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Abstract—Payment channels emerged recently as an efficient
method for performing cheap micropayment transactions in
cryptographic currencies. In contrast to the traditional on-chain
transactions, payment channels have the advantage that they
allow nearly unlimited number of transactions between parties
without involving the blockchain. In this work, we introduce
Perun, an off-chain channel system that offers a novel method for
connecting channels that is more efficient than the existing tech-
nique of “routing transactions” over multiple channels. That is,
in contrast to prominent existing solutions such as the Lightning
Network, Perun does not require, for each individual payment,
involvement of the intermediary over which the payment is
routed. This is achieved by introducing a new technique called
“virtual payment channels”. In this paper we formally model and
prove security of this technique for routing payments over one
intermediary, who can be viewed as a “payment hub” that has
direct channels with several parties. Our scheme works over any
cryptocurrency that provides Turing-complete smart contracts.
As a proof of concept, we implemented Perun’s smart contracts
in Ethereum.

I. INTRODUCTION

Decentralized cryptocurrencies, such as Bitcoin or
Ethereum, have gained great popularity over the last 10 years.
They exist within an open, decentralized peer-to-peer network
and provide a payment infrastructure without any central
authority regulating transactions. In addition, cryptocurrencies
have helped to accelerate deployment of disruptive technology
such as smart contracts, which use program code to enforce
complex agreements. The core technological innovation
empowering decentralized cryptocurrencies is a consensus
mechanism for maintaining a distributed ledger – the so-called
blockchain. The blockchain is an append-only register for
irreversibly storing the system’s transactions. Because the
entire state of the blockchain is replicated among thousands
of users, the number of transactions and the speed at which
they are processed is limited when compared to centralized
systems. For instance, the most prominent blockchain-based
cryptocurrency Bitcoin comes with a built-in limitation of
processing up to 7 transactions per second and requires on
average 10 minutes to confirm new transactions.

The scalability problems of blockchain-based cryptocur-
rencies are drastically amplified with the emergence of mi-
crotransactions that require users to transfer small amounts
of money between each other and can, e.g., be used for
sharing WiFi or pay per drive insurance models. Typically
such microtransactions have to be executed instantaneously,
which is a problem in ledger-based cryptocurrencies, where

confirmation can take up to several minutes. Moreover, posting
transactions on the ledger results into fees, which usually are
much higher than the value of a microtransaction. Therefore,
it seems unlikely that current cryptocurrencies can directly
support microtransactions, and the many applications they
offer.

An exciting proposal to address the above challenges is a
technology called payment channels [3], which allows two
parties to rapidly exchange money between each other via so-
called off-chain” transactions. In contrast to on-chain transac-
tions, off-chain transactions enable users to exchange money
without directly interacting with the ledger (except when the
channel is opened or closed). The concept of payment channels
has been extended to so-called payment networks, which
enable users to route transactions via intermediary hubs. This
has the advantage that channels can be re-used, thereby further
decreasing the on-chain transaction load. An example of such a
network has been designed in [16] over Bitcoin. In this system
the payments are routed over the network in the following
way. Suppose two parties, Alice and an intermediary called
Ingrid, established a channel (denote it: “βA”), and Ingrid
also has a channel with Bob, denoted “βB” (but Alice and
Bob do not have a payment channel between each other). In
other words Ingrid can be viewed as a payment hub at which
Alice and Bob have “accounts”. Then Alice can perform a
micropayment, for y coins to Bob via Ingrid. In [16] each
such money transfer requires explicit confirmation by Ingrid.
This introduces latency and additional costs.

A. Summary of our contribution and its applications.
The main contribution of this work is addressing the afore-

mentioned shortcoming with a concept that we call virtual
channels (abbreviated: vc). Again, suppose Alice and Bob
are both connected by a channel created over the blockchain
with an intermediate payment hub Ingrid, but they do not
have a direct channel between each other. We will call such
channels that are built directly over the ledger in the following
ledger channels (lc). A virtual channel establishes a direct
(virtual) link between Alice and Bob, where the intermediary
Ingrid does not need to get involved in each payment. This
significantly reduces latency and costs, and moreover is bene-
ficial for privacy, because Ingrid cannot observe the individual
money transfers between Alice and Bob1. We call our system

1We would like to stress, however, that privacy in the payment channels is
not the focus of this work (for more on this topic, see, e.g, [9, 10]).



Perun2. We provide a full formal specification of the Perun
virtual channel system, formalize its security properties using
ideal/real world paradigm in a style of the UC framework of
Canetti [4] and prove that our protocol satisfies our security
definition.

While our system works over any cryptocurrency which
allows Turing complete smart contracts (we give a short
introduction to this concept in Sect. III-A1), we demonstrate
the feasibility of our proposal by providing a prototype im-
plementation of the contracts underlying the Perun channel
system in Solidity (see Appx. A), one of the main languages
supported by the Ethereum cryptocurrency [7].

The most natural application of Perun is to provide a very
fast way to stream tiny payments. For example, consider the
situation when a client Alice pays for using WiFi to some
Internet provider Bob (and they both have ledger channels with
an intermediary Ingrid). The “routing payments” approach
(from Lightning) puts some inherent limitations on the size of
each packet of data for which the client pays, as each payment
requires interaction with Ingrid. By using our approach Ingrid
is involved in the communication between Alice and Bob only
when the session starts and when it ends. Another natural
application of our technique is the Internet of Things. Due
to the cost pressure to reduce the power consumption in many
situations these devices will be connected via some short-
range communication technology (like Bluetooth or NFC),
and will minimize the interaction with remote devices. Hence,
routing every payment via a third party server may not be an
option in such situations. Our technique removes the need for
such interaction. Another, related scenario where our solution
can be applied is when the payment intermediary cannot
be assumed to be always available. For example imagine
payments in the vehicular ad hoc networks — here the
permanent availability of the internet connections cannot be
guaranteed (due to conditions like entering a tunnel, or a zone
with no mobile phone network access). Further related work
is described in Appx. B.

B. Notation.

We assume that all values like numbers, functions, pairs of
values, etc. are implicitly encoded as binary strings (e.g. when
they are sent as messages). We frequently present tuples of
values using the following convention. The individual values
in a tuple T are identified using keywords called attributes:
attr1, attr2, . . .. Formally an attribute tuple is a function from
its set of attributes to {0, 1}∗. The value of an attribute
attr in a tuple T (i.e. T (attr)) is referred to as T.attr .
This convention allows us to easily handle tuples that have
dynamically changing sets of attributes. For example when
we say that “we add an attribute attr to T and set it to x” it
means that T is replaced by T ′ with an additional attribute

2Perun is the god of thunder and lightning in the Slavic mythology. This
choice of a name reflects the fact that one of our main inspirations is the
Lightning system. The name “Perun” also connotes with “peer” (which reflects
its peer-to-peer nature), and “run” (which stresses the fact that the system is
very fast).

attr and T ′.attr = x. We sometimes define a function
f : {x1, . . . , xn} → Y by providing its function table in
a form f = [x1 7→ y1, . . . , xn 7→ yn] (meaning that for
every i it holds that f(xi) = yi). In our security definition
we use the notion of computational indistinguishability of
distribution ensembles (see, e.g., [8]). Whenever we say that
some operation (e.g. delivering a message, changing state of
an ideal functionality, or simply staying idle) takes time at
most τ ∈ time we mean that it is up to the adversary (or the
simulator, in the ideal world) to decide how long this operation
takes (as long as it takes at most τ rounds). We denote an
empty string with ε.

II. PERUN’S INFORMAL DESCRIPTION

In this section we informally describe Perun’s functionality,
i.e., what properties and functionality it provides. Its formal
specification appears in Sect. III, and the protocol that imple-
ments it is given in Sect. IV.

A. Ledger channels

We start with a description of the standard “ledger” payment
channels [16], which are created by interacting with the
blockchain, and allow two parties to instantaneously carry
out payments between each other. More precisely, the ledger
is used only when parties involved in the payment channel
disagree, or when they want to open/close the channel. As
long as the parties are not in conflict, they can freely update
the balance of the channel (i.e. transfer coins between each
other’s accounts). At a high-level a ledger payment channel
β between two parties, Alice and Bob, starts with an opening
procedure, where Alice deposits xA coins into the channel and
Bob deposits xB coins respectively (for some xA, xB ∈ R≥0).
Until channel β is closed, these coins remain “blocked”, i.e.,
the parties cannot use them for any other purpose. Initially, the
balance of the channel can be described by a function defined
as

[Alice 7→ xA,Bob 7→ xB ] (1)

meaning that Alice “has xA coins in it” and Bob “has xB
coins in it”, and the value of the channel is xA + xB . After
this set-up has been completed, Alice and Bob can update the
distribution of the funds in the channel multiple times without
interacting with the blockchain. The update mechanism is
used for performing payments between Alice and Bob. If, for
example, Alice wants to pay some amount w ≤ xA of coins
to Bob, then the parties perform an update that changes the
balance of β to

[Alice 7→ (xA − w),Bob 7→ (xB + w)].

