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Abstract
The modeling of trapdoor permutations has evolved over the years. Indeed, find-

ing an appropriate abstraction that bridges between the existing candidate construc-
tions and the needs of applications has proved to be challenging. In particular, the
notions of certifying permutations (Bellare and Yung, 96), enhanced and doubly en-
hanced trapdoor permutations (Goldreich, 04, 08, 11, Goldreich and Rothblum, 13)
were added to bridge the gap between the modeling of trapdoor permutations and
needs of applications.

We identify an additional gap in the current abstraction of trapdoor permutations:
Previous works implicitly assumed that it is easy to recognize elements in the do-
main, as well as uniformly sample from it, even for illegitimate function indices. We
demonstrate this gap by using the (Bitansky-Paneth-Wichs, 15) doubly-enhanced trap-
door permutation family to instantiate the Feige-Lapidot-Shamir (FLS) paradigm for
constructing non-interactive zero-knowledge (NIZK) protocols, and show that the re-
sulting proof system is unsound.

To close this gap, we propose a general notion of certifiably injective doubly en-
hanced trapdoor functions, which provide a way of certifying that a given key defines
an injective function over the domain defined by it, even when that domain is not
efficiently recognizable and sampleable. We show that this notion suffices for instanti-
ating the FLS paradigm; more generally, we argue that this notion is needed whenever
the generation process of the function is not trusted.

We then show two very different ways to realize this notion: One is via the tradi-
tional method of RSA/Rabin with the Bellare-Yung certification mechanism, and the
other using indistinguishability obfuscation and injective pseudorandom generators.
In particular the latter is the first candidate injective trapdoor function from assump-
tions other than factoring, that suffices for the FLS paradigm.
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1 Introduction
In the late-1970s, Rivest, Shamir and Adelman [RSA78] and Rabin [Rab79] suggested
functions which are easy to evaluate, easy to invert when given a suitable secret trapdoor
key, but are presumably hard to invert when only given the function description without
the trapdoor. Both of these constructions use the same source of computational hardness:
the hardness of factoring. These constructions were later abstracted to a formal notion
of trapdoor functions [Yao82], which became one of the pillars of modern cryptography.
In particular, trapdoor permutations were used as building blocks for public key encryp-
tion [Yao82, GM84, BG84], oblivious transfer [EGL85] and zero-knowledge protocols
[FLS90].

Non-interactive zero knowledge (NIZK) protocols [BFM88] are perhaps the quintessen-
tial application for trapdoor permutations. Indeed, trapdoor permutations are the first gen-
eral cryptographic primitive that implies NIZK. Feige, Lapidot and Shamir [FLS90] gave
the first construction for NIZK proof systems in the common reference string model, which
was later formalized by Goldreich [Gol04]. Their construction, which we refer to as the
FLS protocol, treats the common reference string as a sequence of blocks, representing
images of a trapdoor permutation selected by the prover. The prover is able to select a sub-
set of these images and invert them using the secret trapdoor. The verifier can validate that
the pre-images it was given are correct by forward-evaluating the trapdoor function, but is
unable to invert any other image due to the hardness of inverting the function without the
secret trapdoor. By treating the common string as a series of sealed off boxes, the prover is
able to provide a NIZK proof for an NP-Hard language. Soundness is based on the fact that,
for any given permutation, each block in the reference string defines a unique pre-image.
This construction assumes that the trapdoor permutation in use is ideal, namely its domain
is {0, 1}n for some n, hardness holds with respect to uniformly chosen n-bit strings, and
any key (index) in an efficiently recognizable set describes a permutation.

Next, Bellare and Yung [BY96] consider the case where it is not known how to rec-
ognize whether a given index defines a permutation, but the domain is still {0, 1}n. This
relaxation is essential, as even the first TDP candidates suggested by [RSA78, Rab79] do
not give efficiently recognizable keys (while their domains are efficiently recognizable and
sampleable for any key). They observe that in this case a malicious prover may be able
to choose a key which evaluates to a many-to-one function, breaking the soundness of the
protocol, and suggest a NIZK protocol for certifying that a given index describes a permu-
tation. Their protocol is based on the prover providing the verifier with pre-images of a
set of random images, which are taken from the common reference string. We refer to this
protocol as the Bellare-Yung protocol. We note however that this protocol crucially needs
the verifier to be able to detect whether an element is in the domain of the permutation
(which is not an issue in their case of full domain).

Goldreich and Rothblum [Gol04, Gol08, Gol11, GR13] point out that when the domain
of the permutation is comprised of elements of specific structure (and not just the full do-
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main {0, 1}n), additional mechanisms are required in order to sample from the domain in a
way that still guarantees secrecy. They define the notions of enhanced and doubly-enhanced
trapdoor permutations, which require the existence of a domain sampling algorithm such
that finding the pre-image of a sampled element is hard, even given the random coins used
by the sampler, and it is possible to sample pairs of pre-image and random coins for the
domain sampler, which both map to the same image (one under the forward evaluation
and one via the domain sampler). They use enhanced and doubly enhanced TDPs to con-
struct a number of applications where domain sampling is required, such as 1-out-of-2 and
1-out-of-3 oblivious transfer, and NIZK. For the latter, they show that the FLS protocol re-
mains sound and zero-knowledge when using doubly-enhanced trapdoor permutations —
as long as the verifier is able to efficiently detect if the function described by the key is a
permutation. To verify that this is the case, they suggest using the Bellare-Yung protocol.

Bitansky et. al. [BPW16] give the first doubly enhances TDP constructions based
on general assumptions which are not known to imply the hardness of factoring (specif-
ically, sub-exponentially secure indistinguishability obfuscation and one-way functions).
The [BPW16] construction is also the first candidate TDP where the domain is not effi-
ciently recognizable given the public index. Specifically, their construction has a key set
which is not efficiently recognizable, along with a sparse, key-dependent domain. This puts
to light a hidden gap in the current modeling: The current definition of TDP’s, even doubly
enhanced ones, only considers the case where the index generation algorithm is executed
as specified. The way proposed in the literature to protect against maliciously generated
indices is the Bellare-Yung protocol, which is only guaranteed to work when the domain
defined by an index is publicly recognizable, even for dishonestly generated indices. The
current formalism does not propose a way to protect against dishonestly generated indices
when the domain is not efficiently recognizable.

We note that this gap extends also to other methods for obtaining NIZK, both by real-
izing the hidden-bit model and in other ways. See discussion in section 1.2.

1.1 Our Contribution
We start by demonstrating that the above gap is significant: We show that, when instanti-
ated with the [BPW16] doubly enhanced trapdoor permutation family, the FLS protocol is
unsound, even when combined with the [BY96] certification protocol. We attribute the loss
of soundness to the fact that the notion of doubly enhanced trapdoor permutations does not
make sufficient requirements on indices that were not legitimately generated.

We then formulate a general property for trapdoor permutations, called certifiable in-
jectivity. We show that this requirement suffices for the FLS paradigm even when the TDP
does not have publicly recognizable domain. Furthermore, assuming indistinguishability
obfuscation (iO) and injective pseudorandom generators, we construct a doubly enhanced
injective trapdoor function family. Indeed, the codomain of our function is not efficienty
recognizable. Still, we show that our function family is certifiable injective, hence it suf-
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fices for the FLS paradigm.

Unsoundness of FLS+BY with the [BPW16] trapdoor permutations: We instantiate
the FLS+BY protocols using the the [BPW16] iO-based doubly enhanced trapdoor function
family, whose domain is not efficiently recognizable. We demonstrate how a malicious
prover could choose an index α which describes a many-to-one function, wrongly certify
it as a permutation by having the sampler sample elements only out of a restricted domain
Dα which is completely invertible, but then invert any image in Dα into two pre-images
- one in Dα and another outside of it. The verifier cannot detect the lie since Dα is not
efficiently recognizable.

Regaining the soundness of BY+FLS using Public-Domain Trapdoor Permutations:
We note that the BY+FLS combination regains its soundness when the following additional
properties are met by the function family, with respect to any index (in particular illegit-
imate ones): First, the domain of the permutation, as well as the forward evaluation and
sampling algorithms, should be well defined for any index. Second, there must exist an
polynomial-time algorithm that decides, given some string, whether it represents an ele-
ment in that domain. Last, the domain sampler of the function family should guarantee an
almost uniform sample out of that domain. If all three requirements are met by the trap-
door permutation family, we say that it is public-domain. We note that the RSA and Rabin
trapdoor permutations are indeed public-domain, while the [BPW16] permutation is not.

Certifiable Injective Trapdoor Functions: We formulate a new notion of Certifiable
Injectivity, which captures a general abstraction of certifiability for doubly-enhanced in-
jective trapdoor functions. This notion requires the function family to be accompanied by
algorithms for generation and verification of certificates for indices, along with an algo-
rithm for certification of individual points from the domain. It is guaranteed that if the
index certificate is verified then, except for negligible probability, randomly sampled range
points have only a single pre-image that passes the pointwise certification. We show that
certifiable injectivity suffices for the FLS paradigm.

We additionally suggest a strengthened notion of Perfectly Certifiable Injectivity, which
guarantees that no point generated by the range sampler has two pre-images that pass the
pointwise certification. We show that by implementing FLS using this notion, the resulting
error in soundness is optimal, in that it is equal to the error incurred by implementing the
FLS protocol with ideal trapdoor permutations.

Doubly Enhanced Perfectly Certifiable Trapdoor Functions from iO+: We construct
a doubly-enhanced family of trapdoor functions which is perfectly certifiable injective. Our
construction, inspired by the work of [SW14], is based on indistinguishability obfuscation
and pseudorandom generators, and is perfectly certifiable injective under the additional
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assumption that the underlying pseudorandom generator is (a) injective and (b) its domain
is either full, or efficiently sampleable and recognizable.

The public trapdoor index for our construction is an indistinguishability obfuscation of
a circuit Tk which, on input x ∈ {0, 1}n, outputs (x⊕ fk(g(x)), g(x)), where g is a length-
doubling pseudorandom generator and fk is a puncturable pseudorandom function. The
private key is the PRF key k. We implement a doubly-enhanced range sampler for our con-
struction, based on a simple re-randomization technique. The sampling algorithm evaluates
an obfuscated circuit S̃ = iO(Sk,w), which, given random coins r, takes x = hw(r) and out-
puts Tk(x), where hw is a length-preserving PRF. Using another round of re-randomization
we augment our construction into a doubly-enhanced TDF. Our re-randomization technique
can be applied to any trapdoor function with an efficiently sampleable domain to obtain a
doubly-enhanced domain sampler, at the cost of using iO.

Finally, we show how using the assumption that the pseudorandom generator g is in-
jective and that its domain is efficiently recognizable, we are able to provide a perfect
pointwise certification algorithm for our trapdoor functions, proving it is perfectly certifi-
able injective. We then show how to construct such generators from standard assumptions
(such as, e.g., hardness of discrete log). This makes our construction sufficient for NIZK.

Discussion. The treatment in this paper concentrates on the requirements from TDPs
for realizing the FLS paradigm for constructing NIZK protocols. However, we argue that
certifiable injectivity is a notion that’s needed in general, whenever TDP’s are used in a
setting where the index generation process is not trusted. In particular, this notion frees
the user of the TDP from addressing implementation details such as whether the domain is
efficiently recognizable.

1.2 Related Work
Other Applications of Trapdoor Permutations. The gap between ideal and general
trapdoor permutations imposes a problem in other applications as well. [Rot10, GR13] dis-
cuss the security of the [EGL85] trapdoor-permutations-based 1-out-of-k oblivious transfer
protocol, which breaks in the presence of partial-domain trapdoor functions when k ≥ 3,
and show how doubly enhanced trapdoor functions can be used to overcome this. The con-
cern of certifying keys is irrelevant in the oblivious transfer applications, as the parties are
assumed to be trusted. Still, certifiability concerns apply whenever dishonesty of one or
more of the parties is considered an issue, such as the case of interactive proofs and multi-
party computation. We note however that requiring that the trapdoor be certifiable does not
suffice for making the [EGL85] protocol secure against Byzantine attacks.

