
CycSAT: SAT-Based Attack on Cyclic Logic Encryptions
Hai Zhou, Ruifeng Jiang, and Shuyu Kong

Northwestern University

ABSTRACT
Cyclic logic encryption is a newly proposed circuit obfus-

cation technique in hardware security. It was claimed to be
SAT-unresolvable because feedback cycles were intentionally
inserted under keys into the encryption. We show in the pa-
per that even though feedback cycles introduce extra diffi-
culty for an attacker, they can still be overcome with SAT-
based techniques. Specifically, we propose CycSAT Algo-
rithms based on SAT with different acyclic conditions that
can efficiently decrypt cyclic encryptions. Experimental re-
sults have shown that our CycSAT is efficient and effective
to decrypt cyclic encryptions, and we need to develop new
encryptions with better security properties.

1. INTRODUCTION

Logic encryption (or logic locking) is a technique to ma-
nipulate a given combinational circuit with added key input
to make sure that the encryption circuit will only function
as the original one under a specific key value and it is diffi-
cult to figure out that value. It is an important problem for
IP protection, IC production control, Trojan prevention, and
many other applications in hardware security. Circuit cam-
ouflaging, where ambiguity is intentionally introduced in the
layout to fool the reverse-engineer, can also be modeled as
logic encryption with keys to encode the different possibili-
ties [4], [6].

Even though there exist many different approaches for
logic encryption [1], [2], [5], [7], [9], all of them are based on
ad hoc approaches to insert extra gates with keys to the orig-
inal circuit. Therefore, it should not be too great a surprise
(even though it was actually a surprise to many people) that
a SAT-based attack developed by Subramanyan et al. [13]
can efficiently decrypt almost all of the encrypted circuits by
them.

Immediately after Subramanyan et al. [13], some remedies
were proposed to strengthen the existing logic encryption.
Yasin et al. [15] proposed SARLock, which was inspired by
the difficult case of the AND-tree discovered in [13], and en-
sures that each wrong key can only be excluded by one in-
put. Xie and Srivastava [14] developed the Anti-SAT encryp-
tion, where one key has at most one wrong input, but one
input may exclude many wrong outputs. However, all these
remedies have extremely low error rate; both SARLock and
Anti-SAT have 2−n error rate (i.e. one input is wrong on each
wrong key). Therefore, to protect against random guess at-
tack, they have to be combined with traditional encryption
methods.

The remedies such as SARLock and Anti-SAT combined
with traditional encryptions make any SAT-based exact at-
tack (i.e getting the correct key) exponentially expensive.
However, it may be vulnerable to approximate attacks that
can return a key with very low error rate. Double DIP [12]
and AppSAT [10] are the first approaches for approximate
attacks to logic encryption.

Different from previous approaches, Shamsi et al. [11] pro-
posed to introduce feedback cycles into the encryption circuit

to defeat the SAT-based attack. They called their approach
cyclic obfuscation, which we prefer to call cyclic logic en-
cryption in this paper, for the purpose of following the tra-
dition [13]. To prevent structural analysis attack, their ap-
proach ensures that all the inserted cycles are irreducible and
have more than one way to open. However, they simply
claimed that the cyclic logic encryption is SAT-unresolvable
because there are cycles in the circuit.

In this paper, we find out that it is a prejudice to assume
that SAT can only handle circuits without cycle. Of course,
cycles do introduce interesting phenomena and thus difficul-
ties in the original SAT-based attack [13]. But they are not
insurmontable.

We first discuss the interesting issues introduced by cycles
to the SAT-based attack. A cycle in a circuit could be com-
binational, stateful, or oscillating. A cycle can only be either
stateful or oscillating under certain input configurations. If it
is not so under any input configuration, it is combinational.
A combinational cycle is harmless to the original SAT-based
attack. A oscillating cycle cannot be simulated by SAT so it
is just stealthy. A stateful cycle may be satisfied by different
values, so it may prevent the SAT-based attack from finish-
ing.

Based on these understanding of cycles, we develop two
algorithms based on SAT to decrypt the cyclic logic encryp-
tions. The first algorithm, call Structural CycSAT Algorithm,
assumes that there is at one correct key that will generate
an acyclic circuit. Please note that this assumption is very
reasonable and Shamsi et al. [11] satisfies this assumption.
The algorithm first computes a formula to capture the condi-
tion that there is no structural cycle in the circuit under the
key. Then it adds this constraint to the encryption circuit.
The original SAT-based attack can finish the job on the con-
strained circuit.

The second algorithm is more complicated. It only uses a
much weaker assumption that there is a correct key generat-
ing a combinational but maybe cyclic circuit. Similar to the
first algorithm, it first computes a formula postulating that
there is no sensitizable cycle in the circuit. Please note that
in addition to the key input, this formula also depends on
other signals. Then it constrains the encryption circuit by the
formula, and runs the original SAT-based attack on the con-
strained circuit. However, when the iterations finish, it can-
not just simply return the key generated by SAT-based attack.
More iterations are needed to exclude both the stealthy oscil-
lating cycles and the stateful cycles. The second algorithm is
named Logic CycSAT Algorithm.

Since these two algorithms are similar to each other and
the second one is much more complicated, we have only im-
plemented the first algorithm. Experiments are conducted
on purely cyclic encryptions of acyclic circuits, cyclic encryp-
tions on top of acyclic circuits already encrypted by tradi-
tional encryptions. They demonstrate the effectiveness and
efficiency of the CycSAT algorithm.