At some point one of the parties that opened the channel
can decide to close it. If, for example, Alice wants to close
the channel, she commits the current balance [Alice 7→
x′A,Bob 7→ x′B ] of the channel to the blockchain and the
funds are distributed accordingly to Alice and Bob (i.e. Alice
and Bob receive x′A and x′B coins respectively).
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B. Virtual channels

The main novelty of Perun is a new method for connecting
ledger channels that is alternative to “payment routing” used in
existing payment channel networks. Namely, Perun offers so-
called “virtual channels” that minimize the need for interaction
with the intermediaries in the channel chains, and in particular
do not require that intermediates confirm individual payments
routed via them. The basic idea of virtual channels is to
apply the channel technique recursively, by building a virtual
payment channel “on top of” the ledger channels.

To better illustrate the concept of virtual channels, consider
three parties, Alice,Bob and Ingrid, and suppose that there
exists a ledger channel βA between Alice and Ingrid, and βB
between Ingrid and Bob with the following balances:

βA : [Alice 7→ yA, Ingrid 7→ yI ]
βB : [Ingrid 7→ zI ,Bob 7→ zB ].

In Perun, Alice and Bob can establish a virtual payment
channel γ with the help of Ingrid (using channels βA and
βB), and without touching the ledger. Suppose that the initial
balance of γ after opening is denoted by as on Eq. (1). After
γ is open, the balances of βA and βB become:

βA : [Alice 7→ (yA − xA), Ingrid 7→ (yI − xB)]
βB : [Ingrid 7→ (zI − xA),Bob 7→ (zB − xB)].

(2)

Opening of γ is possible only if all the values above are non-
negative, i.e., xA ≤ min(yA, zI) and xB ≤ min(yI , zB). In
other words: Alice,Bob, and Ingrid need to have enough coins
in the ledger channels to open γ. These coins remain blocked
in βA and βB as long as the virtual channel is open. For Alice
and Bob this is similar to the situation when the coins are
blocked on the ledger in a newly created ledger channel. What
can be viewed as a disadvantage is that also Ingrid has to block
her coins. In Appx. C we discuss a solution for this problem
that is based on slightly weakening the security guarantees.
Once a virtual channel is opened, it can be updated multiple
times, exactly in the same way as the ledger channel, i.e.,
transferring w coins from Alice to Bob results in a new balance
of γ as before. As long as everybody is honest, Alice and
Bob need to interact with Ingrid only when the channel is
opened and when it is closed, and in particular each update of
γ does not require interacting with Ingrid (in the same way
as updating a ledger channel does not require interacting with
the ledger).

The “financial consequences” of closing a virtual channel
appear on the ledger channels βA and βB (and not directly
on the blockchain, as it is the case for the ledger chan-
nels). For example, suppose that the current balances of the
ledger channels βA and βB are [Alice 7→ y′A, Ingrid 7→ y′I ] and
[Ingrid 7→ z′I ,Bob 7→ z′B ], respectively (note that this may be
different from the balance on Eq. (2) as the ledger channels
βA and βB could have been updated in the meanwhile),
and the current balance of γ is [Alice 7→ x′A,Bob 7→ x′B ].

Then closing γ results in the following balances of the ledger
channels:

βA : [Alice 7→ (y′A + x′A), Ingrid 7→ (y′I + x′B)]
βB : [Ingrid 7→ (z′I + x′A),Bob 7→ (z′B + x′B)].

(3)

Observe that for P ∈ {Alice,Bob} the financial consequences
of all the operations on γ are exactly as one might expect, i.e.
P ’s net financial result is that she gains x′P −xP coins in her
balance in βP (where “gaining q” coins means loosing −q, if q
is negative). On the other hand observe that the consequences
for Ingrid are “neutral”, i.e., if she gains z coins in βA then
she looses the same amount in βB (and vice versa). We will
require that, as long as γ is open, the ledger channels βA
and βB cannot be closed. In other words, the parties that
opened these ledger channels have to wait with closing them
until the financial consequences from closing of channel γ are
known. One problem with this is that that Ingrid should be
sure that her coins do not get blocked in βP for a very long
period of time (or: forever). This is different from the ledger
channels, where the role of the “intermediary” is played by the
blockchain, which does not have “her own coins” invested in
the protocol.In particular it is completely ok “from the point
of view of the ledger” if a ledger channel is never closed. For
this reason the virtual channels come with a special attribute
called validity that Alice,Bob and Ingrid agreed upon when
the virtual channel was opened. A virtual channel is closed
when its validity expires (note that this is different from the
ledger channels, where closing is initiated by Alice or Bob).
Thanks to this solution Ingrid can be sure that she gets her
coins back after some period of time. Another (slightly more
complicated) option would be to allow Ingrid to request virtual
channel closing at any time.

Let us emphasize that our scheme is secure against arbitrary
corruptions of Alice, Ingrid, and Bob. and in particular, no
assumption about the honesty of Ingrid is needed. There are
several subtle problems that need to be solved when designing
protocols that deal with such strong corruption models. Some
of them come from concurrency. Our solution achieves se-
curity in a fully concurrent setting, i.e., several ledger and
virtual channels can be opened and closed simultaneously.
Security of our solution relies on smart contracts that are used
to build channels βA and βB . One main challenge is to design
protocols that minimize the use of these smart contracts, and
hence, we require access to them only during final settlement.
Moreover, we have taken special care to reduce the amount of
data that needs to be processed by these contracts (e.g. it does
not grow with time of the protocol execution). For simplicity
of exposition we do not model the transaction fees (we address
them, however, when we talk about the implementation, see
Appx. A).

III. FORMAL MODEL AND SECURITY DEFINITION

To analyze the security of our solution, we use the
simulation-based security definition inspired by the UC frame-
work [4], in which security is defined by comparing two
worlds: the real and the ideal world. At a high level the ideal
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world gives a formal description of the desired specification
of a protocol using a concept called an ideal functionality (in
our case this functionality is called Channels and is described
in detail in Sect. III-C). In the real world the parties run a
protocol that implements this functionality. The protocol that
we construct will be denoted by channels and will run among
parties from the set P = {P1, . . . , Pn}, which are modeled as
interactive machines. The Pi’s in the real world are connected
by secure (secret and authentic) communication channels. A
protocol is executed in a presence of an adversary A (in the
ideal world called a simulator S) and an environment Z , which
are both also interactive machines. The adversary can corrupt
any party Pi, by which we mean that he takes full control
over Pi. The environment is responsible for providing inputs
to the parties, and acts as a distinguisher between the real and
the ideal world. The latter means that if there exist no PPT
environment that can distinguish between the real and the ideal
execution, then the protocol is deemed secure.

In addition to the above entities, the parties running the
protocol have access to some ideal functionalities: the contract
functionality C (in the real world), the channels functional-
ity Channels (in the ideal world) and the financial ledger
functionality L (in both worlds). We describe the functionali-
ties C and Channels in Sections III-A1 and III-B, respectively.
Here, we will describe briefly the financial ledger functionality
L because it is responsible for handling coins. The financial
ledger functionality interacts only with the environment, and
the functionalities C and Channels (note that it does not inter-
act directly with the parties, but C and Channels are interfaces
to it). We assume that the financial ledger functionality is
global [5], i.e., there is only a single such ideal functionality
and that its state is “visible” for the environment (i.e. the
environment is informed about all the messages that L receives
and sends). It is initiated by the environment Z that preloads
the parties with coins on L. The financial operations are
performed via the ideal functionalities Channels and C who
can add y coins to (or remove y coins from) P ’s account on the
ledger (these commands are executed instantaneously). In the
ideal world we allow the simulator S to freely remove money
from the accounts of corrupt parties and to add them (with an
arbitrary delay) to the accounts of other (corrupt or honest)
parties. This corresponds to the fact that we are not interested
in preventing the corrupt parties from “acting irrationally” and
loosing money. The financial ledger functionality is formally
depicted on Fig. 4 in Appx D.

When we say that a party P sends a message m to an ideal
functionality I (where I is either C or Channels) together with
x coins it means that when m arrives to I, the functionality
I removes x coins from P ’s account in L (if P does not
have sufficient amount of coins then message m is ignored).
Similarly I sends a message m′ to P together with x′ coins
means that x′ coins are added to P ’s account in L.

We assume a synchronous communication network, i.e.,
the execution of the protocol happens in rounds. The parties,
the ideal functionalities, the environment and the adversary
are always aware of a given round. Let time := N denote

the set of all possible round numbers. We assume that if in
round i a party sends a message to another party (or an ideal
functionality), then it arrives to it at the beginning of round
i+ 1. The adversary can decide about the order in which the
messages arrive in a given round, but we assume that he cannot
change the order of messages sent between two honest parties
(this can be easily achieved by using, e.g., message counters).
For simplicity we assume that computation takes no time and
is “atomic”. The communication between adversary A and the
environment Z takes no time. Sending messages to the ledger
and the contract functionalities takes between 1 and ∆ rounds
(we assume that this includes also time needed by the parties
to receive the message back from the contract). Messages send
by these functionalities arrive to all the parties in 1 round.

Since we consider stand-alone security we do not use the
session identifiers (“sid” in the UC terminology). We also do
not use notation like “ssid” — instead we simply say that a
party (or a contract) “replies to a message”. We believe that
omitting these technical notation improves readability of our
protocols. We also use a concept of threads that should be
understood as particular instances of the protocol. For example
each ledger channel will have a corresponding “thread” in the
protocol for its users. Messages sent between all the entities
will start with a keyword in typewriter font. The keywords
in messages exchanged with the environment will additionally
be underlined.

