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Abstract. It is well known that constant-time implementations of modu-
lar exponentiation cannot use sliding windows. However, software libraries
such as Libgcrypt, used by GnuPG, continue to use sliding windows. It
is widely believed that, even if the complete pattern of squarings and
multiplications is observed through a side-channel attack, the number
of exponent bits leaked is not sufficient to carry out a full key-recovery
attack against RSA. Specifically, 4-bit sliding windows leak only 40% of
the bits, and 5-bit sliding windows leak only 33% of the bits.

In this paper we demonstrate a complete break of RSA-1024 as imple-
mented in Libgcrypt. Our attack makes essential use of the fact that
Libgcrypt uses the left-to-right method for computing the sliding-window
expansion. We show for the first time that the direction of the encoding
matters: the pattern of squarings and multiplications in left-to-right slid-
ing windows leaks significantly more information about the exponent than
right-to-left. We show how to extend the Heninger-Shacham algorithm
for partial key reconstruction to make use of this information and obtain
a very efficient full key recovery for RSA-1024. For RSA-2048 our attack
is efficient for 13% of keys.

Keywords: left-to-right sliding windows, collision entropy, cache attack,
Flush+Reload, RSA-CRT.

1 Introduction

Modular exponentiation in cryptosystems such as RSA is typically performed
starting from the most significant bit (MSB) in a left-to-right manner. More
efficient implementations use precomputed values to decrease the number of
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multipliVEcations. Typically these windowing methods are described in a right-
to-left manner, starting the recoding of the exponent from the least significant
bit (LSB), leading to the potential disadvantage that the exponent has to be
parsed twice: once for the recoding and once of the exponentiation.

This motivated researchers to develop left-to-right analogues of the integer
recoding methods that can be integrated directly with left-to-right exponentiation
methods. For example, the only method for sliding-window exponentiation in the
Handbook of Applied Cryptography [17, Chap 14.6] is the left-to-right version
of the algorithm. Doche [8] writes “To enable ‘on the fly’ recoding, which is
particularly interesting for hardware applications” in reference to Joye and Yen’s
[15] left-to-right algorithm.

Given these endorsements, it is no surprise that many implementations chose a
left-to-right method of recoding the exponent. For example, Libgcrypt implements
a left-to-right exponentiation with integrated recoding. Libgcrypt is part of the
GnuPG code base [2], and is used in particular by GnuPG 2.x, which is a very
popular implementation of the OpenPGP standard [6] for applications such as
encrypted email and files. Libgcrypt is also used by various other applications;
see [1] for a list of frontends.

It is known that exponentiation using sliding-window methods leaks informa-
tion, specifically the pattern of squarings and multiplications, through cache-based
side-channel attacks. However, it is commonly believed that for window width w
only about a fraction 2/(w+ 1) bits would leak: each window has 1 bit known to
be 1, and each gap has on average 1 bit known to be 0, compared to w + 1 bits
occupied on average by the window and the gap.

Libgcrypt 1.7.6, the last version at the time of writing this paper, resists the
attacks of [10, 16], because the Libgcrypt maintainers accepted patches to protect
against chosen-ciphertext attacks and to hide timings obtained from loading
precomputed elements. However, the maintainers refused a patch to switch from
sliding windows to fixed windows; they said that this was unnecessary to stop
the attacks. RSA-1024 in Libgcrypt uses the CRT method and w = 4, which
according to the common belief reveals only 40% of all bits, too few to use the
key-recovery attack [12] by Heninger and Shacham. RSA-2048 uses CRT and
w = 5, which according to the common belief reveals only 33% of all bits.

1.1 Contributions

In this paper we show that the common belief is incorrect for the left-to-right
recoding: this recoding actually leaks many more bits. An attacker learning
the location of multiplications in the left-to-right squarings-and-multiplications
sequence can recover the key for RSA-1024 with CRT and w = 4 in a search
through fewer than 10000 candidates for most keys, and fewer than 1000000
candidates for practically all keys. Note that RSA-1024 and RSA-1280 remain
widely deployed in some applications, such as DNSSEC. Scaling up to RSA-2048
does not stop our attack: we show that 13% of all RSA-2048 keys with CRT and
w = 5 are vulnerable to our method after a search through 2000000 candidates.

We analyze the reasons that left-to-right leaks more bits than right-to-left and
extensive experiments show the effectiveness of this attack. We further improve
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Fig. 1: The sequence of squares and multiplies of left-to-right windowed ex-
ponentiation contains much more information about the exponent than from
exponentiation in the other direction, both in the form of known bits (red) and
information-theoretic bits (green). Recovering close to 50% of the information
about the key allows an efficient full key recovery attack.

the algorithm by Heninger and Shacham to make use of less readily available
information to attack RSA-2048, and prove that our extended algorithm efficiently
recovers the full key when the side channel leaks data with a self-information
rate greater than 1/2.

To illustrate the real-world applicability of this attack, we demonstrate how
to obtain the required side-channel data (the pattern of squarings and multi-
plications) from the modular-exponentiation routine in Libgcrypt version 1.7.6
using a Flush+Reload [25, 26] cache-timing attack that monitors the target’s
cache-access patterns. The attack combines a small number of traces (at most 20)
using the same secret RSA key, and does not depend on further frontend details.

