
The Algebraic Group Model and its
Applications

Eike Kiltz and Julian Loss

Ruhr University Bochum
{eike.kiltz,julian.loss}@rub.de

Abstract. One of the most important tools for assessing hardness as-
sumptions in cryptography is the Generic Group Model (GGM). Over the
past two decades, several such assumptions have been analyzed within
this model. While a proof in the GGM can certainly provide some measure
of confidence in an assumption, its scope is rather limited since it does
not capture group-specific algorithms that make use of the representation
of the group.
To overcome this limitation, we propose the Algebraic Group Model
(AGM), a model that lies in between the standard model and the GGM.
It is the first restricted model of computation covering group-specific
algorithms but still allowing to derive simple and meaningful security
statements. We are able to show that several important assumptions,
among them the Computational Diffie-Hellman, the Strong Diffie-Hellman,
and the interactive LRSW assumptions, are equivalent to the Discrete
Logarithm assumption in the AGM. Moreover, in combination with known
lower bounds on the Discrete Logarithm assumption in the GGM, our
results can be used to derive lower bounds for all the above mentioned
assumptions in the GGM.
Keywords. Algebraic algorithms, generic group model, security reduc-
tions, cryptographic assumptions.

1 Introduction

Starting with Nechaev [30] and Shoup [34], much work has been devoted to
studying the computational complexity of problems with respect to generic
group algorithms over cyclic groups [10,29,28]. At the highest level, generic
group algorithms are algorithms that do not exploit any special structure of the
representation of the group elements and thus can be applied in any cyclic group.
More concretely, a generic algorithm may use only the abstract group operation
and test whether two group elements are equal. This property makes it possible
to prove information-theoretic lower bounds on the running time for generic
algorithms. Such lower bounds are of interest since for many important groups,
in particular for elliptic curves, no helpful exploitation of the representation is
currently known.

The class of generic algorithms encompasses many important algorithms
such as the baby-step giant-step algorithm and its generalization for composite

2 E. Kiltz, J. Loss

order groups (also known as Pohlig-Hellman [21] algorithm) as well as Pollard’s
rho algorithm [32]. However, part of the common criticism against the generic
group model is that many algorithms of practical interest are in fact not generic.
Perhaps most notably, index-calculus and some factoring attacks fall outside of
the family of generic algorithms, as they are applicable only over groups in which
the elements are represented as integers. Another example is the trivial discrete
logarithm algorithm over the additive group Zp, which is the identity function.

With this motivation in mind, a number of previous works consider extensions
of the generic group model [33,25,3,22]. Mostly relevant seems to be [22] which
considers assumptions over bilinear groups with a map e : G1×G2 −→ G3, where
G1 and G2 are modeled as generic groups, and G3 is modeled in the standard
model. (This is motivated by the fact that in all practical bilinear groups, G1
and G2 are elliptic curves and G3 is a sub-group of Z∗p, which is not generic.)
However, it seems that so far, none of them capture algorithms which can freely
exploit the representation of the group. In this work, we propose a restricted
model of computation which does exactly this.

1.1 Algebraic algorithms

Let G be a cyclic group of prime order p. Informally, we call an algorithm Aalg
algebraic if it fulfills the following requirement: whenever Aalg outputs a group
element Z ∈ G, it also has to output a “representation” ~z = (z1, . . . , zt) ∈ Ztp such
that Z =

∏
i Lzi

i , where ~L = (L1, . . . ,Lt) is the list of all group elements that
were given to Aalg during its execution so far. Note that the classical “knowledge
of exponent assumption” is given by definition in this model.

Such algebraic algorithms were first considered by Boneh and Venkatesan
[11] who considered them in the context of straight-line programs computing
polynomials over the ring of integers Zn, where n = pq. Later, [31] gave a
more formal and general definition of algebraic algorithms using the notion
of an extractor algorithm which efficiently computes the representation ~z. In
our security definitions and experiments, we distinguish group elements from
all other parameters at a syntactical level to rule out pathological exploits of
the model. It is not hard to see that our definition of algebraic algorithms is
equivalent to the one given in [31]; we discuss this in more detail in Section
2. While this class of algorithms certainly captures a much broader class of
algorithms than the class of generic algorithms (e.g., index-calculus algorithms),
it was first noted in [31] that the class of algebraic algorithms actually includes
the class of generic algorithms. Extending [11], algebraic algorithms have been
studied intensively [17,31,12,19,2,24] but, surprisingly, with the sole purpose to
show negative results. More precisely, these works prove the impossibility of the
existence of an algebraic security reduction between two cryptographic primitives
(with certain good parameters).

Algebraic Group Model 3

1.2 Algebraic Group Model

We propose the algebraic group model (AGM) in which all adversaries are modeled
as algebraic. In contrast to the generic group model, we are not able to prove
information-theoretic lower bounds on the complexity of an algebraic adversary.
Similar to the standard model, in the AGM one proves security implications
via reductions. Specifically, A ⇒alg B implies that an algebraic adversary Balg
against some primitive B can be transformed into an algebraic adversary Aalg
against some other primitive A with (polynomially) related running times and
success probabilities. It follows that if A is secure against algebraic adversaries,
so is B. To the best of our knowledge, our work is the first to consider algebraic
algorithms in the role of an active adversary within a security game.
Concrete Security Implications in the AGM. The hope is that in the AGM
one can exploit the algebraic nature of the adversary to obtain stronger security
implications. Indeed, we are able to show that several important computational
assumptions are in fact equivalent to the Discrete Logarithm assumption over
prime order groups in the AGM, including the following:

– Diffie-Hellman assumption [18]
– (Interactive) strong Diffie-Hellman assumption [1]
– (Interactive) LRSW assumption [26,16].

The Strong Diffie-Hellman Assumption is important since it is equivalent to
the IND-CCA security of Hashed ElGamal encryption (also known as Diffie-
Hellman Integrated Encryption Standard) in the random oracle model [1]. The
LSRW assumption (named after the authors of [26]) is of great importance
since it is equivalent to the (UF-CMA) security of Camenisch-Lysyanskaya
(CL) signatures [16]. CL signatures are the main building block for anonymous
credentials [16,7,6], group signatures [16,5], Ecash [14], unclonable functions [13],
batch verification [15], and RFID encryption [4]. By our results, the security of
all these schemes is implied by the discrete logarithm assumption in the AGM.

Our result can be interpreted as follows. Every algorithm attacking the above
mentioned Diffie-Hellman based problems/schemes, has to solve the standard
discrete logarithm problem directly, unless the algorithm relies on inherently non-
algebraic operations. In particular, powerful techniques such as the index-calculus
algorithms do not seem to help in solving these problems.

Furthermore, we show tight equivalence of IND-CCA1 security of the standard
ElGamal Encryption and a decisional variant of the q-strong Diffie-Hellman
problem in the algebraic group model.
Relation to the Generic Group model. The algebraic group model is
stronger (in the sense that is puts more restrictions on the attackers) than the
standard model, but weaker than the generic group model. In spite of this, all of
our reductions are purely generic algorithms. As mentioned above, any generic
algorithm can be modeled within the AGM. In particular, combining arbitrary
generic operations with algebraic ones will yield an algebraic algorithm. This
suggests the following idea. Let A and B be two computational problems and

4 E. Kiltz, J. Loss

let Salg be an algebraic algorithm that solves problem B. If we can convert Salg
by means of a generic reduction algorithm Rgen into a solver Talg for problem
B, then clearly, Talg is also an algebraic algorithm. However, we obtain an even
stronger statement for free: Namely, if Sgen is a generic algorithm solving A,
then Tgen is a generic algorithm solving B. This means that many results in the
algebraic adversary model directly carry over to the generic group model. For this
reason, we believe that our model offers an alternative, perhaps simpler method of
proving the hardness of computational problems within the GGM. This applies in
particular for interactive assumptions which can be rather difficult to analyze in
the GGM. For example, we prove that the discrete logarithm assumption implies
the LRSW assumption in the AGM. As the discrete logarithm assumption holds
in the GGM, we instantly obtain that the LRSW assumption holds in the GGM.
To the best of our knowledge, no rigorous proof for the hardness of the LRSW
assumption exists within the GGM; [26] provide only a proof sketch.