2. BACKGROUND AND PROBLEM FORMULATION

2.A CONVENTIONAL LOGIC ENCRYPTION AND
SAT-BASED ATTACK

There exist many different ways [1], [2], [5], [7], [9] for logic
encryption. However, they are based on the general idea of
iteratively find a signal at random in the original circuit and
insert a lock gate (mostly an XOR) with a key. Examples are
given in Figure 1. Of course, they also try to prevent circuit
analysis and simple testing-based attacks by carefully select-
ing the lock gate locations and doing resynthesis afterwards.

An attacker is generally assumed to have access to the
encryption circuit either by reverse-engineering or through
other ways. He is also assumed to have a blackbox access to
the original circuit, for example, through product purchase
on the market. Since almost all product ICs are sequential
circuits, the combinational circuit assumption we use here
assumes an access to the scan-chain.

With this attack model in mind, Subramanyan et al. [13]
proposed a SAT-based attack that can effectively defeat al-
most all of the traditional logic encryption methods. We first
give its pseudo-code here in Algorithm 1. The main step in
Algorithm 1 SAT Attack Algorithm

Input: An encryption circuit g(x , k) and original boolean
function f (x).

Output: Correct key k∗ such that g(x , k∗) ≡ f (x).
1: while x̂ = SAT (g(x , k) 6= g(x , k1)) do
2: ŷ = f (x̂);
3: g(x , k) = g(x , k) ∧ (g(x̂ , k) = ŷ);
4: g(x , k1) = g(x , k1) ∧ (g(x̂ , k1) = ŷ);
5: end while
6: k∗ = SAT (g(x , k));

the SAT-based attack is to use two copies of the encryption
circuit with the same input but different keys under a given
constraint to check whether it is still possible to generate dif-
ferent outputs. Such input patterns are called Differentiating
Input Patterns (DIPs). Each DIP is then used to query the
original circuit blackbox to get the correct output. The DIP
with output is then used to further constrain the keys under
consideration.

The idea of using DIP is to exclude at least one wrong key
from consideration. However, the surprise is that many of
the DIPs each may exclude a large number of wrong keys.
That is the main reason for the effectiveness of the attack.
Of course, if a DIP can only exclude a very small number of
wrong keys, then the attack will take very long time to find
the correct key. Yasin et al. [15] and Xie and Srivastava [14]
explored this property to develop strengthening approaches.
But since they both have an error rate of 2−n , they can be
defeated by approximate attacks such as Double DIP [12] and
AppSAT [10].

2.B CYCLIC LOGIC ENCRYPTION

Different from all previous logic encryption methods, Shamsi
et al. [10] proposed a new way for logic encryption. In stead
of using lock gates to change the signal values in the circuit,
their approach suggested to introduce feedback cycles into
the circuit. If cycles are broken in any different way, the cir-
cuit will (most possibly) be different from the original one.
In order to protect from structural analysis attack, they also
developed an algorithm that can ensure each cycle is irre-
ducible and has multiple ways to open it.

A cycle is called reducible if it has only one entry point,

i.e. the node with an edge coming from outside the cycle.
A reducible cycle has a unique feedback edge, which can be
safely removed. To ensure multiple ways to break a cycle,
they add extra multiplexer on the cycle edges.

But their claim that cyclic encryption is “SAT-unresolvable”
is only based on the simple reason that “the adversary can-
not launch the existing SAT attacks, since the circuit can no
longer be represented as a directed acyclic graph (DAG).” As
we will discuss in the paper, the foundation of the claim is
not solid.

2.C PROBLEM DEFINITION

In this paper, we adopt the same attack model as usual,
that is, we have access to a cyclic logic encryption circuit, and
also access to a blackbox original circuit. We also assume that
the original circuit is combinational. The decryption problem
of cyclic logic encryptions can be formulated as follows.

PROBLEM 1. Given a black-box access to a Boolean function
f (x) : Bn → Bp and its cyclic encryption g(x , k) as a cyclic
multilevel netlist with both original inputs x ∈ Bn , key inputs k ∈
Bn , and output y ∈ Bp , find a correct k∗ such that g(x , k∗) ≡
f (x).

3. AN INITIAL STUDY OF SAT-BASED ATTACK ON
CYCLIC ENCRYPTIONS

In this section, we will use a simple example to study the
issues in applying the original SAT-based attack [13] on cyclic
logic encryptions [11].

The first lesson we learn is that it is a prejudice to assume that
a SAT engine can only work on an acyclic combinational circuit.
When Shamsi et al. [10] proposed the cyclic obfuscation, they
simply claimed that “the adversary cannot launch the exist-
ing SAT attacks, since the circuit can no longer be represented
as a directed acyclic graph (DAG).” This convention was so
strong that they did not even bother to try the SAT-based at-
tack on any example in their paper. However, it may not be
their fault if they had tried the open-source SAT-based attack
from Subramanyan et al. [13] and found that it would not
work. In the code, a topological sort is conducted on the cir-
cuit netlist before it is translated into a CNF formula, which
will become an infinite loop when the circuit is cyclic! We
feel that this unnecessary step was perhaps also due to the
same prejudice.