Alternative Approaches for Constructing NIZK. [DN00] suggest a different path for
realizing the hidden-bit model, by using the notion of verifiable random generators. This
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notion provide the guarantee that every pre-image has only one (verified) image, in the
sense that one cannot invert two different images into the same pre-image. They then
suggest a construction of verifiable random generators from a particular type of trapdoor
permutations, specifically from families of certified trapdoor permutations where all the
functions in a given family share a common, efficiently recognizable and efficiently (pub-
licly) sampleable. The latter assumption is crucial for this construction to work, or else the
same attack we describe in our work would work in that case too. As we show in our work,
assuming an efficiently recognizable and sampleable domain is indeed sufficient to soundly
certify the permutation, however this assumption adds some limitation to the generalized
abstraction of trapdoor permutations.

[BGRV09] use the notion of (weak) verifiable random functions to obtain NIZK using a
very similar technique to that of [DN00]. Here too, they construct verifiable random func-
tions from trapdoor permutations, but in this case the only assumption is that the trapdoor
permutations are doubly enhanced1. Their construction assumes that the trapdoor permu-
tation is efficiently certifiable, and that this construction can be made to work with any
(doubly enhanced) trapdoor permutation, using the certification procedure of Bellare and
Yung. However, as we show in out current work, the latter is not true, in that certifying that
an enhanced trapdoor permutation is indeed injective requires additional assumptions.

[CHK03] provides yet another alternative path for realizing the hidden-bit model. They
suggest the notion of publicly-verifiable trapdoor predicates, which they construct based
on the decisional bilinear Diffie-Hellman assumption. Not to confuse with our notion of
certifiability, here the ”verifiability” concerns the ability to check, given a pair (x, y), that x
is indeed a pre-image of y (not necessarily the sole pre-image). This notion is suggested as
a relaxation of the notion of trapdoor permutations, which suffices for NIZK. Still, it has the
same weakness as the one pointed out here re DETDPs, namely it implicitly assumes that
the trapdoor index is generated honestly (or that the domain of the predicate is efficiently
recognizable and sampleable), thus it does not suffice in of itself for realizing the hidden-bit
model.

Recently, [BP15] showed how to construct invariant signatures [BG90] from indis-
tinguishability obfuscation and one-way functions. This, together with the technique of
[GO92], gives yet another path for realizing the hidden-bit model from assumptions other
than factoring. (Previously, the only known construction of invariant signatures was from
NIZK.) Their construction not only gives an arguably more natural realization of the hidden-
bit model then that obtained by trapdoor permutation, but also avoids the certification prob-
lems altogether (as invariant signatures handle the certification problem by definition). Still,
the trapdoor-permutations-based paradigm of [FLS90] remains the textbook method for re-
alizing non-interactive zero-knowledge proofs.

Over the years, additional approaches were suggested to obtaining non-interactive zero-

1In their original work, [BGRV09] only required that the trapdoor permutations be enhanced. Regardless
of the findings in our work, in light of [GR13], this requirement should have been strengthened into doubly-
enhanced to support the Bellare-Yung certification.
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knowledge proofs which are not based on the hidden-bit model. [GOS06] constructed non-
interactive zero-knowledge proofs for circuit satisfiability with a short reference string,
and non-interactive zero-knowledge arguments for any NP language. [GS08] constructed
non-interactive zero-knowledge proofs from assumptions on bilinear groups. [GOS12]
and [SW14] constructed non-interactive zero-knowledge arguments with a short reference
string for any NP language. All of these protocols either use a structured CRS whose
generation requires additional randomness that’s trusted to never be revealed, or achieve
zero-knowledge arguments, where the soundness holds only with respect to computation-
ally bounded adversaries. Moreover, these constructions are based on highly controversial
assumption. This leaves the hidden-bit paradigm the only known way to achieve zero-
knowledge proofs for any NP language in the uniform reference string model.

Alternative Notions of Certifiability for TDPs. [Abu13] define and discuss two notions
of verifiability for doubly-enhanced trapdoor permutations, which indeed allow verifying,
or certifying, that a given trapdoor index indeed describes an injective function: a strong
(errorless) one, in which the verification is not allowed to accept any function which is not
injective, and a weaker variant, with negligible error. The strong notion indeed suffices for
realizing the hidden-bit model, but is overly strong - in particular the existing constructions
from RSA and BY do not satisfy it. On the other hand, the weak notion suffers from
the same weakness as the prior notions, in that it implicitly assumes that the range of the
function is efficiently recognizable. In contrast, we provide a single notion that suffices
for realizing the HBM model and is realizable by the factoring-based constructions, by the
IO-based construction, and by the gap-DH based construction.

1.3 Paper Organization
In section 2 we define the basic notions used in the paper, and describe in general the FLS
protocol for NIZK for NP from trapdoor permutations, including the enhancements sug-
gested by Bellare-Yung [BY96] and Goldreich-Rothblum [Gol04, Gol08, Gol11, GR13].
In section 3 we demonstrate how the soundness of the FLS protocol may be compromised
when using general TDPs, and discuss the additional assumptions required to avoid this
problem. In section 4 we suggest the alternative notion of certifiably injective trapdoor
functions, and use it to overcome the limitations of the FLS+BY combination and regain
the soundness of the FLS protocol. In section 5 we construct a doubly-enhanced, certifiable
injective trapdoor function family based on indistinguishability obfuscation and injective
pseudorandom generators.
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2 Preliminaries
The cryptographic definitions in this paper follow the convention of modeling security
against non-uniform adversaries. A protocol P is said to be secure against (non-uniformly)
polynomial-time adversaries, if it is secure against any adversary A = {Aλ}λ∈N, such that
each circuit Aλ is of size polynomial in λ.

2.1 Notations
For a probabilistic polynomial time (PPT) algorithm A which operates on input x, we
sometimes denote A(x; r) as the (deterministic) evaluation A using random coins r.

We use the notation Pr[E1;E2; ...;En;R] to denote the probability of the resulting
boolean event R, following a sequence of probabilistic actions E1, ..., En. In other words,
we describe a probability experiment as a sequence of actions from left to right, with a fi-
nal boolean success predicate. We sometime combine this notion with the stacked version
PrS[E1;E2; ...;En;R] in which case the sampling steps taken in S precede E1, ..., En, and
the random coins used for S are explicitly specified. (The choice of which actions are de-
scribed in a subscript and which are described within the brackets is arbitrary and is done
only for visual clarity.)

2.2 Puncturable Pseudorandom Functions
We consider a simple case of puncturable pseudorandom functions (PPRFs) where any
PRF may be punctured at a single point. The definition is formulated as in [SW14], and is
satisfied by the GGM PRF [GGM86, BW13, KPTZ13, BGI14].

Definition 2.1. (Puncturable PRFs). Let n, k be polynomially bounded length functions.
An efficiently computable family of functions:

PRF = {PRFS : {0, 1}n(λ) → {0, 1}λ : S ∈ {0, 1}k(λ), λ ∈ N}

associated with a PPT key sampler KPRF , is a puncturable PRF if there exists a poly-
time puncturing algorithm Punc that takes as input a key S and a point x∗ and outputs a
punctured key S∗ = S{x∗}, so that the following conditions are satisfied:

1. Functionality is preserved under puncturing: For every x∗ ∈ {0, 1}n(λ),

Pr[S ← KPRF (1λ);S∗ = Punc(S, x∗);∀x 6= x∗ : PRFS(x) = PRFS∗(x)] = 1

2. Indistinguishability at punctured points: for any PPT distinguisher D there exists
a negligible function µ such that for all λ ∈ N, and any x∗ ∈ {0, 1}n(λ),
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Pr[D(x∗, S∗, PRFS(x∗)) = 1]− Pr[D(x∗, S∗, u) = 1] ≤ µ(λ)

where the probability is taken over the choice of S ← KPRF (1λ), S∗ = Punc(S, x∗),
u← {0, 1}λ, and the random coins of D.

2.3 Indistinguishability Obfuscation
We define indistinguishability obfuscation (iO) with respect to a given class of circuits. The
definition is formulated as in [BGI+01].

Definition 2.2. (Indistinguishability Obfuscation [BGI+01]). A PPT algorithms iO is said
to be an indistinguishability obfuscator for a class of circuits C, if it satisfies:

1. Functionality: for any C ∈ C,

Pr
iO

[∀x : iO(C)(x) = C(x)] = 1

2. Indistinguishability: for any PPT distinguisher D there exists a negligible function
µ, such that for any two circuits C0, C1 ∈ C that compute the same function and are
of the same size λ:

Pr[D(iO(C0)) = 1]− Pr[D(iO(C1)) = 1] ≤ µ(λ)

Where the probability is taken over the coins of D and iO.

2.4 Injective TDFs and TDPs
Definition 2.3. (Trapdoor Functions). A family of one-way trapdoor functions, or TDFs,
is a collection of finite functions, denoted fα : {Dα → Rα}, accompanied by PPT al-
gorithm I (index), SD (domain sampler), SR (range sampler) and two (deterministic)
polynomial-time algorithms F (forward evaluator) andB (backward evaluator or inverter)
such that the following condition holds:

1. On input 1n, algorithm I(1n) selects at random an index α of a function fα, along
with a corresponding trapdoor τ . Denote α = I0(1

n) and τ = I1(1
n).

2. On input α = I0(1
n), algorithm SD(α) samples an element from domain Dα.

3. On input α = I0(1
n), algorithm SR(α) samples an image from the range Rα.

4. On input α = I0(1
n) and any x ∈ Dα, F (α, x) = fα(x).

5. On input τ = I1(1
n) and any y ∈ Rα, B(τ, y) outputs x such that F (α, x) = y.
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The standard hardness condition refers to the difficulty of inverting fα on a random
image, sampled by SR or by evaluating F (α) on a random pre-image sampled by SD,
when given only the image and the index α but not the trapdoor τ . That is, it is required
that, for every polynomial-time algorithm A, it holds that:

Pr[α← I0(1
n);x← SD(α); y = F (α, x);A(α, y) = x′ s.t. F (α, x′) = y] ≤ µ(n) (1)

Or, when sampling an image directly using the range sampler:

Pr[α← I0(1
n); y ← SR(α);A(α, y) = x′ s.t. F (α, x′) = y] ≤ µ(n) (2)

for some negligible function µ.
Additionally, it is required that, for any α← I0(1

n), the distribution sampled by SR(α)
should be close to from that sampled by F (SD(α)). In this context we require that the two
distributions be computationally indistinguishable. We note that this requirement implies
that the two hardness requirements given in equations 1 and 2 are equivalent. The issue of
closeness of the sampling distributions is discussed further at the end of this section.

If fα is injective for all α ← I0(1
n), we say that our collection describes an injective

trapdoor function family, or iTDFs (in which case B(α, ·) inverts any image to its sole
pre-image). If additionallyDα andRα coincide for any α← I0(1

n), the resulting primitive
is a trapdoor permutation.

If for any α ← I0(1
n), Dα = {0, 1}p(n) for some polynomial p(n), that is, every p(n)-

bit string describes a valid domain element, we say the function is full domain. Otherwise
we say the domain is partial. Full and partial range and keyset are defined similarly. We
say that a TDF (or TDP) is ideal if it has a full range and a full keyset.

Definition 2.4. (Hard-Core Predicate) p is a hard-core predicate for fα if its value is hard
to predict for a random domain element x, given only α and fα(x). That is, if for any PPT
adversary A there exists a negligible function µ such that:

Pr[α← I0(1
n);x← SD(α); y = F (α, x);A(α, y) = p(x)] ≤ 1/2 + µ(n)

.

