
q2,i ·m ·m

′ +∆q2,i · (m · e′ +m′ · e) + e · e′
)
+ δ

22 Anamaria Costache and Nigel P. Smart

=
p

q2,i
·
(
∆q2,i · (

q2,i
p
− εq2,i) ·m ·m′

+∆q2,i · (m · e′ +m′ · e) + e · e′
)
+ δ

= m ·m′ ·∆q2,i −
p ·∆q2,i · εq2,i

q2,i
·m ·m′

+
p

q2,i
·∆q2,i · (m · e′ +m′ · e) + p · e · e′

q2,i
+ δ

= m ·m′ ·∆q2,i + emult.

We bound the canonical norm of emult as follows, using the fact that |p·∆q2,i/q2,i| < 1.

‖emult‖can∞ ≤ ‖εq2,i ·m ·m′‖can∞ + ‖m · e′‖can∞ + ‖m′ · e‖can∞

+
p · ‖e‖can∞ · ‖e′‖can∞

q2,i
+ ‖δ‖can∞

≤ 4 · p2 · φ(m)/3 + 6 · (B +B′) · p ·
√
φ(m)/12 +

p ·B ·B′

q2,i
+Bδ

=: F (B,B′).

Multiplication Step 3: Modular Reduction: Recall that in this step we set

f0 = d0 (mod q21,i) = d0 + ε0 · q21,i,
f1 = d1 (mod q1,i) = d1 + ε1 · q1,i,
f2 = d2 (mod q2,i) = d2 + ε2 · q2,i.

In this form, ct2mult = (f0, f1, f2) decrypts as

⌈ 1

∆q2,i

(
f2 −

q2,i
q1,i
· f1 · s+

(
q2,i
q1,i

)2

· f0 · s2
)⌋

. (8)

To analyse the noise term in the above we expand the inner bracket as follows:

f2 −
q2,i
q1,i
· f1 · s+

(
q2,i
q1,i

)2

· f0 · s2

= d2 + ε2 · q2,i −
q2,i
q1,i
· (d1 + ε1 · q1,i) · s+

(
q2,i
q1,i

)2

·
(
d0 + ε0 · q21,i

)
· s2

= d2 + ε2 · q2,i −
q2,i
q1,i
· d1 · s−

q2,i
q1,i
· ε1 · q1,i · s

+

(
q2,i
q1,i

)2

· d0 · s2 +
(
q2,i
q1,i

)2

· ε0 · q21,i · s2

= d2 −
q2,i
q1,i
· d1 · s+

(
q2,i
q1,i

)2

· d0 · s2 + q2,i · (ε2 − ε1 · s+ q2,i · ε0 · s2)

Homomorphic Encryption without Gaussian Noise 23

= m ·m′ ·∆q2,i + emult + εmult.

We now proceed to analyse the new noise term εmult.∥∥∥εmult

∥∥∥can
∞
≤
∥∥∥q2,i · (ε2 − ε1 · s+ q2,i · ε0 · s2)

∥∥∥can
∞

≤ q2,i ·
(∥∥∥ε2∥∥∥can

∞
+
∥∥∥ε1 · s∥∥∥can

∞
+ q2,i ·

∥∥∥ε0 · s2∥∥∥can
∞

)
We now use the expansions ε0 = (f0+d0)/q

2
1,i etc, and in what follows we will assume

that the f0 (resp. f1 and f2) behave as random polyomials with coefficients modulo q21,i
(resp. q1,i and q2,i).