Let us start our study with an encryption circuit shown in
Figure 2. Here we have two inputs x0, x1, two keys k0, k1,
and one output y . Note that k0 with the MUX introduced a
cycle in the circuit. However, the CNF of this cyclic circuit is
a conjunction of the fellowing conditions, one for each gate:

MUX(k0, y , x0) = w ,w ∧ x1 = z , k1 ⊕ w = y .

You can check that any SAT engine will have no problem
handling such kind of CNF.

First, we assume that the original circuit is y = NAND(x0, x1),
meaning that (k0, k1) = (0, 1) is a correct key. Now let us see
what will happen if we apply the original SAT-based attack
from Subramanyan et al. [13] (minus the unnecessary topo-
logical sort). Remember that the SAT-based attack will find
in each iteration an input called DIP that can distinguish the
current key set. For our example in Figure 2, (x0, x1) = (1, 0)
could be the first DIP. Then the key set will be constrained by
(x0, x1, y) = (1, 0, 1). It forces k1 = 1. The second iteration
of SAT attack must fail to find another DIP, since k0 = 1 can-
not have any consistent assignment while k0 = 0 can only

AND

AND

XOR

XOR

a

c
d
e
f

OR

b

y

AND

AND

XOR

XOR

a

c
d
e
f

OR

b

y
XOR

XNOR

k1

k2

AND

AND

XOR

XOR

a

c
d
e
f

OR

b

y

ANDk1

OR

k2

Figure 1: Traditional logic encryption example: gray gates are lock gates.

S

I0

I1

x0
x1

k0

y
AND

XOR
k1

w
z

Figure 2: A cyclic logic encryption circuit.

provide a unique output. Therefore, the SAT attack will gen-
erate the key based on the only DIP (1, 0, 1). The SAT engine
may give us (k0, k1) = (0, 1), the correct key, as a result. This
simple analysis shows that it is possible to directly run the orig-
inal SAT-based attack on a cyclic encryption and get the correct
key.

However, there is a caveat in the above analysis, since the
final result is dependent on the randomness of the SAT en-
gine. With only one DIP (1, 0, 1), it is also possible for the
SAT engine to give (k0, k1) = (1, 1) as the output, which
give us a circuit shown in Figure 3. Please note that the out-
put will oscillating between one and zero when x1 = 0. This
indicates that the original SAT-based attack on a cyclic encryption
may return a circuit with oscillation.

x1 y
NAND

Figure 3: A circuit with oscillation.

But we may also run into different difficulties by running
the SAT-based attack on cyclic encryptions. Still use the en-
cryption circuit in Figure 2 as an example, but with a dif-
ferent original circuit y = AND(x0, x1). Similarly, we could
get (x0, x1) = (1, 0) as the first DIP. Now the constraint
(x0, x1, y) = (1, 0, 0) will force k1 = 0. Different from previ-
ous example, now we could get the second DIP (0, 1), intro-
ducing a contraint (x0, x1, y) = (0, 1, 0) on the key set. Then
we could get a third DIP (0, 1), which is the same as the sec-
ond one. Thus, the SAT-based attack will get into an infinite
loop, generating repeating DIPs. The reason is that after the
first DIP sets k1 = 0, we will have a circuit as shown in Fig-
ure 4, where no DIP can induce any constraint on k0. With
x1 = 1, the output y can be either one or zero even when k0

is fixed at one. This seems to be a more serious problem since it
prevents us from finishing the original SAT-based attack.

Before we start to develop attack algorithms for cyclic logic
encryption, let us summarize the situation for the original
SAT-based attack. It is stated as the following lemma.

LEMMA 1. If a cyclic encryption circuit is combinational un-
der both original input and key input, then the original SAT-based
attack can find the correct key. However, if it is stateful for any

S

I0

I1

x0 x1

k0

y
AND

Figure 4: A circuit preventing SAT attack from finishing.

input and key configuration, SAT attack will get into infinite loop;
if it is oscillating for any input and key configuration, SAT attack
may return a wrong key.

4. SAT ATTACK BASED ON STRUCTURAL ACYCLIC
CONDITION

We present our first SAT-based attack on cyclic encryption
based on structural acyclic condition. This attack needs to
assume that there exist at least one correct key under which
there is no structural cycle in the circuit. We believe that this
is a reasonable assumption since the original combinational
circuit is always acyclic, and a logic encryption algorithm
usually gets its assurance of a correct key from its restora-
tion back to the original circuit. In fact, Shamsi et al. [10],
the only existing cyclic encryption method, does satisfy this
assumption.

We will first show that the condition that “there is no struc-
tural cycle under k” can be postulated as a CNF of a size pro-
portional to the size of the circuit. Then we can incorporate
this CNF into the circuit CNF in the original SAT-based at-
tack [13] to get an effective attack on cyclic encryptions.

It works as follows. First, we will select a small set of feed-
back signals whose break will make the encryption circuit
acyclic. Denote the broken signals as w0,w

′
0, . . . ,wm ,w ′m ,

where w ′i feeds to w i before the break. Then, we construct
the formula F (w i , j) to represent that “there is no structural
path from signal w i to signal j” iteratively in a topological
order of j as follows. Initially, we have

F (w i ,w i) = 0, ∀ i ∈ 0..m.

And for any j in the topological order, we have the recursion

F (w i , j) =
∧

l∈NK(j)F (w i , l) ∨ bk(l , j), (1)

where NK (j) represents the set of non-key fanins of signal j ,
and bk(l , j) is the condition on key ensuring that l not affects
j . For any gate that does not have any key input, we always
have bk(l , j) = 0. Finally, the condition that “there is no
structural cycle under k” can be formulated as

NC =
∧

m
i=0F (w i ,w

′
i).