2.4.1 Enhancements

A trivial range-sampler implementation may just sample a domain element x by applying
SD(α), and then evaluate the TDF on it by applying F (α, x). This sampler, while fulfill-
ing the standard one-way hardness condition, is not good enough for some applications.
Specifically, for the case of NIZK, we require the ability to obliviously sample a range ele-
ment in a way that does not expose its pre-image (without using the trapdoor). This trivial
range sampler obviously does not qualify for this case.
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Goldreich [Gol04] suggested the notion of enhanced TDPs, which can be used for
cases where sampling is required to be available in a way that does not expose the pre-
image. They then demonstrate how enhanced trapdoor permutations can be used to obtain
NIZK proofs (as we describe later in sections 2.5). We revisit this notion, while extending
it to the case of injective TDF (where the domain and range are not necessarily equal).

Definition 2.5. (Enhanced injective TDF, [Gol04]). Let {fα : Dα → Rα} be a collection
of injective TDFs, and let SD be the domain sampler associated with it. We say that the
collection is enhanced if there exists a range sampler SR that returns random samples out
of Rα, and such that, for every polynomial-time algorithm A, it holds that:

Pr[α← I0(1
n); r ← {0, 1}n; y = SR(α; r);A(α, r) = x′ s.t. F (α, x′) = y] ≤ µ(n) (3)

where µ is some negligible function.

The range sampler of an enhanced injective TDF has the property that its random coins
do not reveal a corresponding pre-image, i.e. an adversary which is given an image along
with the random coins which created it, still cannot inverse it with all but negligible proba-
bility.

[Gol11] additionally suggested enhancing the notion of hard-core predicates in order
to adapt the FLS proof (that uses traditional hard-core predicates) to the case of enhanced
trapdoor functions. Loosely speaking, such a predicate p is easy to compute, but given
α← I0(1

n) and r ← {0, 1}n, it is hard to guess the value of the predicate on the pre-image
of the image sampled by the range sampler using the coins r:

Definition 2.6. (Enhanced Hard-Core Predicate, [Gol11]) Let {fα : Dα → Rα} be an
enhanced collection of injective TDFs, with domain sampler SD and range sampler SR.
We say that the predicate p is an enhanced hard-core predicate of fα if it is efficiently
computable and for any PPT adversary A there exists a negligible function µ such that

Pr[α← I0(1
n); r ← {0, 1}n; y = SR(α; r);x = B(α, y);A(α, r) = p(α, x)] ≤ 1/2+µ(n)

Or, equivalently, if the following two distribution ensembles are computationally indis-
tinguishable:

1. {(α, r, p(α,B(α, SR(α; r)))) : α← I0(1
n), r ← {0, 1}n}n∈N

2. {(α, r, u) : α← I0(1
n), r ← {0, 1}n, u← {0, 1}}n∈N

The hard-core predicates presented in [GL89] satisfy this definition without changes
(as they do not use the trapdoor index).
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Definition 2.7. (Doubly Enhanced injective TDF, [Gol08]). Let {fα : Dα → Rα} be an
enhanced collection of injective TDFs, with domain sampler SD and range sampler SR.
We say that this collection is doubly-enhanced if it provides another polynomial-time
algorithm SDR with the following properties:

• Correlated pre-image sampling: for any (α, τ)← I(1n), SDR(α; 1n) outputs pairs
of (x, r) such that F (α, x) = SR(α; r)

• Pseudorandomness: for any PPT distinguisher D there exists a negligible µ such
that:

Pr[(α, τ)← I(1n); (x, r)← SDR(α);D(x, r, α) = 1]−
Pr[(α, τ)← I(1n); r ← {0, 1}∗; y = SR(α; r);x = B(α, y);D(x, r, α) = 1] ≤ µ(n)

SDR provides a way to sample pairs of an element x in the function’s domain, along
with random coins r which explain the sampling of the image y = fα(x) in the function’s
range. Note that since the collection is enhanced, r must not reveal any information of x.

[GR13] review these enhanced notions of trapdoor permutations in light of applications
for which they are useful, specifically oblivious transfer and NIZK, providing a compre-
hensive picture of trapdoor permutations and the requirements they should satisfy for each
application. They additionally suggested a number of intermediate notions between ideal-
ized TDPs, enhanced TDPs and doubly-enhanced TDPs, and discussed notions of enhance-
ments for general trapdoor and one-way functions.

On the uniformity of distributions sampled by the domain, range and correlated pre-
image samplers: in definitions 2.3 and 2.7 we required that the distribution sampled by
(a) running the domain sampler SD, (b) inverting images sampled by the range sampler
SR, and (c) taking pre-images sampled by the correlated pre-image sampler SDR, are all
computationally indistinguishable. This is a relaxation of the definition given in [Gol11,
GR13], which require that all three of these distributions be statistically close. The relaxed
notion is adapted from [BPW16], which indeed define and implement the computational-
indistinguishable variant. While samplers that are statistically close to uniform are often
needed in situations where the permutation is applied repeatedly, computational closeness
suffices in our setting.

2.5 Non-Interactive Zero-Knowledge
2.5.1 Definition

Definition 2.8. (Non-Interactive Zero Knowledge, Blum-Feldman-Micali [BFM88]) A pair
of PPT algorithms (P, V ) provides an (efficient-prover) Non-Interactive Zero Knowl-
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edge (NIZK) proof system for language L ∈ NP with relation RL in the Common Refer-
ence String (CRS) Model if it provides:

• Completeness: for every (x,w) ∈ RL we have that:

Pr
P,crs

[π ← P (x,w, crs);V (x, crs, π) = 0] ≤ µ(|x|)

where the probability is taken over the coins of P and the choice of the CRS as a
uniformly random string, and µ(n) is some negligible function.

• Soundness: for every x /∈ L:

Pr
crs

[∃π : V (x, crs, π) = 1] ≤ µ(|x|)

where the probability is taken over the choice of the CRS as a uniformly random
string, and µ(n) is some negligible function.

• Zero-Knowledge: there exists a PPT algorithm S (simulator) such that the following
two distribution ensembles are computationally indistinguishable:

– {(x, crs, π) : crs← U, π ← P (x,w, crs)}(x,w)∈RL

– {S(x)}(x,w)∈RL

Here U denotes the set of uniformly random strings of length polynomial in |x|.

While it sometimes makes sense to have a computationally unbounded prover, it should
be stressed that the verifier and simulator should both be polynomial-time.

The common reference string is considered the practical one for NIZK proof systems,
and is the one widely accepted as the appropriate abstraction. When discussing NIZK proof
systems, we sometime omit the specific model being assumed, in which case we mean the
CRS model.

2.5.2 NIZK in the Hidden-Bit Model

A fictitious abstraction, which is nevertheless very helpful for the design of NIZK proof
systems, is the hidden-bits model. In this model the common reference-string is uniformly
selected as before, but only the prover can see all of it. The prover generates, along with a
proof π, a subset I of indices in the CRS, and passes them both to the verifier. The verifier
may only inspect the bits of the CRS that reside in the locations that have been specified by
the prover in I , while all other bits of the CRS are hidden to the verifier.

Definition 2.9. (NIZK in the Hidden-Bit Model [FLS90, Gol98]). For a bit-string s and an
index set I denote by sI the set of values of s in the indexes given by I: sI := {(i, s[i]) : i ∈
I}. A pair of PPT algorithms (P, V ) constitute an (efficient-prover) NIZK proof system for
language L ∈ NP with relation RL in the Hidden-Bit (HB) Model if it provides:
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• Completeness: for every (x,w) ∈ RL we have that:

Pr
P,crs

[(π, I)← P (x,w, crs);V (x, I, crsI , π) = 0] ≤ µ(|x|)

where the probability is taken over the coins of P and the choice of the CRS as a
uniformly random string, and µ(n) is some negligible function.

• Soundness: for every x /∈ L:

Pr
crs

[∃π, I : V (x, I, crsI , π) = 1] ≤ µ(|x|)

where the probability is taken over the choice of the CRS as a uniformly random
string, and µ(n) is some negligible function.

• Zero-Knowledge: there exists a PPT algorithm S (simulator) such that the following
two distribution ensembles are computationally indistinguishable:

– {(x, crsI , π) : crs← U, (π, I)← P (x,w, crs)}(x,w)∈RL

– {S(x)}(x,w)∈RL

Here U denotes the set of uniformly random strings of length polynomial in |x|.

While the hidden-bit model is an unrealistic one, its importance lies in two facts. Firstly,
it provides a clean abstraction for NIZK systems, which facilities the design of ”clean”
proof systems. Efficient-prover NIZK proof systems for NP-hard languages exist uncondi-
tionally in the hidden-bit model [FLS90, Gol98]:

Theorem 2.1. ([FLS90]) There exists a NIZK proof system in the hidden-bit model for any
NP language (unconditionally). Furthermore, the protocol is statistical zero-knowledge
and statistically sound.

Secondly, proof systems in the hidden-bit model can be easily transformed into proof
systems in the more realistic CRS model, using general hardness assumptions. Feige, Lapi-
dot and Shamir [FLS90] suggests such a transformation. In the rest of this section, we
describe their construction and the details of the underlying hardness assumptions. We re-
mark that in the hidden-bit model, we can obtain both perfect soundness (with a negligible
completeness error) and perfect completeness (with a negligible soundness error).

2.5.3 From Hidden-Bit to CRS

The following is a review of the full details of the FLS protocol and the enhancement that
followed to adapt it to general trapdoor permutations. This follows the historic line of
research by [FLS90, BY96, Gol98, Gol11, GR13].
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The FLS Protocol: Assuming the existence of one-way permutations, Feige, Lapidot
and Shamir [FLS90] constructed a NIZK proof-system in the CRS model for any NP lan-
guage. They also offer an efficient implementation of the prescribed prover, using trapdoor
permutations. We refer to this construction, described next, as the FLS protocol:

Let:

• (PHB, VHB) be a hidden-bit proof system for language L (which exists uncondition-
ally by theorem 2.1).

• f : {0, 1}n → {0, 1}n is an injective one-way function, and p a hard-core predicate
for it.

Let (P, V ) be the following proof system for input x:

• CRS: a sequence of m random items y1, ..., ym where each yi ∈ {0, 1}n.

• Prover (P ):

1. Compute xi := f−1(yi) and ri = p(xi) for i ∈ [m].

2. Emulate PHB to obtain (I, π) = PHB(x, r1 · · · rm)

3. Output (π,Σ), where Σ := {(i, xi) : i ∈ I}.

• Verifier (V ): given the proof (π,Σ = {(i, xi) : i ∈ I}):

1. check that xi = f(yi) for each i ∈ I . Otherwise reject.

2. compute ri = p(xi) for i ∈ I , let rI = {(i, rI) : i ∈ I}
3. emulate VHB on (x, rI , π) , and accept if and only if it accepts.

[FLS90] showed that the resulting construction is a NIZK proof system for L in the
CRS model:

Theorem 2.2. ([FLS90]) Assuming the existence of one-way permutations, there exists a
NIZK proof system in the CRS model with an inefficient prover for any NP language.

Implementing an Efficient Prover using Ideal Trapdoor Permutations: In order for
the prover P in the FLS system to be efficient, it must be able to efficiently invert f . On the
other hand, the verifier V must not be able to efficiently invert f in order to preserve the
zero-knowledge property of the system. The obvious solution is to use a family of trapdoor
permutations, and let the prover choose the permutation. The prover invokes the generation
algorithm of the TDP to receive an index α and a trapdoor τ . It then uses τ to invert the yi’s.
The verifier receives α from the prover and uses it to evaluate f and p. As we can no longer
assume that the permutation key chosen by the prover is truly random, we consider the
probability of success of the prover for any specific choice of permutation, and then union
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bound over all possible permutations. This means that in order to guarantee soundness,
the initial soundness error must be smaller than inverse the number of permutations. We
guarantee that by enhancing the soundness error via repetition. We omit the rest of the
details.