We also remark that proofs in the AGM have an inherently different interpre-
tation than proofs in the GGM. To analyze the hardness of an assumption in the
GGM, one must explicitly augment the model by any functionality that is offered
by the structure of the group. As an easy example, we consider a group G which
is equipped with a symmetric pairing e : G×G −→ GT . e can be modeled in the
GGM as an oracle which answers decisional Diffie-Hellman queries. However, it
is not known whether e can be used to gather even further information about
the elements of G. Though it is widely believed that this is not the case, a proof
in the GGM can not help in answering this question, because the GGM itself is
based on the conjecture that e does not offer any functionality beyond a DDH
oracle. In contrast, the AGM implicitly captures any such exploit without the
need of having to model it and considers the relation between two problems
instead of their individual hardness. This means that if one can reduce A to
B in the AGM and A is conjectured to remain hard with respect to algebraic
algorithms, even when given e, then also B remains hard. A similar statement
can not be inferred in the GGM. Thus, the AGM allows for a more fine grained
assessment of the hardness of computational problems than the GGM.

The gap between the two models becomes even more apparent if one considers
structural properties of G which can not meaningfully be modeled as an oracle
in the GGM. As an example, consider the Jacobi symbol, which was shown to be
generically hard to compute in [23]. Indeed, it was left as an open problem in [3]
to reexamine the equivalence of factoring and breaking the RSA assumption
if an additional oracle for the Jacobi symbol were given. Though their results
are stated in the generic ring model rather than the GGM, it seems they are
similarly confronted with the issue of explicitly modeling such an oracle.

Limitations of the AGM. As already noted, one of the main benefits of our
model over the GGM is the ability to reason about algorithms that arbitrarily
exploit the structure of the group. So which algorithms are not covered in this
manner? Obviously, outputting an obliviously sampled group element (with
unknown representation) is forbidden. On the other hand, in order to sample
a random group element, one can sample instead r ∈ Zp at random and then

Algebraic Group Model 5

compute gr, thus obtaining in the process a representation. This view coincides
with the GGM of Maurer [28] and excludes the possibility of obliviously sampling
a random group element. For this reason, our model is strictly weaker than the
one from [28]. In contrast, the GGM defined by Shoup [34] does allow for such a
sampling process. We address this issue by modeling the process of algorithm Aalg
sampling a random group element X obliviously through an additional oracle O()
that can be called during the execution of Aalg. By definition, the outputs of O()
are added to the list ~L. In this manner, Aalg trivially obtains a representation
for X, which resolves the problem. We have thus argued that both versions of
the GGM (i.e., the ones by Maurer and Shoup) are strictly stronger than the
AGM. Also note that simulating O() to Aalg as part of a reduction is straight
forward and always possible; the reduction simply samples r and returns gr to
the adversary. As the reduction knows r, adding O() to an experiment does not
change it and is completely without loss of generality. From a practical point of
view, it seems that generating and outputting a random group element without
knowing a representation is generally not of much help. We therefore believe that
the AGM captures most algorithms of practical interest.

Finally, we remark that all of our results require that the group be of prime
order. Generalizing them to composite-order groups would require a more in-
volved analysis. Generic hardness bounds for composite-order groups have been
considered in [34,29,28].

Further related work. [20] consider the LRSW assumption over a group
of composite order and prove it secure under certain non-interactive hardness
assumptions that can be shown to hold in the GGM.

2 Algebraic Algorithms

Algorithms. We denote by s $← S the uniform sampling of the variable s from
the (finite) set S. All our algorithms are (unless stated otherwise) probabilistic
and written in uppercase letters A,B. To indicate that algorithm A runs on some
inputs (x1, x2, ...) and returns y, we write y $← A(x1, x2, ...). If additionally, A
has access to an algorithm B (via oracle access) during its execution, we write
y $← AB(x1, x2, ...).

Security games. We use a variant of (code-based) security games [9]. In game
Gpar (defined relative to a set of parameters par), an adversary A interacts with
a challenger that answers oracle queries issued by A. It has a main procedure and
(possibly zero) oracle procedures which describe how oracle queries are answered.
We denote the output of a game Gpar between a challenger and an adversary A
via GA

par. A is said to win if GA
par = 1. We define the advantage of A in Gpar as

AdvG
par,A := Pr[GA

par = 1] and the running time of GA
par as TimeG

par,A.

Security Reductions. Let G,H be security games. We write Gpar
(∆ε, ∆t)=⇒ Hpar if

there exists an algorithm R (called (∆ε, ∆t)-reduction) such that for all algorithms

6 E. Kiltz, J. Loss

cdhA
G

00 x, y $← Zp
01 (X,Y) := (gx, gy)
02 Z $← A(X,Y)
03 Return Z = gxy

cdhAalg
G

00 x, y $← Zp
01 (X,Y) := (gx, gy)
02 [Z]~z $← Aalg(X,Y)
03 Return Z = gxy

Fig. 1. Left: Algebraic game cdh relative to group description G = (G, g, p) and
adversary A. All group elements are written in bold, uppercase letters. Right: Algebraic
game cdh relative to group description G = (G, g, p) and algebraic adversary Aalg. The
algebraic adversary Aalg additionally returns a representation ~z = (a, b, c) of Z such
that Z = gaXbYc.

B, algorithm A defined as A := RB satisfies

AdvG
par,A ≥

1
∆ε
·AdvH

par,B, TimeG
par,A ≤ ∆t ·TimeH

par,B.

2.1 Algebraic Security Games and Algorithms

We consider algebraic security games GG for which we set par to a fixed group
description G = (G, g, p), where G is a cyclic group of prime order p with generator
g. In algebraic security games, we syntactically distinguish between elements of
group G (written in bold, uppercase letters, e.g., A) and all other elements. As an
example of an algebraic security game, consider the Computational Diffie-Hellman
game cdhA

G , depicted in Figure 1 (left).
We now define algebraic algorithms. Intuitively, the only way for an algebraic

algorithm to come up with a new group element Z is to derive it via group
multiplications from known group elements.

Definition 1. (Algebraic algorithm) An algorithm Aalg executed in an algebraic
game GG is called algebraic if for all group elements Z that Aalg outputs (i.e.,
the elements in bold, uppercase letters), it additionally provides the representation
of Z relative to all previously received group elements. That is, if ~L is the list
of group elements L0, ...,Lm ∈ G that Aalg has received so far (w.l.o.g. L0 = g),
then Aalg also has to provide a vector ~z such that Z =

∏
i Lzi

i . We denote such
an output as [Z]~z.

Remarks on Our Model. Algebraic algorithms were first considered in [11,31]
where they are defined using an additional extractor algorithm which computes
for an output group element a representation in the basis of ~L. We believe that
our definition gives a simpler and cleaner definition of algebraic algorithms. If
one assumes the extractor algorithm to require constant running time, then our
definition is easily seen to be equivalent to theirs. Indeed, this view makes sense
for algorithms placed in the GGM since the representation ~z trivially follows from
the description of the algorithm. However, if running the extractor algorithm
imposes some additional cost, then this will clearly affect the running times of

Algebraic Group Model 7

our reductions. However, if the cost of the extractor is similar to that of the
solver, then reductions in our model that neither call an algebraic solver multiple
times or receive from it a non-constant amount of group elements (along with
their representations), will remain largely the same in both models.

We also remark that the syntactic distinction of group elements in our games
is necessary to rule out pathological examples in which an adversary receives
“disguised” group elements and is forced to output an algebraic representation of
this element. To see why this is necessary, consider the following algorithm Aalg
that solves the discrete logarithm problem: Aalg disguises its problem instance
X = gx as X′ := X‖⊥. This way X′ is formally not a group element but from X′
one can efficiently reconstruct X (and vice-versa). Consider the trivial algebraic
algorithm Balg, which on input (g,X′) extracts the disguised group element X
and outputs it in a canonical form. Since Balg is algebraic, it must output a
representation of X in g, which can only be the discrete logarithm, x. Clearly, our
syntactical distinction rules out such an exploit, since now the game recognizes
X′ as a group element (at a syntactical level).

Finally, we slightly abuse notation and let an algebraic algorithm also represent
output group elements as combinations of previous outputs. This makes some
of our proofs easier and is justified since all previous outputs must themselves
have been given along with an according representation. Therefore, one can
always recompute a representation that depends only on the initial inputs to the
algebraic algorithm.
Integrating with Random Oracles in the AGM. As mentioned above,
an algebraic algorithm Aalg that samples (and outputs) a group element X
obliviously, i.e., without knowing its representation, is not algebraic. This appears
to be problematic if one wishes to combine the AGM with the Random Oracle
Model [8]. However, group elements output by the random oracle are included by
definition in the list ~L. This means that for any such element, a representation is
trivially available to Aalg.

2.2 Generic Security Games and Algorithms

Generic algorithms Agen are only allowed to use generic properties of group G.
Informally, an algorithm is generic if it works regardless of what group it is run in.
This is usually modeled by giving an algorithm indirect access to group elements
via abstract handles. It is straight forward to translate all of our algebraic games
into games that are syntactically compatible with generic algorithms accessing
group elements only via abstract handles.