To illustrate the method, let us apply the procedure to a
more complex encryption circuit in Figure 5. There are more

than one possible feedback sets, for example, {v} and {w , y}.
Assume we select {v}. Now the F functions can be com-
puted as follows.

S

I0

I1 x0

x1

k0

w
AND

XOR
k1

v
z

k2

y

OR

Figure 5: Another cyclic logic encryption circuit.

F (v , y) = F (v , v) ∨ bk(v , y) = 0

F (v , z) = F (v , y) ∨ bk(y , z) = ¬k2

F (v ,w) = F (v , z) ∨ bk(z ,w) = ¬k2

F (v , v ′) = (F (v ,w) ∨ bk(w , v ′)) ∧ (F (v , y) ∨ bk(y , v ′))

= (¬k2 ∨ k0) ∧ ¬k0 = ¬k2 ∧ ¬k0

The “no cycle” condition is NC = ¬k2 ∧¬k0. If NC is added
as a constraint to the encryption circuit, we get a circuit y =
k1∨x0∨x1. Now let us run the original SAT-based attack on
this circuit. It will find a DIP (x0, x1) = (0, 0) to differentiate
k1, and to settle it based on the output of the original circuit.
The pseudo-code is given in Algorithm 2.
Algorithm 2 Structural CycSAT Algorithm

Input: Cyclic encryption circuit g(x , k) and original boolean
function f (x).

Output: Correct key k∗ such that g(x , k∗) ≡ f (x).
1: Find a set of feedback signals (w0, . . . ,wm);
2: Compute “no structural path” formulas F (w0,w

′
0), . . . ,

F (wm ,w ′m);
3: NC =

∧m
i=0F (w i ,w

′
i);

4: g(x , k) = g(x , k) ∧NC (k);
5: g(x , k1) = g(x , k1) ∧NC (k1);
6: while x̂ = SAT (g(x , k) 6= g(x , k1)) do
7: ŷ = f (x̂);
8: g(x , k) = g(x , k) ∧ (g(x̂ , k) = ŷ);
9: g(x , k1) = g(x , k1) ∧ (g(x̂ , k1) = ŷ);

10: end while
11: k∗ = SAT (g(x , k));

At first look, the algorithm looks fine. However, a straight-
forward implementation may run into trouble. The main
problem comes from the complexity of computing the “no
structural path” condition. As we have shown in Equa-
tion (1), the formula of a signal can be computed from those
of its fanins. However, if we try to compute the CNF of each
of them by using the recursion, we may get an exponential-
size formula.

Here is a simple example. Figure 6 shows an encryption
circuit with a sequence of alternating MUX and OR gates, and
one feedback edge from the end to the beginning. Now, let us
try to compute all the formulas in CNF following the topo-
logical order based on the recursion. The output of the first
MUX should have the formula ¬k0, which is just one clause.
Then the formula at the output of the first OR gate is ¬k0∨k1.
With them, the formula at the output of the second MUX is
(¬k0)(¬k0 ∨ k1), of two clauses. In the similar way, the for-
mula at the output of the n-th MUX will have 2n−1 clauses.
Actually, such a CNF formula represents the all 2n−1 possi-
ble paths from the beginning to the curent gate, one by each

clause.

S

I0

I1 S

I0

I1 S

I0

I1

k0 k2 kn

OR OR
kn-1

k1x

Figure 6: An cyclic encryption circuit whose CNF may have
exponential clauses.

Fortunately, this exponential growth of clause number is
not unavoidable. A better way is to introduce a new variable
f ij to represent the formula F (w i , j). Then what we need
is to build a CNF to represent the relationship postulated in
Equation (1):

f ij =
∧

l∈NK(j)f il ∨ bk(l , j),

where bk(l , j) is a disjunction of one or more key literals.
This can be translated into two implications. The first one
f ij ⇒

∧
l∈NK(j)f il ∨ bk(l , j) is the same as the CNF∧

l∈NK(j)(¬f ij ∨ f il ∨ bk(l , j)).

However, the second one, (
∧

l∈NK(j)f il ∨ bk(l , j)) ⇒ f ij ,
equivalent to f ij ∨

∨
l∈NK(j)¬f il∧¬bk(l , j), is actually a DNF.

If we use the distributive law to directly translate a DNF into
a CNF, the size could be exponential in term of |NK (j)|.

Once again, we can control the CNF size by introducing
one auxiliary variable v l for each l ∈ NK (j). With them, the
second implication can be translated into the following CNF:

(f ij ∨
∨

l∈NK(j)v l)
∧

l∈NK(j)(¬v l ∨ ¬f il)(¬v l ∨ ¬bk(l , j)).

Combining the two implications gives the CNF for Equa-
tion (1).

This translation can be done for each formula F (w i , j).
Combining them will give us a whole CNF for NC (k). It
is not hard to see that now the whole CNF representing that
“there is no structural cycle under k” has a polynomial size.
The result is stated in the following theorem.

THEOREM 2. For any cyclic logic encryption circuit, the con-
dition that there is no structural cycle under k can be computed in
O(mVE) time as a CNF formula of size O(mVE), where V is the
number of gates, E the total number of fanins for all gates, of the
encryption circuit, and m is the size of the feedback set.