Theorem 2.3. ([FLS90]) Assuming the existence of an ideal trapdoor permutation family,
there exists a NIZK proof system in the CRS model (with an efficient prover) for any NP
language.

As shown by [FLS90], the FLS protocol provides a NIZK proof system assuming that
the underlying TDP is ideal. However, existing instantiations of TDPs are not ideal, and in
fact are far from it. Most reasonable constructions of TDPs have both partial keysets and
partial domains. This leads to two gaps which arise when using general TDPs, in place of
ideal ones.

Ideal Domains + General Keys: The Bellare-Yung Protocol: The first hurdle, discov-
ered by Bellare and Yung [BY96], involves the use of general trapdoor keys (rather than
ideal ones). The problem is that the soundness of the FLS protocol relies on the feasibility
of recognizing permutations in the collection. If the permutation is ideal then every key
describes a permutation, and therefore detecting a permutation is trivial. However, existing
instantiations of TDPs require sampling keys of a certain form using a specific protocol.
This brings us to the problem of certifying permutations, which aims to answer the ques-
tion of how to certify that a given key indeed describes a valid permutation. Bellare and
Yung [BY96] suggested a certification procedure for permutations, assuming nothing of
the keyset, but requiring that the range remains full. We refer to this procedure as the
Bellare-Yung protocol. The following is an overview of the construction and proof given
in section 4 of [BY96].

Definition 2.10. (Almost-Permutations). Let C(f), the Collision Set of f , be the set of all
n-bit strings which have more than one pre-image:

C(f) := {y ∈ {0, 1}n : ∃x1 6= x2 ∈ {0, 1}n.f(x1) = f(x2) = y} (4)

We say that f is an ε-permutation (for 0 ≤ ε ≤ 1) if its collision set is at most an
ε-fraction of the entire domain, i.e. |C(f)| ≤ ε2n. If f is a 0-permutation then it is by
definition a permutation. We say that f is an almost permutation if it is an ε(n)-permutation
for some negligible ε(n).

For general functions (with different domain and range), we define almost injectivity
in a similar way: if Range(f) ⊆ {0, 1}m, then the collision set is defined as the set of all
m-bit strings which have more than one pre-image. Next, we say that f is ε-injective if
|C(f)| ≤ ε · |Domain(f)|, and that it is almost injective if it is ε(n)-injective for some
negligible ε(n).
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The main observation is that f is an ε-permutation if and only if at most ε-fraction of
{0, 1}n has no pre-image. Given a trapdoor permutation family described by (I, SD, F, B)
(where SD just samples a string from {0, 1}n), Bellare-Yung described the following proto-
col for certifying that some (α, τ) describe an almost-permutation. The prover and verifier
treat the CRS as a sequence of some l range items y1, ...., yl (where yi ∈ {0, 1}n). The
prover provides the verifier with a list of pre-images x1, ..., xl such that xi = B(τ, yi)
(where B is the backwards-evaluation or inversion algorithm of the TDP family). The
verifier accepts if yi = F (α, xi) for all i (where F is the forward evaluator). By asking
the prover to invert sufficiently many random domain element, the verifier is convinced
that the collision set is small enough, meaning that the given index describes an almost-
permutation. Finally, as it turns out, being an almost-permutation is sufficient for the pur-
pose of the FLS protocol.

Theorem 2.4. ([BY96]) Assuming the existence of a full-domain trapdoor permutation
family (whose keys may be hard to recognize), there exists a NIZK proof system in the CRS
model for any NP language (with an efficient prover).

General Domains: Doubly Enhanced TDPs: The second gap concerns the case of par-
tial domains, where the function’s domain is comprised of elements of specific structure
(and not just {0, 1}n). The FLS protocol treats the CRS as a sequence of range elements.
In the case of the general abstraction of trapdoor permutations, an additional domain sam-
pling algorithm is required. This problem is solved by requiring the use of doubly enhanced
trapdoor permutations. Given the permutation index α, both the prover and the verifier use
the enhanced sampling algorithm SR(α) to sample elements from the permutation’s range.
They treat the CRS as a sequence r1, ..., rl, where each rl ∈ {0, 1}n is handled as random
coins for the range sampler. They create a list of range items yi = SR(α; ri) and use them
for the rest of the FLS protocol. Using the range sampler solves the completeness issue of
NIZK in the CRS model for permutations with general domains. However, the resulting
protocol may no longer be zero-knowledge, as the verifier now obtains a list of random
pairs (xi, ri) such that fα(xi) = Sα(ri), but it is not clear that it could have generated such
pairs itself. The two enhancements solve just that, and allow the verifier to obtain such
pairs on its own.

Theorem 2.5. ([GR13]) Assuming the existence of a general doubly-enhanced trapdoor
permutation family with efficiently recognizable keys, there exists a NIZK proof system in
the CRS model for any NP language (with an efficient prover).

Moreover, in order to certify general keys, [Gol11, GR13] suggested combining be-
tween doubly enhanced permutations and the Bellare-Yung protocol, by using the doubly-
enhanced domain sampler to sample images by the Bellare-Yung prover and verifier. We
reexamine this suggestion in section 3.
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Basing FLS on Injective Trapdoor Functions: Before moving on, we mention that
while the FLS protocol is originally described using (trapdoor) permutations, it may just as
well be described and implemented using general injective trapdoor functions. In this case,
since the CRS is used to generate range elements, there is no useful notion of ”ideal” injec-
tive trapdoor functions; if f maps n-bit strings into m-bit strings, where m > n, then there
must exists some m-bit strings which do not have a pre-image under f . However, using
a doubly-enhanced general injective trapdoor function, the FLS protocol and the gener-
alization into general TDPs will work without any changes, under assuming the keys are
efficiently recognizable. In section 5 we will show an example for such a injective TDF
and it’s application to NIZK proof systems.

3 On the Unsoundness of FLS with General Doubly En-
hanced TDPs

We begin with a careful reexamination of the FLS protocol, in light of the work of [Gol11,
GR13]. We discuss a crucial problem yet to be detected when applying the Bellare-Yung
protocol on general TDPs, which have both partial domains and partial keysets. Specifi-
cally, we identify that the soundness of the FLS protocol may be compromised when using
such trapdoor functions.

3.1 The Counter Example
We once again sketch the full details of the Bellare-Yung protocol, this time allowing both
partial range and partial keyset for our TDPs, as suggested by [GR13]. To simplify matters,
we limit this part of the discussion to the case of trapdoor permutations (rather than any
injective trapdoor functions), which is consistent with the efforts done by previous work.

Recall that we are provided with a doubly-enhanced TDP family, described using the
algorithms I(1n)→ (α, τ), F (α, x)→ y,B(τ, y)→ x, S(α; r)→ x. We treat the CRS as
a sequence of random coins for the sampler S, and apply S both on the prover and on the
verifier side to obtain range elements.

• Input: (α, τ)← I(1n)

• CRS: a sequence of l random strings r1, ..., rl, each acts as random coins for S

• Prover: is given (α, τ) and does the following:

1. Calculate yi := S(α; ri) for each 1 ≤ i ≤ l.

2. Calculate xi := B(τ, yi) for each 1 ≤ i ≤ l.

3. Output {(i, xi) : 1 ≤ i ≤ l}

18



• Verifier: is given α and {(i, xi) : 1 ≤ i ≤ l}, and does the following

1. Calculate yi := S(α; ri) for each 1 ≤ i ≤ l.

2. Validate that yi = F (α, xi) for each 1 ≤ i ≤ l. If any of the validations fail,
reject the proof. Otherwise, accept it.

Looking into the details of the protocol, we detect a potential problem. We demon-
strate it by instantiating the FLS+BY protocols using a specific family of doubly-enhanced
trapdoor permutations, which was proposed by [BPW16]:

Let PRFk be a pseudorandom function family, and iO an indistinguishability obfusca-
tor. Let Ck be the circuit that, on input (i, t), if t = PRFk(i) outputs (i+ 1, PRFk(i+ 1))
(where i + 1 is computed modulo some T ) and otherwise outputs ⊥. Denote by C̃ :=
iO(Ck) the obfuscation of Ck. The BPW construction gives C̃ as the public permutation
index, and keeps k as the trapdoor. To evaluate the permutation on a domain element
(i, PRFk(i)), just apply C̃. To invert (i + 1, PRFk(i + 1)) given k, return (i, PRFk(i)).
The range sampler is given as an obfuscation of a circuit which samples out of a (sparse)
subset of the function’s range. One-wayness holds due to a hybrid puncturing argument:
the obfuscation of the cycle (i, PRFk(i))→ (i+1, PRFk(i+1)) (where i+1 is computed
module T ) is indistinguishable from that of the same cycle when punctured on a single spot
i∗, by replacing the edge (i∗, PRFk(i

∗)) → (i∗ + 1, PRFk(i
∗ + 1)) with a self loop from

(i∗, PRFk(i
∗)) to itself. By repeating the self-loops technique we obtain a punctured ob-

fuscated cycle where arriving from (i, PRFk(i)) to its predecessor (i − 1, PRFk(i − 1))
cannot be done efficiently without knowing k itself.2

Suppose that the [BPW16] construction is used to instantiate the FLS+BY protocols,
and consider the following malicious prover: Let C ′k be a circuit which, given input (i, t),
does the following: if t = PRFk(i) or t = PRFk(i − 1), output (i + 1, PRFk(i + 1)).
Otherwise, output ⊥. Denote C̃ ′ := iO(C ′k). We give out C̃ ′ as the public key and keep
k as the trapdoor. We keep the domain sampler as it is, that is, it returns only items of the
form (i, PRFk(i)).

Denote Dk = {(i, PRFk(i) : i ∈ [1...T ])} and D̃k = {(i, PRFk(i)) : i ∈ [1...T ]} ∪
(i, PRFk(i − 1)) : i ∈ [1...T ]}. It is easy to see that C ′k is a permutation when restricted
to the the domain Dk, but it many-to-one when evaluated on the domain D̃k: each item
(i + 1, PRFk(i + 1)) ∈ Dk has 2 pre-images: (i, PRFk(i)) and (i, PRFk(i − 1)). Note
that the one-wayness of the trapdoor function is maintained even when extended to the
domain D̃k: For each image (i + 1, PRFk(i + 1)) we now have two pre-images, one
is (i, PRFk(i)) which is hard to invert to due to the same puncturing argument as in the

2In order to add an enhanced domain sampler, the BPW construction returns elements of the form
(PRG(r), PRFk(PRG(r))), where PRG is a pseudorandom generator which lengthens the input by a
significant factor. The domain sampler is just an obfuscation of a circuit which outputs the above pair on
some random r. By augmenting the sampler even more, they were able to doubly-enhance their TDP, at the
cost of creating a very sparse part of the domain which is sampleable. We leave the rest of the details to the
reader.
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original BPW paper, and the second is (i, PRFk(i−1)) which has no pre-image of its own,
and therefore no path on the cycle can lead to it (keeping the same one-wayness argument
intact).

Finally, our cheating prover can wrongly ”certify” the function as a permutation. The
domain sampler will always give an image in Dk as it was not altered. During the Bellare-
Yung certification protocol, the prover can invert y = (i + 1, PRFk(i + 1)) ∈ Dk to,
say, (i, PRFk(i)), which will pass the validation. However, during the FLS protocol, the
verifier can choose to invert any y ∈ Dk to one of its two distinct pre-images, one from Dk

and another from D̃k \Dk, which breaks the soundness of the protocol.

3.2 Discussion
We attribute the loss in soundness when applying the FLS+BY combination on the [BPW16]
construction to a few major issues.