We say that winning algebraic game GG is (ε, t)-hard1 in the generic group
model if for every generic algorithm Agen it holds that

TimeG
G,Agen

≤ t =⇒ AdvG
G,Agen

≤ ε.

1 We remark that usually in the generic group model one considers group operations
(i.e., oracle calls), instead of the running time. In our context, it is more convenient
to measure the running time instead, assuming every oracle call takes one unit time.

8 E. Kiltz, J. Loss

As an important example, consider the algebraic Discrete Logarithm Game
dlogG (Figure 2) which is dlogG is

(
t2/p, t

)
-hard in the generic group model

[34,28].
We assume that a generic algorithm Agen additionally provides the representa-

tion of Z relative to all previously received group elements, for all group elements
Z that it outputs. This assumption is w.l.o.g. since a generic algorithm can only
obtain new group elements by multiplying two known group elements; hence it
always knows a valid representation. This way, every generic algorithm is also an
algebraic algorithm.

Furthermore, if Agen is a generic algorithm and Balg is an algebraic algorithm,
then Aalg := ABalg

gen is also is an algebraic algorithm. We refer to [28] for more
information of generic algorithms.

2.3 Generic security reductions between algebraic security games
Let GG and HG be two algebraic security games. We write GG (∆ε, ∆t)=⇒algHG , if there
exists a generic algorithm Rgen (called generic (∆ε, ∆t)-reduction) such that for
every algebraic algorithm Balg, algorithm Aalg defined as Aalg := RBalg

gen satisfies

AdvG
G,Aalg

≥ 1
∆ε
·AdvH

G,Balg
, TimeG

G,Aalg
≤ ∆t ·TimeH

G,Balg
.

Note that we deliberately require reduction Rgen to be generic. Hence, if Balg

is algebraic, then Aalg := RBalg
gen is algebraic; if Balg is generic, then Aalg := RBalg

gen is
generic. If one is only interested in algebraic adversaries, then it is sufficient to
require reduction Rgen to be algebraic. But in that case one can no longer infer
that Aalg := RBalg

gen is generic in case Balg is generic.
Composing information theoretic lower bounds with reductions in
the AGM.
Lemma 1. Let GG and HG be algebraic security games such that GG (∆ε, ∆t)=⇒algHG
and winning GG is (ε, t)-hard in the GGM. Then, HG is (ε ·∆ε, t/∆t)-hard in
the GGM.
Proof. Let Bgen be a generic algorithm playing in game HG . Then there exists a
generic algorithm Aalg := RBalg

gen and such that

AdvG
G,Aalg

≥ 1
∆ε
·AdvH

G,Balg
, TimeG

G,Aalg
≤ ∆t ·TimeH

G,Balg
.

If TimeH
G,Balg

≤ t/∆t, then

TimeG
G,Aalg

≤ ∆t ·TimeH
G,Balg

≤ t.

Since winning GG is (ε, t)-hard in the GGM, it follows that

ε ≥ AdvG
G,Aalg

≥ 1
∆ε
·AdvH

G,Balg

and thus ε∆ε ≥ AdvH
G,Balg

, which is equivalent to HG being (ε∆ε, t/∆t)-hard in
the GGM.

Algebraic Group Model 9

3 The Diffie-Hellman Assumption and Variants

In this section we consider some variants of the standard Diffie-Hellman assump-
tion [18] and prove them to be equivalent to the discrete logarithm assumption
(defined via algebraic game dlogG of Figure 2) in the algebraic group model.

3.1 Computational Diffie-Hellman

Consider the Square Root Diffie-Hellman Assumption [27] described in algebraic
game sq-dhG and the Linear Combination Diffie-Hellman Assumption described
in algebraic game lc-dhG (both in Figure 2).

As a warm-up we now prove that the Discrete Logarithm assumption is
tightly equivalent to the Diffie-Hellman, the Square Diffie-Hellman, and the
Linear Combination Diffie-Hellman Assumption in the Algebraic Group Model.

sq-dhA
G

00 x $← Zp
01 X := gx

02 Z $← A(X)
03 Return Z = g(x2)

lc-dhA
G

00 x, y $← Zp
01 (X,Y) := (gx, gy)
02 (Z, u, v, w) $← A(X,Y)
03 Return Z = gux

2+vxy+wy2

∧ (u 6= 0 ∨ v 6= 0 ∨ w 6= 0)

dlogA
G

00 x $← Zp
01 X := gx

02 z $← A(X)
03 Return z = x

Fig. 2. Square Diffie-Hellman Game sq-dh, Linear Combination Diffie-Hellman Game
lc-dh, and Discrete Logarithm Game dlog relative to G and adversary A.

Theorem 1. dlogG
(1,1)=⇒alg

{
cdhG , sq-dhG

}
and dlogG

(3,1)=⇒alglc-dhG .

Proof. Let Balg be an algebraic adversary executed in game sq-dhG , cf. Fig-
ure 3. As Balg is an algebraic adversary, it returns a solution Z together with a
representation a, b ∈ Zp such that

Z = gx
2

= (gx)agb (1)

holds. We now show how to construct a generic reduction Rgen that calls Balg

exactly one time such that for Aalg := RBalg
gen we have

Advdlog
G,Aalg

= Advsq-dh
G,Balg

.

Rgen works as follows. It inputs its discrete logarithm instance X and runs Balg
on X. Suppose Balg is successful. Equation (1) is equivalent to the quadratic
equation x2 − ax− b ≡p 0 with at most two solutions in x. Note that in general
such equations are not guaranteed to have a solution but since the representation
is valid and Balg is assumed to be correct, there exists at least one solution for

10 E. Kiltz, J. Loss

sq-dhBalg
G

00 x $← Zp
01 X := gx

02 [Z](b,a)
$← Balg(X)

03 Return Z = g(x2)

Fig. 3. Algebraic adversary Balg playing in sq-dhG .

x. Rgen can test which one (out of the two) is the correct solution x by testing
against X = gx. Moreover, it is easy to see that Rgen only performs generic group
operations and is therefore generic. Hence, Aalg := RBalg

gen is algebraic, which proves

dlogG
(1,1)=⇒algsq-dhG .

The statement dlogG
(1,1)=⇒ algcdhG easily follows as it is straightforward to

construct an adversary against sq-dhG from any adversary against cdhG that
runs in the same time and has the same probabiltiy of success.

Thus it remains to show that sq-dhG
(3,1)=⇒alglc-dhG . Given an algebraic solver

Calg executed in game lc-dhG , we construct an adversary Balg against sq-dhG
as follows: On input X = gx, Balg samples r $← Zp and computes either (X, gr),
(gr,X), or (X,Xr) with probability 1/3, respectively. Note that this instance
is correctly distributed. It then runs Calg on the resulting tuple (X1,X2) and
receives (Z, u, v, w) together with (a, b, c) s.t. Z = gaXb

1Xc
2. If u 6= 0, then the

choice of X1 = X,X2 = gr yields Z = gux
2+vxr+wr2 , from which gx

2 can be
computed as gx2 = (ZX−vrg−wr2) 1

u . Clearly, Balg is able to compute an algebraic
representation of gx2 from the values (a, b, c) and thus is algebraic itself. The
cases v 6= 0, w 6= 0 follow in a similar fashion.

Corollary 1. cdhG and sq-dhG are
(
t2/p, t

)
-hard in the generic group model

and lc-dhG is
(
3t2/p, t

)
-hard in the generic group model.

For the subsequent sections and proofs, we will not explicitly formalize the
reduction algorithm Rgen every time (as done above).

3.2 Strong Diffie-Hellman

Consider the Strong Diffie-Hellman Assumption [1] described via game sdhG
(Figure 4). We now prove that the Discrete Logarithm Assumption (non-tightly)
implies the Strong Diffie-Hellman Assumption in the Algebraic Group Model.
We briefly present the main ideas of the proof. The full proof of Theorem 2 can
be found in Appendix A. Let Aalg be an algebraic adversary playing in sdhG
and let Z = gz denote the Discrete Logarithm challenge. We show an adversary
Balg against dlogG that simulates sdhG to Aalg. Balg appropriately answers Aalg’s
queries to the oracle O(·, ·) by using the algebraic representation of the queried

Algebraic Group Model 11

sdhA
G

00 x, y $← Zp
01 (X,Y) := (gx, gy)
02 Z $← AO(·,·)(X,Y)
03 Return Z = gxy

O(Y′,Z′) :
04 Return Z′ = (Y′)x

Fig. 4. Strong Diffie-Hellman Game sdh relative to G and adversary A.

elements provided by Aalg. Namely, when (Y′,Z′) is asked to the oracle, Balg
obtains vectors ~b,~c such that Y′ = gb1Xb2Yb3 and Z′ = gc1Xc2Yc3 . As long as
b2 = b3 = 0, Balg can answer all of Aalg’s queries by checking whether Xb1 = Z′.
On the other hand, if b2 6= 0 or b3 6= 0, then Balg simply returns 0. Informally,
the simulation will be perfect unless Aalg manages to compute a valid solution to
one of the games cdhG , sq-dhG , or lc-dhG . All of these games can be efficiently
simulated by Balg, as we have shown in the previous section.