5. SAT ATTACK BASED ON LOGIC ACYCLIC
CONDITION

The attack in the previous section will be successful only if
there is at least one correct key that renders an acyclic circuit.
In this section, we are going to develop a more advanced at-
tack that works even without that assumption. The situation
without the assumption could happen if the original circuit is
cyclic [3], [8], or the circuit designer intentionally adds com-
binational cycles before any cyclic encryption.

The approach is an extension of the algorithm from the
previous section. It will first identify a small set of feedback
signals (w0, . . . ,wm) as usual. It will then generate a formula
F (w i ,w

′
i) for each i ∈ 0..m similarly in a topological order.

But now, the formula F (w i , j) postulates that “there is no
sensitizable path from w i to j .”

The way to compute the formulas is the same as in previ-
ous section with only one exception that now the conditions

are now generalized from k to all signals. Specifically, the
recursion for computing F is

F (w i , j) =
∧

l∈Fanin(j)F (w i , l) ∨ ns(l , j) (2)

where Fanin(j) represents the set of all fanins of signal j , and
ns(l , j) is the general condition ensuring that j is not sensible
to l . Finally, the condition that “there is no sensitizable cycle
in circuit” can be formulated as

NC =
∧

m
i=0F (w i ,w

′
i).

To illustrate the method, let us apply the procedure to the
same encryption circuit in Figure 5. As mentioned before,
there are more than one possible feedback sets, for example,
{v} and {w , y}. This time, let us assume {w , y} is selected.
The F functions can be computed as follows.

F (y , v) = F (y , y) ∨ ns(y , v) = ¬k0

F (y , y ′) = F (y , v) ∨ ns(v , y ′) = ¬k0 ∨ x0 ∨ x1

F (w , v) = F (w ,w) ∨ ns(w , v) = k0

F (w , y ′) = F (w , v) ∨ ns(v , y ′) = k0 ∨ x0 ∨ x1

F (w , z) = F (w , y ′) ∨ ns(y ′, z)

= k0 ∨ x0 ∨ x1 ∨ ¬x1 ∨ ¬k2 = 1

F (w ,w ′) = F (w , z) ∨ ns(z ,w ′) = 1 ∨ 0 = 1

The “no sensitizable cycle” condition is given by NC =
F (w ,w ′) ∧ F (y , y ′) = ¬k0 ∨ x0 ∨ x1. Please note that this
condition is much weaker than the “no structural cycle” con-
dition ¬k2 ∧ ¬k0 from the previous section. It means that
the “no sensitizable cycle” condition will allow much more
possible solutions. For example (k0, k1, k2) = (0, 0, 1) gives
such a circuit shown in Figure 7 that is not permitted by the
“no strutural cycle” condition, since it does include a cycle.
The complexity of the procedure is similar to the one for the
Structural CycSAT algorithm.

x0

x1

w

y

OR
AND

Figure 7: An original cyclic circuit that is the same as OR.

Now let us examine how the “no sensitizable cycle” con-
dition ¬k0 ∨ x0 ∨ x1 can be utilized by the SAT-based attack
to find the correct original circuit in Figure 7. Constrained by
this condition, the SAT needs to find a DIP to differentiate k
on y . It has to fix (x0, x1) = (0, 0), which then forces k0 = 0
due to the constraint. Under this assignment, we have z = 0
and y = k1. Thus the DIP (0, 0) will make k1 = 0. It can be
checked that there is no more DIP. Thus, the SAT attack may
return arbitrary k0, k2. We can check that any assignment to
k2 is correct. However, If we get k0 = 1, we are in trouble
since the circuit becomes stateful. This indicates that, dif-
ferent from the Structural CycSAT algorithm in the previous
section, we cannot simply incorporate the acyclic condition
into the original SAT attack to get the result.

A careful examination shows that, with consideration of
both k and other signals, the “no sensitizable cycle” con-
dition can recognize the combinational cycles in the circuit,
such as the larger cycle (v , y , z ,w) in Figure 5, thus be able
to avoid unnecessary cycle break by k2 = 0. In passing, note
that the cycle behaves combinationally since x1 will either

dominate the AND or the OR gate. However, since the con-
dition also incorporates input configurations that make cy-
cles insensitizable, the SAT may return a key that gives sen-
sitizable cycle outside the given input configurations. In the
above example, k0 = 1 is fine with x0 ∨ x1. The sensitizable
cycle happens only when x0 and x1 are zero.

Therefore, when we have extracted all DIPs under the “no
sensitizable cycle” condition, we may not automatically get
the correct key as in the Structural CycSAT Algorithm.

We need to develop a method to extract a correct key that
guarantees “no sensitizable cycle” for all possible inputs. A
new example in Figure 8 will be used to illustrate the issues
and the method to handle them. For this circuit, the “no cy-

NAND

OR

ANDk0

k1

y
a

b

x

Figure 8: Yet another cyclic encryption circuit.

cle” condition is NC = (¬k0∨¬x ∨¬b)∧(k1∨¬x ∨¬a). You
can check that there is no DIP. The SAT engine could return
arbitrary k0, k1 with x = 0, which satisfies both NC and the
circuit CNF. However, k0 = 1 gives an oscillator when x = 1.

