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Abstract. We introduce a new variant MP-LWE of the Learning With
Errors problem (LWE) making use of the Middle Product between poly-
nomials modulo an integer q. We exhibit a reduction from the Polynomial-
LWE problem (PLWE) parametrized by a polynomial f , to MP-LWE
which is defined independently of any such f . The reduction only re-
quires f to be monic with constant coefficient coprime with q. It incurs
a noise growth proportional to the so-called expansion factor of f . We
also describe a public-key encryption scheme with quasi-optimal asymp-
totic efficiency (the bit-sizes of the keys and the run-times of all involved
algorithms are quasi-linear in the security parameter), which is secure
against chosen plaintext attacks under the MP-LWE hardness assump-
tion. The scheme is hence secure under the assumption that PLWE is
hard for at least one polynomial f of degree n among a family of f ’s
which is exponential in n.
Keywords. LWE, PLWE, public-key encryption.

1 Introduction

Lattice-based cryptography relies in great parts on the assumed hard-
ness of two well-studied and closely related problems: the Small Inte-
ger Solution problem (SIS) introduced in [Ajt96] and the Learning With
Errors problem (LWE) introduced in [Reg09]. They lead to numerous
cryptographic constructions, are conjectured exponentially hard to solve
even for quantum algorithms, and enjoy reductions from standard worst-
case lattice problems such as finding a short non-zero vector in a lattice
(ApproxSVP). However, the resulting cryptographic constructions suffer
from large keys and/or rather inefficient algorithms. This is because the
problems themselves involve large-dimensional random matrices over a
ring Zq (for some q ≥ 2).

To obtain more efficient SIS-based primitives, Lyubashevsky and Mic-
ciancio [LM06], and Peikert and Rosen [PR06] introduced the Polyno-
mial SIS problem (PSIS), inspired from [Mic07,HPS98].4 PSIS(f) can be

4 The problem was called Ideal-SIS in [LM06], Cyclotomic-SIS in [PR06], and is now
commonly referred to as Ring-SIS. We prefer to call it PSIS as it is not defined in



described in terms of elements of Zq[x]/f for an integer q ≥ 2 and a poly-
nomial f that parametrizes the problem. Equivalently, it may be described
as SIS where the uniform matrix is replaced by a structured matrix (the
precise structure depends on f). PSIS allows the design of fast digital
signatures, among other applications (see [Lyu09], for example).

This approach was extended to LWE by Stehlé et al. [SSTX09], who
introduced and studied the (search version of) Polynomial-LWE problem
(PLWE).5 Lyubashevsky et al. [LPR13] introduced the Ring-LWE prob-
lem, which involves number fields rather than polynomials, and proposed
a reduction from its search to decision versions, in the case of cyclotomic
polynomials. (See also [EHL14,CLS15] for extensions to larger classes
of fields of the Ring-LWE search to decision reduction.) Power-of-2 cy-
clotomic polynomials (for which PLWE and Ring-LWE match) have been
exploited to design fast encryption schemes, among others (see [ADPS16],
for example). Cryptographic schemes based on PLWE/Ring-LWE most of-
ten enjoy keys of Õ(λ) bit-sizes and algorithms with Õ(λ) runtime, where
λ refers to the security parameter (i.e., all known attacks run in time≥ 2λ)
and the Õ(·) notation hides poly-logarithmic factors.

Switching from unstructured SIS and LWE to their polynomial coun-
terparts PSIS and PLWE has undeniable efficiency advantages. However,
the security guarantees are severely degraded. PSIS and PLWE also enjoy
reductions from worst-case lattice problems such as ApproxSVP, but these
lattice problems, e.g., ApproxSVP(f), are restricted to lattices that corre-
spond to ideals of Z[x]/f , where f is the polynomial that parametrizes
PSIS and PLWE: under some conditions on f , there exists a reduction from
ApproxSVP(f) with small approximation factor, to PSIS(f) and PLWE(f)

(see [LM06,PR06,SSTX09]). It is entirely possible that PSIS(f)/PLWE(f)

could be easy to solve for some polynomials f , and hard for others.6 For
instance, if f has a linear factor over the integers, then it is well-known
that PSIS(f)/PLWE(f) are computationally easy (we note that the reduc-
tions from ApproxSVP(f) require f to be irreducible). Finding weak f ’s

terms of number fields but polynomial rings (as opposed to Ring-LWE), similarly
to the Polynomial-LWE problem (PLWE) we consider in this work. It is possible to
define a SIS variant of Ring-LWE, i.e., involving number fields: in the common case
of power-of-2 cyclotomics, PSIS and Ring-SIS match (as do PLWE and Ring-LWE). In
this work, we are interested in larger classes of polynomials, making the distinction
important.