A. The real world execution

To simplify exposition we assume that before the protocol
starts a public-key infrastructure setup phase is executed by
some trusted party. The signature of P on m will be denoted
SignP (m). We emphasize that the use of a PKI is only an
abstraction that helps to describe our protocols. In practice, the
trusted setup can, e.g., easily be realized using the blockchain.
Parties will often use their secret key to sign and verify
messages. In this case, we say that a tuple (x1, . . . , xn, σ)
is signed by P if σ is a valid signature of P on (x1, . . . , xn).
1) Modeling smart contracts. We make use of smart contracts
(see, e.g, [2, 11]), which, informally speaking, are agreements
written on the ledger, that can accept coins from the parties,
and distribute these coins between the parties, depending on
some well-specified conditions. Such contracts are used to
resolve disputes between users about the channel’s state, or
simply to close the channel. On an intuitive level one can think
of a contract as an independent entity that receives coins and
messages from the parties and sends coins and messages back
to them. We model the contracts using a contract functionality
C that is present only in the real world (In UC terms one would
say that our protocol is designed in the C hybrid world). It
interacts with the parties in P and with the financial ledger
functionality L, and is part of the protocol that we construct
(see Fig. 3). It maintains a set of contract instances (i.e. the
individual contracts created by the parties). More details on
our concrete contract functionality C appear in Sect. IV.
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B. The ideal functionality Channels

Before describing the Channels functionality let us first
define more formally the channel syntax. To this end, we first
introduce two types of functions for specifying the current
balance of a channel and for handling transfers between
parties. We say that balance is a balance function for parties
P, P ′ ∈ P if its type is {P, P ′} → R≥0. We also say that
θ is a transfer function for parties P and P ′ if its type is
{P, P ′} → R and θ(P ) + θ(P ′) = 0 (note that usually one
of the values θ(P ) and θ(P ′) is negative). These functions
can be added in a natural way, i.e., if f and g are transfer
or balance functions for P and P ′, then h = f + g is a
function h : {P, P ′} → R defined as h(P ) := f(P ) + g(P )
and h(P ′) := f(P ′) + g(P ′).

If f : {P, P ′} → R is a balance or transfer function then
f(P ) is called the amount of coins that P has in f . If function
g : {P, P ′} → R≥0 is a balance function, then adding x ∈
R coins to the account of P in g results in a function g′ :
{P, P ′} → R≥0 equal to g(P ′) on input P ′, and to g(P ) + x
on input P . Removing x coins is a shorthand for “adding −x
coins”. If h : {P, P ′} → R≥0 is a transfer function, then
transferring x ∈ R coins from the account of P to the account
of P ′ in h results in a function h′ : {P, P ′} → R≥0 equal to
h(P ′) + x on input P ′, and to h(P )− x on input P .

We define a ledger channel over a set of parties P as an
attribute tuple β of the form:

β = (β.id, β.Alice, β.Bob, β.balance)

and a virtual payment channel γ over a set of players P as
an attribute tuple of the form:

γ = (γ.id, γ.Alice, γ.Ingrid, γ.Bob, γ.balance,
γ.subchan, γ.validity).

For a ledger/virtual channel δ the value δ.id ∈ {0, 1}∗ is
called the identifier of δ and δ.Alice, δ.Bob are two distinct
elements of P . For a virtual channel γ.Ingrid is also an
element of P (distinct from γ.Alice and γ.Bob) and it is
sometimes called the intermediary. We define the set end-
users of δ as δ.end-users = {δ.Alice, δ.Bob} (note that when
δ is a virtual payment channel, then this set does not contain
δ.Ingrid). We also say that δ is established between the parties
in δ.end-users. We also define the shortcut δ.other-party :
δ.end-users → δ.end-users as δ.other-party(δ.Alice) = δ.Bob
and δ.other-party(δ.Bob) = δ.Alice. If δ is a virtual channel
then δ.all-users denotes the set {δ.Alice, δ.Bob, δ.Ingrid}, and
if δ is a ledger channel then simply δ.all-users = δ.end-users.
The attribute δ.balance is a balance function for parties
δ.end-users.

Let us now take a look at the additional attributes of a
virtual channel. One of the additional attributes that virtual
channels have over ledger channels is the function subchan.
For a virtual channel γ we have that γ.subchan is a function
from γ.end-users to {0, 1}∗ with the following definition. For
P ∈ γ.end-users the value γ.subchan(P ) will be called the
identifier of P ’s subchannel of the virtual channel γ, and it will

be used to indicate the corresponding identifier of the ledger
channel that is used to construct γ. Finally γ.validity ∈ time
denotes the channel validity, i.e., the round until which the
virtual payment channel stays open.

In the ideal world the parties do not execute any protocol.
Instead they simply receive messages from the environment
and forward them to the ideal functionality Channels. They
forward the replies that they receive from Channels to the
environment. The corrupt parties may of course deviate from
the specification. The ideal functionality Channels is presented
in full detail on Fig. 5 in Appendix (page 17). Below we
provide a slightly informal description of its functionality due
to space limitations.

Functionality Channels maintains a channel space, which
is a set Σ that consists of some ledger and virtual channel
tuples. We will assume that for every id there exists at most
one channel δ ∈ Σ such that δ.id = id (we will also refer
to such channel as Σ(id)). We require that for every virtual
channel γ ∈ Σ there exist ledger channels βa, βb ∈ Σ such that
γ.subchan(γ.Alice) = βa.id and γ.subchan(γ.Bob) = βb.id,
i.e., the channels βa and βb that were used to construct γ also
belong to Σ. Initially Σ is empty. The functionality Channels
consists of the following parts.
1) Opening a ledger channel. A ledger channel β between two
parties β.Alice and β.Bob is created in an opening procedure,
in which β.Alice puts xA := β.balance(β.Alice) coins into
the channel and β.Bob puts xB := β.balance(β.Bob) coins
into it. Hence, initially β.Alice and β.Bob have xA and xB
coins (respectively) in the channel (and the total value of β
will always be xA + xB). We assume that the opening of
channel β is always initiated by party β.Alice, who sends
to Channels a message (lc-open, β) together with xA coins.
These coins are removed from β.Alice’s account on the ledger.
The functionality waits time ∆ to receive the same message
from β.Bob together with xB coins. If this message is received
then the channel is opened, and β is added to Σ (which is
communicated to β.end-users by a message (lc-opened)).
Otherwise in time at most 2∆ the functionality sends to
β.Alice a message (lc-not-opened) and refunds her the coins
that were removed from her account.
2) Opening and closing a virtual channel. As explained in
Sect. II-B the virtual channels come with a special attribute
“validity” that specifies when a given channel will be closed.
Since they cannot be closed earlier, there is no separate
“closing” procedure for the virtual channels, and instead both
opening and closing procedure are described together.

Opening happens when the parties from γ.all-users send
a message m = (vc-open, γ) to the functionality Channels.
When they are all honest this will happen in the same round
τ (due to the restrictions on the environment that we describe
later, see Sect. III-C, Point 5), but if some of them are dishon-
est, we allow time difference of at most 2 rounds. If some of
the parties in γ.all-users did not send m to the functionality,
then the channel is not created, and the functionality informs
the parties about it by sending a message (vc-not-opened)
to them. Otherwise, if the functionality receives m from
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all the parties in γ.all-users, then let βP := γ.subchan(P )
for P ∈ γ.end-users. The functionality removes the coins
from the ledger channels according to the rules presented
informally in Sect. II-B (see Eq. (2)), i.e, for both P it
removes γ.balance(P ) coins from P ’s account in βP , and
γ.other-party(P ) coins from γ.Ingrid account in βP . Then it
adds γ to Σ, and informs the parties in γ.all-users that the
channel has been opened by sending a message (vc-opened)
to them.