Our idea is to first check whether there is any input that
could give sensitizable cycle in the circuit under the current
constraints. Since a sensitizable cycle could be an oscillator,
which does not have satisfiable assignment, we need to break
each feedback signal w i into two signals w i ,w

′
i . Denote the

constrained circuit g(x , k) with feedback broken by G(x , k),
then the checking can be done by

SAT (¬NC (x , k) ∧G(x , k)).

If we have an assignment x̂ on input, “no sensitizable cycle”
condition NC on this specific input will be added:

g(x , k) = g(x , k) ∧NC (x̂ , k)

This process will be repeated until there is no more input that
can give sensitizable cycle in the constrained circuit. Then
the constrained circuit g(x , k) can be solved for the correct
key.

For the encryption in Figure 8, we have ¬NC = (k0 ∧
x/ b)∨ (k1 ∧ x ∧ a). An assignment x = 1 satisfies ¬NC and
the circuit with broken y . The added constraint is NC (x =
1) = (¬k0 ∨ ¬b)/ (k1 ∨ ¬a). You can check that there is no
more assignment satisfying ¬NC with the added contraint.
Now, solving the constrained circuit will give us the correct
k0 = 0.

Please note that this procedure is similar to DIP generation
in the original SAT-based attack, and we will call these input
patterns SIPs (Sensitizable Input Patterns). We call this algo-
rithm Logic CycSAT Algorithm, and its pseudo-code is given
in Algorithm 3.

If we apply the Logic CycSAT Algorithm to the encryption
circuit in Figure 5, we will find (x0, x1) = (0, 0) as the first
SIP. Applying this SIP to NC = ¬k0 ∨ x0 ∨ x1, we get k0 = 0,
which will forbidden any more SIP. We will get (k0, k1, k2) =
(0, ·, 1) as the correct key. You can check that it will give a
circuit equivalent to the one in Figure 7.

6. EXPERIMENTAL RESULTS

Algorithm 3 Logic CycSAT Algorithm

Input: Cyclic encryption circuit g(x , k) and original boolean
function f (x).

Output: Correct key k∗ such that g(x , k∗) ≡ f (x).
1: Find a set of feedback signals (w0, . . . ,wm);
2: Compute “no sensitizable path” formulas F (w0,w

′
0),

. . . , F (wm ,w ′m);
3: NC (x , k) =

∧m
i=0F (w i ,w

′
i);

4: while x̂ = SAT (NC (x , k) ∧ NC (x , k1) ∧ g(x , k) 6=
g(x , k1)) do

5: ŷ = f (x̂);
6: g(x , k) = g(x , k) ∧ (g(x̂ , k) = ŷ);
7: g(x , k1) = g(x , k1) ∧ (g(x̂ , k1) = ŷ);
8: end while
9: while (x̂ = SAT (¬NC (x , k) ∧G(x , k))) do

10: g(x , k) = g(x , k) ∧NC (x̂ , k);
11: end while
12: k∗ = SAT (g(x , k));

6.A BENCHMARK GENERATION

Since the benchmarks from Shamsi et al. [10] are not avail-
able, we have to create our own benchmarks for testing the
CycSAT algorithm. Our original acyclic circuit benchmarks
include ISCAS’85 benchmarks and the combinational circuits
from the Microelectronics Center of North Carolina (MCNC)
as shown in table. Our traditionally encrypted circuit bench-
marks are from Subramanyan et al. [13]. These benchmarks
are encrypted with an encryption algorithm proposed by
Dupuis et al. [2], which inserts AND and OR gates in order
to minimize low-controllability locations in the circuits. With
this technique, each original benchmark is encrypted into 4
circuits based on the area overhead for encryption (5%, 10%,
25% and 50%).

To create cycles in the circuits, we apply cyclic encryp-
tion following the cyclic obfuscation approach proposed by
Shamsi et al. [11] on both original circuit benchmarks and
traditionally encrypted circuit benchmarks. Shamsi’s cyclic
encryption aims to increase attack difficulty by creating irre-
ducible loops with multiple removable edges in circuits. It
is claimed that the complexity to attack a cyclic encrypted
circuit with N loops of M removable edges is 2M×N . To en-
sure the cycle we create is irreducible, we attempt to find a
path in the circuit that has multiple entry points and create a
feedback from the output of the last gate on this path to the
input of the first gate with an extra multiplexer in between.
The new MUX is controlled by an extra key bit so that if the
correct key is provided, the feedback will be disconnected.
If the selected path does not have multiple entry points, we
will add MUXes along the path with extra key bits as the se-
lecting bits and random wires not on this path as another
inputs to the MUXes. Besides, if there is any gate on the path
that has only one fanout, we will apply similar trick to con-
nect its output to a random location. It turns out that all the
edges on the path are removable. As can be seen, by creating
one feedback loop, we may also introduce multiple uninten-
tional cycles, further increasing attack complexity in the final
encrypted circuits.

6.B CYCSAT ON CYCLIC ENCRYPTION OF ACYCLIC
CIRCUITS

We implement the proposed Structural CycSAT Algorithm
in C++ . In this section, we compare the attacking capabil-

Table 1: Original circuit benchmark information
ISCAS’85 MCNC

Circuit #In #Out #Gates Circuit #In #Out Gates
c432 36 7 160 apex2 39 3 610
c499 41 32 202 apex4 10 19 5360
c880 60 26 383 dalu 75 16 2298
c1355 41 32 546 des 256 245 6473
c1908 33 25 880 ex5 8 63 1055
c2670 157 64 1193 ex1010 10 10 5066
c3540 50 22 1669 i4 192 6 338
c5315 178 123 2307 i7 199 67 1315
c7552 207 108 3512 i8 133 81 2464

i9 88 63 1035
k2 46 45 1815
seq 41 35 3519

ity and effectiveness between CycSAT and SAT-attack on the
circuits with only cyclic encryption, without any traditional
encryption.