1.2 Targeted Software and Current Status

Software and Hardware. We target Libgcrypt version 1.7.6 which is the
latest version at the time of writing this paper. We compiled Libgcrypt using
GCC version 4.4.7 using -O2 optimization level. We performed the attack on an
HP-Elite 8300 desktop machine, running Centos 6.8 with kernel version 3.18.41-20.
The machine has a 4-core Intel i5-3470 processor, running at 3.2 GHz, with 8 GiB
of DDR3-1600 CL-11 memory.

Current Status. Using the practice of responsible disclosure, we disclosed this
issue to the Libgcrypt maintainers and are working with them to produce and
validate patch for mitigating our attack. The vulnerability has been assigned
CVE-2017-7526. A new version of Libgcrypt will be released simultaneously with
the publication of this paper.

2 Preliminaries

2.1 RSA-CRT

RSA signature key generation is done by generating two random primes p, q.
The public key is then set to be (e,N) where e is a (fixed) public exponent and
N = pq. The private key is set to be (d, p, q) where ed ≡ 1 (mod φ(n)) and
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Algorithm 1 Sliding window modular exponentiation.

Input: Three integers b, d and p where dn · · · d1 is a windowed form of d.
Output: a ≡ bd (mod p).
1: procedure mod exp(b, d, p)
2: b1 ← b, b2 ← b2 mod p, a← 1
3: for i← 1 to 2w−1 − 1 do . precompute table of small powers of b
4: b2i+1 ← b2i−1 · b2 mod p

5: for i← n to 1 do
6: a← a · a mod p
7: if di 6= 0 then
8: a← a · bdi mod p

9: return a

φ(n) = (p − 1)(q − 1). RSA signature of a message m is done by computing
s = h(m)d mod N where h is a padded cryptographically secure hash function.
Signature verification is done by computing z = se mod N and verifying that z
equals h(m). A common optimization for RSA signatures is based on the Chinese
Remainder Theorem (CRT). Instead of directly computing s = h(m)d mod N
directly, the signer computes sp = h(m)dp mod p, sq = h(m)dq mod q (where dp
and dq are derived from the secret key) and then combines sp and sq into s using
the CRT. The computations of sp and sq work with half-size operands and have
half-length exponents, leading to a speedup of a factor 2− 4.

2.2 Sliding Window Modular Exponentiation

In order to compute an RSA signature (more specifically the values of sp and
sq defined above), two modular exponentiation operations must be performed.
A modular exponentiation operation gets as inputs base b, exponent d, and
modulus p and outputs bd mod p. A common method used by cryptographic
implementations is the sliding window method, which assumes that the exponent
d is given in a special representation, the windowed form. For a window size
parameter w, the windowed form of d is a sequence of digits dn−1 · · · d0 such that
d =

∑n−1
i=0 di2

i and di is either 0 or an odd number between 1 and 2w − 1.
Algorithm 1 performs the sliding window exponentiation method, assuming

that the exponent is given in a windowed form, in two steps: It first precomputes
the values of b1 mod p, b3 mod p, · · · , b2w−1 mod p for odd powers of b. Then,
the algorithm scans the digits of d from the most significant bit (MSB) to the
least significant bit (LSB). For every digit, the algorithm performs a squaring
operation (Line 6) on the accumulator variable a. Finally, for every non-zero
digit of d, the algorithm performs a multiplication (Line 8).

2.3 Sliding Window Conversion

The representation of a number d in (sliding) windows is not unique, even for a
fixed value of w. In particular, the binary representation of d is a valid window
form. However, since each non-zero digit requires a costly multiplication operation,
it is desirable to reduce the number of non-zero digits in d’s sliding windows.
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Right-to-Left Sliding Windows. One approach to computing d’s sliding
windows (with fewer of non-zero digits) scans d’s binary representation from the
least significant bit (LSB) to the most significant bit (MSB) and generates d’s
sliding windows from the least significant digit (right) to the most significant digit
(left). For every clear bit, a zero digit is appended to the left of the windowed
form. For each set bit, a non-zero digit is appended whose value is the w-bit
integer ending at the current bit. The next w − 1 digits in the windowed form
are set to be zero digits. The scan resumes from the leftmost bit unused so far.
Finally, any leading zeroes in the window form are truncated.

For example, let w = 3, and d = 181, which is 1 0 1 1 0 1 0 1 in binary. The
windows are underlined. This yields the sliding window form 10030005.

Left-to-Right Windowed Form. An alternative approach is the left-to-right
windowed form, which scans the bits of d the most to least significant bit and the
windowed form is generated from the most significant digit to the least significant
one. Similar to the right-to-left form, for every scanned clear bit a zero digit is
appended to the right of the windowed form. When a set bit is encountered, since
we require from digits to be odd, the algorithm cannot simply set the digit to be
the w-bit integer starting at the current bit. Instead, it looks for the the longest
integer u that has its most significant bit at the current bit, terminates in a set
bit, and its number of bits k is at most w bits long. The algorithm sets the next
k − 1 digits in the windowed form to be zero, sets the subsequent digit to be u
and resumes the scan from the next bit unused so far. As before, leading zeroes
in the sliding window form are truncated.

Using the d = 181 and w = 3 example, the left-to-right sliding windows are
1 0 1 1 0 1 0 1 and the corresponding windowed form is 500501

Left-to-Right vs. Right-to-Left. While both the methods produce a win-
dowed form whose average density (the ratio between the non-zero digits and the
total form length) is about 1/(w + 1), generating the windowed form using the
right-to-left method guarantees that every non-zero digit is followed by at least
w− 1 zero digits. This is contrast to the left-to-right method, where two non-zero
digits can be as close as adjacent. As explained in Section 3, such consecutive
non-zero digits can be observed by the attacker, aiding key recovery for sliding
window exponentiations using the left-to-right windowed form.