First, we observe that both the sampling and forward evaluation algorithms are required
to operate even on illegitimate keys. However, the basic definition of trapdoor permutations
(c.f. [Gol98]) does not address this case at all. Ignoring this case may make sense in settings
where the party generating the index is trusted, but this is not so in the case of NIZK proof
systems. We therefore generalize the basic definition of trapdoor permutations so that the
forward evaluation and domain sampling definitions generalize to any α, rather than just
those which were generated by running the index-generation algorithm. That is, for every
α, Dα is some domain over which F (α, ·) is well defined, and S(α; r) returns elements
from that domain.

We next claim that in order for the soundness of the complete FLS+BY protocol to
be preserved, two additional requirements are needed: First, membership in Dα should be
efficiently recognizable given α. That is, there should exist a polynomial-time algorithm
which, given α and some string x, decides if x represents an element in Dα or not. Second,
the domain sampler S should be guaranteed to sample (almost) uniformly out of Dα. We
stress that both these requirements should hold with respect to any index α, in particular
indices that were not generated truthfully. Furthermore, they are made on top of the existing
requirements from doubly-enhanced trapdoor permutations.

We call doubly enhanced trapdoor permutations that have these properties public do-
main. We formalize this notion in Definition 4.4 and prove that it indeed suffices for re-
gaining the soundness of the FLS+BY combination in theorem 4.2 (see section 4.3).

In the rest of this section, we show that these two requirements are indeed necessary,
by demonstrating that if either of the two do not hold then the resulting proof system is not
sound.

First, consider the case where S does not sample almost uniformly from Dα. The
soundness of Bellare-Yung depends on the observation that if the function is not an almost-
permutation, then by sampling enough random images from the function’s domain, there
must be a sample with cannot be inverted (with all but negligible probability). However,
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if the sampler does not guarantee uniformity this claim no longer holds, as the prover may
give out a sampler which samples only out of that portion of the range which is invertible.

Secondly, assume S indeed samples uniformly from the domain, and consider the case
where Dα is not efficiently recognizable. As it turns out, both the Bellare-Yung protocol
and the original FLS protocol require the verifier to determine whether pre-images provided
by the prover are indeed inDα. Otherwise, a malicious prover could certify the permutation
under a specific domain, but later provide pre-images taken out of an entirely different
domain, thus enabling it to invert some images to two or more pre-images of its choice.

Indeed, the attack described in section 3.1 takes advantage of the loophole resulting
from the fact that the domain of the [BPW16] is neither efficiently recognizable nor ef-
ficiently sampleable. The exact reason for the failure depends on how the domain of
[BPW16] is defined with respect to illegitimate indices. Say for α = C̃, we give out
Dα which includes only pairs (i, x) such that x = PRFk(i) (for the specific k used to
construct C̃). In that case, S indeed samples uniformly from Dα. However since Dα is not
efficiently recognizable, the prover cannot check that the pre-image it was given is from
Dα. In particular it cannot tell if it is from Dk = Dα or from D̃k. On the other hand, if
Dα = {0, 1}∗, then Dα may be trivially recognizable for any index, but S does not guaran-
tee a uniform sample from Dα. Indeed, S may sample only from that subset of Dα which
is invertible, thus breaking the soundness.

4 Certifying Injectivity of Trapdoor Functions
We go back to the original problem of certifying permutations in a way that is sufficient
for the FLS protocol, while addressing the more general problem of certifying injectivity
of trapdoor functions (which may or may not be permutations). We note that although this
problem is motivated by the need to fill in the gaps in the FLS protocol, a solution for it
might be interesting on its own.

In section 4.1 we define the notion of Certifiable Injectivity as a general abstraction of
certifiability for doubly-enhanced injective trapdoor functions. In section 4.2 we prove that
this notion indeed suffices for regaining the soundness of the FLS protocol. In section 4.3
we show how certifiable injectivity can be realized by any trapdoor permutations whose
domain provides certain additional properties, by using the Bellare-Yung certification pro-
tocol. In section 4.4 we suggest the notion of Perfectly Certifiable Injectivity as a specific
variant of certifiable injectivity, where there is no longer need for a certification protocol
and the resulting soundness is optimal.

4.1 Certifiable Injectivity - Definition
We define a general notion of certifiability for injective trapdoor functions, which requires
the existence of a general prover and verifier protocol for the function family. The verifier
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in our notion provides two levels of verification: a general verification procedure V for
an index α, and then a pointwise certification procedure ICert which, on index α and an
image y, ”certifies” that with all but negligible probability y has only one pre-image under
α. The purpose of this protocol is to guarantee that if the verifier accepts the proof given by
the prover on a certain index α, then with all but negligible probability (over the coins of
the range sampler), the range sampler cannot sample images which are certified by ICert
and can be inverted to any two pre-images. We note that this certification must not assume
recognizability of the domain.

Definition 4.1. (Certifiable Injective Trapdoor Functions (CITDFs)). Let F = {fα : Dα →
Rα} be a collection of doubly enhanced injective trapdoor functions, given using algo-
rithms I, F,B, SD, SR. We say that F is certifiably injective (in the common reference
string model) if there exists a polynomial-time algorithm ICert and a pair of PPT algo-
rithms (P, V ), which provides the following properties:

• Completeness: for any (α, τ)← I(1n) we have:

1. PrP,V,crs[π ← P (α, τ, crs);V (α, crs, π) = 1] = 1, where the probability is
taken over the coins of P and V and the choice of the CRS, and

2. For any x ∈ Dα, ICert(α, x) = 1.

• Soundness: there exists a negligible function µ such that for any α the following
holds:

Pr
crs,V,r

[∃π, x1 6= x2 ∈ {0, 1}∗ :V (α, crs, π) = 1, F (α, x1) = F (α, x2) = SR(α; r),

ICert(α, x1) = ICert(α, x2) = 1] ≤ µ(n)

where the probability is taken over the coins of V the choice of the CRS, and the ran-
dom coins given to the range sampler. Note that this must hold for any α, including
those that I cannot output, and that π can be chosen adaptively given the common
reference string.

• Enhanced Hardness (even) given the Proof: for any polynomial-time algorithm A
there exists a negligible function µ, such that the following holds

Pr
P,crs,r

[(α, τ)← I(1n);π ← P (α, τ, crs);x← A(α, r, crs, π);

F (α, x) = SR(α; r)] ≤ µ(n)

where the probability is taken over the coins of P , the choice of the CRS and the
randomness r for the range sampler.
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Certifiable injectivity gives a general way to certify that a given key describes an injec-
tive function, even when using general, partial-domain/range functions. The proof gener-
ated by P and verified by F is used to certify that the given key α is indeed injective, in
the sense that if V accepts it then no two acceptable pre-images can map to the same image
(with all but negligible probability). Note that our hardness condition only requires that
inversion remains hard. Partial information on the preimage x can be leaked, and there is
no ”zero-knowledge-like” property.

We additionally extend the definition of enhanced hard-core predicates to hold with
respect to the CI proof (as well as the index):

Definition 4.2. (CI-Enhanced Hard-Core Predicate) Let {fα} be a collection of doubly-
enhanced certifiably injective trapdoor functions, with P being a CI-prover for it and SR the
enhanced range sampler. We say that the predicate p is a CI-enhanced hard-core predicate
of fα if it is efficiently computable, and for any PPT adversary A there exists a negligible
function µ such that

Pr
crs

[(α, τ)← I(1n); π ← P (α, τ, crs); r ← {0, 1}n;

A(α, crs, π, r) = p(α, f−1α (SR(α; r)))] ≤ 1/2 + µ(n)

Similarly to (plain) enhanced hard-core predicates, this definition is unconditionally
realizable for any doubly-enhanced certifiably injective TDF (e.g. using the [GL89] hard-
core predicate, which does not use the function index).

4.2 Certifiable Injectivity Suffices for the Soundness of FLS
Our key theorem, stated next, shows how combining certifiable injectivity with the FLS
protocol and doubly-enhanced permutations, we overcome the existing problems and ob-
tain NIZK for NP from general permutations. The intuition is simple: we take a doubly-
enhanced, certifiably injective collection of trapdoor permutations, and treat the CRS as two
separate strings. The first string is used to certify the injectivity of the trapdoor function,
using the CI-prover and verifier, while the second is used for the FLS protocol. Moreover,
we add a certification step to the FLS protocol itself, by having the verifier run ICert on
any pre-image provided to it by the prover. The soundness guarantee of CI notion ensures
that a malicious prover must choose a trapdoor index which describes a permutation (or at
least an almost-permutation) over the domain of elements accepted by ICert, or otherwise
the CI verifier would reject the first part of the proof. The hardness guarantee ensures that
the FLS proof remains zero-knowledge, even in the presence of the CI proof.

Theorem 4.1. (CIDETDFs→ NIZK) Assuming the existence of doubly-enhanced, certifi-
ably injective trapdoor functions, there exists a NIZK proof system in the CRS model for
any NP language.
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Proof. Recall that by Theorem 2.1, there exists a hidden-bit-model proof system for L,
denote it (PHB, VHB).

Let F = {fα : Dα → Rα} be a collection of doubly-enhanced, certifiably injective
trapdoor functions, and let L be an NP language. Let p be a CI-enhanced hard-core predi-
cate for fα.

We treat the common reference string as two separate substrings cCI , cFLS . cCI will be
used by the CI-prover and CI-verifier (PCI , VCI) for F . cFLS will be used by the prover-
verifier pair from the FLS protocol, which is adapted to the use of doubly-enhanced trap-
door functions (based on the adaptation suggested by [Gol11]).

Let (P, V ) be the following protocol:

• The prover P : given an instance-witness pair (x,w) ∈ RL:

1. Selects (α, τ)← I(1n)

2. Invoke PCI(α, τ, cCI) to obtain a proof πCI for the injectivity of fα.

3. Treat cFLS as a sequence of random strings r1, ..., rl, where each ri is of length
needed for the random coins for SR (which is polynomial in n). For i = 1, ..., l,
let yi = SR(α; ri), xi = B(τ, yi), and σi = p(xi).

4. Invoke PHB on σ = (σ1, ..., σl), to obtain (I, πHB) - I is a list of indices to re-
veal, and πHB is the hidden-bit-model proof. Let πFLS be the pair (πHB, {(i, xi) :
i ∈ I}).

5. Output (α, πCI , πFLS).

• The verifier V : given an instance x and a proof (α, πCI , πFLS):

1. Invoke VCI(α, cCI , πCI) to check the proof πCI for the injectivity of fα. If the
validation failed, reject the proof.

2. πFLS := (πHB, {(i, xi) : i ∈ I}). Treat cFLS as a sequence of random strings
r1, ..., rm.

3. Check that, for every i ∈ I , yi := SR(α; ri) = F (α, xi) and ICert(α, xi)
accepts. If any of the validations failed, reject the proof.

4. Let σi = p(xi) for all i ∈ I . Let σI = (i, σi)i∈I . Invoke VHB on x, σI , πHB, and
accepts if and only if it accepts.

We next prove that (P, V ) provide a NIZK proof system for L in the CRS model.
Completeness follows immediately from the completeness of the CI notion and of the

FLS protocol.
For Soundness, we follow the line of [BY96], of bounding the extra error in sound-

ness induced when the trapdoor function is not a permutation, adapting it to the notion of
CIDETDFs:
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Definition 4.3. Let F = {fα : {0, 1}m → {0, 1}n} be a CIDETDF family. The Certified
Collision Set of an index α is the set of all n-bit strings which have more than one certified
pre-image under fα:

CIC(α) := {y ∈ {0, 1}n :∃x1 6= x2 ∈ {0, 1}m s.t. fα(x1) = fα(x2) = y

and ICert(α, x1) = ICert(α, x2) = 1}
(5)

We say that fα is (certified) almost-injective if |CIC(α)| is negligible.