As shown in Table 2, CycSAT successfully find correct keys
for most benchmarks while original SAT-attack is often not
terminating during the decryption(denoted as “-”’ in the ta-
ble). In all the benchmarks that SAT-attack fails, it keeps re-
turning the same DIP and is trapped in the “while” loop in
the algorithm. In benchmark c2670 and des, SAT-attack re-
turns the correct key. It is important to note that, even though
not found in our experiment, the possibility that SAT-attack
returns a wrong key transforming the circuit into an oscilla-
tor still in principle exists.

On the other hand, the fact that the original SAT-attack can
solve the correct key of some cyclic encrypted circuits shows
that cyclic encryption is not completely SAT attack resilient
as claimed by Shamsi et al. [11] . The attack success relies
on the randomness in the SAT engine as explained in Section
3. If the SAT engine happens to produce the desired DIP,
the correct key will be generated. Otherwise, with the key
constraint imposed by the undesired DIP, the circuit becomes
either a state machine (as for all the failure benchmarks in
Table 2) or an oscillator (rarely occurs but still possible).

Moreover, for the two benchmarks that both CycSAT and
SAT-attack successfully decrypt, CycSAT takes fewer num-
ber of iterations and less CPU time, especially in benchmark
des, which shows CycSAT’s effectiveness in capturing the
desired key constraint.

6.C CYCSAT ON CYCLIC ENCRYPTION OF ACYCLIC
ENCRYPTED CIRCUITS

In this section, we explore the performance of CycSAT
on double encrypted circuits, that is, traditionally encrypted
then cyclic encrypted. All the benchmarks in our experi-
ment have 10 percent traditional encryption area overhead.
As shown in Table 3, we perform cyclic encryption to add
different number of intentional feedbacks(N) with different
lengths(M) for every traditionally encrypted benchmark.

We then apply CycSAT on the double encrypted circuits
and obtain the attack performance as illustrated in Figure 9
and Figure 10. As expected, in most cases, it takes CycSAT
more iterations and execution time to decrypt the bench-
marks with more intentional feedbacks of longer lengths.
However, this may not be true in some rare cases (e.g i9),
where even though there are larger number of longer cycles,
the decryption cost becomes smaller. According to our anal-
ysis, this can be due to the randomness of the SAT engine.
Specifically, if the SAT engine fortunately returns a DIP that

Table 2: Cycsat vs Sat-attack on cyclic encryption of original circuits, with 10 intentional feedbacks of length 5
cyclic encrypted CycSAT SAT-attack

circuit #primary
inputs

#out #gates #key
inputs

#cycles #iterations CPU
time(s)

#iterations CPU
time(s)

apex2 39 3 695 85 40 14 0.204 - -
apex4 10 19 5450 90 17 - - - -
c432 36 7 226 66 22 - - - -
c499 41 32 277 75 26 23 0.304 - -
c880 60 26 458 75 24 25 0.208 - -
c1355 41 32 613 67 38 - - - -
c1908 33 29 953 73 30 11 0.268 - -
c2670 233 140 1266 73 26 23 0.336 26 0.392
c3540 50 22 1745 76 38 19 0.576 - -
c5315 178 123 2382 75 24 24 0.568 - -
c7552 207 108 3583 71 29 26 0.852 - -
dalu 75 16 2379 81 20 16 0.504 - -
des 256 245 6551 78 20 18 0.908 53 2.272
ex5 8 63 1139 84 22 20 0.468 - -
ex1010 10 10 5152 86 23 27 1.4 - -
i4 192 6 428 90 20 29 0.172 - -
i7 199 67 1404 89 22 40 0.688 - -
i8 133 81 2550 86 26 - - - -
i9 88 63 1121 86 26 36 0.536 - -
k2 46 45 1895 80 18 16 0.276 - -
seq 41 35 3605 86 20 25 0.88 - -

Table 3: Cyclic encryption over acyclic encrypted circuits: 10% overhead traditional encryption + different cyclic encryption
N=5, M=5 N=10, M=5 N=5, M=10 N=20, M=5

circuit #gate #key #cycle #gate #key #cycle #gate #key #cycle #gate #key #cycle
apex2 718 108 12 762 152 32 768 158 12 851 241 54
apex4 5942 582 10 5987 627 20 5992 632 10 6077 717 40
c432 213 53 14 252 92 20 237 77 12 327 167 38
c499 262 60 16 299 97 24 305 103 22 377 175 76
c880 466 83 12 506 123 22 505 122 16 589 206 44
c1355 639 93 16 672 126 32 675 129 28 739 193 54
c1908 1008 128 28 1040 160 38 1041 161 28 1115 235 62
c2670 1372 179 16 1411 218 26 1417 224 14 1488 295 46
c3540 1879 210 20 1919 250 30 1918 249 26 1993 324 52
c5315 2595 288 12 2633 326 26 2635 328 12 2708 401 52
c7552 3912 409 10 3958 446 28 3965 453 12 4034 522 50
dalu 2576 278 10 2619 321 24 2621 323 18 2700 402 44
des 7190 717 10 7228 755 20 7234 761 10 7310 837 40
ex5 1203 148 14 1244 189 24 1251 196 14 1329 274 44
ex1010 5619 553 14 5663 597 24 5669 603 10 5750 684 44
i4 436 98 14 481 143 20 486 148 10 571 233 40
i7 1511 196 12 1556 241 22 1561 246 12 1646 331 40
i8 2768 304 16 2811 347 24 2814 350 18 2898 434 44
i9 1191 156 18 1236 201 32 1223 188 32 1326 291 52
k2 2039 224 10 2080 265 20 2091 276 12 2161 346 40
seq 3920 401 10 3963 444 20 3970 451 10 4052 533 42