5 It was originally called Ideal-LWE, by analogy to Ideal-SIS.
6 We note that the stability of the polynomial rings under multiplication by x can be
exploited to accelerate some known lattice algorithms by small polynomial factors,
but we are interested here in more drastic weaknesses.



for PLWE has been investigated in [EHL14,ELOS15,CLS15,CLS16]. The
attacks presented in this sequence of articles were used to identify such
f ’s, but they only work for error distributions with small width rela-
tive to the geometry of the corresponding ring [CIV16b,CIV16a,Pei16].
In another sequence of works, Cramer et al. [CDPR16,CDW17] showed
that ApproxSVP(f) is easier for f a cyclotomic polynomial of prime-
power conductor than for general lattices. More concretely, the authors
of [CDW17] give a quantum polynomial-time algorithm for ApproxSVP(f)

with approximation factor 2Õ(
√
n), where n is the degree of f . As a com-

parison, for such approximation factors and arbitrary lattices, the best
known algorithms run in time 2Õ(

√
n) (see [Sch87]). Finally, we note that

the choice of non-cyclotomic polynomials in [BCLvV16] was motivated
by such weaknesses. Even though the results in [CDPR16,CDW17] im-
pact ApproxSVP(f), it may be argued that it could have implications for
PLWE(f) as well, possibly even for lower approximation factors. On the
other hand, it could be that similar weaknesses exist for ApproxSVP(f)

considered in [BCLvV16], although none is known at the moment. This
lack of understanding of which f ’s correspond to hard PLWE(f) problems
motivates research into problems that are provably as hard as PLWE(f)

for the hardest f in a large class of polynomials, while preserving the
computational efficiency advantages of PLWE. Our results are motivated
by and make progress in this direction.

Recently, Lyubashevsky [Lyu16] introduced a variant R<n-SIS of SIS
that is not parametrized by a polynomial f and which enjoys the follow-
ing desirable properties. First, an efficient algorithm for R<n-SIS with
degree bound n leads to an efficient algorithm for PSIS(f) for all f ’s in
a family of polynomials of size exponential in n. Second, there exists a
signature scheme which is secure under the assumption that R<n-SIS is
hard, involves keys of bit-size Õ(λ) = Õ(n) and whose algorithms run
in time Õ(λ). In this sense, R<n-SIS can serve as an alternative crypto-
graphic foundation that hedges against the risk that PSIS(f) is easy to
solve for some f (as long as it stays hard for some f in the family).

Our contributions. Our main contribution is the introduction of an
LWE counterpart to Lyubashevsky’s R<n-SIS problem. Let n, q ≥ 2. We
let Z<nq [x] denote the set of polynomials with coefficients in Zq and de-
gree < n. For a ∈ Z<nq [x] and s ∈ Z<2n−1

q [x], we let a �n s = b(a ·
s mod x2n−1)/xn−1c ∈ Z<nq [x] denote the polynomial obtained by mul-
tiplying a and s and keeping only the middle n coefficients. Middle-
Product LWE (MP-LWE), with parameters n, q ≥ 2 and α ∈ (0, 1), consists



in distinguishing arbitrarily many samples (ai, bi) uniform in Z<nq [x] ×
(R/qZ)<n[x], from the same number of samples (ai, bi) with ai uniform
in Z<nq [x] and bi = ai�n s+ei, where each coefficient of ei is sampled from
the Gaussian distribution of standard deviation α · q, and s is uniformly
chosen in Z<2n−1

q [x].
We give a reduction from (decision) PLWE(f) to (decision) MP-LWE

of parameter n, for every monic f of degree n whose constant coefficient
is coprime with q. The noise parameter amplifies linearly with the so-
called Expansion Factor of f , introduced in [LM06]. The noise parameter
in MP-LWE can for example be set to handle all monic polynomials f =
xn+g with constant coefficient coprime with q, deg g ≤ n/2 and ‖g‖ ≤ nc
for an arbitrary c > 0. For any c, this set of f ’s has exponential size in n.
We note that similar restrictions involving the expansion factor appeared
before in [LM06,SSTX09].

Finally, we describe a public-key encryption scheme that is IND-
CPA secure under the MP-LWE hardness assumption, involves keys of
bit-size Õ(λ) and whose algorithms run in time Õ(λ). The scheme is
adapted from Regev’s [Reg09]. Its correctness proof involves an associa-
tivity property of the middle product. To establish its security, we prove
that a related hash function family involving middle products is universal,
and apply a generalized version of the leftover hash lemma. The standard
leftover hash lemma does not seem to suffice for our needs, as the first
part of the ciphertext is not statistically close to uniform, contrarily to
Regev’s encryption scheme.