2.4 GnuPG’s Sliding Window Exponentiation

While producing the right-to-left sliding window form requires a dedicated proce-
dure, the left-to-right form can be generated “on-the-fly” during the exponentia-
tion algorithm, combining the generation of the expansion and the exponentiation
itself in one go. Consequently, the left-to-right sliding window form [17, Algo-
rithm 14.85], shown in Algorithm 2, is the prevalent method used by many
implementations, including GnuPG.

Every iteration of the main loop (Line 6) constructs the next non-zero digit
u of the windowed from by locating the location i of leftmost set bit of d which
was not previously handled (Line 8) and then removing the trailing zeroes from
di · · · di−w+1. It appends the squaring operations needed in order to handle
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Algorithm 2 Left-to-right sliding window modular exponentiation.

Input: Three integers b, d and p where dn · · · d1 is the binary representation of d.
Output: a ≡ bd (mod p).
1: procedure mod exp(b, d, p)
2: b1 ← b, b2 ← b2, a← 1, z ← 0
3: for i← 1 to 2w−1 − 1 do . precompute table of small odd powers of b
4: b2i+1 ← b2i−1 · b2 mod p

5: i← n
6: while i 6= 1 do . main loop for computing bd mod p
7: z ← z + count leading zeros(di · · · d1)
8: i← i− z . i is the leftmost unscanned set bit of d
9: l← min(i, w)

10: u← di · · · di−l+1

11: t← count trailing zeros(u)
12: u← shift right(u, t) . remove trailing zeroes by shifting u to the right
13: for j ← 1 to z + l − t do
14: a← a · a mod p

15: a← a · bu mod p . notice that u is always odd
16: i← i− l
17: z ← t
18: return a

the zero windowed form digits preceding u (Line 13) before performing the
multiplication operation using u as the index to the precomputation table (thus
handling u), and keeping track of trailing zeroes in z.

3 Sliding Right versus Sliding Left Analysis

In this section, we show how to recover some bits of the secret exponents, assuming
that the attacker has access to the square-and-multiply sequence performed by
Algorithm 2. We show that more bits can be found by applying this approach to
the square-and-multiply sequence of the left-to-right method compared to that of
the right-to-left method. At high level, our approach consists of two main steps.
In the first step, we show how to directly recover some of the bits of the exponent
by analyzing the sequence of squaring and multiplication operations performed
by Algorithm 2. This step shows that we are capable of directly recovering an
average of 48% of the bits of dp and dq for 1024-bit RSA with w = 4, the window
size used by Libgcrypt for 1024-bit RSA. However, the number of remaining
unknown bits required for a full key recovery attack is still too large to brute
force. In Section 3.4 we show that applying a modified version of the techniques
of [12] allows us to recover the remaining exponent bits and obtain the full private
key, if at least 50% of the bits are recovered.

3.1 Analyzing the Square and Multiply Sequence

Assume the attacker has access to the sequence S ∈ {s,m}∗ corresponding
to the sequence of square and multiply operations performed by Algorithm 2
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Rule 0: x→ 1

Rule 1: 1x
i
1x

w−i−1 → 1xi10w−i−1 for i = 0, · · · , w − 2

Rule 2: xxx11→ 1xx11

Rule 3: 1x
i
x
w−1

1→ 10
i
x
w−1

1 for i > 0

Fig. 2: Rules to deduce known bits from a square-and-multiply sequence

executed on some exponent d. Notice that the squaring operation (Line 13) is
performed once per bit of d, while the multiplication operation is performed
only for some exponent bits. Thus, we can represent the attacker’s knowledge
about S as a sequence s ∈ {0, 1, 1, x, x}∗ where 0, 1 indicate known bits of d, x
denotes an unknown bit and the positions of multiplications are underlined. For
y ∈ {0, 1, 1, x, x} we denote by yi the i-times repetition of y times.

Since at the start of the analysis all the bits are unknown, we convert S to the
sequence s as follows: every sm turns into a x, all remaining s into x. As a running
example, the sequence of squares and multiplies S = smsssssssmsmsssssm is
converted into D1 = xxxxxxxxxxxxxx.

To obtain bits of d from S1, the attacker applies the rewrite rules in Figure 2.

Rule 0: Multiplication bits. Because every digit in the windowed form is
odd, a multiplication always happens at bits that are set.

Applied to D1 we obtain D2 = 1xxxxxx11xxxx1.

Rule 1: Trailing zeros. The algorithm tries to include as many set bits as
possible in one digit of the windowed form. So when two multiplications are
fewer than w bits apart, we learn that there were no further set bits available to
include in the digit corresponding to the second multiplication. Rule 1 sets the
following bits to zero accordingly.

Applied to D2 we obtain D3 = 1xxxxxx11000x1.

Rule 2: Leading one. If we find two immediately consecutive multiplications,
it is clear that as the algorithm was building the left digit, there were no trailing
zeroes in u = di · · · di−l+1, i.e. t = 0 in Line 11. This tells us the precise location
of di, which we know is set.

Applied to D3 we obtain D4 = 1xxx1xx11000x1.

Rule 3: Leading zeroes. Every set bit of d is included in a non-zero digit of
the windowed form, so it is at most w − 1 bits to the left of a multiplication. If
two consecutive multiplications are more than w bits apart, we know that there
are zeroes in between.

Applied to D4 we obtain D5 = 10001xx11000x1.

Larger Example. Consider the bit string

0100001111100101001100110101001100001100011111100011100100001001.