excludes exponentially many wrong keys, the whole decryp-
tion process can dramatically speed up.

7. CONCLUSIONS

Cyclic logic encryption [11] is a newly proposed method
different from existing logic encryption approaches. It inten-
tionally introduces cycles into the encryption circuit to fool
the attacker. In this paper, we examined the possibilities
of SAT-based attacks on cyclic encryptions, and developed
two efficient algorithms for that purpose. Based on theoret-

ical and experimental studies, we found that the cyclic en-
cryption can be effectively decrypted by the proposed Cyc-
SAT Algorithm. Therefore, it was not on a solid foundation
to claim that cyclic encryption is SAT-unresolvable because
SAT cannot handle a cyclic circuit. A promising direction
for future work is to develop new cyclic encryption meth-
ods that will be more secure and robust. Our experiments
have shown the vulnerability of the existing cyclic encryp-
tion method, and motivate us to develop new approaches in
some new directions.

Figure 9: Execution time (seconds) comparison for CycSAT attack on different cyclic encrypted circuits.

Figure 10: Iteration number comparison for CycSAT attack on different cyclic encrypted circuits.

8. REFERENCES
[1] BAUMGARTEN, A., TYAGI, A., AND ZAMBRENO, J.

Preventing ic piracy using reconfigurable logic barriers.
IEEE Design and Test 27, 1 (2010).

[2] DUPUIS, S., BA, P.-S., NATALE, G. D., FLOTTES,
M.-L., AND ROUZEYRE, B. A novel hardware logic
encryption technique for thwarting illegal
overproduction and hardware trojans. In IEEE
International On-Line Testing Symposium (2014).

[3] EDWARDS, S. A. Making cyclic circuits acyclic. In
Proc. of the Design Automation Conf. (2003).

[4] LI, M., SHAMSI, K., MEADE, T., ZHAO, Z., YU, B.,
JIN, Y., AND PAN, D. Provably secure camouflaging
strategy for ic protection. In Proc. Intl. Conf. on
Computer-Aided Design (Austin, TX, Nov. 2016).

[5] RAJENDRAN, J., PINO, Y., SINANOGLU, O., AND
KARRI, R. Logic encryption: A fault analysis
perspective. In Proceedings of the Conference on Design,
Automation and Test in Europe (2012), EDA Consortium,
pp. 953–958.

[6] RAJENDRAN, J., SAM, M., SINANOGLU, O., AND
KARRI, R. Security analysis of integrated circuit
camouflaging. In CCS (2013).

[7] RAJENDRAN, J., ZHANG, H., ZHANG, C., ROSE,
G. S., PINO, Y., SINANOGLU, O., AND KARRI, R. Fault
analysis-based logic encryption. IEEE Transactions on
Computers 64, 2 (Feb. 2015).

[8] RIEDEL, M., AND BRUCK, J. The synthesis of cyclic
combinational circuits. In Proc. of the Design Automation

Conf. (2003).
[9] ROY, J. A., KOUSHANFAR, F., AND MARKOV, I. L.
EPIC: ending piracy of integrated circuits. In
Proceedings of the conference on Design, automation and
test in Europe (2008), pp. 1069–1074.

[10] SHAMSI, K., LI, M., MEADE, T., ZHAO, Z., PAN,
D., AND JIN, Y. AppSAT: Approximately
deobfuscating integrated circuits. In Proc. IEEE
International Symposium on Hardware Oriented Security
and Trust (May 2017).

[11] SHAMSI, K., LI, M., MEADE, T., ZHAO, Z., PAN,
D., AND JIN, Y. Cyclic obfuscation for creating
SAT-unresolvable circuits. In Proc. ACM Great Lakes
Symposium on VLSI (Banff, AB, Canad, May 2017).

[12] SHEN, Y., AND ZHOU, H. Double dip:
Re-evaluating security of logic encryption algorithms.
In Proc. ACM Great Lakes Symposium on VLSI (Banff,
AB, Canada, May 2017).

[13] SUBRAMANYAN, P., RAY, S., AND MALIK, S.
Evaluating the security of logic encryption algorithms.
In Proc. IEEE International Symposium on Hardware
Oriented Security and Trust (2015).

[14] XIE, Y., AND SRIVASTAVA, A. Mitigating SAT
attack on logic locking. In Conference on Cryptographic
Hardware and Embedded Systems (CHES) (2016).

[15] YASIN, M., MAZUMDAR, B., RAJENDRA, J. J. V.,
AND SINANOGLU, O. SARLock: SAT attack resistant
logic locking. In Proc. IEEE International Symposium on
Hardware Oriented Security and Trust (2016).