Lemma 4.1. Let F be a CIDETDF family with a CI verifier VCI , and let α be some index
such that fα is not (certified) almost-injective. Then Prcrs,V [∃π : VCI(α, crs, π) = 1] ≤
µ(n) for some negligible function µ, where the probability is taken over the choice of the
crs and the random coins of V .

Proof. Follows directly from the soundness condition of definition 4.1.

Next, suppose x /∈ L, and let (α, πCI , πFLS) be some proof given to V . We split our
proof to cases:

• fα is not (certified) almost-injective: then by lemma 4.1, VCI(α, crs, π) rejects with
all but negligible probability.

• fα is (certified) almost-injective. As shown by [FLS90], if yi /∈ CIC(α) for all
i = 1, ..., l, then VHB rejects the proof on x with all but negligible probability. This is
so because on every presumed pre-image xi presented to it by the prover, the verifier
checks that fα(xi) = yi and ICert(α, xi) = 1. As yi /∈ CIC(α), there can only
exists one pre-image xi that passes both certifications, thus each hidden-bit can be
opened into only one certified pre-image, preserving the soundness of the underlying
hidden-bit proof. Finally, we bound the additional error induced by the case where
yi ∈ CIC(α) for some i, by Pr[∃1 ≤ i ≤ l : yi ∈ CIC(α)]. By our assumption,
|CIC(α)| is negligible in n, thus the additional error is negligible as well.

This completes the proof of the soundness condition.
For Zero Knowledge, we follow the zero-knowledge proof given in [Gol11]. The proof

is given using a hybrid argument, based on the security of the doubly-enhanced injective
trapdoor function, and while handling the issue of additionally simulating the certifiable
injectivity proof.

Let S be the following simulator which, given input x ∈ L:

1. Sample (α, τ)← I(1n)

2. Sample a random string cCI , and invoke PCI(α, τ, cCI) to obtain a proof πCI .
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3. Invoke SHB, the hidden-bit-model simulator, on x, to obtain (σI , πHB), where I ⊂
{1, ..., l} is the set of reveal indices and σI = {(i, σi)}i∈I are the values they should
open to, and πHB the hidden-bit-model proof.

4. For every i ∈ I , generate a random pair (xi, ri) such that F (α, xi) = SR(α; ri)
and p(xi) = σi. This can be done efficiently using the doubly-enhanced correlated
pre-image sampler SDR to sample pairs of (xi, ri). We repeat the sampling until
p(xi) = σi (which should happen in expected constant time).

5. For every index i ∈ {1, ..., l} \ I , uniformly select ri (random coins for the range
sampler).

6. Let cFLS = (r1, ..., rl), and πFLS = ({(i, xi)}i∈I , πHB).

7. Output (cCI , cFLS, α, πCI , πFLS).

We prove that the output distribution of S on random instances x ∈ L is indistinguish-
able from the following distribution ensemble:

{(cCI , cFLS, α, πCI , πFLS) : (cCI , cFLS)← U, (α, πCI , πFLS)← P (cCI , cFLS, x, w)}(x,w)∈RL

The only difference, in the verifier’s view, between the simulator output and the real
view, is that in the former distribution the values ri on the actual reference string do not
necessarily match the values of the corresponding hidden-bits seen by the hidden-bit prover
PHB. We use the hardness of predicting p along with the doubly-enhanced property of the
trapdoor permutation family to show that this difference is computationally indistinguish-
able.

We prove that it is infeasible to distinguish a sequence of l uniformly-selected n-bit
strings, from a corresponding sequence of l random n-bit strings r1, ..., rl which (par-
tially) fit a given sequence of hidden-bits σ1, ..., σk for some k ≤ l, that is such that
σi = p(f−1(SR(α; ri))) for any 1 ≤ i ≤ k. This holds even with respect to an adver-
sary which sees α as well as πCI .

DenoteR = (r1, ..., rk+1) a sequence of k+1 n-bit strings, and let σi = p(f−1(SR(α; ri)))
be the correlated hard-core bits for them. We show that an adversary which sees R along
with {σi}ki=1 cannot distinguish σk+1 from a random bit, which suffices to prove our claim.

Assume otherwise, and let A be such an adversary which guesses σk+1 with a good
probability (non-negligibly over half). We use A to show an adversary B for the hardness
of predicting the hard-core predicate p (even given the CI proof and the random coins for
the range sampler). B accepts α, cCI , πCI and random coins r∗ for the range sampler. It
then uses the correlated pre-image sampler SDR to generate k pairs of pre-image-and-coins
xi, ri such that σi = p(xi). Let R = (r1, ..., rk, r

∗). B activates A on (α, πCI , R, {σi}ki=1),
and outputs the value returned by A. Since A predicts σk+1 = p(r∗) with non-negligible
probability, so does B.
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This completes the proof of the zero-knowledge condition.

4.3 Certifiable Injectivity for Public-Domain TDPs using Bellare-Yung
Building on the discussion in section 3.2, we formalize the notion of public-domain trap-
door permutations. We then show that, when applied to public-domain permutation, the
BY certification mechanism suffices for guaranteeing Certifiably Injectivity (and, thus, also
soundness of the FLS paradigm.)

Definition 4.4. (Public-Domain Trapdoor Permutations.) Let fα : {Dα → Dα} be a
trapdoor permutation family, given by (I, S, F,B). We say that it is public-domain if the
following two additional properties hold:

• The domain is efficiently recognizable: that is, there exists an polynomial-time
algorithm Rec which, for any index α and any string x ∈ {0, 1}∗, accepts on (α, x)
if and only if x ∈ Dα. In other words, Dα is defined as the set of all strings x such
that Rec(α, x) accepts.

• The domain is efficiently sampleable: that is, for any index α, S(α) samples almost
uniformly from Dα.

We stress that both properties should hold with respect to any α, including ones that
were not generated by running I .

We show that indeed, for the case of public-domain doubly-enhanced trapdoor permu-
tations, Bellare-Yung can be used to obtain certifiable injectiveness.

Theorem 4.2. Any doubly-enhanced public-domain trapdoor permutation family is certi-
fiably injective.

Proof. Let F be a doubly enhanced public-domain trapdoor permutation. Let (P, V ) the
prover and verifier from the enhanced Bellare-Yung protocol for F , that is, the version
of Bellare-Yung that uses the enhanced range sampler to generate images from the ran-
dom coins given in the common reference string, as described in section 3.1. Let Rec
be a polynomial-time domain recognizer for Dα, for any index α (which exists since
the permutation family is public-domain). We claim that F is certifiably injective, with
ICert(α, x) = Rec(α, x) and (P, V ) giving the CI prover and verifier.

As shown by [BY96] for the case of full-domain trapdoor permutations, (P, V ) provide
soundness, certifiable injectivity and zero-knowledge (which implies the hardness require-
ment of CI). Moreover, if V accepts the proof then the size of the collision set is negligible,
which implies that the probability that a random image has two pre-images is indeed neg-
ligible. In the case of general doubly-enhanced trapdoor permutations, the only property
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at risk is soundness. We prove that it is indeed maintained for public-domain trapdoor
permutations.

Let α be an index such that F (α, ·) is not almost-injective over Dα. Let Cα be the
collision set of α out of Dα: C(α) = {y ∈ Dα : ∃x1 6= x2 ∈ Dα s.t. F (α, x1) =
F (α, x2)}. Then |Cα| ≥ ε(n) · |Dα| for some non-negligible ε(n) (where n is the security
parameter), hence there exist at least ε(n) · |Dα| range items with no pre-image in Dα.
Moreover, ICert(α, x) = Rec(α, x) is polynomial-time and recognizes Dα, V will not
accept any pre-image outside of Dα, hence there exists at least ε(n) · |Dα| range items with
no pre-image that V accepts (in Dα or outside of it). Denote that uninvertible portion of
Dα as U(α).

The prover and the verifier apply S(α; ri) on a series of random coins r1, ..., rl taken
from the common reference string. Using a similar argument to that presented in [BY96],
for a large enough l (polynomial in the security parameter), with all but negligible proba-
bility (over the CRS), there must exist at least one yi = S(α; ri) ∈ U(α). This holds since
the S(α; ·) is guaranteed to generate uniform samples out of Dα, meaning given enough
samples, one has to fall into the non-negligible part U(α). Hence, for a large enough l, V
rejects π with all but negligible probability.

We note that some existing candidate constructions, such as ones on the line of [BPW16],
are not public-domain, as they inherently need the sampling algorithm to hold secrets. In-
deed, as demonstrated in section 3, Bellare-Yung does not suffice to guarantee soundness
when instantiating FLS with such a candidate. On the other hand, the RSA TDPs are
public-domain: the domain Z∗N is indeed efficiently recognizable for any public index N ,
and a PPT certifiably uniform domain sampler can be described for any public key N of
RSA, by mapping strings in {0, 1}n to Z∗N in a way that obtains (almost) uniform samples
in Z∗N

3. For those constructions the FLS+BY combination is indeed sound.

4.4 Perfectly Certifiable Injectivity
While certifiable injectivity seems to capture the minimal requirement for a trapdoor per-
mutation that suffices for FLS, the requirement of a prover and verifier algorithms are
somewhat cumbersome when viewed purely in the context of trapdoor permutations. We
thus suggest a strengthened notion of Perfectly Certifiable Injectivity, which is a variant
of certifiable injectivity in which the pointwise certification algorithm ICert provides a
stronger guarantee, eliminating the need for an additional prover-verifier protocol.

Definition 4.5. (Perfectly Certifiable Injective TDFs). A doubly-enhanced injective TDF
family is perfectly certifiable injective if, in addition to the standard set of algorithms
I, SD, SR, F, B, it defines a certification algorithm ICert.

3Full details can be found in [BY96] and [GR13], appendix B
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ICert is given a permutation index α and a pre-image x, and accepts or rejects, pro-
viding the following two guarantees:

• Completeness: If α← I0(1
n) and x← SD(α) then ICert(α, x) = 1.

• Perfect Soundness: For any index α, there do not exist any x1 6= x2 ∈ {0, 1}∗ such
that F (α, x1) = F (α, x2) and ICert(α, x1) = ICert(α, x2) = 1.

Note that α needs not be generated honestly by I .

The standard hardness condition is required as usual (and must apply even in the pres-
ence of ICert).

Perfect CI is a special case of general CI, where the soundness of ICert is absolute; for
any α, x1, if ICert(α, x1) = 1 then it is guaranteed that there exists no second pre-image
x2 which maps to F (α, x1) and accepted by ICert(α, ·). It turns out that in the specific
case where the trapdoor function family in use is perfectly certifiable injective with, the
index certification protocol can be completely avoided. Indeed, the soundness requirement
of definition 4.1 is trivially fulfilled, as:

Pr
r

[∃x1, x2 : F (α, x1) = F (α, x2) = SR(α; r), ICert(α, x1) = ICert(α, x2) = 1] = 0

An important property of this technique is that the soundness it provides is perfect,
in that it is identical to the soundness obtained by using ideal trapdoor permutations. No
additional error is incurred, since for every image there exists a single acceptable pre-image
(unconditionally).

5 Doubly Enhanced Perfectly Certifiable Injective Trap-
door Functions from iO+

We construct doubly-enhanced injective trapdoor functions using iO + pseudorandom gen-
erators (which can be constructed from one way functions). Additionally, assuming the
pseudorandom generator is injective, we show that the injectivity of our construction is
perfectly certifiable. Using the additional certification procedure, our construction suffices
for general NIZK proofs for NP-languages. This construction is motivated by the [SW14]
CPA-secure public key encryption system.