Theorem 2. dlogG
(12q,1)=⇒ algsdhG , where q is the maximal number of queries to

oracle O(·, ·) in sdhG.

Corollary 2. sdhG is
(
t, t2

12pq

)
-hard in the generic group model.

4 The LRSW Assumption

The interactive LRSW assumption [26,16] is defined via the algebraic security
game lrsw, see Figure 5.

lrswA
G

00 Q := ∅
01 x, y $← Zp
02 X := gx,Y := gy

03 (m∗,A∗,B∗,C∗) $← AO(·)(X,Y)
04 Return m∗ 6∈ Q ∧m∗ 6= 0
∧ A∗ 6= 1∧ B∗ = (A∗)y ∧ C∗ = (A∗)xm

∗y+x

O(mj) //For query j
05 rj

$← Zp;
06 Aj := grj

07 Bj := gyrj

08 Cj := grjmjxy+rjx

09 Q := Q ∪ {mj}
10 Return (Aj ,Bj ,Cj)

Fig. 5. Game lrsw relative to G and adversary A.

We now prove that the LRSW assumption is (non-tightly) implied by the
Discrete Logarithm Assumption in the Algebraic Group Model. We give a high-
level sketch of the main ideas and defer the full proof of Theorem 3 to Appendix B.
Let Aalg be an algebraic adversary playing in lrswG and let Z = gz denote the
Discrete Logarithm challenge. The main idea is to let adversary Balg against
dlogG simulate lrswG to Aalg by embedding the value of z in one of three possible

12 E. Kiltz, J. Loss

ways. Namely, it either sets X = Z or Y = Z or chooses randomly the i∗th query
of Aalg to the oracle O(·) in lrswG to embed the value of z. These behaviors
correspond in the proof below to the adversaries Calg,Dalg, and Ealg, respectively.
After obtaining a solution (m∗, [A∗]~a, [B∗]~b, [C

∗]~c) on a fresh value m∗ 6= 0 from
Aalg, the adversaries use the algebraic representations ~a,~b,~c obtained from Aalg
to suitably rewrite the values of A∗,C∗ (Lemma 2). They then make use of the
relation (A∗)(xm∗y+x) = C∗ to obtain an equation mod p, which in turn gives z.

Theorem 3. dlogG
(6q,1)=⇒alglrswG , where q ≥ 6 is the maximal number of queries

to O(·) in lrswG .

Corollary 3. lrswG is
(
t, t

2

6pq

)
-hard in the generic group model.

5 ElGamal Encryption

In this Section we prove that the IND-CCA1 (aka. lunchtime security) of the
ElGamal encryption scheme (in its abstraction as a KEM) is implied by the
q-Strong Decision Diffie-Hellman Assumption in the Algebraic Group Model.
Key Encapsulation Mechanisms. A key encapsulation mechanism (KEM for
short) KEM = (Gen,Enc,Dec) is a triple of algorithms together with a symmetric
key space K. The randomized key generation algorithm Gen takes as input a set of
parameters, par, and outputs a public/secret key pair (pk, sk). The encapsulation
algorithm Enc takes as input a public key pk and outputs a key/ciphertext pair
(K,C) such that K $← K. The deterministic decapsulation algorithm Dec takes as
input a secret key sk and a ciphertext C and outputs a key K ∈ K or a special
symbol ⊥ if C is invalid. We require that KEM be correct: For all possible pairs
(K,C) that can be output by Enc(pk), we have Dec(sk, C) = K. We formalize
IND-CCA1 security of a KEM via the games depicted in Figure 6.

In the following, we consider the ElGamal KEM EG depicted in Figure 7.
We also consider the following, stronger variant of the well known Decisional
Diffie-Hellman Game which we call q-Strong Decisional Diffie-Hellman Game.
This game is depicted in Figure 8.

ind-cca1A
KEM,par,b

00 (pk, sk) $← Gen(par)
01 b′ $← ADec,Enc(pk)
02 Return b′

Dec(C)
//Before Enc is called
03 K $← Dec(C, sk)
04 Return K

Enc() //One time
05 (K∗0 , C∗) $← Enc(pk)
06 K∗1

$← K
07 Return (K∗b , C∗)

Fig. 6. IND-CCA1 Game ind-cca1 relative to KEM KEM = (Gen,Enc,Dec), parame-
ters par, and adversary A.

Advantage for decisional algebraic security games. We parameterize
decisional algebraic games such as the q-Strong Decisional Diffie-Hellman Game

Algebraic Group Model 13

with a parameter bit b. Let G be an algebraic decisional security game. We define
the advantage of adversary A in G as

AdvG
par,A :=

∣∣∣Pr
[
GA
par,0 = 1

]
− Pr

[
GA
par,1 = 1

]∣∣∣ .
Additionally we slightly alter the definition of algebraic security games for
this section. Namely, instead of setting par = G, we only require that G be
included in par. Let Gpar,Hpar be decisional algebraic security games. We write
Gpar

(∆ε, ∆t)=⇒ alg Hpar if there exists a generic algorithm Rgen (called generic (∆ε, ∆t)-
reduction) such that for algebraic algorithm Aalg defined as Aalg := RBalg

gen , we have

AdvG
par,Aalg

≥ 1
∆ε
·AdvH

par,Balg
, TimeG

par,Aalg
≤ ∆t ·TimeH

par,Balg
.

Gen(G)
00 x $← Zp
01 X := gx

02 Return (pk, sk) := (X, x)

Enc(pk) :
03 r $← Zp
04 C := gr

05 K := Xr

06 Return (K,C)

Dec(C, sk) :
07 If C 6∈ G
08 Return ⊥
09 K̃ := Cx

10 Return K̃

Fig. 7. ElGamal KEM EG = (Gen,Enc,Dec)

q-sddhA
G,b

00 x, r, z $← Zp
01 b′ $← A(gx, gx

2
, ..., gx

q

, gr, gxr+zb)
02 Return b′

Fig. 8. q-Strong Decisional Diffie-Hellman Game q-sddh relative to G and adversary
A.

Theorem 4. ind-cca1EG,G
(1,1)⇐⇒alg q-sddhG , where q−1 is the maximal number

of queries to Dec(·) in ind-cca1EG,G .

Proof. First note that given an adversary Aalg against q-sddhG one can easily
construct an adversary Balg against ind-cca1EG,G . Balg first calls Dec(·) to compute
the elements (gx, ..., gxq). When it is presented with a challenge (K∗,C∗), it calls
Aalg on input (gx, ..., gxq

,C∗,K∗) and then outputs Aalg’s output bit b′. Clearly,
(gx, ..., gxq

,C∗,K∗) is correctly distributed and therefore

Advq-sddh
G,Aalg

= Advind-cca1
EG,G,Balg

, Timeq-sddh
G,Aalg

= Timeind-cca1
EG,G,Balg

.

14 E. Kiltz, J. Loss

ind-cca1A
EG,G

00 x $← Zp
01 X := gx

02 b′ $← ADec,Enc
alg (X)

03 Return b′

Dec([C]~a)
//Before Enc is called
04 K := Cx

05 Return K

Enc() //One time
06 r $← Zp
07 C∗ := gr

08 K∗ := Xr

09 K∗ $← K
10 Return (K∗,C∗)

Fig. 9. Games ind-cca1A
EG,G,0 and ind-cca1A

EG,G,1 with algebraic adversary Aalg. The
boxed statement is only executed in ind-cca1A

EG,G,1.

For the converse, let Aalg be an algebraic adversary playing in one of the games
ind-cca1Aalg

EG,G,0, ind-cca1Aalg
EG,G,1. We construct an adversary Balg against q-sddh

that interpolates between ind-cca1Aalg
EG,G,0 and ind-cca1Aalg

EG,G,1 by simulating one
of these games to Aalg. Balg is depicted in Figure 10.