Open problems. Our reduction is from the decision version of PLWE(f)

to the decision version of MP-LWE. (It can be adapted to the search coun-
terparts, but it is unclear how to use the hardness of search MP-LWE for
cryptographic purposes.) Unfortunately, the hardness of decision PLWE(f)

is currently supported by the presumed hardness of ApproxSVP(f) for
very few polynomials f . Such reductions for larger classes of polyno-
mials f would strengthen our confidence in the hardness of MP-LWE.
A first strategy towards this goal would be to design a reduction from
search PLWE(f) to decision PLWE(f) for larger classes of f ’s than cur-
rently handled (the reduction from [LPR13] requires f to be cyclotomic).
This reduction could then be combined with the one from ApproxSVP(f)

to PLWE(f) from [SSTX09], which only requires f to be irreducible with
bounded expansion factor. A second strategy would be to reduce de-
cision Ring-LWE(f) to decision PLWE(f) and rely on the new reduction
from ApproxSVP restricted to ideals of the number field Kf to deci-



sion Ring-LWE(f) from [PRSD17]. Indeed, this new reduction is not re-
stricted to cyclotomic polynomials.

We show the cryptographic relevance of MP-LWE by adapting Regev’s
encryption scheme to the middle-product algebraic setting. Adapting the
dual-Regev scheme from [GPV08] does not seem straightforward. Indeed,
it appears that we would need a leftover hash lemma for polynomials
over Zq[x] that are not folded modulo some polynomial f . The difficulty is
that the constant coefficients of the polynomials are now “isolated”, in the
sense that the constant coefficient of a polynomial combination of polyno-
mials only involves the constant coefficients of these polynomials. Hope-
fully, solving this difficulty would also enable the construction of a trap-
door for MP-LWE, similar to those that exist for LWE and SIS (see [MP12]
and references therein). Independently, showing that the MP-LWE secret
could be sampled from a small-norm distribution, as achieved for LWE
in [ACPS09], may allow for a more efficient ElGamal-type encryption,
similar to the one described in [LPR13].
Notations. We use the notation U(X) for the uniform distribution over
the set X. If D1 and D2 are two distributions over the same countable
domain, we let∆(D1, D2) denote their statistical distance. We let ‖b‖ and
‖b‖∞ denote the Euclidean and infinity norm of any vector b over the
reals, respectively. Similarly, if b is a polynomial over the reals, we let ‖b‖
denote the Euclidean norm of its coefficient vector. For a matrix M we
let Mi,j denote its element in the i-th row and j-th column. We let ‖M‖
denote the largest singular value of M.

2 Background

In this section, we provide the background definitions and results that
are necessary to present our contributions.

2.1 Probabilities

We will use the following variant of the leftover hash lemma. We recall
that a (finite) family H of hash functions h : X → Y is universal if
Prh←↩U(H)[h(x1) = h(x2)] = 1/|Y |, for all x1 6= x2 ∈ X.

Lemma 2.1. Let X,Y, Z denote finite sets. Let H be a universal family
of hash functions h : X → Y . Let f : X → Z be arbitrary. Then for any
random variable T taking values in X, we have:

∆
(

(h, h(T ), f(T )) , (h, U(Y ), f(T ))
)
≤ 1

2 ·
√
γ(T ) · |Y | · |Z|,



where γ(T ) = maxt∈X Pr[T = t].

In the problems we will study, the so-called noise distributions will be
Gaussian.

Definition 2.1 We define the Gaussian function on Rn of covariance
matrix Σ as ρΣ(x) := exp(−π · xTΣ−1x) for every vector x ∈ Rn. The
probability distribution whose density is proportional to ρΣ is called the
Gaussian distribution and is denoted DΣ. When Σ = s2 · Idn, we write ρs
and Ds instead of ρΣ and DΣ, respectively.

2.2 Polynomials and Structured Matrices

Let R be a ring. For k > 0, we let R<k[x] denote the set of polyno-
mials in R[x] of degree < k. Given a polynomial a = a0 + a1x + · · · +
ak−1x

k−1 ∈ R<k[x] and some j < k, we use the following notations:
a = (a0, . . . , ak−1)T ∈ Rk and a = (ak−1, . . . , a0)T ∈ Rk. The latter
notation is extended to the corresponding polynomial.

Definition 2.2. Let f be a polynomial of degree m. For any d > 0 and
any a ∈ R[x], we let Rotdf (a) denote the matrix in Rd×m whose i-th row
is given by the coefficients of the polynomial (xi−1 · a) mod f , for any
i = 1, . . . , d. We will use the notation Rotf (a) instead of Rotmf (a).

Note that if a′ = a mod f , then Rotdf (a) = Rotdf (a′) for any d. Note
also that Rotf (a · b) = Rotf (a) · Rotf (b) for any a, b ∈ R[x].