For simplicity, in sections 5.1-5.4, we assume that the PRGs and PPRFs being used by
our construction are full domain; that is, every string in {0, 1}p(n) (for some p(n) polyno-
mial in the security parameter n), can be mapped to a pre-image of the function. This as-
sumption makes sense in the context of general pseudorandom generators and puncturable
pseudorandom functions, where natural full-domain candidates exist (c.f. [GGM86]). How-
ever this is not the case for injective PRGs, which are required for our certifiable injectivity
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proof. In section 5.5 we show how this assumption can be relaxed, by allowing injective
PRGs with a domain which is efficiently sampleable and recognizable. We additionally
demonstrate how these requirements can be realized by existing candidates.

5.1 Construction
Let:

• g : {0, 1}n → {0, 1}2n be a n-to-2n-bits pseudorandom generator

• d : {0, 1}n/2 → {0, 1}n be a n/2-to-n pseudorandom generator

• {fk : {0, 1}2n → {0, 1}n}k∈K be a puncturable pseudorandom function family

• {hw : {0, 1}n → {0, 1}n}w∈W be a length-preserving puncturable PRF family

• iO be an indistinguishability obfuscation scheme.

Let Tk, Sk,w and Qw be the following circuits:

Tk(x): // (Forward evaluator)
constants:

puncturable PRF key k
t = g(x)
s = fk(t)
return (x ⊕ s, t)

Sk,w(r): // (Range Sampler)
constants:

puncturable PRF key k for f
puncturable PRF key w for h

x = hw(r)
return Tk(x)

Qw(ρ): // (Correlated Image Sampler)
constants:

puncturable PRF keys w for h
r = d(ρ)
x = hw(r)
return (x, r)

We define our injective TDF in the following way:
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• I(1n): Choose k ← K as a PRF key for f , and w ← W as a PRF key for h. Denote
T̃ := iO(Tk), S̃ := iO(Sk,w), Q̃ := iO(Qw). Output α := (T̃ , S̃, Q̃) as the public
TDP index, and τ := k as the trapdoor.

• F (α = (T̃ , S̃, Q̃), x ∈ {0, 1}n): output T̃ (x).

• B(τ = k, y = (c ∈ {0, 1}n, t ∈ {0, 1}2n)): output c⊕ fk(t).

• SD(α = (T̃ , S̃, Q̃), r ∈ {0, 1}n): output r.

• SR(α = (T̃ , S̃, Q̃), r ∈ {0, 1}n): output S̃(r).

Motivation: T̃ = iO(Tk) is used as the forward evaluation algorithm, with the secret key
k used to invert it. S̃ = iO(Sk,w) is used as a range sampler providing the first enhancement,
with hw being used to re-randomize the random coins provided to in to create a secret pre-
image. Q̃ = iO(Qw) will be used to provide the second enhancement, using yet another
round of re-randomization on the coins provided to it.

Theorem 5.1. (Completeness / Injectivity) The above construction describes an injective
function family over {0, 1}n → {0, 1}3n. Furthermore, B calculates the inversion of F
over the above domain and range.

Proof. Suppose (c1, t1) = (c2, t2). Then t1 = t2, hence for s1 = fk(t1) and s2 = fk(t2) we
have s1 = s2. So c1 = s⊕ x1, c2 = s⊕ x2, and c1 = c2, hence x1 = x2.

For x ∈ {0, 1}n, F (α, x) outputs y = (x⊕s, t). B(τ, y) outputs x⊕s⊕fk(t) = x.

5.2 Hardness
Theorem 5.2. (Hardness) The function family described by the above construction is one-
way.

Proof. We define the TDF hardness using a game between a game-master GM and an
adversary A:

1. GM chooses random keys k, w and a random pre-image x∗ ← {0, 1}n. It takes t∗ =
g(x∗), s∗ = fk(t

∗), z∗ = x∗ ⊕ s∗, y∗ = (z∗, t∗), T̃ = iO(Tk), S̃ = iO(Sk,w), Q̃ =
iO(Qw).

2. A receives α = (T̃ , S̃, Q̃) and y∗, and outputs x′.

We define the advantage of A as adv(A) = Pr[T̃ (x′) = y∗] (where the probability is
taken over the coins of I and the selection of x∗). We require that for any PPT adversary A,
adv(A) ≤ µ(n) for a negligible function µ. It is easy to see that this definition is equivalent
to the standard hardness definition given in section 2.4.
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We now continue the proof using a hybrid argument. We define a series of hybrids,
each describing a game between the game master GM and the adversary A. We show that
in each pair of consecutive hybrids, denoted Hi and Hi+1, the advantage obtained by the
adversary must be computationally close, denoted Hi ≈ Hi+1, or otherwise some under-
lying hardness assumption will break. In the last hybrid we will show that no adversary
can win with non-negligible advantage (unconditionally), thus proving the hardness of the
TDF obtained by the construction. Note that the keyw remains unpunctured and Q̃ remains
unchanged throughout the hybrids.

• H0: the game is played between A and GM as described above.

• H1: same as in H0, only GM replaces T̃ and S̃ with obfuscation of two different
programs. That is,GM chooses random keys k, w, a random pre-image x∗ ← {0, 1}∗
and t∗ = g(x∗), s∗ = fk(t

∗), z∗ = x∗ ⊕ s∗, y∗ = (z∗, t∗) as before. Let k∗ = k({t∗})
be the punctured PRF key at point t∗. Let T1{k∗, t∗, z∗} be the following program:

T1{k∗, t∗, z∗}(x):
constants:

punctured PRF key k∗

points t∗ ∈ {0, 1}2n, z∗ ∈ {0, 1}n
t = g(x)
if t = t∗ then z = z∗

else
s = fk∗(t)
z = x ⊕ s

return (z, t)

and let T̃ = iO(T1{k∗, t∗, z∗}).

Let S1{k∗, t∗, z∗, w} be the result of replacing the call to Tk in Sk,w with a call to
T1{k∗, t∗, z∗}:

S1{k∗, t∗, z∗, w}(r):
constants:

punctured PRF key k∗

points t∗ ∈ {0, 1}2n, z∗ ∈ {0, 1}n
puncturable PRF key w for h

x = hw(r)
return T1{k∗, t∗, z∗}(x)

and let S̃ = iO(S1{k∗, t∗, z∗, w}).
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Let Q̃ = iO(Qw). GM gives T̃ , S̃, Q̃ and y∗ to A. A returns x′ and wins if T̃ (x′) =
y∗.

H0 ≈ H1: under our selection of k∗, t∗, z∗, it is clear that Tk and T1{k∗, t∗, z∗}
have the exact same functionality, and so do Sk,w and S1{k∗, t∗, z∗, w}. Therefore,
any significant difference between the advantage of A in H0 and H1 could be used to
break the security of the iO scheme: letB an adversary for the iO scheme which runs
GM in both hybrids to obtain Tk and T1{k∗, t∗, z∗}, outputs them both and accepts
back T̃ which is an obfuscation of one of the two, and similarly for S̃. It runs A on
the programs it got and outputs 1 if A wins. If T̃ , S̃ are obfuscations of Tk, Sk,w then
A is in H0, and if they are of T1{k∗, t∗, z∗} and S1{k∗, t∗, z∗, w} then A is in H1.

• H2: Same as in H1, only GM replaces s∗ = fk(t
∗) with a truly random s∗. That is,

GM chooses keys k, w, a pre-image x∗ ← {0, 1}n, t∗ = g(x∗), s∗ ← {0, 1}n, z∗ =
x∗⊕s∗, y∗ = (z∗, t∗), k∗ = k({t∗}), T̃ = iO(T1{k∗, t∗, z∗}), S̃ = iO(S1{k∗, t∗, z∗, w})
and Q̃ = iO(Qw). GM gives T̃ , S̃, Q̃, y∗ to A. A returns x′ and wins if T̃ (x′) = y∗.

H1 ≈ H2: assume otherwise, and let B be the following adversary for the security
of the punctured PRF key k∗ = k({t∗}) at the punctured point t∗: B chooses x∗

and takes t∗ = g(x∗). It gives out t∗, and gets back k∗ = k({t∗}) and a challenge
s∗ which is either fk(t∗) or random. B chooses w, generates z∗ = x∗ ⊕ s∗, y∗ =
(z∗, t∗), T̃ = iO(T1{k∗, t∗, z∗}), S̃ = iO(S1{k∗, t∗, z∗, w}) and Q̃ = iO(Qw). It
runs A on T̃ , S̃, Q̃, y∗ and outputs 1 if A wins. If s∗ = fk(t

∗) then A is in H1, and if
s∗ is random then A is in H2.

Note that s∗ is random in H3, and is no longer in the adversary’s view. Therefore
we can completely remove it and treat z∗ as truly random instead. That is, GM
can choose keys k, w, a pre-image x∗ ← {0, 1}n, t∗ = g(x∗), z∗ ← {0, 1}n, y∗ =
(z∗, t∗), k∗ = k({t∗}), T̃ = iO(T1{k∗, t∗, z∗}), S̃ = iO(S1{k∗, t∗, z∗, w}), Q̃ =
iO(Qw) and give T̃ , S̃, Q̃, y∗ to A.

• H3: same as in H2, only GM replaces t∗ = g(x∗) with a random t∗. That is, GM
chooses keys k, w, t∗ ← {0, 1}2n, z∗ ← {0, 1}n, y∗ = (z∗, t∗), k∗ = k({t∗}), T̃ =
iO(T1{k∗, t∗, z∗}), S̃ = iO(S1{k∗, t∗, z∗, w}), Q̃ = iO(Qw) and give T̃ , S̃, Q̃, y∗ to
A. A returns x′ and wins if T̃ (x′) = y∗.

H2 ≈ H3: Assume otherwise, and letB be the following adversary for the security of
the pseudorandom generator g. B gets a value t∗ which is either g(x∗) on a random
x∗, or a random 2n-bits value. B then chooses k, w, z∗ ← {0, 1}n, y∗ = (z∗, t∗), T̃ =
iO(T1{k∗, t∗, z∗}), S̃ = iO(S1{k∗, t∗, z∗, w}), Q̃ = iO(Qw), runs A on T̃ , S̃, Q̃, y∗,
and outputs 1 if A wins. If t∗ = g(x∗) then A is in H2, and if it is random then A is
in H3.

Finally, in H3, the adversary A sees y∗ = (z∗, t∗) for random z∗ ← {0, 1}n and
t∗ ← {0, 1}2n, and the obfuscated programs, and needs to guess an x′ such that
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g(x′) = t∗ and x′⊕fk∗(t∗) = z∗. But, as g maps n bits to 2n bits, at most 2n items in
{0, 1}2n have a pre-image. Hence, for a random t∗ ← {0, 1}2n, with all but negligible
probability there exists no x′ such that g(x′) = t∗, and in particular A cannot guess
any such x′. So, with all but negligible probability over the coins of y∗, A absolutely
cannot invert it, meaning the advantage of A in H3 is negligible.

5.3 Enhancements
Theorem 5.3. The TDF family describes an enhanced injective TDF.

Proof. We will show that for any PPT adversary A, it holds that:

Pr[α← I0(1
n); r ← {0, 1}n; y = SR(α; r);A(α, r) = x′ s.t. F (α, x′) = y] ≤ µ(n) (6)

for some negligible function µ.
We describe the first enhancement as a game between a game master GM and an ad-

versary A:

1. GM :

• generates random k ← K,w ← W

• α = (T̃ = iO(Tk), S̃ = iO(Sk,w), Q̃ = iO(Qw)) and τ = k

• r∗ ← {0, 1}n

• Give T̃ , S̃, Q̃, r∗ to A

2. A sees T̃ , S̃, Q̃, r∗, outputs x, and wins if T̃ (x) = S̃(r∗).

We denote by adv(A) = Pr[T̃ (x) = S̃(r∗)] the advantage of A in the above game.
We next describe a series of hybrids. The first hybrid describes the first enhancement
game between GM and A, as above. We show that the advantage on A between each two
consecutive hybrids must be negligibly close, and that the advantage in the last hybrid must
be negligible, which proves our claim. Note that k remains unpunctured and T̃ remains
unchanged throughout the hybrids.