The corresponding sequence of square and multiply operations (using w = 4)
evolves as follows as we apply the rules:
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xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

x1xxxxxxx1xxx1xxxx1xxx1xx1xxxx11xxxxx1xxxxxx1x1xxxxx1xx1xxxxxxx1

x100xxxxx1xxx1xxxx1xxx1xx10xxx11000xx10xxxxx1x100xxx1xx10xxxxxx1

x100xxxxx1xxx1xxxx1xxx1xx101xx11000xx10xxxxx1x100xxx1xx10xxxxxx1

x10000xxx1xxx10xxx1xxx1xx101xx11000xx1000xxx1x100xxx1xx10000xxx1.

Out of the 64 bits, 34 become known through this analysis.

Iterative Application. The previous examples shows that by applying rules
iteratively, we can discover a few more bits. In particular, for a window where a
leading one is recovered (Rule 2), one may learn the leading bit of the preceding
window. Iterating Rule 2 in the example above gives 3 more known leading bits:

x10000xxx1xxx101xx11xx11x101xx11000xx1000xxx1x100xxx1xx10000xxx1.

This iterative behavior is hard to analyze and occurs rarely in practice. There-
fore the following analysis disregards it. Note that the algorithm of Section 3.4
does use the additional bits.

3.2 Analyzing Recovery Rules

In this section we analyze the number of bits we are theoretically expected to
recover using Rules 0–3 described in the previous section. The analysis applies to
general window size w and the bit string length n.

Renewal processes with rewards. We model the number of bits recovered
as a renewal reward process [22]. A renewal process is associated with interarrival
times X = (X1, X2, . . . ) where the Xi are independent, identically distributed
and non-negative variables with a common distribution function F and mean µ.
Let

Sn =

n∑
i=1

Xi, n ∈ N,

where S = (0, S1, S2, . . . ) is the sequence of arrival times and

Nt =

∞∑
n=1

1(Sn ≤ t), t ∈ R+

is the associated counting process. Now let Y = (Y1, Y2, . . . ) be an i.i.d. sequence
associated with X in the sense that Yi is the reward for the interarrival Xi. Note
that even though both X and Y are i.i.d., Xi and Yi can be dependent. Then
the stochastic process

Rt =

Nt∑
i=1

Yi, t ∈ R+,

is a renewal reward process. The function r(t) = E(Rt) is the renewal reward
function. We can now state the renewal reward theorem [18]. Since µX <∞ and
µY <∞ we have for the renewal reward process

Rt/t→ µY /µX as t→∞ with probability 1,

r(t)/t→ µY /µX as t→∞.
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This is related to our attack in the following way. The n bit locations of the
bit string form an interval of integers [1, n], labeling the leftmost bit as 1. We
set X1 = b+ w − 1, where b is the location of the first bit set to 1, that is, the
left boundary of the first window. Then the left boundary of the next window
is independent of the first b + w − 1 bits. The renewal process examines each
window independently. For each window Xi we gain information about at least
the multiplication bit. This is the reward Yi associated with Xi. The renewal
reward theorem now implies that for bit strings of length n, the expected number
of recovered bits will converge to nµY

µX
.

Recovered bit probabilities. In the remainder of this section we analyze
the expected number of bits that are recovered (the reward) in some number of
bits (the renewal length) by the rules of Section 3.1. Then by calculating the
probability of each of these rules’ occurrence, we can compute the overall number
of recovered bits by using the renewal reward theorem. Note that Rule 0 (the bits
set to 1) can be incorporated into the other rules by increasing their recovered
bits by one.

Rule 1: Trailing zeroes. The first rule applies to short windows. Recall that
we call a window a “short window” whenever the length between between two
multiplications is less than w − 1.

Let 0 ≤ j ≤ w − 2 denote the length between two multiplications. (A length
of w − 1 is a full-size window.) The probability of a short window depends on
these j bits, as well as w − 1 bits after the multiplication: the multiplication bit
should be the right-most 1-bit in the window. The following theorem (which we
prove in the full version of this paper) gives the probability of a short window.

Theorem 1. Let X be an interarrival time. Then the probability that X = w
and we have a short window with reward Y = w − j, 0 ≤ j ≤ w − 2 is

pj =
1 +

∑j
i=1 22i−1

2j+w

We see in the proof that the the bits yw−j−1, . . . , yw−2 can take any values. Also
since bit yw−j−2 = 0 is known, we have a renewal at this point where future bits
are independent.

Rule 2: Leading one. As explained in Section 3.1, this rule means that when
after renewal an ultra-short window occurs (a 1 followed by w − 1 zeroes) we get
an extra bit of information about the previous window. The exception to this
rule is if the previous window was also an ultra-short window. In this case the 1
of the window is at the location of the multiplication bit we would have learned
and therefore we do not get extra information. As seen in the previous section, an
ultra-short window occurs with probability p0 = 1/2w If an ultra-short window
occurs after the current window with window-size 1 ≤ j ≤ w − 1, we therefore
recover (w− j) + 1 bits (all bits of the current window plus 1 for the leading bit)
with probability pjp0 and (w − j) with probability pj(1− p0).

Rule 3: Leading zeroes. The last way in which extra bits can be recovered
is the leading zeroes. If a window of size w − d is preceded by more than d
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zeroes, then we can recover the excess zeroes. Let X0 be a random variable of
the length of a bit string of zeros until the first 1 is encountered. Then X0 is
geometrically distributed with p = 1/2. So P[X0 = k] = (1/2)k ·(1/2) = (1/2)k+1.
This distribution has mean µX = 1.