After the channel is opened the functionality accepts the
channel update requests from γ.end-users (this is described
in Sect. III-B3 below). As described in Sect. II-A when
time γ.validity comes the channel γ is closed “automati-
cally”. Let γ̂ be the current state of channel γ. Within time
γ.validity + 5∆ + 1 the coins that the γ.end-users have in γ
are credited to γ.all-users accounts in the subchannels from
γ.subchan according to the rules described in Sect. II-B (see
Eq. (3)), i.e., for each P ∈ γ.end-users party P gets γ̂(P )
coins to her account in βP , and γ.Ingrid gets γ̂.other-party(P )
coins to her account in βP . Then the functionality sends a
message (vc-closed) to γ.all-users, and γ̂ is erased from Σ.
3) Ledger/virtual channel update. Once a channel is open,
the parties can update the distribution of funds in the channel
without interacting with the blockchain. A channel can be
updated multiple times, subject only to the restriction that the
value of the channel remains unchanged. Since this procedure
is identical for ledger and virtual channels, we denoted the
channel that is updated with a letter δ (the reader should keep
in mind that δ can be either a ledger channel β or a virtual
channel γ). Let θ be a transfer function (see Sect. III-B) for
δ.end-users, and let α ∈ {0, 1}∗ be a string called an update
annotation that provides a way for the parties to agree on why
a given transfer happens (its role is similar to the “purpose of
payment description” in the wire bank transfer). An update
that performs a transfer θ on channel δ, is annotated with
a string α and is initiated by P (called an an initiator). It
starts when P receives a message (update, id , θ, α) (where
id is the identifier of δ in Σ). As a result of this, P ′ (the
confirmer) asks the environment if this update is ok by sending
a “(update-requested, id , θ, α)” message to it. Once the
environment agrees (by sending a “update-ok” message to
P ′) the channel δ is updated, i.e., it is replaced in Σ by δ̂ that
is equal to δ, except that δ̂.balance := δ.balance + θ. If the
above steps finish in 2 rounds, then we say that an update was
successful, otherwise we say it failed.
4) Ledger channel closing. As described in Sect. II-A a ledger
channel β can be closed by any party P ∈ β.all-users. This
can be done at any time, provided there are no virtual channels
open over β. Closing of a channel β is initiated by sending a
message (lc-close, id) to Channels (where id is the identifier
of β in Σ). If there is no virtual channel open over β then in
Step 2 within time ∆ channel β is closed. More precisely,
β.balance(β.Alice) coins are sent to β.Alice’s account on L,
and β.balance(β.Bob) coins ares sent to β.Bob’s account
on L. Then, channel β is erased from Σ, and a message
(lc-closed) is sent to the parties in β.end-users and to the

adversary (sending this message to the adversary corresponds
to the fact that the information that a ledger channel is closed
is public).

C. The security definition

For the sake of simplicity we will consider “restricted”
environments in our security definitions, i.e. we will make
some explicit assumptions about Z’s behavior. These restric-
tions could be eliminated at a cost of a more complex protocol
construction. To save space we provide a full list of these
restrictions in Appx. E. One can think about these restrictions
as corresponding to assumptions about how the users use the
protocol. Most of them are very natural, and they can be
informally captured as “the environment never asks the honest
users to do something obviously wrong”, e.g., open to different
channels with the same identifier, or open a channel without
having sufficient funds. We also assume that if one honest
party receives a message that tells her to open a channel,
then all the other honest parties involved in the channel also
receive it (in real life this corresponds to an assumption that
they agreed via some other method, that is beyond the scope
of our protocol, that the channel has to be open). We also
require that P should never initiate the ledger channel closing
if she earlier attempted to open virtual channel whose validity
has not expired yet.

Informally speaking, a protocol channels is said to imple-
ment the Channels functionality, if for every environment Z
(that satisfies the restrictions listed above) for every adversary
A there exists an “ideal-world adversary”, called a simulator
that can produce a view for the environment Z that is
computationally indistinguishable from Z’s view in the real
execution of the protocol channels. This can be formalized
in a standard way (see Appx. F).

IV. THE PROTOCOL AND THE CONTRACT

In this section we present the protocol channels and the
contract functionality C that implement the Channels function-
ality. A formal description of the protocol appears on Figs. 1
and 2, and the contract functionality appears on Fig. 3. As
already mentioned in Sect. III-A1 the contract functionality
C maintains a set of contract instances. In our case every
contract instance will correspond to a ledger channel. Each
contract instance has a unique identifier (which, in our case,
will be identical to the identifier of the corresponding ledger
channel). A new contract instance is created when C receives a
constructor message (lc-open, β) (where β is a basic channel)
with β.balance(β.Alice)) coins from β.Alice. We refer to a
“contract instance with identifier id” as C(id). We also say
that a message m is “sent to C(id)” or “sent by C(id)” to
denote interaction with this specific contract instance. One can
also think about it in the following way: every message (other
than the constructor message) that is sent to C contains the
identifier id that specifies to which particular contract instance
it is addressed, and a similar rule applies to messages sent
by C. A contract instance can also be closed, meaning that it
terminates, and will not perform any more operations.
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Each contract instance will be presented as a separate thread
in C (and therefore the instances cannot directly refer to
each other’s variables). Hence each of them can be easily
implemented as a separate contract on the Ethereum ledger.
Most of the time the contracts will be in the idle state, i.e., they
will wait for a function call from a party. It is important to em-
phasize that contracts do not take any actions by themselves, in
other words: they are typically in an idle state and need to be
triggered by a message from some party Pi in order to take any
action. While describing the protocol we will also provide the
running time of the procedures in the “normal case” (i.e. when
every party involved in the procedure is honest), and in the
“pessimistic case” (i.e. when some dishonest participants delay
protocol’s execution). Before explaining our protocol, let us
start with some notation conventions.
1) “Forced reply” messages. One of the technical nuisances
when dealing with the smart contracts is that they never “act
by themselves”, i.e., they always need a message to be woken
up from an idle state. This problem appears, e.g., when a party
P sends a message m to a contract to which another party P ′

should react within some time τ . If P ′ does not do it, then
the contract will not automatically take any actions, and hence
it needs to be “woken up” by a message from P . Since this
situation appears frequently in our protocol we introduce the
following convention (that can be viewed as a “macro” for
writing protocols). We say that P sends to C(id) a ∆-forced
reply message m if: (1) P immediately sends a message m to
C(id) (let τ be the time when C(id) receives m), (2) if P does
not receive a reply to m from C(id) within time τ + ∆ then
she sends a message (timeout) to C(id). The “(timeout)”
message serves precisely the purpose of “waking the contract
up”. Typically, after receiving it, the contract will check if time
∆ indeed passed and if P ′ has not replied to m′. If yes, then
the contract will take appropriate actions.
2) Closing channels when cheating is detected. Sometimes
the contract instance is able to detect that one of the users
of channel γ is cheating (e.g. if a party does not reply to a
“forced reply” message). In such cases we simply transfer all
the money from γ to the party that reported such cheating.
This will be handled by subroutine (C) on Fig. 3.

A. Ledger channels

1) Channel opening. We start with describing a procedure
in which β.Alice and β.Bob open a ledger channel. The
contract code that is responsible for creating the contract
appears on Fig. 3 (A) and the protocol for the parties appears
on Fig. 1 (A). Let us now explain its steps. The procedure
starts when the parties receive an “lc-open” message from
the environment. To open a channel β, in Step 1 (Fig. 1 (A))
party β.Alice sends to C a contract constructor message for
C(β.id) together with β.balance(β.Alice) coins. This is a “∆-
forced reply message” meaning that β.Alice sends a (timeout)
message if she does not receive a reply from C(β.id) within
time ∆ after the contract instance C(β.id) appeared on the
ledger.

In time at most ∆ the contract appears on the ledger. The
contract defines a transfer function transfers : β.end-users →
R initially equal to 0 on both inputs. This function will be
kept in contract’s storage until the contract is closed. Its goal
is to keep track on the sum of the transfers between β.Alice
and β.Bob that were communicated to the contract (in our
case these transfers will come only from the closing of virtual
channels, see Steps 4.a and 4.c on Fig. 3 (B)). The contract
will also store information about virtual channels (built on top
of β) that were closed “via the contract”. Technically, we will
say that some channel γ is marked as closed if it is added to
the list of such closed channels.

The contract sends a message to β.Bob informing him
about the fact that β.Alice initiated ledger channel opening. If
β.Bob also wants to open the channel (i.e. if he also received
the “lc-open” message from the environment) then he reacts
by sending a confirmation message to C(β.id) together with
β.balance(β.Bob) coins (this happens in Step 2.a). Once the
contract gets this message from β.Bob then the channel is
opened (which is communicated to the parties by a message
lc-opened). If this message does not arrive to the contract
within time ∆ then β.Alice “automatically” sends a (timeout)
message, and she gets her coins back. It is easy to see that
normally this procedure takes time at most 2∆, and at most
3∆ in the pessimistic case (i.e. when β.Bob does not send
his message to C). Once a party P ∈ β.end-users successfully
opens a ledger channel, it goes to the idle state (Step 4, Fig. 1
(A)) and waits for messages that concern β, to which he reacts,
typically by going to one of the procedures described in Points
(B) and (C) of the same figure.
2) Channel updating. We now describe the update procedure
(it is presented formally on Fig. 1 (B)). Let us start with
introducing some notation. Let w ∈ N be a natural number
called a version number, and α ∈ {0, 1}∗ be an update
annotation (see Sect. III-B). Then (δ̂, w, α) is called a version
of δ if δ̂ is equal to δ on all attributes except of δ.balance, and
the value of δ̂ is equal to the value of δ. Moreover, (δ̂, w, α, σ)
is called a version of δ signed by P if (δ̂, w, α, σ) is a tuple
signed by P . If w = 0 then we call (δ̂, w, α) the initial version
of δ, and in the “signed” tuple (δ, w, α, σ) we allow σ = ⊥.

The channel updates will be done by exchanging signatures
on subsequent versions of δ, i.e., the w-th update will have
a version number w, The winner selection procedure Win
serves to determine which version of a channel is newer. It
is defined as follows. Let δ be a ledger or virtual channel.
Win takes as input a pair ((δ0, w0, α0, σ0), (δ1, w1, α1, σ1))
of signed versions of δ, and returns as output a cash function
θ : δ.end-users → R≥0 defined as follows: let i be such that
wi > w1−i (if no such i exists then choose i := 0) and then
let θ := δi.balance.