Definition 2.3. Let f be a polynomial of degree m. We define Mf as the
(Hankel) matrix in Rm×m such that for any 1 ≤ i, j ≤ m, the coefficient
(Mf )i,j is the constant coefficient of xi+j−2 mod f .

Matrix Mf helps rewriting multiplication on the left by matrix Rotf (a)
as a multiplication on the right by a.

Lemma 2.4. For any a ∈ R<m[x], we have Rotf (a) · (1, 0, . . . , 0)T =
Mf · a.

Proof. First, the i-th coordinate of the left hand side is the constant
coefficient of xi−1 · a mod f . Second, the i-th entry of the right hand side
is

((a0x
i−1 mod f) mod x) + · · ·+ ((am−1x

m+i−2 mod f) mod x),

which can be re-written as xi−1(a0 + · · · + am−1x
m−1 mod f) mod x =

(xi−1 · a mod f) mod x. The latter is the constant coefficient of xi−1 ·
a mod f . ut



Definition 2.5. For any d, k > 0 and a ∈ R<k[x], we let Toepd,k(a)
denote the matrix in Rd×(k+d−1) whose i-th row, for i = 1, . . . , d, is given
by the coefficients of xi−1 · a.

The following property will be useful in proving our main result.
Lemma 2.6. For any d, k > 0 and any a ∈ R<k[x], we have Rotdf (a) =
Toepd,k(a) · Rotk+d−1

f (1).

Proof. It is sufficient to prove that the rows of Rotdf (a) and Toepd,k(a) ·
Rotk+d−1

f (1) are equal. We just note that the i-th row of Rotk+d−1
f (1) is

xi−1 mod f , for i = 1, . . . , k+d and these will fill the gap in the definitions
of Rotdf (a) and Toepd,k(a). ut

We now recall the definition of the expansion factor [LM06].

Definition 2.7. Let f ∈ Z[x] of degree m. Then the expansion factor of f
is defined as EF(f) = max(‖g mod f‖∞/‖g‖∞ : g ∈ Z<2m−1[x] \ {0}).

We remark that there are numerous polynomials with bounded ex-
pansion factor. One class of such polynomials [LM06] is the family of all
f = xm + h, for h =

∑
i≤m/2 hix

i and ‖h‖∞ ∈ poly(m): we then have
EF(f) ∈ poly(m).

Lemma 2.8. For f ∈ Z[x], we have ‖Mf‖ ≤ deg(f) · EF(f).

Proof. By definitions of Mf and EF(f), we have that |(Mf )i,j | ≤ EF(f),
for 1 ≤ i, j ≤ m. Therefore, the largest singular value of Mf is bounded
from above by m · EF(f). ut

2.3 The Polynomial Learning With Errors Problem (PLWE)

We first define the distribution the PLWE problem is based on. For the
rest of this paper, we will use the notation Rq := R/qZ.

Definition 2.9 (P distribution). Let q ≥ 2, m > 0, f a polynomial
of degree m, χ a distribution over R[x]/f . Given s ∈ Zq[x]/f , we define
the distribution P(f)

q,χ(s) over Zq[x]/f ×Rq[x]/f obtained by sampling a←↩
U(Zq[x]/f), e←↩ χ and returning (a, b = a · s+ e).

Definition 2.10 (PLWE). Let q ≥ 2, m > 0, f a polynomial of degree
m, χ a distribution over R[x]/f . The (decision) PLWE(f)

q,χ consists in dis-
tinguishing between arbitrarily many samples from P(f)

q,χ(s) and the same
number of samples from U(Zq[x]/f × Rq[x]/f), with non-negligible prob-
ability over the choices of s←↩ U(Zq[x]/f).



One can also define a search variant of PLWE(f)
q,χ, which would consist

in computing s ∈ Zq[x]/f from arbitrarily many samples from P(f)
q,χ(s).

3 The Middle-Product Learning With Errors Problem

We first recall the definition of the middle product of two polynomials
and some of its properties.

3.1 The Middle-Product

Let R be a ring. Assume we multiply two polynomials a and b of degrees
< da and < db, respectively. Assume that da + db − 1 = d + 2k for some
integers d and k. Then the middle-product of size d of a and b is obtained
by multiplying a and b, deleting the (left) coefficients of 1, x, . . . , xk−1,
deleting the (right) coefficients of xk+d, xk+d+1, . . . , xd+2k−1, and dividing
what remains (the middle) by xk.

Definition 3.1. Let da, db, d, k be integers such that da+db−1 = d+2k.
The middle-product �

d
: R<da [x]×R<db [x]→ R<d[x] is the map:

(a, b) 7→ a�
d
b =

⌊
(a · b) mod xk+d

xk

⌋
.