Balg(~I)
00 X := gx

01 b′ $← ADec(·),Enc
alg (X)

02 Return b′

Dec([C]~a)
//Before Enc is called
03 Compute ~a′ s.t.
C =

∏
j<q

ga
′
jx

j

04 K := Cx =
∏
j≤q g

a′jx
j

05 Return K

Enc() //One time
06 C∗ := gr

07 K∗ := gxr+zb

08 Return (K∗,C∗)

Fig. 10. Adversary Balg.

Let ~I := (g, gx, gx2
, ..., gx

q

, gr, gxr+zb) be the problem instance given to Balg

in q-sddhBalg
G,b . We now analyze Balg. As Aalg is an algebraic adversary, it sends

along with its ith query C to Dec(·) a vector ~a such that C =
∏
i Lai

i where
~L consists of group elements g,X,K1, ...,Ki−1. Here, K1, ...,Ki−1 denote the
answers to the first i− 1 queries asked to Dec(·). It is easy to see that given ~a,
Balg can rewrite C as C =

∏
i≥j≥0 g

a′jx
j

, for some known constants a′j . As Aalg
asks at most q − 1 such queries, Balg can answer them using the group elements
(g, gx, gx2

, ..., gx
q) and raising them to appropriate powers a′i. When Aalg queries

Enc(), Balg returns (gxr+zb, gr). When Aalg returns with output b′, Balg returns
b′. Clearly, Balg perfectly simulates either ind-cca1Aalg

EG,G,0 or ind-cca1Aalg
EG,G,1 to

Aalg. Finally, note that whenever Aalg wins ind-cca1Aalg
EG,G,b, Balg wins q-sddhBalg

G,b .
Therefore,

Advq-sddh
G,Balg

= Advind-cca1
EG,G,Aalg

, Timeq-sddh
G,Balg

= Timeind-cca1
EG,G,Aalg

.

Algebraic Group Model 15

References
1. M. Abdalla, M. Bellare, and P. Rogaway. The oracle Diffie-Hellman assumptions

and an analysis of DHIES. In D. Naccache, editor, CT-RSA 2001, volume 2020 of
LNCS, pages 143–158. Springer, Heidelberg, Apr. 2001. 3, 10

2. M. Abe, J. Groth, and M. Ohkubo. Separating short structure-preserving sig-
natures from non-interactive assumptions. In D. H. Lee and X. Wang, editors,
ASIACRYPT 2011, volume 7073 of LNCS, pages 628–646. Springer, Heidelberg,
Dec. 2011. 2

3. D. Aggarwal and U. Maurer. Breaking RSA generically is equivalent to factoring. In
A. Joux, editor, EUROCRYPT 2009, volume 5479 of LNCS, pages 36–53. Springer,
Heidelberg, Apr. 2009. 2, 4

4. G. Ateniese, J. Camenisch, and B. de Medeiros. Untraceable RFID tags via
insubvertible encryption. In V. Atluri, C. Meadows, and A. Juels, editors, ACM
CCS 05, pages 92–101. ACM Press, Nov. 2005. 3

5. G. Ateniese, J. Camenisch, S. Hohenberger, and B. de Medeiros. Practical group
signatures without random oracles. Cryptology ePrint Archive, Report 2005/385,
2005. http://eprint.iacr.org/2005/385. 3

6. M. Backes, J. Camenisch, and D. Sommer. Anonymous yet accountable access
control. In WPES, pages 40–46, 2005. 3

7. E. Bangerter, J. Camenisch, and A. Lysyanskaya. A cryptographic framework for
the controlled release of certified data. In Security Protocols Workshop, pages 20–24,
2004. 3

8. M. Bellare and P. Rogaway. Random oracles are practical: A paradigm for designing
efficient protocols. In V. Ashby, editor, ACM CCS 93, pages 62–73. ACM Press,
Nov. 1993. 7

9. M. Bellare and P. Rogaway. Code-based game-playing proofs and the security
of triple encryption. Cryptology ePrint Archive, Report 2004/331, 2004. http:
//eprint.iacr.org/2004/331. 5

10. D. Boneh and R. J. Lipton. Algorithms for black-box fields and their application
to cryptography (extended abstract). In N. Koblitz, editor, CRYPTO’96, volume
1109 of LNCS, pages 283–297. Springer, Heidelberg, Aug. 1996. 1

11. D. Boneh and R. Venkatesan. Breaking RSA may not be equivalent to factoring. In
K. Nyberg, editor, EUROCRYPT’98, volume 1403 of LNCS, pages 59–71. Springer,
Heidelberg, May / June 1998. 2, 6

12. E. Bresson, J. Monnerat, and D. Vergnaud. Separation results on the “one-more”
computational problems. In T. Malkin, editor, CT-RSA 2008, volume 4964 of
LNCS, pages 71–87. Springer, Heidelberg, Apr. 2008. 2

13. J. Camenisch, S. Hohenberger, M. Kohlweiss, A. Lysyanskaya, and M. Meyerovich.
How to win the clonewars: Efficient periodic n-times anonymous authentication. In
A. Juels, R. N. Wright, and S. Vimercati, editors, ACM CCS 06, pages 201–210.
ACM Press, Oct. / Nov. 2006. 3

14. J. Camenisch, S. Hohenberger, and A. Lysyanskaya. Compact e-cash. In R. Cramer,
editor, EUROCRYPT 2005, volume 3494 of LNCS, pages 302–321. Springer, Hei-
delberg, May 2005. 3

15. J. Camenisch, S. Hohenberger, and M. Ø. Pedersen. Batch verification of short
signatures. In M. Naor, editor, EUROCRYPT 2007, volume 4515 of LNCS, pages
246–263. Springer, Heidelberg, May 2007. 3

16. J. Camenisch and A. Lysyanskaya. Signature schemes and anonymous credentials
from bilinear maps. In M. Franklin, editor, CRYPTO 2004, volume 3152 of LNCS,
pages 56–72. Springer, Heidelberg, Aug. 2004. 3, 11

http://eprint.iacr.org/2005/385
http://eprint.iacr.org/2004/331
http://eprint.iacr.org/2004/331

16 E. Kiltz, J. Loss

17. J.-S. Coron. Optimal security proofs for PSS and other signature schemes. In
L. R. Knudsen, editor, EUROCRYPT 2002, volume 2332 of LNCS, pages 272–287.
Springer, Heidelberg, Apr. / May 2002. 2

18. W. Diffie and M. E. Hellman. New directions in cryptography. IEEE Transactions
on Information Theory, 22(6):644–654, 1976. 3, 9

19. S. Garg, R. Bhaskar, and S. V. Lokam. Improved bounds on security reductions
for discrete log based signatures. In D. Wagner, editor, CRYPTO 2008, volume
5157 of LNCS, pages 93–107. Springer, Heidelberg, Aug. 2008. 2

20. M. Gerbush, A. B. Lewko, A. O’Neill, and B. Waters. Dual form signatures:
An approach for proving security from static assumptions. In X. Wang and
K. Sako, editors, ASIACRYPT 2012, volume 7658 of LNCS, pages 25–42. Springer,
Heidelberg, Dec. 2012. 5

21. M. E. Hellman and S. C. Pohlig. An improved algorithm for computing logarithms
over GF (p) and its cryptographic significance. IEEE Transactions on Information
Theory, 24(1):106–110, 1978. 2

22. T. Jager and A. Rupp. The semi-generic group model and applications to pairing-
based cryptography. In M. Abe, editor, ASIACRYPT 2010, volume 6477 of LNCS,
pages 539–556. Springer, Heidelberg, Dec. 2010. 2

23. T. Jager and J. Schwenk. On the analysis of cryptographic assumptions in the
generic ring model. In M. Matsui, editor, ASIACRYPT 2009, volume 5912 of LNCS,
pages 399–416. Springer, Heidelberg, Dec. 2009. 4

24. E. Kiltz, D. Masny, and J. Pan. Optimal security proofs for signatures from
identification schemes. In M. Robshaw and J. Katz, editors, CRYPTO 2016, Part
II, volume 9815 of LNCS, pages 33–61. Springer, Heidelberg, Aug. 2016. 2

25. G. Leander and A. Rupp. On the equivalence of RSA and factoring regarding
generic ring algorithms. In X. Lai and K. Chen, editors, ASIACRYPT 2006, volume
4284 of LNCS, pages 241–251. Springer, Heidelberg, Dec. 2006. 2

26. A. Lysyanskaya, R. L. Rivest, A. Sahai, and S. Wolf. Pseudonym systems. In H. M.
Heys and C. M. Adams, editors, SAC 1999, volume 1758 of LNCS, pages 184–199.
Springer, Heidelberg, Aug. 1999. 3, 4, 11