Let Xw be a random variable representing the length of the bit string from
the first 1 that was encountered until the multiplication bit. For general window
length of w, we have

P[Xw = k] =

{
1

2w−1 k = 1
1

2w−k+1 k > 1

Now the distribution of the full bit string is the sum of the variables X0 and

Xw. We have that P[X0 +Xw = k] =
∑min(k,w)
i=1 P[Xw = i] · P[X0 = k − i].

Notice that this rule only recovers bits if the gap between two multiplications is
at least w − 1. This means that these cases are independent of Rule 1.

There is a small caveat in this analysis: the renewal length is unclear. In the
case that we have a sequence of zeroes followed by a short window of size j < w,
we are implicitly conditioning on the w−j bits that follow. This means we cannot
simply renew after the the 1 and since we also cannot distinguish between a short
and regular window size, we also cannot know how much information we have on
the bits that follow.

We solve this by introducing an upper and lower bound. For the upper bound
the recovered bits remains as above and the renewal at X0 +w. This is an obvious
upper bound. This means that for a sequence of zeroes followed by a short window
of size j, we assume a probability of 1 of recovering information on the w − j
bits that follow the sequence. We get an average recovered bits of

R =

∞∑
k=w

min(k,w)∑
i=1

(k − i+ 1) · P[Xw = i] · P[X0 = k − i],

and a renewal length of

N =

∞∑
k=w

min(k,w)∑
i=1

(k + w − i) · P[Xw = i] · P[X0 = k − i].

For the lower bound we could instead assume a probability of 0 of recovering
information on the w − j bits. We can however get a tighter bound by observing
that the bits that follow this rule are more likely a 0 than a 1 and we are more
likely to recover a 0 at the start of a new window then we are a 0. Therefore
bound the renewal at X0 +Xw and throw away the extra information. Similar
formulas can be derived for the lower bounds R and N .

From this, we can calculate the expected renewal length for fixed w, by
summing over all possible renewal lengths with corresponding probabilities. We
can do the same for the expected number of recovered bits per renewal. Finally,
we are interested in the expected total number of recovered bits in a n-bit string.
We calculate this by taking an average number of renewals (by dividing n by
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Fig. 3: We generated 100,000 random 512-bit strings and generated the square
and multiply sequence with w = 4. We then applied Rules 0–3 successively to
recover bits of the original string. We plot the distribution of the number of
recovered bits in our experiments.

the expected renewal length) and multiply this with the number of recovered
bits per window. Since we have upper and lower bounds for both the renewal
length and recovered bits for Rule 3, we also get lower and upper bounds for the
expected total number of recovered bits.

Recovered Bits for Right-to-Left. The analysis of bit recovery for right-to-
left exponentiation is simpler. The bit string is an alternation of X0 and Xw

(see Rule 3), where Xw = w and X0 is geometrically distributed with p = 1/2.
Therefore the expected renewal length N and the expected reward R are

N =

∞∑
i=0

(w + i) · P[X0 = i] = w + 1 and R =

∞∑
i=0

(1 + i) · P[X0 = i] = 2.

Then by the renewal reward theorem, we expect to recover 2n
w+1 bits.

3.3 Experimental Verification

To experimentally validate our analysis, we sampled n-bit binary strings uniformly
at random and used Algorithm 2 to derive the square and multiply sequence. We
then applied Rules 0–3 from Section 3.1 to extract known bits.

Case n = 512, w = 4. Figure 1 shows the total fraction of bits learned for
right-to-left exponentiation compared to left-to-right exponentiation, for w = 4,
over 1,000,000 experiments with w = 4 and n = 512, corresponding to the our
target Libgcrypt’s implementation for 1024-bit RSA. On average we learned
251 bits, or 49%, for left-to-right exponentiation with 512-bit exponents. This
is between our computed lower bound of βL = 245 (from a renewal length of
N = 4.67 bits and reward of 2.24 bits on average per renewal) and upper bound
βU = 258 (from a renewal length of N = 4.90 bits and reward of 2.47 bits per
renewal). The average number of recovered bits for right-to-left exponentiation is
204 ≈ 2n

w+1 bits, or 40%, as expected.
Figure 3 shows the distribution of the number of new bits learned for each rule

with left-to-right exponentiation by successively applying Rules 0–3 for 100,000
exponents. Both Rule 0 and Rule 3 contribute about 205 ≈ 2n

w+1 bits, which is
equal both to our theoretical analysis and is also the number of bits learned from
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the right-to-left exponentiation. The spikes visible in Rule 3 are due to the fact
that we know that any least significant bits occurring after the last window must
be 0, and we credit these bits learned to Rule 3. The number of bits learned from
this final step is equal to n mod w, leading to small spikes at intervals of w bits.

Case n = 1024, w = 5. For n = 1024 and w = 5, corresponding to Libgcrypt’s
implementation of 2048-bit RSA, we recover 41.5% of bits on average using Rules
0–3. This is between our lower bound of βL = 412 (from a lower bound average
renewal length of N = 5.67 bits, and expected 2.29 bits on average per renewal)
and upper bound of βU = 436 (from an average renewal length of N = 5.89
bits with an average reward of 2.51 bits per renewal). Note that the reward per
renewal is about the same as in the first case (n = 512, w = 4), but the average
renewal length is higher. This means that we win fewer bits for this case.