We use the same notation �
d
for every da, db such that da + db− 1− d is

non-negative and even.

The middle-product of polynomials is used in computer algebra to ac-
celerate computations in polynomial rings (see, e.g., [Sho99,HQZ04]). As
it is part of the output of polynomial multiplication, it can be computed
with a number of ring additions and multiplications that is quasi-linear
number in da + db. Faster algorithms exist [HQZ04].

The (reversed) coefficient vector of the middle-product of two poly-
nomials is in fact equal to the product of the Toeplitz matrix associated
to one polynomial by the (reversed) coefficient vector of the second poly-
nomial.

Lemma 3.2. Let d, k > 0. Let r ∈ R<k+1[x] and a ∈ R<k+d[x] and
b = r �

d
a. Then b = Toepd,k+1(r) · a. In other words, we have b =

Toepd,k+1(r) · a.



Proof. We first note that Toepd,2k+d(r ·a) = Toepd,k+1(r)·Toepk+d,k+d(a).
Thus, by definition of the middle-product, we have that the coefficients
of b appear in the first row of Toep(r · a), namely bi = Toepd,2k+d(r ·
a)1,k+i+1 for i < d. But since Toep(r · a) is constant along its diagonals,
we also have that b appear (in reversed order) in the (k+d)-th column of
Toepd,2k+d(r ·a), namely bi = Toepd,2k+d(r ·a)d−i,k+d for i < d. Therefore,
vector b is the (k + d)-th column of Toepd,2k+d(r · a), which is equal to
Toepd,k+1(r) · a′, where a′ is the (k + d)-th column of Toepk+d,k+d(a).
Since Toepk+d,k+d(a) is constant along its diagonals, its first row is equal
to its reversed (k + d)-th column, so a′ = a, as required. ut

The middle-product is an additive homomorphism when either of its
inputs is fixed. As a consequence of the associativity of matrix multipli-
cation and Lemma 3.2, the middle-product satisfies the following associa-
tivity property.

Lemma 3.3. Let d, k, n > 0. For all r ∈ R<k+1[x], a ∈ R<n[x], s ∈
R<n+d+k−1[x], we have r �

d
(a�

d+k s) = (r · a)�
d
s.

Proof. Note first that the degree bounds match. Now, by Lemma 3.2,
the vector associated to the reverse of r �

d
(a �

d+k s) is Toepd,k+1(r) ·
(Toepd+k,n(a) · s). Similarly, the vector associated to the reverse of (r ·
a) �

d
s is Toepd,k+n(r · a) · s. The result follows from observing that

Toepd,k+1(r) · Toepd+k,n(a) = Toepd,k+n(r · a). ut

3.2 Middle-Product Learning With Errors

Before stating MP-LWE, we first introduce a distribution its definition
relies on.

Definition 3.4 (MP distribution). Let n, d > 0, q ≥ 2, and χ a
distribution over R<d[x]. For s ∈ Z<n+d−1

q [x], we define the distribu-
tion MPq,n,d,χ(s) over Z<nq [x] × R<dq [x] as the one obtained by: sam-
pling a←↩ U(Z<nq [x]), e←↩ χ and returning (a, b = a�

d
s+ e).

Definition 3.5 (MP-LWE). Let n, d > 0, q ≥ 2, and a distribution χ
over R<d[x]. The (decision) MP-LWEn,d,q,χ consists in distinguishing be-
tween arbitrarily many samples from MPq,n,d,χ(s) and the same number
of samples from U(Z<nq [x]× R<dq [x]), with non-negligible probability over
the choices of s←↩ U(Z<n+d−1

q [x]).



It is possible to define a search variant of MP-LWEq,n,d,χ, which would
consist in computing s ∈ Z<n+d−1

q [x] from arbitrarily many samples
from MPq,n,d,χ(s).

Note that MP-LWEq,n,d,χ can also be viewed as a variant of LWE, in
which the samples are correlated. Thanks to Lemma 3.2, it can indeed be
restated as follows. Given many samples (Toepd,n(ai),bi) ∈ Zd×(n+d−1)

q ×
Rdq for uniformly chosen ai ∈ Z<nq [x], decide if the vectors bi are uniformly
sampled in Rdq or are of the form bi = Toepd,n(ai)·s+ei for some common
s←↩ U(Z<n+d−1

q [x]) and ei ←↩ χ.

3.3 Hardness of MP-LWE
The following reduction from PLWE to MP-LWE is our main result.
Theorem 3.6. Let n, d > 0, q ≥ 2, and α ∈ (0, 1). For S > 0, we
let F(S, d, n) denote the set of polynomials f ∈ Z[x] that are monic,
have constant coefficient coprime with q, have degree m in [d, n] and that
satisfy EF(f) < S. Then there exists a ppt reduction from PLWE(f)

q,Dα·q
for

any f ∈ F(S, d, n) to MP-LWEq,n,d,Dα′·q with α′ = αdS.