27. U. Maurer and S. Wolf. The relationship between breaking the diffie-hellman pro-
tocol and computing discrete logarithms. SIAM Journal on Computing, 28(5):1689–
1721, 1999. 9

28. U. M. Maurer. Abstract models of computation in cryptography (invited paper).
In N. P. Smart, editor, 10th IMA International Conference on Cryptography and
Coding, volume 3796 of LNCS, pages 1–12. Springer, Heidelberg, Dec. 2005. 1, 5, 8

29. U. M. Maurer and S. Wolf. Lower bounds on generic algorithms in groups. In
K. Nyberg, editor, EUROCRYPT’98, volume 1403 of LNCS, pages 72–84. Springer,
Heidelberg, May / June 1998. 1, 5

30. V. I. Nechaev. Complexity of a determinate algorithm for the discrete logarithm.
Mathematical Notes, 55(2):165–172, 1994. 1

31. P. Paillier and D. Vergnaud. Discrete-log-based signatures may not be equivalent
to discrete log. In B. K. Roy, editor, ASIACRYPT 2005, volume 3788 of LNCS,
pages 1–20. Springer, Heidelberg, Dec. 2005. 2, 6

32. J. M. Pollard. Monte Carlo methods for index computation mod p. Mathematics
of Computation, 32:918–924, 1978. 2

33. R. L. Rivest. On the notion of pseudo-free groups. In M. Naor, editor, TCC 2004,
volume 2951 of LNCS, pages 505–521. Springer, Heidelberg, Feb. 2004. 2

34. V. Shoup. Lower bounds for discrete logarithms and related problems. In W. Fumy,
editor, EUROCRYPT’97, volume 1233 of LNCS, pages 256–266. Springer, Heidel-
berg, May 1997. 1, 5, 8

Algebraic Group Model 17

35. V. Shoup. Sequences of games: a tool for taming complexity in security proofs.
Cryptology ePrint Archive, Report 2004/332, 2004. http://eprint.iacr.org/
2004/332. 18

A Proof of Theorem 2

Proof.

Advcdh
G,Balg

≥ Advsdh
G,Aalg

− q(Advcdh
G,Calg

+ Advsq-dh
G,Dalg

+ Advlc-dh
G,Ealg

). (2)

Applying Theorem 1 yields the theorem. We now prove (2) via a sequence of
games.

G0 : Let Aalg be an algebraic adversary playing in G0 := sdhAalg
G . As Aalg is

an algebraic adversary, it returns a vector ~a along with Z at the end of the
game such that Z = ga1Xa2Ya3 . Furthermore, for any query asked to O(·, ·), it
includes vectors ~b,~c such that Y′ = gb1Xb2Yb3 and Z′ = gc1Xc2Yc3 . Game G0
is depicted in Figure 12.
G1 : For game G1 we alter the way that the oracle O(·, ·) answers queries. Namely,
if b2 6= 0 ∨ b3 6= 0, it always returns 0. Game G1 is depicted in Figure 12. The
check performed by the oracle in G1 amounts to checking whether Z′ = Xb1 ,
since if b2 = b3 = 0 then Y′ = gb1 . Using this property of G1, we show an
adversary Balg against cdhG such that Advcdh

G,Balg
= Pr[G1 = 1]. Balg is depicted

in Figure 11. We now show the existence of adversaries Calg,Dalg,Ealg such that

Balg(X = gx,Y = gy)
00 [Z]~a $← AO(·,·)

alg (X,Y)
01 Return Z

O([Y′]~b, [Z
′]~c) :

02 If b2 6= 0 ∨ b3 6= 0
03 Return 0
04 Return Z′ = Xb1

Fig. 11. Behavior of adversary Balg.

G0,G1

00 x, y $← Zp
01 (X,Y) := (gx, gy)
02 [Z]~a $← AO(·,·)

alg (X,Y)
03 Return Z = gxy

O([Y′]~b, [Z
′]~c) :

04 If b2 6= 0 ∨ b3 6= 0

05 Return 0
06 Return Z′ = (Y′)x

Fig. 12. Games G0 and G1. The boxed statements are only executed in G1.

∣∣∣AdvG0
G,Aalg

−AdvG1
G,Aalg

∣∣∣ ≤ q · (Advcdh
G,Calg

+ Advsq-dh
G,Dalg

+ Advlc-dh
G,Ealg

).

http://eprint.iacr.org/2004/332
http://eprint.iacr.org/2004/332

18 E. Kiltz, J. Loss

Let F denote the event that Z′ = (Y′)x ∧ (b2 6= 0∨ b3 6= 0) in at least one call to
the oracle. Clearly, as long as F does not occur, the games behave identically.
By the difference lemma [35], we obtain

|Pr[G0 = 1]− Pr[G1 = 1]| ≤ Pr[F].

We show the existence of Ealg such that

Pr[F | b2 6= 0 ∧ b3 6= 0] ≤ q ·Advlc-dh
G,Ealg

.

Ealg is depicted in Figure 13.

Ealg(X = gx,Y = gy)
00 Q := ∅
01 [Z]~a $← AO(·,·)

alg (X,Y)
02 Z̃ $← Q
03 Return Z̃

O([Y′]~b, [Z
′]~c) :

04 If b2 6= 0 ∨ b3 6= 0
05 If b2 6= 0 ∧ b3 6= 0
06 Q := Q ∪ {Z′}
07 Return 0
08 Return Z′ = Xb1

Fig. 13. Behavior of adversary Ealg.

We now analyze Ealg. Clearly, Ealg runs in the same time as Aalg. Once Aalg
halts, Ealg picks at random Z̃ that was input by Aalg as one of at most q queries
to O(·, ·) along with Ỹ and ~b,~c such that b2 6= 0, b3 6= 0, and

Ỹ = gb1Xb2Yb3 ,

Z̃ = gc1Xc2Yc3 .

Clearly, if (Ỹ)x = Z̃ then (Z̃X−b1 , b2, b3, 0) yields a winning solution for lc-dhEalg
G

as
Z̃X−b1 = (Ỹ)xX−b1 = gb2x

2+b3xy.

As Ealg picks Z̃ at random from at most q elements in Q, it picks a correct solution
with probability at least

Advlc-dh
G,Ealg

≥ Pr[F | b2 6= 0 ∧ b3 6= 0]
q

.

By a similar argument, we obtain

Pr[F | b2 = 0 ∧ b3 6= 0] ≤ q ·Advcdh
G,Calg

and
Pr[F | b2 6= 0 ∧ b3 = 0] ≤ q ·Advsq-dh

G,Dalg
.

Combining terms, this yields

Pr[F] ≤ Pr[F | b2 = 0 ∧ b3 6= 0] + Pr[F | b2 6= 0 ∧ b3 = 0] + Pr[F | b2 6= 0 ∧ b3 6= 0]
≤ q · (Advcdh

G,Calg
+ Advsq-dh

G,Dalg
+ Advlc-dh

G,Ealg
).

Algebraic Group Model 19

Thus, we now have

Advcdh
G,Balg

= Pr[G1 = 1]

≥ Pr[G0 = 1]− |AdvG0
G,Aalg

−AdvG1
G,Aalg

|

≥ Advsdh
G,Aalg

− q(Advcdh
G,Calg

+ Advsq-dh
G,Dalg

+ Advlc-dh
G,Ealg

).

It is straight forward to see that all the steps performed in the above simulations
are generic. This proves (2).

B Proof of Theorem 3

Proof. We prove the statement via a sequence of games.

G0: Let Aalg be an algebraic adversary playing in G0 := lrswAalg
G . Game G0

is depicted in Figures 14. As Aalg is an algebraic adversary, at the end of the
game, it outputs a winning tuple (m∗,A∗,B∗,C∗) along with vectors ~a,~b,~c that
provide the representation of A∗,B∗,C∗ relative to g,X,Y and the answers
A1, ...,Aq,B1, ...,Bq,C1, ...,Cq from previous oracle queries, where Ai = gri ,
Bi = griy, and Ci = gri(yxmi+x).

Concretely, the representations of A∗, B∗, and C∗ are as follows:

A∗ =
q∏
i=1

Aai
i g

aq+1

2q+1∏
i=q+2

Bai
i−q−1

3q+1∏
i=2q+2

Cai
i−2q−1Xa3q+2Ya3q+3 , (3)

B∗ =
q∏
i=1

Abi
i g

bq+1

2q+1∏
i=q+2

Bbi
i−q−1

3q+1∏
i=2q+2

Cbi
i−2q−1Xb3q+2Yb3q+3 , (4)

C∗ =
q∏
i=1

Cci
i Xcq+1

2q+1∏
i=q+2

Aci
i−q−1

3q+1∏
i=2q+2

Bci
i−2q−1g

c3q+2Yc3q+3 . (5)

We assume that Aalg never queries the oracle on the same message mi more
than once. (Multiple queries can be simulated by rerandomization.)