Please do this again, and expand every thing to make it easy to follow, and also
to AVOID MISTAKES. You had TONS of mistakes below. So many it was not even
worth me keeping what you had written, so I just deleted it and am starting again. Dont
skip steps and try to do them in your head. You clearly cannot, as you make so many
mistakes. Expand everything, and reduce each thing in turn. And do proper indentation!
And make sure connecting sentences make sense and refer correctly to the stuff you are
doing! I have done the first few lines. Please do the rest properly! Also check I have not
made mistakes, as I am doing this in a rush at the airport. This leads to:∥∥∥εmult

∥∥∥can
∞
≤ q2,i ·

(∥∥∥ε2∥∥∥can
∞

+
∥∥∥ε1 · s∥∥∥can

∞
+ q2,i ·

∥∥∥ε0 · s2∥∥∥can
∞

)
≤ q2,i ·

(‖f2‖can∞
q2,i

+
‖d2‖can∞
q2,i

+
‖f1 · s‖can∞

q1,i
+
‖d1 · s‖can∞

q1,i

+ q2,i ·
‖f0 · s2‖can∞

q21,i
+ q2,i ·

‖d0 · s2‖can∞
q21,i

)
≤ ‖d2‖can∞ +

q2,i · ‖d1 · s‖can∞
q1,i

+
q22,i · ‖d0 · s2‖can∞

q21,i

+ ‖f2‖can∞ +
q2,i · ‖f1 · s‖can∞

q1,i
+
q22,i · ‖f0 · s2‖can∞

q21,i

≤ . . .

So now in the above work out the bounds on the terms using the fi using the fact they
are random. Note that f1 is multiplied by s and f0 is multiplied by s2. You utterly failed
to notice this in your analysis! We then use the fact that

dk =
p · d′k
q2,i

+ δk.

To simplify further Again EXPAND out things slowly so you dont make mistakes!∥∥∥εmult

∥∥∥can
∞
≤ . . .

=: Bε.

24 Anamaria Costache and Nigel P. Smart

Multiplication Step 4: Relinearization: Recall that in this step we set

c0 = f1 +

d2·logT (q1,i)e∑
j=0

f0,j · aj ,

c1 = f2 +

d2·logT (q1,i)e∑
j=0

f0,j · bj .

Checking correctness,

1

∆q2,i

(
−q2,i
q1,i
· c0 · s+ c1

)
=

1

∆q2,i

(
− q2,i
q1,i
· f1 · s−

q2,i
q1,i
· s ·

2·dlogT (q1,i)e∑
j=0

f0,j · aj

+ f2 +

2·dlogT (q1,i)e∑
j=0

f0,j · bj
)

=
1

∆q2,i

(
f2 −

q2,i
q1,i
· f1 · s−

q2,i
q1,i
· s ·

2·dlogT (q1,i)e∑
j=0

f0,j · aj

+

2·dlogT (q1,i)e∑
j=0

f0,j ·
q2,i
q1,i
· aj · s

+

2·dlogT (q1,i)e∑
j=0

f0,j ·
(
q2,i
q1,i

)2

· T j · s2

+

2·dlogT (q1,i)e∑
j=0

f0,j · τj
)

=
1

∆q2,i

(
d2 −

q2,i
q1,i
· f1 · s−

q2,i
q1,i
· s ·

2·dlogT (q1,i)e∑
j=0

f0,j · aj

+
q2,i
q1,i
· s ·

2·dlogT (q1,i)e∑
j=0

f0,j · aj

+

(
q2,i
q1,i

)2

· s2 ·
2·dlogT (q1,i)e∑

j=0

f0,j · T j

+

2·dlogT (q1,i)e∑
j=0

f0,j · τj
)

=
1

∆q2,i

(
f2 −

q2,i
q1,i
· f1 · s+

(
q2,i
q1,i

)2

· f0 · s2

Homomorphic Encryption without Gaussian Noise 25

+

2·dlogT (q1,i)e∑
j=0

f0,j · τj
)

=
1

∆q2,i

(
m ·m′ ·∆q2,i + emult + εmult +

2·dlogT (q1,i)e∑
j=0

f0,j · τj
)
.

Which is exactly as required, bar an additional noise term we need to deal with. We
bound it as

∥∥∥ 2·dlogT (q1,i)e∑
j=0

f0,j · τj
∥∥∥can
∞
≤ 2 · dlogT (q1,i)e · φ(m) · T/3.