To present the main idea behind the channel updates, we
first describe the update procedure in the non-parallel setting,
i.e., in the situation when only one update of a given channel
δ is performed at a time (the full parallel version, presented
on Fig. 1 (B) is described later in this section). The parties
that opened a channel maintain the counter w denoting the
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(A) Opening ledger channel β:

1) Upon receiving a message (lc-open, β) from the environment, party β.Alice starts a new thread, sends to C a ∆-forced
reply contract constructor message (lc-open, β) together with β.balance(β.Alice) coins, and goes to Step 3.

2) Upon receiving a message (lc-open, β) from the environment, party β.Bob starts a new thread and waits time at most
∆ to receive a message (lc-opening, β) from C(β.id). Consider the following cases.
a) He receives this message — then he replies to C(β.id) with a message (lc-open) together with β.balance(β.Bob). He

then waits to receive a message (lc-opened) from C(β.id). Once received, he outputs (lc-opened) and goes to Step 4.
b) He does not receive this message — then he outputs (lc-not-opened) and stops this thread.

3) Party β.Alice waits for one of the following:
a) She receives a message (lc-not-opened) from C(β.id) — then she outputs (lc-not-opened) and stops this thread.
b) She receives a message (lc-opened) from C(β.id) — then she outputs (lc-opened) and goes to Step 4.

4) Party P ∈ β.end-users goes in the idle state waiting for messages that concern β and come from the environment,
β.other-party(P ) or from the contract. These messages are handled in Points (B) and (C) below.

(B) Update of (ledger or virtual) channel δ:

1) Upon receiving message (update, id , θ, α) (where id is an identifier of some channel δ) from the environment party
P (the “initiator”) waits for the next P ’s update round of δ. When this round comes P lets (δ̂P , wP ) denote the last
version of δ that P is aware of, and lets δ̃ be equal to δ̂P except that δ̃.balance := δ̂P .balance+ θ. Then she sends a tuple
(updating, (δ̃, wP + 1, α, σ)) (where σ is P ’s signature on (δ̃, wP + 1, α)) to P ′, waits 1 round, and goes to Step 3

2) This step starts when P ′ ∈ δ.end-users (the “confirmer”) receives a correctly signed message (updating, (δ̃, w, α, σ)).
Then P ′ lets (δ̂P

′
, wP

′
) denote the last version of δ that P ′ is aware of. If w 6= wP

′
+ 1 then P ′ ignores this message.

Otherwise P ′ computes θ′ := δ̃.balance− δ̂P ′
.balance and outputs (update-requested, β.id, θ′, α) to the environment.

If the environment replies with (update-ok) then P ′ computes her signature σ′ on (δ̃, w, α), sends a message
(update-ok, σ′) to P ′ and stops this procedure. Otherwise P ′ stops this procedure.

3) If P receives a message (update-ok, σ′) where σ′ is a signature of P ′ on (δ̃P , wP + 1, α) then she outputs (updated)
and stops this procedure. Otherwise P outputs (not-updated) and stops this procedure.

(C) Closing the ledger channel with identifier id :

1) Upon receiving a message (lc-close, id) (where id is an identifier of some ledger channel β) from the environment
party P lets (β, 0) be the initial version of the channel with identifier id .
Party P lets V be the last signed version of β which P received from β.other-party(P ) (if P has never received such a
version then she lets V = (β, 0, ε,⊥)). She sends to C(id) a ∆-forced reply message (lc-close, V ).

2) Upon receiving (in some round τ ) a message (lc-closing) from C(β.id) party P ′ does the following:
a) If earlier she received an opening certificate z of P := β.other-party(P ) on some virtual channel γ that is constructed

over virtual channel β and γ.validity + 5∆ + 1 > τ — then she sends to C(β.id) a message (vc-active, z). Then she
continues waiting.

b) Otherwise she sends to C(β.id) a message (lc-close, V ′), where V ′ is the last signed version of β that she received
from P (if she have never received such a version then she lets V ′ = (β, 0, ε,⊥)). Upon receiving a message (lc-closed)
from C(β.id) she outputs (lc-closed) and stops this thread.

3) Upon receiving a message (lc-closed) from C(β.id) party P outputs (lc-closed) and stops this thread.

Fig. 1: The procedures: (A) “opening ledger channel”, (B) “update of channel δ”, and (C) “closing the ledger channel” (see
Sect. IV-A.
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channel version. Initially w is set to 0, and it is incremented
after each update of δ. Let P be the initiator of the update,
and let P ′ be the confirmer (see Sect. III-B). Suppose that for
each each P̂ ∈ {P, P ′} the last version of δ that P̂ is aware
of is W P̂ := (δ̂P̂ , wP̂ , αP̂ ) (with W P̂ := (δ, 0, ε) if no update
has been performed yet). Of course, if both parties are honest,
then WP = WP ′

. An update that performs a transfer θ on
channel δ, is annotated with a string α and is initiated by P
(see Sect. III-B) works as follows:

Proposing an update. Let δ̃ be defined as δ̂P except that
δ̃.balance := δ̂P .balance + θ. Party P sends to P ′ a message
m = (updating, (δ̃, wP + 1, α, σ)), where σ is her signature
on (δ̃, wP + 1, α) (see Step. 1, Fig. 1 (B)).

Accepting an update. Upon receiving m party P ′ checks
if the signature and the version number are correct. If yes,
then she has to decide if this update is ok. To this end she
first computes what transfer has been proposed by P . This is
done by calculating θ′ as θ′ := δ̃.balance − δ̂P ′

.balance (in
other words: P ′ recovers the transfer function used by P to
calculate from m). Then P ′ outputs a “update-requested′′

message to the environment. If the environment replies with
update-ok” then P ′ confirms the update by sending her on
(δ̃, wP + 1, α) back to P . The details appear in Step 1 of
Fig. 1 (B).

Let us now discuss the full parallel settings. In reality the
update procedure is more complicated than what we described
above, since it may happen that more than one channel update
request is issued in the same round. One of the issues that
needs to be handled is that it may happen that some updates
are initiated by δ.Alice and some by δ.Bob in the same round
(note that in this case they would use the same value of w
for two different updates). To avoid this problem we define
P ’s update rounds for δ as the rounds when P can send the
first message in the “initiating an update” phase (if the update
procedure has been called in some other round then P waits
for his update round to start). More precisely, for a channel δ
round τ is called a δ.Alice’s update round if τ = 0 (mod 4)
and it is called a δ.Bob’s update round if τ = 2 (mod 4).
Since a channel update takes 2 rounds, therefore having only
1 in 4 rounds as an “update round” for P guarantees that
the entire update procedure proposed by P will end before
P ′ starts any procedure containing her update proposal. Note
also that, since we assumed that the adversary cannot reorder
messages sent from P to P ′, the version number w will remain
synchronized between the parties.

Observe that as a result of a successful update procedure
each party has a signature of the other party on a tuple
containing a string α (i.e. a tuple “(δ̃, wP +1, α, σ)”), that can
be later used to prove that a given transfer indeed happen. We
will use it in the virtual channel closing protocol where string
α will contain an information about the virtual channel that
has been closed (this will be called the “closing certificate”
see, e.g., Fig. 2, (B), Step 3). A successful execution of
the update procedure takes at most 5 rounds (since a party
may need to wait at most 3 rounds for her “update round”,
and then 2 rounds for a reply from the other party). If the

update procedure finishes in 5 rounds then we say that it was
successful, otherwise we say it failed.
3) Channel closing. At some point one of the parties, let us
say P , gets a request from the environment to close a ledger
channel β (let P ′ be the other party in δ.end-users). The formal
description of the closing procedure appears on Fig. 1 (C), and
the corresponding part of the contract is described in Step 4
of Fig. 3 (B). We now explain it informally (for a moment we
ignore Step 2.a on Fig. 1 (C), and Step (4.b) on Fig. 3 (B) —
we will explain them a bit later, when we talk about virtual
channel opening).

Initially (see Step 1, Fig. 1 (C)) Party P sends to the
contract C(β.id) a ∆-forced reply message containing the
latest signed version V of β that she received from P ′. Of
course the contract has no reason to believe P that this indeed
is the latest version of β. This is why the contract sends an
“lc-closing” message to P ′ informing her about the fact that
P initiated channel closing (see Step 4, Fig. 3 (B)). Party P ′

then replies with her most recent version P ′ of β (see Step
(b), Fig. 1 (C)). The contract then applies the Win function
to both V and V ′ to determine the value of the balance
function that should be used for channel closing. He also
“corrects” this value by taking into account the values of
transfers described by the function transfers. Altogether, he
lets balance := Win(V, V ′) + transfers. He then distributes
the coins between P and P ′ according to balance, and stops
this contract instance (see Step 4.a, Fig. 3 (B) for details). Of
course, it may happen that P ′ does not reply to the lc-closing
message. In this case P sends a (timeout) message to the
contract (this happens automatically, since the first message
from P is “∆-forced reply). The contract reacts by assuming
that P ’s version of the channel is the valid one (see Step
4.c, Fig. 3 (B)). It is easy to see that normally this procedure
takes time at most 2∆, and at most 3∆ in the pessimistic case
(i.e. when P ′ does not send her message to C).