Proof. We first reduce PLWE(f) to a variant of MP-LWE whose only de-
pendence on f lies in the noise distribution (see Lemma 3.7 below). Then
we remove the latter dependence, by adding a compensating Gaussian
distribution (see Lemma 3.8 below). The bound on the magnitude of ma-
trix Mf from Lemma 2.8 for χ = Dα·q implies that

‖Σ0‖ = αq‖J ·Md
f‖ = αq‖Md

f‖ ≤ αqdEF(f) < αqdS.

Hence, taking α′q = αqdS completes the proof. ut

Lemma 3.7. Let n, d > 0, q ≥ 2, and χ a distribution over R<d[x].
Then there exists a ppt reduction from PLWE(f)

q,χ for any monic f ∈
Z[x] with constant coefficient coprime with q and degree m ∈ [d, n],
to MP-LWEq,n,d,J·Md

f
·χ. Here, matrix Md

f is the one obtained by keeping
only the first d rows of Mf , and J ∈ Zd×d is the one with 1’s on the
anti-diagonal and 0’s everywhere else.

Proof. We describe below an efficient randomized mapping φ that takes
as input a pair (ai, bi) ∈ Zq[x]/f×Rq[x]/f and maps it to a pair (a′i, b′i) ∈
Z<nq [x]×R<dq [x], such that φ maps U(Zq[x]/f ×Rq[x]/f) to U(Z<nq [x]×
R<dq [x]) and P(f)

q,χ(s) to MPq,n,d,χ′(s′), for some s′ that depends on s and
some χ′ that depends on χ and f .

The reduction is then as follows:



• Sample t←↩ U(Z<n+d−1
q [x]).

• Each time the MP-LWE oracle requests a new sample, ask for a fresh
PLWE sample (ai, bi), compute (a′i, b′i) = φ(ai, bi) and give (a′i, b′i) +
(0, a′i �d t) to the MP-LWE oracle.
• When MP-LWE terminates, return its output.

Assuming φ satisfies the specifications above, the reduction maps uniform
samples to uniform samples, and P(f)

q,χ(s) samples for a uniform s that is
common to all samples to MPq,n,d,J·Md

f
·χ(s′ + t) samples for a uniform

s′ + t that is common to all samples.
We now describe φ. Let (ai, bi) ∈ Zq[x]/f × Rq[x]/f be an input

pair. Let m denote the degree of f . We sample ri ←↩ U(Z<n−mq [x]) and
set φ(ai, bi) = (a′i, b′i) with:

a′i = ai + f · ri ∈ Z<nq [x] , b′i = Md
f · bi ∈ R<dq [x].

As ai and ri are uniformly distributed in Z<mq [x] and Z<n−mq [x] re-
spectively, the polynomial a′i is uniformly distributed in Z<nq [x] (we refer
to [Lyu16, Lemma 2.10] for a fully detailed proof). Here, we use the as-
sumption that f is monic.

Further, if bi is uniformly distributed, then so is its coefficient vec-
tor bi, and so is Md

f · bi. Indeed, as the constant coefficient is coprime
with q, matrix Mf is invertible modulo q (reordering its columns makes it
triangular, with diagonal coefficients all equal to the constant coefficient
of f).

Now, assume that bi = ai · s + ei, for some s ∈ Zq[x]/f and ei ←↩ χ.
Thanks to Subsection 2.2, we know that Rotf (bi) = Rotf (ai) · Rotf (s) +
Rotf (ei), and, by taking the first columns and d first rows, we have

Md
f · bi = Rotdf (ai) ·Mf · s + Md

f · ei
= Rotdf (a′i) ·Mf · s + Md

f · ei
= Toepd,n(a′i) · Rotd+n−1

f (1) ·Mf · s + Md
f · ei

= Toepd,n(a′i) · s′ + Md
f · ei,

where s′ = Rotd+n−1
f (1) ·Mf · s. Since b′i = Md

f · bi = Toep(a′i) · s′ +
Md

f · ei, we get that e′i = Md
f · ei, which makes the distribution in MP-LWE

equals to the claimed J ·Md
f · χ. This completes the proof. ut

We now remove the dependence in f of the noise distribution.



Lemma 3.8. Let n, d > 0, q ≥ 2. Let σ′ > 0. Let Σ0 ∈ Rd×d be sym-
metric definite positive matrix with ‖Σ0‖ < σ′. Then there exists a ppt
reduction from MP-LWEq,n,d,DΣ0

to MP-LWEq,n,d,Dσ′·Idd , where Idd denotes
the d-dimensional identity matrix.