3.4 Full RSA Key Recovery from Known Bits

Once we have used the recovered sequence of squares and multiplies to derive
some information about the bits of the Chinese remainder theorem coefficients
dp = d mod (p − 1) and dq = d mod (q − 1), we can use a modified version of
the branch and prune algorithm of Heninger and Shacham [12] to recover the
remaining unknown bits of these exponents to recover the full private key.

The algorithm will recover the values dp and dq from partial information. In
order to do so, we use the integer forms of the RSA equations

edp = 1 + kp(p− 1)

edq = 1 + kq(q − 1)

which these values satisfy for positive integers kp, kq < e.

RSA Coefficient Recovery. As described in [13, 27], kp and kq are initially
unknown, but are related via the equation (kp− 1)(kq− 1) ≡ kpkqN mod e. Thus
we need to try at most e pairs of kp, kq. In the most common case, e = 65537.
As described in [27], incorrect values of kp, kq quickly result in no solutions.

LSB-Side Branch and Prune Algorithm. At the beginning of the algorithm,
we have deduced some bits of dp and dq using Rules 0–3. Given candidate values
for kp and kq, we can then apply the approach of [12] to recover successive bits of
the key starting from the least significant bits. Our algorithm does a depth-first
search over the unknown bits of dp, dq, p, and q. At the ith least significant bit,
we have generated a candidate solution for bits 0 . . . i− 1 of each of our unknown
values. We then verify the equations

edp = 1 + kp(p− 1) mod 2i

edq = 1 + kq(q − 1) mod 2i

pq = N mod 2i
(1)

and prune a candidate solution if any of these equations is not satisfied.

Analysis. Heuristically, we expect this approach to be efficient when we know
more than 50% of bits for dp and dq, distributed uniformly at random. [12, 19] We
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also expect the running time to grow exponentially in the number of unknown bits
when we know many fewer than 50% of the bits. From the analysis of Rules 0–3
above, we expect to recover 48% of the bits. While the sequence of recovered bits
is not, strictly speaking, uniformly random since it is derived using deterministic
rules, the experimental performance of the algorithm matched that of a random
sequence.

Experimental Evaluation for w = 4. We ran 500,000 trial key recovery
attempts for randomly generated dp and dq with 1024-bit RSA and w = 4. For
a given trial, if the branching process passed 1,000,000 candidates examined
without finding a solution, we abandoned the attempt. Experimentally, we recover
more than 50% of the bits 32% of the time, and successfully recovered the key in
28% of our trials. For 50% or 512 bits known, the median number of examined
candidates was 182,738. We recovered 501 bits on average in our trials using
Rules 0–3; at this level the median number of candidates was above 1 million.

Experimental Evaluation for w = 5. We experimented with this algorithm
for 2048-bit RSA, with w = 5. The number of bits that can be derived uncondi-
tionally using Rules 0–3 is around 41% on average, below the threshold where
we expect the Heninger-Shacham algorithm to terminate for 1024-bit exponents.
The algorithm did not yield any successful key recovery trials at this size.

4 RSA Key Recovery from Squares and Multiplies

The sequence of squares and multiplies encodes additional information about the
secret exponent that does not translate directly into knowledge of particular bits.
In this section, we give a new algorithm that exploits this additional information
by recovering RSA keys directly from the square-and-multiply sequence. This
gives a significant speed improvement over the key recovery algorithm described
in Section 3.4, and brings an attack against w = 5 within feasible range.

4.1 Pruning from Squares and Multiplies

Our new algorithm generates a depth-first tree of candidate solutions for the
secret exponents, and prunes a candidate solution if it could not have produced
the ground-truth square-and-multiply sequence obtained by the side-channel
attack. Let SM(d) = s be the deterministic function that maps a bit string d to
a sequence of squares and multiplies s ∈ {s,m}∗.

In the beginning of the algorithm, we assume we have ground truth square-
and-multiply sequences sp and sq corresponding to the unknown CRT coefficients
dp and dq. We begin by recovering the coefficients kp and kq using brute force as
described in Section 3.4. We will then iteratively produce candidate solutions
for the bits of dp and dq by generating a depth-first search tree of candidates
satisfying Equations 1 starting at the least significant bits. We will attempt to
prune candidate solutions for dp or dq at bit locations i for which we know the
precise state of Algorithm 2 from the corresponding square and multiply sequence
s, namely when element i of s is a multiply or begins a sequence of w squares.
To test an i-bit candidate exponent di, we compare s′ = SM(di) to positions 0
through i− 1 of s, and prune di if the sequences do not match exactly.
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4.2 Algorithm Analysis

We analyze the performance of this algorithm by computing the expected number
of candidate solutions examined by the algorithm before it recovers a full key.
Our analysis was inspired by the information-theoretic analysis of [19], but we
had to develop a new approach to capture the present scenario.

Let ps = Pr[SM(di) = s] be the probability that a fixed square-and-multiply
sequences s is observed for a uniformly random i-bit sequence di. This defines
the probability distribution Di of square-and-multiply sequences for i-bit inputs.

In order to understand how much information a sequence s leaks about an
exponent, we will use the self-information, defined as Is = − log ps. This is the
analogue of the number of bits known for the algorithm given in Section 3.4. As
with the bit count, we can express the number of candidate solutions that generate
s in terms of Is: #{d | SM(d) = s} = 2ips = 2i2−Is . For a given sequence s, let
Ii denote the self-information of the least significant i bits.

Theorem 2 (Heuristic). If for the square-and-multiply sequences spi and sqi ,
we have Ii > i/2 for almost all i, then the algorithm described in Section 4.1 runs
in expected linear time in the number of bits of the exponent.