G1: In G1 we consider a slightly altered game that is defined as follows. Before the
first query is asked, the challenger in G1 also chooses values k∗, `∗, i∗ $← {1, ..., q} .
If k∗ = `∗ ∨ k∗ = i∗ ∨ `∗ = i∗, it aborts the game. G1 is depicted in Figure 14.
Clearly,

(
1− 3

q

)
AdvG0

G,Aalg
= AdvG1

G,Aalg
. By defining s1, s2, t1, t2, u1, u2, v1, v2 ∈

20 E. Kiltz, J. Loss

G0,G1

00 `∗, k∗, i∗ $← {1, ..., q}

01 If k∗ = `∗ ∨ k∗ = i∗ ∨ `∗ = i∗

02 Abort
03 Q := ∅
04 x, y $← Zp
05 X := gx,Y := gy

06 (m∗, [A∗]~a, [B∗]~b, [C
∗]~c) $← AO(·)

alg (X,Y)
07 Return m∗ 6∈ Q ∧m∗ 6= 0
∧ A∗ 6= 1 ∧ B∗ = (A∗)y ∧ C∗ = (A∗)xm

∗y+x

O(mj) //For query j
08 rj

$← Zp;
09 Aj := grj

10 Bj := gyrj

11 Cj := grjmjxy+rjx

12 Q := Q ∪ {mj}
13 Return (Aj ,Bj ,Cj)

Fig. 14. Games G0 and G1 with algebraic adversary Aalg. The boxed statements are
only executed in G1.

Zp as

s1 := a3q+2 +
3q+2∑
i=2q+3

airi−2q−2,

t1 :=
3q+2∑
i=2q+3

aimiri−2q−2,

u1 := a3q+3 +
2q+1∑
i=q+2

airi−q−1,

v1 := gaq+1 +
q∑
i=1

airi,

s2 := cq+1 +
q∑
i=1

ciri,

t2 :=
q∑
i=1

cimiri,

u2 := c3q+3 +
3q+1∑
i=2q+2

ciri−q−1,

v2 := gc3q+2 +
2q+1∑
i=q+2

ciri−q−1,

equations (3) and (5) can be further simplified to

A∗ = gs1x+t1xy+u1y+v1 ,

C∗ = gs2x+t2xy+u2y+v2 .

We also define the parameters ∆,∆′, ∆′′ as

∆ := m∗t1y
2 + t1y + s1m

∗y + s1, (6)
∆′ := u1m

∗y2 +m∗yv1 + u1y − t2y − s2 + v1, (7)
∆′′ := u2y + v2, (8)

and the boolean variable F ∗ as

F ∗ = 1⇔ s1 ≡p t1 ≡p u1 ≡p u2 ≡p v2 ≡p 0. (9)

We prove the following lemma that allows us to rewrite A∗ and C∗ in a more
convenient form.

Algebraic Group Model 21

Lemma 2. If F ∗ = 1, then

A∗ =
q∏
i=1

Aεi
i , C∗ =

q∏
i=1

Cδi
i

holds for

δi :=

ci i 6∈ {k∗, `∗}
c`∗ − rk∗mk∗cq+1

(r`∗m`∗)(rk∗−rk∗
mk∗
m`∗

) i = `∗

ck∗ + cq+1

rk∗−rk∗
mk∗
m`∗

i = k∗

and

εi :=
{
ai i 6= k∗

ak∗ + aq+1
rk∗

i = k∗
.

Using Lemma 2, we can now formulate the following conditions whenever G1
does not abort. To further simplify the notation, we define the following Boolean
variables:

G∗ = 1⇔ ∆ 6≡p 0 ∨∆′ 6≡p 0 ∨∆′′ 6≡p 0
H∗ := 1⇔ ∀j 6∈ {`∗, k∗} : rjεj(1 +m∗y)− rjδj(1 + ymj) ≡p 0.

Note that H∗ is only well defined (by Lemma 2) if F ∗ = 1.

– Condition F1 : This condition holds iff G∗.
– Condition F2 : This condition holds iff (¬G∗ ∧ ¬F ∗) ∨ (F ∗ ∧H∗).
– Condition F3 : This condition holds iff F ∗ ∧ ¬H∗.

It is easy to see that F1 ∨ F2 ∨ F3 = 1. We will now describe the behavior of
adversaries Calg,Dalg,Ealg playing in the discrete logarithm game. Each of these
adversaries simulates G1 to Aalg in a different way. Concretely, we prove the
following Lemma.

Lemma 3. There exist Calg,Dalg,Ealg playing in the discrete logarithm game such
that:

Pr
[
dlogCalg = 1

]
= Pr[G1 = 1 | F1] (10)

Pr
[
dlogDalg = 1

]
≥ (1− 2

q
) Pr[G1 = 1 | F2] (11)

Pr
[
dlogEalg = 1

]
≥ 1
q

Pr[G1 = 1 | F3]. (12)

Proof. We first note that δl∗ , δk∗ are well defined, because `∗ 6= k∗ and thus
m`∗ 6= mk∗ . Otherwise G1 aborts and there is nothing to prove (since nothing is

22 E. Kiltz, J. Loss

returned by Aalg in this case). Observe that since F ∗ = 1⇔ s1 ≡p t1 ≡p u1 ≡p
u2 ≡p v2 ≡p 0, we have

A∗ = gaq+1

q∏
i=1

Aai
i

and

C∗ = Xcq+1

q∏
i=1

Cci
i .

Now, the choices of δ1, ..., δq, ε1, ..., εq satisfy

A∗ =
q∏
i=1

Aεi
i ,C

∗ =
q∏
i=1

Cδi
i .

To see this, first observe that X can be written as

X =
(

Xrk∗ (1−mk∗/m`∗)
) 1

rk∗ (1−mk∗/m`∗)

=
(
grk∗ (x+yxmk∗)g−r`∗ (x+yxm`∗)(rk∗mk∗)/(r`∗m`∗)

) 1
rk∗ (1−mk∗/m`∗)

=
(

Ck∗C−(rk∗mk∗)/(r`∗m`∗)
`∗

) 1
rk∗ (1−mk∗/m`∗)

.

Because of this, setting

δk∗ := ck∗ + cq+1

rk∗ − rk∗ mk∗
m`∗

,

δ`∗ := c`∗ −
rk∗mk∗cq+1

(r`∗m`∗)(rk∗ − rk∗ mk∗
m`∗

) ,

and δi := ci for i 6∈ {`∗, k∗} we obtain

Xcq+1Cck∗
k∗ Cc`∗

`∗ = Cck∗
k∗ Cc`∗

`∗

(
Ck∗C−(rk∗mk∗)/(r`∗m`∗)

`∗

) cq+1
rk∗ (1−mk∗/m`∗) = Cδk∗

k∗ Cδ`∗
`∗ .

This means that

Xcq+1
∏
i

Cci
i = (Xcq+1Cck∗

k∗ Cc`∗
`∗)

∏
i 6=k∗,`∗

Cci
i = Cδk∗

k∗ Cδ`∗
`∗

∏
i6=k∗,`∗

Cδi
i =

∏
i

Cδi
i .

Also observe that Aεk∗
k∗ = Aak∗

k∗ g
aq+1 and thus

A∗ = gaq+1
∏
i

Aai
i =

∏
i

Aεi
i .

Using Lemma 3 and the fact that F1 ∨ F2 ∨ F3 = 1, it is now straightforward to
construct an adversary Balg such that

Pr
[
dlogBalg = 1

]
≥ 1

3q Pr[G1 = 1]

by letting Balg emulate one of the adversaries Calg,Dalg,Ealg (chosen uniformly at
random).

Algebraic Group Model 23

Proof. Let Z = gz denote the discrete logarithm instance. Calg,Dalg,Ealg simulate
G1 to Aalg. They begin by sampling k∗, `∗, i∗ $← {1, ..., q} . If k∗ = `∗ ∨ k∗ =
i∗ ∨ `∗ = i∗, they abort the simulation. Thus, assume throughout the proof that
k∗ 6= `∗, k∗ 6= i∗, `∗ 6= i∗

Adversary Calg. Adversary Calg samples α $← Zp and computes (X,Y) = (Z, gα).
This implicitly sets x = z and y = α. Recall that

Calg(Z = gz)
00 Q := ∅
01 α $← Zp
02 (m∗, [A∗]~a, [B∗]~b, [C

∗]~c) $← AO(·)
alg (Z, gα)

03 Solve for x : x2∆+ x∆′ −∆′′ ≡p 0
04 Return x

O(mj) : //For query j
05 rj

$← Zp;
06 Aj := grj

07 Bj := gαrj

08 Cj := Zrjmjα+rj

09 Q := Q ∪ {mj}
10 Return (Aj ,Bj ,Cj)

Fig. 15. Behavior of adversary Calg.