Proof. The reduction is as follows. We first note that, there exists a
positive definite matrix Σ′, such that Σ0 + Σ′ = σ′ · Idd. The posi-
tive definiteness is guaranteed by fact that ‖Σ0‖ < σ′. Then, for any
MP-LWEq,n,d,DΣ0

input sample (ai, bi), we sample e′i ←↩ DΣ′ and com-
pute (a′i, b′i) = (ai, bi + e′i).

Observe that the reduction maps uniform samples to uniform samples,
and MPq,n,d,DΣ0

(s) samples to MPq,n,d,Dσ′·Idd (s) samples. This completes
the proof. ut

4 Public-Key Encryption from MP-LWE

We now describe a public key encryption scheme that is IND-CPA se-
cure, under the MP-LWE hardness assumption. The scheme is an adap-
tation of Regev’s from [Reg09]. It relies on parameters q, n, d, t ≥ 2 with
q odd, and a noise rate α ∈ (0, 1). We let χ = bDαqe denote the distribu-
tion over Z<d+k[x] where each coefficient is sampled from Dα·q and then
rounded to nearest integer. The plaintext space is {0, 1}<d[x], while the
ciphertext space is Z<k+n

q [x]× Z<dq [x].

KeyGen(1λ). Sample s ←↩ U(Z<n+d+k−1
q [x]). For every i ≤ t, sample

ai ←↩ U(Z<nq [x]), ei ←↩ χ and compute bi = ai �d+ks+2·ei ∈ Z<d+k
q [x].

Return the secret key sk := s and the public key pk := (ai, bi)i≤t.

Encrypt(pk = (ai, bi)i≤t, µ). For i ≤ t, sample ri ←↩ U({0, 1}<k+1[x]), and
return c = (c1, c2) with:

c1 =
∑
i≤t

ri · ai , c2 = µ+
∑
i≤t

ri �d bi.

Decrypt(sk = s, c). Return the plaintext µ′ = (c2− c1�d s mod q) mod 2.

Example parameters are n ≥ λ, k = d = n/2, q = Θ(n5/2+c√logn),
t = Θ(logn) and α = Θ(1/n

√
logn), for c > 0 arbitrary. For these

parameters, the scheme is correct (by Lemma 4.1) and secure under
MP-LWEq,n,n,Dαq (by Lemma 4.3). These parameters allow to rely on
the assumed hardness of PLWE(f)

q,Dβ·q
via Theorem 3.6, for β = Ω(

√
n/q)

(hence preventing attacks à la [AG11]) and for any f monic of degree n,



with constant coefficient coprime with q and expansion factor ≤ nc. Fi-
nally, note that the scheme encrypts and decrypts n plaintext bits in
time Õ(n), and the key pair has bit-length Õ(n).

Correctness follows from Lemma 3.3 and the proof of correctness of
Regev’s encryption scheme.

Lemma 4.1 (Correctness). Assume that α < 1/(16
√
λtk) and q ≥

16t(k + 1). With probability ≥ 1 − d · 2−Ω(λ) over the randomness of
(sk, pk) ←↩ KeyGen, for all plaintext µ and with probability 1 over the
randomness of Encrypt, we have Decrypt(sk,Encrypt(pk, µ)) = µ.

Proof. Assume that (c1, c2) is an encryption of µ under pk. Then we have,
modulo q:

c2 − c1 �d s = µ+
∑
i≤t

ri �d bi − (
∑
i≤t

ri · ai)�d s

= µ+
∑
i≤t

(
ri �d (ai �d+k s+ 2 · ei)− (ri · ai)�d s

)
= µ+ 2

∑
i≤t

ri �d ei,

where the last equality follows from Lemma 3.3. If ‖µ + 2 ·
∑
i≤t ri �d

ei‖∞ < q/2, then centered reduction modulo q of c2 − c1 �d s gives us
µ+2·

∑
i≤t ri�d ei (over the integers). Reducing modulo 2 then provides µ.

Now, each coefficient of
∑
i≤t ri�d ei can be viewed as an inner prod-

uct between a binary vector of dimension t(k + 1) and a vector sam-
pled from bDαqet(k+1). Each coefficient individually has magnitude ≤
αq
√
λt(k + 1) + t(k + 1) with probability ≥ 1 − 2−Ω(λ), because of the

Gaussian tail bound and the triangle inequality. By the union bound
and triangular inequality, we obtain that ‖µ + 2 ·

∑
i≤t ri �d ei‖∞ <

2αq
√
tλ(k + 1) + 2t(k + 1) + 1 with probability ≥ 1− d · 2−Ω(λ). ut

The security proof is adapted from that of Regev’s encryption scheme
from [Reg09], with a subtlety in the application of the leftover hash
lemma. In Regev’s scheme, if the public key is replaced by uniformly
random elements, then the leftover hash lemma guarantees that the joint
distribution of the public key and the encryption of an arbitrary plain-
text is within exponentially small statistical distance from uniform. This
property does not hold in our case: indeed, if a1, . . . , at all have constant
coefficient equal to 0 (this event occurs with a probability 1/qt, which is
not exponentially small for our parameters), then so does

∑
i riai. How-

ever, we can show that the second component c2 of the ciphertext is sta-



tistically close to uniform, given the view of the first component c1. This
suffices, as the plaintext is embedded in the second ciphertext component.