Proof (Sketch). In addition pruning based on s, the algorithm also prunes by
verifying the RSA equations up to bit position i. Let RSAi(dp, dq) = 1 if (edp −
1 + kp)(edq − 1 + kq) = kpkqN mod 2i and 0 otherwise. For random (incorrect)
candidates dpi and dqi , Pr[RSAi(dpi , dqi)] = 1/2i.

As in [12], we heuristically assume that, once a bit has been guessed wrong, the
set of satisfying candidates for dpi and dqi behave randomly and independently
with respect to the RSA equation at bit position i.

Consider an incorrect guess at the first bit. We wish to bound the candidates
examined before the decision is pruned. The number of incorrect candidates
satisfying the square-and-multiply constraints and the RSA equation at bit i is

#{dpi , dqi} ≤ #{dpi | SM(dpi) = spi} ·#{dqi | SM(dqi) = sqi} · Pr[RSAi(dpi , dqi)]

= 2i2−Ii · 2i2−Ii · 2−i = 2i−2Ii ≤ 2i·(1−2c)

with Ii/i ≥ c for some c > 1/2.
In total, there are

∑
i #{dpi , dqi} ≤

∑
i 2i·(1−2c) ≤ 1/(1− 21−2c) candiates.

But any of the n bits can be guessed wrongly, each producing a branch of
that size. Therefore, the total search tree has at most n · (1 + 1

1−21−2c ) nodes.

A similar argument also tells us about the expected size of the search tree,
which depends on the collision entropy [21]

Hi = − log
∑

s∈{s,m}i
p2s

of the distribution Di of distinct square-and-multiply sequences. This is the log
of the probability that two i-bit sequences chosen according to Di are identical.



Sliding right into disaster: Left-to-right sliding windows leak 15

544 560 576 592 608 624 640 656

103

104

105

106

Self-information for two 512-bit exponents

S
ea
rc
h
tr
ee

si
ze

Median

Middle 50%

Max–Min

Fig. 4: We attempted 500,000 key recovery trials for randomly generated 1024-bit
RSA keys with w = 4. We plot the distribution of the number of candidates tested
by the algorithm against the self-information of the observed square-and-multiply
sequences, measured in bits. The histogram above the plot shows the distribution
of self-information across all the trials.

For our distribution Di, the Hi are approximately linear in i. We can define
the collision entropy rate H = Hi/i and obtain an upper bound for the expected
number of examined solutions, which we prove in the full version of the paper:

Theorem 3. The expected total number of candidate solutions examined by
Algorithm 2 for n-bit dp an dq is

E

[∑
i

#{dpi , dqi}

]
≤ n

(
1 +

1− 2n·(1−2H)

1− 21−2H

)
.

Entropy calculations. We calculated the collision entropy rate by modeling
the leak as a Markov chain. For w = 4, H = 0.545, and thus we expect Algorithm
2 to comfortably run in expected linear time. For w = 5, H = 0.461, and thus we
expect the algorithm to successfully terminate on some fraction of inputs. We
give more details on this computation in the full version of this paper.

4.3 Experimental Evaluation for w = 4

We ran 500,000 trials of our sequence-pruning algorithm for randomly generated
dp and dq with 1024-bit RSA and plot the distribution of running times in
Figure 4. For a given trial, if the branching process passed 1,000,000 candidates
examined without finding a solution, we abandoned the attempt. For each trial
square-and-multiply sequence s, we computed the number of bit sequences that
could have generated it. From the average of this quantity over the 1 million
exponents generated in our trial, the collision entropy rate in our experiments
is H = 0.547, in line with our analytic computation above. The median self-
information of the exponents generated in our trials was 295 bits; at this level the
median number of candidates examined by the algorithm was 2,174. This can be
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Fig. 5: We attempted 500,000 key recovery trials for randomly generated 2048-
bit RSA keys with w = 5, and plot the distribution of search tree size by the
self-information. The vertical line marks the 50% rate at which we expect the
algorithm to be efficient.

directly compared to the 251 bits recovered in Section 3, since the self-information
in that case is exactly the number of known bits in the exponent.

4.4 Experimental Evaluation for w = 5

We ran 500,000 trials of our sequence-pruning algorithm for 2048-bit RSA and
w = 5 with randomly generated dp and dq and plot the distribution of running
times in Figure 5. 8.6% of our experimental trials successfully recovered the
key before hitting the panic threshold of 1 million tries. Increasing the allowed
tree size to 2 million tries allowed us to recover the key in 13% of trials. We
experimentally estimate a collision entropy rate H = 0.464, in line with our
analytic computation. The median self-information for the exponents generated
in our trials is 507 bits, significantly higher than the 420 bits that can be directly
recovered using the analysis in Section 3.

5 Attacking Libgcrypt

In the previous section we showed how an attacker with access to the square-and-
multiply sequence can recover the private RSA key. To complete the discussion
we show how the attacker can obtain the square-and-multiply sequence.

5.1 The Side-Channel Attack

To demonstrate the vulnerability in Libgcrypt, we use the Flush+Reload at-
tack [26]. The attack, which monitors shared memory locations for access by a
victim, consists of two phases. The attacker first evicts a monitored location from
the cache, typically using the x86 clflush instruction. He then waits for a short
while, before measuring the time to access the monitored location. If the victim
has accessed the memory location during the wait, the contents of the memory
location will be cached, and the attackers access will be fast. Otherwise, the
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attacker causes the contents to be retrieved from the main memory and his access
takes longer. By repeating the attack, the attacker creates a trace of the victim
accesses to the monitored location over time. Flush+Reload has been used in
the past to attack modular exponentiation [3, 26], as well as other cryptographic
primitives [4, 5, 14, 20, 25] and non-cryptographic software [11, 29].