F1 = 1⇔ ∆ 6≡p 0 ∨∆′ 6≡p 0 ∨∆′′ 6≡p 0.

We now analyze Calg. Suppose Aalg wins G1 given that F1 = 1. Then C∗ =
(A∗)x+m∗xy which is equivalent to

x2∆+ x∆′ −∆′′ ≡p 0 (13)

where ∆,∆′, ∆′′ are defined in (6)-(8). Quadratic equation (13) in indeterminate
x has exactly two (possibly equal) solutions, say x1 and x2, that can be computed
efficiently by Calg. One of them has to be equal to z = x, which one can be tested
by comparing gxi to Z. This proves equation (10).

Adversary Dalg: Adversary Dalg does the following. It samples α $← Zp and
computes (X,Y) = (gα,Z). This implicitly sets x = α and y = z. Recall that
F2 = 1 iff

¬F ∗ ∧ (∆ 6≡p 0 ∨∆′ 6≡p 0 ∨∆′′ 6≡p 0)∨
F ∗ ∧ ∀j 6∈ {`∗, k∗} : rjεj(1 +m∗y)− rjδj(1 + ymj) ≡p 0,

where F ∗ is defined in (9).
We analyze and describe Dalg. Suppose that Aalg wins G1 given that F2 = 1.

As before, we have

C∗ = (A∗)x+m∗xy ⇔ x2∆+ x∆′ −∆′′ ≡p 0.

24 E. Kiltz, J. Loss

Dalg(Z = gz)
00 Q := ∅
01 α $← Zp
02 (m∗, [A∗]~a, [B∗]~b, [C

∗]~c) $← AO(·)
alg (gα,Z)

03 Compute y as described below
04 Return y

O(mj) : //For query j
05 rj

$← Zp;
06 Aj := grj

07 Bj := Zrj

08 Cj := Zrjmjαgαrj

09 Q := Q ∪ {mj}
10 Return (Aj ,Bj ,Cj)

Fig. 16. Behaviour of Dalg.

If ∆ ≡p ∆′ ≡p ∆′′ ≡p 0∧¬F ∗ then Dalg can efficiently solve one of the equations

∆ ≡p 0,
∆′ ≡p 0,
∆′′ ≡p 0.

in indeterminate y = z. This can be seen as follows.

– If s1 6≡p 0 ∨ t1 6≡p 0, it can solve the quadratic equation

∆ ≡p m∗t1y2 + t1y + s1m
∗y + s1 ≡p 0,

because m∗ 6≡p 0 by assumption.
– If u1 6≡p 0, it can solve the quadratic equation

∆′ ≡p u1m
∗y2 +m∗yv1 − t2y + u1y + v1 − s2 ≡p 0,

where again we use the fact that m∗ 6≡p 0.
– If v2 6≡p 0, then since

∆′′ ≡p v2 + u2y ≡p 0,

also u2 6≡p 0 and so Dalg can solve for y the equation

v2 + u2y ≡p 0

whenever v2 6≡p 0 ∨ u2 6≡p 0.

Given two possible solutions y1, y2 for a quadratic equation, Dalg can determine
the correct one by comparing gyi to Z.

If F ∗ = 1, Lemma 2 guarantees that Dalg can efficiently compute parameters
δ1, ..., δq, ε1, ..., εq such that A∗ =

∏
i Aεi

i ,C∗ =
∏
i Cδi

i .We distinguish two cases.

– Case 1: ∃j 6∈ {`∗, k∗} : εj 6≡p 0 ∨ δj 6≡p 0. Without loss of generality, assume
that εj 6≡p 0. Since

∀j 6∈ {`∗, k∗} : rjεj(1 +m∗y)− rjδj(1 + ymj) ≡p 0, (14)

Algebraic Group Model 25

Dalg solves the equation

δj
εj
− 1 ≡p y

(
m∗ −mj

δj
εj

)
for y, which is obtained from rearranging terms in (14). This equation has
a unique solution for y, and its coefficient can not become zero; this would
imply that m∗ ≡p mj , a contradiction.

– Case 2: ∀j 6∈ {`∗, k∗} : εj ≡p δj ≡p 0. This means that

A∗ = Aε`∗
`∗ Aεk∗

k∗ = gaq+1Aak∗
k∗ Aa`∗

`∗ ,

C∗ = Cδk∗
k∗ Cδ`∗

`∗ = Xcq+1Cck∗
k∗ Cc`∗

`∗ .

If a`∗ ≡p ak∗ ≡p ck∗ ≡p c`∗ ≡p 0, then A∗ = gaq+1 ,C∗ = Xcq+1 and therefore

cq+1 − aq+1 ≡p ym∗aq+1.

Again, this equation has a unique solution for y and its coefficient can not
become zero, because aq+1 6≡p 0 (recall that A∗ 6≡p 1) and m∗ 6≡p 0.
Finally, we note that with probability at most 2

q−1 , Aalg succeeds in setting

(a`∗ 6≡p 0 ∨ ak∗ 6≡p 0 ∨ ck∗ 6≡p 0 ∨ c`∗ 6≡p 0)
∧(∀j 6∈ {`∗, k∗} : εj ≡p aj ≡p cj ≡p δj ≡p 0).

This argument is true, because the indices `∗, k∗ are information theoretically
hidden from A′algs view and so it guesses either of them with probability at
most 2

q−1 . All in all, Dalg succeeds in computing y with probability at least
1− 2

q−1 . This proves equation (11).

Adversary Ealg: To simulate G1 to Aalg, the adversary Ealg does the following. It
samples α, β $← Zp and computes (X,Y) = (gα, gβ). This implicitly sets x = α
and y = β. It embeds z into the answer to the i∗th oracle query as shown in
Figure 17. We now analyze Ealg. If F3 = 1, then

F ∗ ∧ ∃j 6∈ {`∗, k∗} : rjεj(1 +m∗y)− rjδj(1 + ymj) 6≡p 0.

Lemma 2 guarantees that Ealg can efficiently compute the parameters

δ1, ..., δq, ε1, ..., εq

such that A∗ =
∏
i Aεi

i ,C∗ =
∏
i Cδi

i . By assumption

∃j 6∈ {`∗, k∗} : rjεj(1 +m∗y)− rjδj(1 + ymj) 6≡p 0.

26 E. Kiltz, J. Loss

Ealg(Z = gz)
00 Q := ∅
01 α, β $← Zp
02 (m∗, [A∗]~a, [B∗]~b, [C

∗]~c) $← AO(·)
alg (gα, gβ)

03 Compute z as described below
04 Return z

O(mj) : //For query j
05 b := (j = i∗)
06 r′j

$← Zp;
07 Aj := gz

br′j

08 Bj := gz
bβr′j

09 Cj := gz
br′jmjβαgz

bαr′j

10 Q := Q ∪ {mj}
11 Return (Aj ,Bj ,Cj)

Fig. 17. Behaviour of Ealg.

With probability 1
q , j = i∗, because i∗ is information theoretically hidden from

Aalg and thus independent of its computation. This yields the equation

(
∏
i

griεi)x+m∗xy = (
∏
i

Aεi
i)x+m∗xy = (A∗)(x+m∗xy)

= C∗ =
∏
i

Cδi
i =

∏
i

gδiri(x+miyx),

which is equivalent to

(
∑
i

riεi)(x+m∗xy)−
∑
i

riδi(x+miyx) ≡p 0.

Rearranging terms yields

z[r′i∗εi∗(1 +m∗y)− r′i∗δi∗(1 +mi∗y)] ≡p
∑
i 6=i∗

riδi(1 + ymi)− (
∑
i 6=i∗

riεi)(1 +m∗y).

By assumption, the coefficient of z in this expression is not zero. Therefore, Ealg
can efficiently solve the modular equation to obtain z. Putting things together,
we obtain for the adversary Balg emulating one of Calg,Dalg,Ealg the following
bound on the advantage Advdlog

Balg,G :

Advdlog
Balg,G ≥

1
3qAdvG1

Aalg,G = q − 3
3q2 AdvG0

Aalg,G ≥
1
6qAdvG0

Aalg,G ,

where the last inequality holds for q ≥ 6.

	 The Algebraic Group Model and its Applications