We first prove that the hash function family coming into play in the
security proof is universal.

Lemma 4.2. Let q, k, d ≥ 2. For (bi)i ∈ (Z<d+k
q [x])t, we let h(bi)i denote

the map that sends (ri)i≤t ∈ ({0, 1}<k+1[x])t to
∑
i≤t ri �d bi ∈ Z<dq [x].

Then the hash function family (h(bi)i)(bi)i is universal.

Proof. Our aim is to show that for r1, . . . , rt not all 0, we have

Pr
(bi)i,(b

′
i)i

[∑
i≤t

ri �d bi =
∑
i≤t

ri �d b
′
i

]
= q−d.

W.l.o.g. we may assume that r1 6= 0. By linearity, it suffices to prove that
for all y ∈ Z<dq [x],

Pr
b1

[
r1 �d b1 = y

]
= q−d.

Let j be minimal such that the coefficient in xj of r1 is non-zero (i.e.,
equal to 1 as r1 is binary). Then the equation r1 �d b1 = y restricted to
entries j + 1 to j + d is a triangular linear system in the coefficients of b1
with diagonal coefficients equal to 1. The map b1 7→ r1�d b1 restricted to
these coefficients of b1 is hence a bijection. This gives the equality above.

ut

Lemma 4.3 (Security). Assume that t ≥ (2·λ+(k+d+n)·log q)/(k+1).
Then the scheme above is IND-CPA secure, under the MP-LWEq,n,d+k,Dαq
hardness assumption.

Proof. The IND-CPA security experiment is as follows. The challenger C
samples a bit b ←↩ {0, 1} and (sk, pk) ←↩ KeyGen(1λ); it gives pk to ad-
versary A who sends back two plaintexts µ0 6= µ1; the challenger com-
putes c ←↩ Encrypt(pk, µb) and sends it to A, who outputs a bit b′. The
scheme is secure if no ppt adversary A outputs b′ = b more probability
that is non-negligibly away from 1/2.

Now, consider the variant of the experiment above, in which C does not
run (sk, pk) ←↩ KeyGen(1λ) but instead samples pk = (ai, bi)i uniformly.
Under the MP-LWE hardness assumption, the probabilities that A out-
puts b′ = b in both experiments are negligibly close. The reduction from
MP-LWE to distinguishing the first and second experiments consists in
multiplying by 2 (which is co-prime to q) and rounding the real samples
given by an MP-LWE oracle to the nearest integer modulo q. The latter



maps MP-LWE with real noise to MP-LWE with rounded real noise (and
uniform MP-LWE over the reals modulo q to a uniform MP-LWE over the
integers modulo q).

We consider a third experiment, in which C also samples pk = (ai, bi)i,
and additionally does not compute c←↩ Encrypt(pk, µb) before sending it
to A, but instead computes c = (c1, c2) as follows. For i ≤ t, it samples
ri ←↩ U({0, 1}<k+1[x]), u←↩ U(Z<dq [x]), and sets:

c1 =
∑
i≤t

ri · ai , c2 = u.

Note that in this game, the view of A is independent of b, and hence the
probability that it outputs b′ = b is exactly 1/2. We argue below that
the distributions of ((ai, bi)i, c1, c2) in this new experiment and the latter
one are within exponentially small statistical distance. The combination
of these two facts provides the result.

It remains to prove that

∆
(
((ai, bi)i,

∑
i≤t

ri · ai,
∑
i≤t

ri �d bi) , ((ai, bi)i,
∑
i≤t

ri · ai, u)
)
≤ 2−λ,

where the ai’s, bi’s, ri’s and u are uniformly sampled in Z<nq [x], Z<d+k
q [x],

U({0, 1}<k+1[x]) and Z<dq [x], respectively. By Lemma 4.2, the hash func-
tion family h(bi)i is universal. Further, the quantity

∑
i≤t ri · ai belongs

to Z<k+n
q , of cardinality qk+n. Hence, by the Generalized Leftover Hash

Lemma (see Lemma 2.1), the statistical distance above is bounded from
above by (2−(k+1)·t · qk+d+n)1/2/2. ut
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