Mounting the Flush+Reload attack on Libgcrypt presents several challenges.
First, as part of the defense against the attack of Yarom and Falkner [26],
Libgcrypt uses the multiplication code to perform the squaring operation. While
this is less efficient than using a dedicated code for squaring, the use of the
same code means that we cannot identify the multiply operations by probing a
separate multiply code. Instead we probe code locations that are used between
the operations to identify the call site to the modular reduction.

The second challenge is achieving a sufficiently high temporal resolution.
Prior side-channel attacks on implementations of modular exponentiation use
large (1024–4096 bits) moduli [9, 10, 16, 26, 28], which facilitate side-channel
attacks [23]. In this attack we target RSA-1024, which uses 512-bit moduli. The
operations on these moduli are relatively fast, taking a total of less than 2500
cycles on average to compute a modular multiplication. To be able to distinguish
events of this length, we must probe at least twice as fast, which is close to the
limit of the Flush+Reload attack and would results in a high error rate [3]. We use
the amplification attack of Allan et al. [3] to slow down the modular reduction.
We target the code of the subtraction function used as part of the modular
reduction. The attack increases the execution time of the modular reduction to
over 30000 cycles.

Our third challenge is that even with amplification, there is a chance of missing
a probe [3]. To reduce the probability of this happening, we probe two memory
locations within the execution path of short code segments. The likelihood of
missing both probes is small enough to allow high-quality traces.

Overall, we use the Flush+Reload attack to monitor seven victim code location.
The monitored locations can be divided into three groups. To distinguish between
the exponentiations Libgcrypt performs while signing, we monitor locations in the
entry and exit of the exponentiation function. We also monitor a location in the
loop that precomputes the multipliers to help identifying these multiplications. To
trace individual modular multiplications, we monitor locations within the multiply
and the modular reduction functions. Finally, to identify the multiplication by
non-zero multipliers, we monitor locations in the code that conditionally copies
the multiplier and in the entry to the main loop of the exponentiation. The
former is accessed when Libgcrypt selects the multiplier before it performs the
multiplication. The latter is accessed after the multiplication when the next
iteration of the main loop starts. We repeatedly probe these locations once
every 10000 cycles, allowing for 3–4 probes in each modular multiply or square
operation.

5.2 Results

To mount the attack, we use the FR-trace software, included in the Mastik
toolkit [24]. FR-trace provides a command-line interface for performing the



18 Bernstein, Breitner, Genkin, Groot Bruinderink, Heninger, Lange, van Vredendaal, Yarom

 0

 50

 100

 150

 200

 250

 420  425  430  435  440  445  450  455  460

R
e
a
d

 T
im

e
 (

cy
cl

e
s)

Sample Number

Multiplication Multiplier selection Exponentiation loop

Fig. 6: Libgcrypt Activity Trace.

Flush+Reload and the amplification attacks we require for recovering the square-
and-multiply sequences of the Libgcrypt exponentiation. FR-trace waits until
there is activity in any of the monitored locations and collects a trace of the
activity. Figure 6 shows a part of a collected activity trace.

Recall that the Flush+Reload attack identifies activity in a location by
measuring the time it takes to read the contents of the location. Fast reads
indicate activity. In the figure, monitored locations with read time below 100
cycles indicate that the location was active during the sample.

Because multiplications take an average 800 cycles, whereas our sample rate
is once in 10000 cycles, most of the time activity in the multiplication code is
contained within a single sample. In Figure 6 we see the multiplication operations
as “dips” in the multiplication trace (dotted black).

Each multiplication operation is followed by a modular reduction. Our side-
channel amplification attack “stretches” the execution of the modular reduction
and it spans over more than 30000 cycles. Because none of the memory addresses
traced in the figure is active during the modular reduction, we see gaps of 3–4
samples between periods of activity in any of the other monitored locations.

To distinguish between multiplications that use one of the precomputed
multipliers and multiplications that square the accumulator by multiplying it
with itself, we rely on activity in the multiplier selection and in the exponentiation
loop locations. Before multiplying with a precomputed multiplier, the multiplier
needs to be selected. Hence we would expect to see activity in the multiplier
selection location just before starting the multiply, and due to the temporal
granularity of the attack we are likely to see both events in the same sample.
Similarly, after performing the multiplication and the modular reduction, we
expect to see activity in the beginning of the main exponentiation loop. Again, due
to attack granularity, this activity is likely to occur within the same sample as the
following multiplication. Thus, because we see activity in the multiplier selection
location during sample 431 and activity in the beginning of the exponentiation
loop in the following multiplication (sample 435), we can conclude that the former
multiplication is using one of the precomputed multipliers.

In the absence of errors, this allows us to completely recover the sequence of
square and multiplies performed and with it, the positions of the non-zero digits
in the windowed representation of the exponent.
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Fig. 7: Distribution of the number of errors in captured traces.

However, capture errors do occur, as shown in Figure 7. To correct these, we
capture multiple traces of signatures using the same private key. On average there
are 14 errors in a captured trace. We find that in most cases, manually aligning
traces and using a simple majority rule is sufficient to recover the complete
square-and-multiply sequence. In all of the cases we have tried, combining twenty
sequences yielded the complete sequence.
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