B. Virtual channels

We now describe the protocols for virtual channel opening
and closing (the protocol for virtual channel update has
already been described in Sect. IV-A2). Let γ be a virtual
channel, and suppose that there exist the following open ledger
channels: βγ.Alice between γ.Alice and γ.Ingrid and βγ.Bob
between γ.Bob and γ.Ingrid with βP .id = γ.subchan(P ) for
P ∈ {β.Alice, β.Bob}. As already explained in Sect. II, a
virtual channel γ is built with the help of γ.Ingrid using ledger
channels βγ.Alice and βγ.Bob in a similar way as the ledger
channels are built with the help of the ledger. Unfortunately,
there are some important differences between the functionality
that the ledger channels and the ledger provide.

Firstly, the ledger channels described in Sect. IV-A serve
only the purpose of performing payments between two parties,
and they do not allow to execute smart contracts “inside of the
channel” (while the ledger allows it). We solve this problem
using the concept of “state channels” [1]. To keep the paper
concise we do not introduce this type of channels formally
here (this is done in future work, see Appx. C). Essentially, the

9



idea of the state channels is to enrich the payment channels
with additional functionality that makes them behave like a
“2-party ledger with contracts”. This is done by allowing the
parties exchange signatures on some additional strings that can
later be interpreted by the channel contract. In our case, these
strings will called be the “opening” and “closing” certificates.
Our channel contract will interpret these signed strings, and in
fact its major part serves only this purpose (see Points 1— 3,
and Point 4.b on Fig. 3 (B)). The second problem is that the
state channels give us a “virtual ledger” for only 2 parties. In
other words: what happens in a channel βP is “invisible” for
γ.other-party(P ) (which is different from the global ledger
that is used to build ledger channels). This results in slightly
more complicated protocols. We now describe our solution in
more detail.
1) Channel opening. The virtual channel opening protocol
is presented on Fig. 2 (A). The parties decide to open the
channel γ once they receive a “vc-opened” message from
the environment. For P ∈ γ.all-users an opening certificate of
P on γ is a pair zP := (opening, γ, σP ), where σP is P ’s
signature on γ. The role of these certificates is to guarantee
that a party P ∈ γ.all-users cannot deny that she agreed to
open γ (when the parties interact with the contract). Let us
first describe the process of opening a virtual channel in case
all parties are honest. In Step 1 both parties γ.Alice and γ.Bob
send their opening certificates on γ to γ.Ingrid. If γ.Ingrid
receives both of these certificates in the next round, then
she replies to γ.Alice and γ.Bob with her opening certificate
on γ (this happens in Step 2.a), and considers the channel
open. Parties γ.Alice and γ.Bob receive this certificate in the
next round (Step 3), forward this certificate to each other
(we will explain in a moment the role of this forwarding),
and also consider the channel open. Note that technically
virtual channel opening does not result in removing coins from
parties’ account in the ledger channels (they will be removed
later, when the virtual channel is closed, see Step 3, Fig. 2
(B)). Such “delayed removal” is ok, since the parties locally
can anyway keep track on how many coins are still not blocked
in their ledger channels. Once a party considers a channel
opened then she outputs a message vc-opened and goes to
an idle state (see Step 4) where she waits for channel update
request (that are handled by the procedure already described
in Sect. IV-A2), or for time γ.validity to come.

Now consider what happens if some of the parties are mis-
behaving. In this case the execution of the protocol can result
in not opening channel γ. Informally, the main properties that
our protocol needs to have are: (1) if some parties cheat, then
no honest party looses coins, and (2) there is a consensus
between the honest parties on whether the channel has been
open or not. Let us first show how our protocol provides
security against (1). The result of the protocol execution is
that the parties end up with knowledge of opening certificates
of some of the other parties on γ. Since such a certificate can
later be used to claim coins from a party P that signed it,
thus the main security risk for P is that she signs a certificate
that will later be used to claim coins from P , while P cannot

claim coins from other parties in γ.all-users since she herself
did not receive an opening certificate on γ. It is easy to see
that this problem does not occur for γ.Alice and γ.Bob. This is
because these parties will not consider the channel open if they
do not receive an opening certificate from γ.Ingrid, and in this
case they will never perform any update to γ. Therefore even
if a malicious γ.Ingrid does not send an opening certificate
on γ to γ.end-users, and then requests to close γ (when time
γ.validity comes, see Sect. IV-B2 below), the result of her
behavior will be “neutral” for both γ.Alice and γ.Bob (as
the “default” state of γ is that both parties get the same
amount of coins as they deposited). Therefore what remains
is to show that (1) is satisfied for γ.Ingrid. Here, the problem
could potentially be larger, as γ.Ingrid could loose coins if
she sends her certificate to one party P ∈ γ.end-users without
getting the certificate from P ′ = γ.other-party(P ) (as during
the channel closing she would be forced to pay coins to P
without being guaranteed that she get the same amount of
coins from P ′). This problem is precisely the reason why in
our protocol γ.Ingrid signs the opening certificates only if she
received the opening certificates on γ from both γ.Alice and
γ.Bob. In other words: she only commits herself to cover P ’s
commitments in front of P ′ if she is guaranteed that P can
be held responsible for these commitments.

Now let us discuss (2). In the security proof (see Appx. G)
we will consider γ “open” if at least one of γ.end-users
received an opening certificate from γ.Ingrid in Step 3. Hence,
the only situation when there is disagreement between the
honest parties (on whether γ has been open or not) is if both
γ.end-users are honest, and a malicious γ.Ingrid sends her
opening certificate to some P ∈ γ.end-users, and does not
send it to P ′ := γ.other-party(P ). To avoid this problem we
let the parties in Step 3 forward to each other the opening
certificate from γ.Ingrid. This guarantees that if at least one
of γ.end-users considers the channel open, then the other one
considers it open to. It is easy to see that normally opening a
channel takes 2 rounds. In the pessimistic case (when γ.Ingrid
sends her opening certificate to one party only) it takes 3
rounds.

Finally, let us comment on the behavior of the parties
when the opening procedure ends. First consider a successful
opening. One thing that would obviously be illegal is if a party
from γ.all-users starts the ledger channel closing procedure
(see Fig. 1 (C)) for one of the ledger channels in γ.subchan
before time γ.validity + 5∆ + 2 comes (the “5∆ + 2” term
comes from the fact that, as we show below, closing a virtual
channel can take time at most 5∆ + 2, and during this time
the ledger channel should still be available). Therefore after
every successful opening of a virtual channel γ, each party
P ′ ∈ γ.all-users monitors the situation in the ledger channel
βP and reacts to the requests of P := β.other-party(P ′) to
close it. Recall that if a closing request was made by P (and
passed to P ′ via the contract, see Step 4 on Fig. 3 (B)) then it
is handled by the closing procedure on Fig. 1 (C). In Step 2.a
of the closing procedure the party P ′ reacts by sending a
message (vc-active, z) to the contract (where z is the opening

10



(A) Opening virtual channel γ:

1) Upon receiving a message (vc-open, γ) from the environment each party P ∈ γ.end-users starts a new thread, and sends
to γ.Ingrid her opening certificate on γ, waits one round and goes to Step 3

2) Upon receiving a message (vc-open, γ) from the environment party γ.Ingrid waits one round to receive opening
certificates on γ of both P ∈ γ.end-users. Consider the following cases.
a) She receives both opening certificates: then she replies to each P ∈ γ.end-users with her opening certificate on γ. Then

she outputs (vc-opened), waits until round γ.validity and then goes to the “closing virtual channel procedure”.
b) Otherwise: she outputs (vc-not-opened) and stops.

3) If a party P ∈ γ.end-users receives an opening certificate of γ.Ingrid on γ from γ.Ingrid then she forwards this certificate
to γ.other-party(P ), outputs (vc-opened) and goes to Step 4 below.
Otherwise P ∈ γ.end-users waits one more round to receive an opening certificate of γ.Ingrid on γ from γ.other-party(P ).
If she receives it then she outputs (vc-opened) and goes to goes to Step 4 below.
Otherwise she outputs (vc-not-opened), waits for time γ.validity and then goes to the closing procedure in Point (B)
below.

4) Party P ∈ γ.all-users goes in the idle state waiting for the “channel update” messages that concern γ and come from
the environment or γ.other-party(P ) or from the contract. These messages are handled by the procedure described of
Fig. 1 (B). When time γ.validity comes P goes to Point (B) below.

(B) Virtual channel closing:

For P ∈ γ.end-users let βP denote the channel with identifier γ.subchan(P ), and let (γ0, 0) be the initial version of channel
γ. For P ∈ γ.all-users let zP denote the opening certificate of P on γ.
1) In round γ.validity each P ∈ γ.end-users lets WP := (γP , vP , αP , σP ) be the latest signed version of γ that P received
from P ′ := γ.other-party(P ). If P never received a signed version of γ from P ′ (which means that no updates of γ have
been performed) then P lets WP := (γ0, 0, ε,⊥). Then P sends to γ.Ingrid a tuple (vc-close,WP ,SignP (WP )) and goes
to Step 4.