Explain why f0,j ·τj is bounded by φ(m) ·T/3. Maybe call this boundB4 for the bound
from the fourth step, and Bε you can call B3. Then F (., .) could be B2(., .). Might be
clearer then
Putting all three steps together we obtain a multiplication operation which increases the
noise inherent in the output ciphertext by a value bounded, in the canonical norm, by

∥∥∥emult + εmult +

2·dlogT (q1,i)e∑
j=0

f0,j · τj
∥∥∥can
∞
≤ F (B,B′) + 2 · dlogT (q1,i)e · φ(m) · T/3 +Bε

=: G(B,B′).

Tidy this up, it breaks a line!

B Compact Public Key

At its heart our scheme is a symmetric key homomorphic encryption scheme. We then
use the standard naive method to convert it into a public key scheme, by placing a
large number of encryptions of zero into the public key, leading to a large public key.
The RLWE based schemes use a different methodology, namely they place a single
encryption of zero into the public key, and then present an efficient methodology to
randomize this into another encryption of zero for the encryption method. At present no
such direct methodology (which does not pass via some RLWE assumption) is available
for RLWR encryption schemes, meaning the public key is relatively large compared to
schemes such as BGV. Replicating this procedure for RLWR is somewhat trickier. To
the best of our knowledge, the only way to do so efficiently is to slightly modify the
hardness problem we are using.

So consider the following. Pick a uniformly at random from Rq1,i as before, but

instead of the usual pair (a,
⌈
a · s

⌋
q1,i,q2,i

) ∈ Rq1,i × Rq2,i we consider the slightly

modified RLWR pair

(
⌈
a
⌋
q1,i,q2,i

,
⌈
a · s

⌋
q1,i,q2,i

) = (ã, b̃) ∈ Rq2,i ×Rq2,i .

26 Anamaria Costache and Nigel P. Smart

Then consider a lift of the pair to the ring Rq1,i .

a↑ =
⌈
ã · q1,i

q2,i

⌋
+ ra

b↑ =
⌈
b̃ · q1,i
q2,i

⌋
+ rb,

where we choose the ri according to (say) a bounded uniform distribution. Picking a
small u← Rq1,i and bringing this back down to Rq2,i , we obtain new ring elements

a′ =
⌈
a↑ · u

⌋
q1,i,q2,i

b′ =
⌈
b↑ · u

⌋
q1,i,q2,i

.

In the above, because we have
s · a′ ≈ b′,

this can be thought of as a modified RLWE instance. The error distribution, however is
neither the usual Gaussian nor uniform. Therefore, we cannot make a concrete statement
about the security of this ’modified’ RLWE. The problem of how this relates to regular
RLWE remains open.

Writing out the result of the procedure, we end up with something of the form

a′ ≈ u · ã+
⌈
u+ ra

⌋
q1,i,q2,i

and similarly for b′. Since we have preserved the term ã, there is no need to lift that
element and so we can simplify the procedure by simply sampling the elements ra and
u in Rq1,i and mapping down as described above.

This procedure has the disadvantage of modifying the underlying hardness prob-
lems. Indeed, we discussed the unknown distribution in using the ’modified’ RLWE
above. Further, we modify the RLWR sample

(a,
⌈
a · s

⌋
q1,i,q2,i

) ∈ Rq1,i ×Rq2,i

and instead consider a pair of elements

(ã, b̃) = (
⌈
a
⌋
q1,i,q2,i

,
⌈
a · s

⌋
q1,i,q2,i

) ∈ Rq2,i ×Rq2,i .

The question of how the security of the sample

(
⌈
a
⌋
q1,i,q2,i

,
⌈
a · s

⌋
q1,i,q2,i

)

relates to that of
(a,
⌈
a · s

⌋
q1,i,q2,i

)

remains open.