• H0: the 1st enhancement game is played as described above.

• H1: The game is the same as in H0, only Sk,w and Qw are replaced other obfuscated
programs, S1{T̃ , w∗, r∗, y∗} and Q1{w∗}, as described below:

1. GM :

– generates random k ← K,w ← W
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– T̃ = iO(Tk)

– r∗ ← {0, 1}n

– w∗ = w({r∗}) is the punctured PRF key w at point r∗.
– x∗ = hw(r∗), y∗ = Tk(x

∗)

– S̃ = iO(S1{T̃ , w∗, r∗, y∗}) (described below)
– Q̃ = iO(Q1{w∗}) (described below)
– Give (T̃ , S̃, Q̃, r∗) to A

2. A sees T̃ , S̃, Q̃, r∗, outputs x, and wins if T̃ (x) = S̃(r∗).

where S1{T̃ , w∗, r∗, y∗} and Q1{w∗} are the following programs:

S1{T̃ , w∗, r∗, y∗}:
constants:

obfuscated program T̃
punctured PRF key w∗ for h
r∗ ∈ {0, 1}n
y∗ ∈ {0, 1}3n

if r = r∗ then
return y∗

x = hw∗(r)
return T̃ (x)

Q1{w∗}(ρ):
constants:

punctured PRF key w∗ for h
r = d(ρ)
x = hw∗(ρ)
return (x, r)

H0 ≈ H1: Sk,w and S∗
T̃ ,w∗,r∗,y∗

are functionally equivalent: on all r 6= r∗ they both
take x = hw(r) = fw∗(r) and return Tk(x). For r∗, Sk,w returns Tk(hw(r∗)), and
S1{T̃ , w∗, r∗, y∗} returns y∗, which is chosen by GM to be Tk(hw(r∗)). As per Qw

and Q1{w∗}: d is length-doubling, hence for a randomly selected r∗ ← {0, 1}n,
the probability that there exists a ρ ∈ {0, 1}n/2 such that d(ρ) = r∗ is negligible.
Therefore, with all but negligible probability over the choice of r∗, Qw and Q1{w∗}
are functionally equivalent as well. So, if A’s advantage between the two hybrids is
non-negligible, we can construct an adversary B for the security of the iO scheme.

• H2: the same as in H1, only x∗ (the pre-image of y∗) is taken to be a truly random
string (rather than hw(r∗)).
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1. GM :

– generates random k ← K,w ← W

– T̃ = iO(Tk)

– r∗ ← {0, 1}n

– w∗ = w({r∗}) is the punctured PRF key w at point r∗.
– x∗ ← {0, 1}n, y∗ = Tk(x

∗)

– S̃ = iO(S1{T̃ , w∗, r∗, y∗})
– Q̃ = iO(Q1{w∗})
– Give (T̃ , S̃, Q̃, r∗) to A

2. A sees T̃ , S̃, Q̃, r∗, outputs x, and wins if T̃ (x) = S̃(r∗).

H1 ≈ H2: suppose otherwise, and let B be the following adversary for the selective
security of the punctured PRF key w∗ at the punctured point r∗. B gives out r∗ and
gets the punctured key w∗ = w({r∗}) along with either x∗ = hw(r∗) or a random
x∗. It then selects k, generates T̃ = iO(Tk), y∗ = Tk(x

∗), and generates S̃ =
iO(S1{T̃ , w∗, r∗, y∗}) and Q̃ = iO(Q1{w∗}). It runs A on T̃ , S̃, Q̃, r∗ and returns 1
if A wins.

Finally, we claim that if the advantage of A in H2 is non-negligible, then the one-
wayness of the trapdoor function is compromised, contradicting the hardness proof
of our construction (section 5.2). Indeed, suppose A is able to provide x such that
T̃ (x) = S̃∗(r∗), and let B be the following adversary for the hardness of the trapdoor
function. B is given T̃ = iO(Tk), S̃ = iO(Sk,w′), Q̃ = iO(Qw′), y

∗ and should
output x′ such that T̃ (x′) = y∗. B samples a key w ← W , takes r∗ ← {0, 1}n, w∗ =
w({r∗}), generates S̃ = iO(S{T̃ , w∗, r∗, y∗}), Q̃ = iO(Q1{w∗}) and runs A on
T̃ , S̃, Q̃, r∗. A outputs some value x′ which, with non-negligible probability, provides
T̃ (x′) = S̃1(r

∗). By definition of S1, we have that S̃1(r
∗) = S1{T̃ , w∗, r∗, y∗}(r∗) =

y∗. So, by outputting x′, B is able to invert y∗ with non-negligible probability.

Theorem 5.4. The TDF family describes a doubly-enhanced injective TDF.

Proof. We claim that Q̃ provides a correlated-preimage sampler SDR = Q̃(ρ). Clearly,
Q̃(ρ) returns pairs of (x, r) such that x = hw(r), that is T̃ (x) = T̃ (hw(r)) = S̃(r).

The pseudorandomness of r, conditioned on α = (T̃ , S̃, Q̃) and x (which is either
sampled along with r by running Q or inverted from SR(α; r)), follows directly from the
pseudorandomness of d.
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An interesting point about our construction is that both enhancements do not depend at
all on the structure of our original TDF. In fact, all the enhancements need in order to work
is any full-domain, or even efficiently sampleable domain, TDF, and the proof remains the
same. Hence, our technique of re-randomizing the input via a length-preserving PRF can be
considered as a generic method for doubly-enhancing any efficiently-sampleable-domain
TDF, using iO and one-way functions.

5.4 Certifiable Injectivity
We show that our construction is perfectly certifiable injective, under the assumption that
the PRG g is injective. Moreover, the soundness of the certification protocol is perfect.
This shows that our construction is sufficient for realizing the FLS paradigm.

Recall that, on input x, our TDF evaluation returns (x ⊕ s, t), where t = g(x) (and s
is determined by the secret trapdoor). The certifier ICert is given x, obtains y = F (α, x),
and compares the last 2n bits of y to g(x). If they are equal, ICert accepts. Otherwise it
rejects.

Theorem 5.5. Assuming g is a full-domain injective PRG, our TDF family, along with
ICert, is perfectly certifiable injective.

Proof. For y ∈ {0, 1}3n, denote by y[n+ 1 : ...3n] the last 2n bits of y.

1. Completeness: if y = F (α, x) for an honestly created α, then by the definition of our
TDF we have y = (c, t) for t = g(x) and c = x⊕fk(t). So y[n+1 : ...3n] = t = g(x)
and ICert accepts.

2. Soundness: Suppose x1, x2, y such thatF (α, x1) = F (α, x2) = y and ICert(α, x1) =
ICert(α, x2) = 1. By definition, since ICert(α, xi) = 1 for both x1 and x2, we have
that g(x1) = y[n+ 1 : ...3n] = g(x2). Since g is injective, this means x1 = x2.

The soundness, hardness and enhancements proofs for the TDF are not harmed, as
ICert does not depend on the private key k.

5.5 On the Assumption of Full-Domain iPRGs
As mentioned in the opening of section 5, our construction and security proof rely on the
assumption that the underlying PRGs and PPRFs are full-domain; That is, every string
in {0, 1}p(n) (for some p(n) polynomial in the security parameter n) can be mapped to
a pre-image of the function. This assumption makes sense in the case of general PRGs
and PPRFs, where natural full-domain candidates exists. However this is not the case for
injective PRGs, which are required for our certifiable injectivity proof.

We first note that for the completeness, security and enhancements, the full-domain
assumption can be relaxed by allowing functions with an efficiently sampleable domain.
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The domain sampler is then used to map random coins, as well as the output of some of the
primitives we use, into domain items.

Secondly, we show that the certifiable injectivity of our construction is maintained un-
der the relaxed assumption of an injective PRG with a domain which is efficiently recogniz-
able (as well as sampleable). That is, we require that there exists a polynomial-time global
domain recognizer algorithm Rec which, given some string x ∈ {0, 1}n, decides if that
string is in the domain or not, and g is injective over the set of all strings which Rec ac-
cepts. Assuming the existence of such a recognizer algorithm Rec, we modify ICert such
that given a supposed pre-image x, ICert first runsRec(x). Only after, ICert continues to
compare the last 2n bits of y = F (α, x) to g(x). It accepts only if both conditions passed.
The CI soundness requirement follows directly.

We point out that the recognizable domain requirement is indeed necessary for certifi-
able injectivity. Without it, a malicious prover might be able to cheat using a similar attack
to the one described in section 3: the prover can give pre-images taken outside of the PRG’s
supposed domain, on which ICert might arbitrarily accept, and the verifier won’t be able
to tell the difference.

Finally, we demonstrate how injective pseudorandom generators with efficiently recog-
nizable and sampleable domains can be constructed based on standard assumptions. We
suggest two alternatives; one using a black-box construction from another primitive (one-
way permutations), and another based on specific algebraic structure (the DDH assump-
tion).

iPRGs form OWPs: Assuming one-way permutations with an efficiently sampleable do-
main, an injective length-doubling pseudorandom generator can be obtained using the text-
book construction (c.f. [Gol98]). That is, let owp be a one-way permutation over domain
Dn ⊆ {0, 1}n, and let p be a hard-core predicate for it. Then prg1(x) = (owp(x), p(x))
is a pseudorandom generator which is single-bit expending. For i > 1, let prgi(x) :=
prgi−1(owp(x)), p(x) be the result of recursively applying prgq on the first n bits of the
output. Using a hybrid argument, prgn(x) is a injective length-doubling PRG. Constructing
an injective pseudorandom generator from primitives weaker then one-way permutations
remains an open question4.

For the certifiable injectivity of our TDP construction, we require that the PRG’s do-
main, Dn, be efficiently recognizable. However when this is the case additional attention is
required, since the first n bits of f(x) describe an element in that domain, and hence they are
clearly distinguishable from just any n-bit string. We circumvent this issue by defining our
PRG as pseudorandom with respect to Dn ◦ Un := {(x, s) : x ← Dn, s ← {0, 1}n}. That
is, we adapt the security requirement of the PRG to the following: for any PPT adversary
A, Pr[x ← Dn : A(prgn(x)) = 1] − Pr[x ← Dn, s ← {0, 1}n : A((x, s)) = 1] ≤ µ(n),

4[Rud84, KSS00, MM11] give a black-box separation between one-way permutations and weaker primi-
tives, such as one-way functions
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where µ(n) is negligible. Under the revised definition, our security proof remains sound,
with the change that when replacing t∗ = prgn(x∗) with a random t∗, the replaced value is
taken out of Dn ◦ Un (instead of a random 2n-bit string).

An injective one-way permutation with an efficiently recognizable domain can be ob-
tained, e.g., based on the discrete log assumption.

iPRGs from DDH: Based on the DDH assumption [DH76], [Bon98] suggested the the
following candidate for injective PRGs. Let Gp = {x2 : x ∈ Zp}, where p is a safe prime
(that is p = 2q + 1 for some prime q). We define the following enumeration from Gq to Zq
(see e.g. [CS03, CFGP05]):

i(x) =


x if 1 ≤ x ≤ q

p− x if q + 2 ≤ x ≤ p

0 otherwise

Let g be a generator for Gp. For a, b ∈ Zq, let:

prg(a, b) = i(ga), i(gb), i(gab)

Then by the DDH assumption, prg is an injective pseudorandom generator from Z2
q →

Z3
q . Using the same technique, an injective length-doubling PRG from Z3

q → Z6
q can be

constructed by using

prg(a, b, c) = i(ga), i(gb), i(gc), i(gab), i(gac), i(gbc)
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