2) In round γ.validity + 1 party γ.Ingrid does the following for each P ∈ γ.end-users:
a) If she receives a correctly formated (vc-close,WP , SP ) message from P then she goes to Step 3.
b) Otherwise she sends a ∆-forced reply message (vc-close, zP ) to C(βP .id). If she then receives a message

(vc-close-init,WP ′
, SP

′
) from C(βP .id) then goes to Step 3. Otherwise she receives a message ((vc-closed) — in

this case she sets WP := (γ0, 0, ε,⊥) and SP := ⊥ and goes to Step 3.
3) Party γ.Ingrid waits to learn (WP , SP ) for both P ∈ γ.end-users (either by getting (WP , SP ) directly from P , or “via
the contract”).
She then lets θ := Win(W γ.Alice,W γ.Bob). Then for each P ∈ γ.end-users (such that such that channel βP has not been
closed) she proposes an update of βP that adds x := θ(P )−γ0.balance(P ) coins to P ’s account and −x coins to γ.Ingrid’s
account and is annotated with a string “channel γ.id closed”, and goes to Step 5.

4) Party P ∈ γ.end-users waits for one of the following events to happen:
a) Party γ.Ingrid proposes an update to ledger channel βP that adds at least γP .balance(P )− γ0.balance(P ) coins to P ’s

account and is annotated with a string “channel γ.id closed” — then P confirms this update, outputs (vc-closed) and
goes to Step 6.

b) Party P receives a message (vc-closing, γ.id) from C(βP .id) then P replies with (vc-closing,WP ,SignP (WP )) and
continues waiting

c) Within round γ.value + 2∆ + 1 none of the above happens then P sends a ∆-forced reply message
(vc-close-timeout, zγ.Ingrid) to C(βP .id), outputs (vc-closed) and stops.

5) If the update procedure is successful then γ.Ingrid outputs (vc-closed) and goes to Step 6.
Otherwise she sends to C(βP .id) a ∆-forced reply message (vc-close-final, zP , (W γ.Alice, Sγ.Alice), (W γ.Bob, Sγ.Bob)). Once
she receives a message (vc-closed) from C(βP .id) she outputs (vc-closed) and stops this procedure.

6) A party P ∈ γ.all-users goes in to an idle state. If at any point later P receives a message from C that concerns channel
γ then P answers with (vc-already-closed, z), where z is the closing certificate on γ (see Sect. IV-B2).

Fig. 2: The procedures: (A) “opening virtual channel” (see Sect. IV-B1) and (B) “virtual channel closing” (see Sect. IV-B2).
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certificate). After receiving this message the in Step 4.b (Fig. 3
(B)) the contract decides that the party P is corrupt, and hence
it closes, and gives all its coins to P ′.

A subtle attack that a dishonest γ.Ingrid could execute is:
(a) after receiving P ’s opening certificate on γ do not send
your opening certificate on γ to P (in Step 2.a), so that P
concludes that the channel γ has not been open, and then (b)
if P requests to close the underlying ledger channel β in time
earlier than γ.validity then send a message (vc-active, z) to
the contract (i.e.: claim that P is dishonest). To prevent this
from happening we have a requirement that P should never
initiate the ledger channel closing if she earlier attempted to
open virtual channel whose validity has not expired yet (see
Sect. III-C).
2) Channel closing. The virtual channel closing procedure is
depicted on Fig. 2 (B). It is started automatically when time
γ.validity comes. The main idea of this procedure is that it
is γ.Ingrid who is responsible for closing γ and taking care
that the channels βγ.Alice and βγ.Bob are updated in the correct
way (i.e. according the the latest balance of γ). If everybody
is honest then the procedure works in a pretty straightforward
way. Let us now explain it, ignoring some details that are need
to prevent cheating from dishonest parties. Let (γ0, 0) denote
the initial version of channel γ.

First, in Step 1 each party P ∈ γ.end-users sends to γ.Ingrid
the latest signed version WP of γ that she received from the
other party (or the initial version of γ if no such update has
been performed). Then in Step 3 party γ.Ingrid decides what is
the latest balance of γ by checking which version has a higher
number (this is done using the Win procedure) and proposes to
update the ledger channels accordingly. Finally, in Step 4.a
the parties in γ.end-users confirm the update, and channel
γ is closed. The ledger channel update is annotated with a
string ξ =“channel γ.id closed”. Hence a successful update
procedure of each βP results in every P̂ ∈ βP .end-users
holding a signature σ̂ of βP .other-party(P̂ ) on a tuple W
that includes string ξ. Call a pair z = (W, σ̂) a closing
certificate of βP .other-party(P̂ ) on γ. The role of the closing
certificates is to prevent a malicious party from requesting
a channel virtual channel closing “via the contract” after
the channel has already been closed by mutual agreement.
If at some point a request like this is issued by a party
P̂ ′ := βP .other-party(P̂ ) to a contract C(βP .id) then P̂
replies with a message (vc-already-closed, z) (see Step 6,
Fig. 2 (B)), and the contract decides that a P̂ ′ is cheating (see
Steps 1.a and 2.a, Fig. 3 (B)). There are several other things
that need to be taken care of to make the closing protocol
secure against dishonest behavior of some parties. Note that
the contract functionality C is not aware of the virtual channel
until a disagreement happens between the parties. Therefore
the parties need a way to prove to C that a channel has indeed
been open. This is done by sending the opening certificates to
it. For P ∈ γ.all-users let zP denote the opening certificate of
P on γ. Firstly, observe that a malicious P ∈ γ.end-users can
send an old version of the channel to γ.Ingrid, but this will
not count since if the other party P ′ := γ.other-party(P ) is

honest, then the version submitted by P will “loose” against
P ’s version. One subtle problem could appear if P is honest,
P ′ is dishonest, and P ′ earlier did not confirm an update of
γ that was initiated by P . In this case P ′ can submit higher
version signed of γ than P (since P did not receive P ′’s
signature on this version). This is solved by letting each P
accept an update that gives her at least the amount of coins
that she expected (see Point (4.a), Fig. 2 (B)). Note that by
the restriction on the environment that we made in Sect. III-C
the newer “unconfirmed” version of γ can only be such that
P gets more coins than before the update.

Other obvious type of malicious behavior of by the parties
is: not sending the messages that a party was supposed to send
in a given round. If γ.Alice or γ.Bob do so, then γ.Ingrid
talks to them “via the contract” to extract the necessary
information. This is done by sending a “forced reply” message
(vc-close-init, zP ), (in Step 2.b, Fig. 2 (B)) to a contract,
which is received by it in Step 1 (see Fig. 3 (B)). A contract
sends a (vc-closing, γ.id) message to P , which is handled
by P in Step 4.b (Fig. 2 (B)). If P remains silent then the
contract instance that handles the given ledger channel gets
closed (thanks to the “forced reply” mechanism) and all its
coins are given to γ.Ingrid.

If some of the ledger channel updates fails then in Step
(5) (Fig. 2 (B)) γ.Ingrid asks the contract to handle the
channel closing by sending to it both signed versions of
γ. The contract handles this request in Step 2, and (if the
other party does not signal that virtual channel γ has already
been closed) contract stores in its memory the result of the
virtual channel closing. Technically, this is done by adjusting
the value of a function transfers (in Step 2.b, Fig. 3 (B))
to take into account the transfers resulting from closing the
virtual channel. Note that an honest γ.Ingrid will normally
close the virtual channel in at most 6 rounds (one round is
needed to obtain the WP ’s and at most 5 rounds to finish
the update of βP ’s). Pessimistically (i.e. when γ.end-users
delay the execution) γ.Ingrid learns both (WP , SP )’s in Step
3 in time at most γ.validity + 2∆ + 1. This is because in the
worst case γ.Ingrid has to send the timeout message to the
contract in time at least ∆ + 1, (see Step 1.c, Fig. 3), and the
reaction of the contract can take another ∆ rounds. If this does
not happen then in the next round (i.e. γ.validity + 2∆ + 1)
each party P ∈ γ.end-users sends (in Step 4.c, Fig. 2 (B))
a ∆-forced reply message (vc-close-timeout, zγ.Ingrid) to the
contract. The contract receives it (in Step 3) after at most
∆ rounds, i.e. in round at most γ.validity + 3∆ + 1, and
check if γ indeed has not been closed. This is done by
sending a message (vc-closing, γ.id) to γ.Ingrid. If γ.Ingrid
proves that γ has been closed (by sending a closing certificate
on γ to the contract) then the contract concludes that P is
cheating (see Sect. IV-2) and closes this contract instance.
Otherwise, after time ∆ passes P sends to the contract a
(timeout) message and the contract concludes that γ.Ingrid is
cheating. The contract instance is then closed in time at most
γ.value + 5∆ + 1. Hence the entire closing procedure takes
time at most 5∆ + 1 in the pessimistic case.
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(A) The contract for channel β opening:
Upon receiving a contract constructor message (lc-open, β) with β.balance(β.Alice)) coins from β.Alice:
Start a new contract instance with identifier β.id. Send a message (lc-opening, β) to β.Bob and wait for one of the following
to happen:
1) You receive a message (lc-open) together with β.balance(β.Bob) coins from β.Bob:
Let transfers : β.end-users→ R be a transfer function initially equal to 0 on both inputs. Send a message (lc-opened) to
β.end-users and go to “Contract execution” below.

2) You receive a message (timeout) from β.Alice in time at least ∆ after you sent the message to β.Bob: close the contract
and send a message (lc-not-opened) together with β.balance(β.Alice) coins to β.Alice.

(B) The contract C(id) execution:

Assumption: for every channel δ each party P can send at most one message of a given type that concerns δ.
Wait for messages from parties β.end-users. Consider the following cases.
1) You receive a message (vc-close-init, (γ, σ)) from γ.Ingrid in time at least γ.validity + 2 (where (γ, σ) is an opening
certificate of P := β.other-party(γ.Ingrid) on γ) and γ has not been marked as closed — then send a message
(vc-close-init, γ.id) to P and wait for one of the following:
a) You receive a message (vc-already-closed, z) from P , where z is closing certificate of β.other-party(P ) on γ — in

this case mark γ as closed.
b) You receive a message m := (vc-close,W,SignP (W )) from P (where W is a version of γ signed by γ.other-party(P ))

— then send m to γ.Ingrid.
c) You receive a message (timeout) from γ.Ingrid in time at least ∆ after you sent the message (vc-close-init, γ.id) —

in this case go to subroutine (C) below.
2) You receive a message m := (vc-close-final, (γ, σ), (W γ.Alice, Sγ.Alice), (W γ.Bob, Sγ.Bob)) from γ.Ingrid where (γ, σ) is
an opening certificate of P := β.other-party(γ.Ingrid) on γ, each WP is a version of γ signed by γ.other-party(P ), and
SP is a signature of P on W (or is equal to ⊥ if W is the initial version of γ), and γ has not been marked as closed —
send message m to P and wait for one of the following to happen:
a) You receive a message (vc-already-closed, z) from P , where z is a signed tuple containing a string “channel γ.id
closed” — in this case do nothing.

b) You receive a message (timeout) from γ.Ingrid in time ∆ + 1 after you sent m to P — in this case go to subroutine
(C) below.

3) You receive a message (vc-close-timeout, (γ, σ)) from P ∈ γ.end-users in time at least γ.validity + 2∆ + 2 where
(γ, σ) is an opening certificate of γ.Ingrid on γ and γ has not been marked as closed) — send a message (vc-closing, γ.id)
to γ.Ingrid and wait for one of the following to happen:
a) You receive a message (vc-already-closed, z) from γ.Ingrid, where z is a closing certificate of β.other-party(P ) on γ

— in this case do nothing.
b) You receive a message (timeout) from P in time at least ∆+1 after you sent the (vc-closing, γ.id) message to γ.Ingrid

— in this case go to subroutine (C) below.
4) You receive a message (lc-close, V ) from P , where V = (γP , vP , ε, σ) is a version of β signed by P ′ = β.other-party(P )
— send a message (lc-closing) to P ′ and wait for one of the following to happen:
a) P ′ replies with (lc-close, V ′) where V ′ is a version of β signed by P ′ = β.other-party(P ) — let balance :=
Win(V, V ′) + transfers. For P̂ ∈ β.end-users send balance(P̂ ) coins to P̂ ’s account on the ledger together with a
message (lc-closed), and close the contract.

b) In time τ party P ′ replies with a message (vc-active, z), where z is an opening certificate of P on some channel γ
constructed over β and τ ≤ γ.validity + 5∆ — in this case do nothing.

c) You receive a message (timeout) from P in time ∆ + 1 after you sent the (lc-closing) message to P ′ — let
balance := γP .balance + transfers. For P̂ ∈ β.end-users send balance(P̂ ) coins to P̂ ’s account on the ledger together
with a message (lc-closed), and close this contract instance.

(C) Subroutine for closing a virtual channel when cheating by party P is detected:

Let x := γ.balance(γ.Alice) + γ.balance(γ.Bob). Remove x coins from P ’s account in transfer and add x coins to
β.other-party(P )’s account in transfer. Mark γ as closed. Send a message (vc-closed) to both β.end-users.

Fig. 3: Functionality C. For an explanation of (A) see the beginning of Sect. IV, for (B) see Sections IV-A and IV-B, and for
(C) — Sect. IV-2.
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APPENDIX

A. Implementation

We created a simple proof of concept implementation of the
functionality C. We wrote it in Ethereum using the program-
ming language Solidity. The source code is publicly available
on github.com/PerunEthereum/Perun.

Our main goal was to illustrate feasibility of our protocols
and the underlying smart contracts. To this end, our implemen-
tation follows closely the protocol from Fig. 3. More precisely,
the LedgerChannel contract from the implementation corre-
sponds to the ledger channel and its functions correspond to
messages of the functionality C from Fig. 3. The contact uses
as subroutine an external contact called LibSignatures. The
role of this contract is that it provides verification of signatures
which is not available a-priori in Solidity.

Recall that when an Ethereum user sends a transaction to
the Ethereum network he has to pay a transaction fee. The
fees in Ethereum are paid for contract creation, execution of
every operation and for storage. Fees are paid via an internal
currency called gas, where there is an exchange rate between
Ethereum’s currency Ether and the internal fee currency gas.
A sender of a transaction chooses the exchange rate, typically
between 2 · 10−9 Ether (in this case the transaction waiting
time is about 5 minutes) and 2 · 10−8 Ether (in this case
the waiting time is about 30s). In our calculation we use the
exchange rate 1 gas = 4 · 10−9 Ether corresponding to a
waiting time of about 50s.

In our proof-of-concept implementation the transaction fees
are rather high. The highest fee is paid for LedgerChannel
contract creation — it costs about 0.011 Ether. Fortunately,
contract creation only has to be done once when the channel
is set-up. The fees for calling contract functions vary between
10−5 and 10−4 Ether. We emphasize that in our prototype
implementation we were not aiming at optimizing transaction.
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There are several ways in which we could lower the fees.
For instance, we could significantly lower fees by creating a
contract LedgerChannelsSpace, that has to be deployed only
once, and all LedgerChannels could be created inside it by
calling its functions. We leave further optimizing transaction
fees as an important question for future work.

B. Further related works

Various other micropayment schemes have been constructed
in [19, 17, 13, 15, 6, 12]. The most widely discussed recent
proposals for the channel networks are Lightning and Raiden.
Both of them are routing payments using the interactive mech-
anism based on the hashlocked transactions. A very interesting
construction for creating chains of ledger channels has recently
been proposed in [14]. Their focus is on different aspect
of channel creation than us, namely they do not attempt to
remove the interaction with the intermediaries, but on making
th pessimistic time of channel closing constant (which is better
than the linear time in [16, 18]). It would be interesting
to combine virtual channels with the techniques developed
in [14]. For an overview of the techniques for dealing with
the scalability problem in blockchain-based cryptocurrencies
see, e.g., [12].

C. Extensions and future work

In order to keep the exposition as simple as possible, we
did not include in the description of our protocol several
optimizations. We now briefly describe them below (their
complete formalization will appear in the extended version
of this work). The first of these natural improvements is as
follows. In our scheme every party P needs to remember
the closing certificates of all the virtual channels (over some
ledger channel β) that were closed in the past. This is because
it may happen that long time after a virtual channel is closed
a malicious β.other-party(P ) party attempts to close it again,
and P has to react by sending the closing certificate. This prob-
lem can be solved by adding a time limit (γ.validity+5∆+1)
to when a user can ask the channel contract to close a virtual
channel. Such a restriction will not harm the honest users (as
anyway every virtual channel has to be closed before that
time). Hence, parties will only have to remember the closing
certificates for limited amount of time.

An additional shortcoming of our construction is the fact
that the intermediaries need to block the coins that are used for
constructing virtual channels. This can be addressed by slightly
relaxing the security guarantees. Namely, we can replace the
full cheating-resilience (that has been assumed in this work),
by a weaker notion of “cheating-evidence”. More precisely, the
security guarantee in this case would be: “if an intermediary
cheats then you can either get your money back, or you can
post an evidence of the cheating on the blockchain”. Hence
the risk that one gets cheated by an intermediary that has
been functioning for a long time already is low, and probably
acceptable in practice in case of transactions of small financial
value.

Another obvious problem is the need for permanent online
availability by the parties, since they need to constantly
monitor the network to see if the other party did not submit
and old version of the channels. Again, this problem appears
also in other payment networks, and solutions for this exists
(e.g. network monitoring can be outsourced) [16]. Observe
also that sometimes it can make sense to allow more generous
network delay times to small users, than to the payment hubs.
In our simplified presentation the “waiting time” ∆ is the same
for all the users), but technically there will be no problems
with having different waiting times for different users.

One natural question is if one can have longer virtual
channels that are (a) longer, (b) have a state (see [1] for
an introduction to state channels). It turns out that this is
possible, and in fact these two questions are closely related.
More precisely: if one constructs virtual state channels, then
one can apply our idea recursively for an arbitrary number
of times obtaining virtual channels of arbitrary length. For-
mally modeling this idea, constructing protocols, and proving
security is beyond the scope of this work is contained in a
subsequent paper.

D. The financial ledger functionality

The financial ledger functionality has already been de-
scribed informally in Sect. III. Formally it is depicted on
Fig. 4. It is initiated by the environment Z that preloads the
parties with coins. The financial operations are performed by
the ideal functionalities Channels and C by sending “add” and
“remove” messages. We say that a functionality Channels or C
adds y coins to (or removes y coins from) P ’s account on the
ledger if it sends a message (add, P, y) (or, (remove, P, y),
respectively), to the financial ledger functionality. Recall also
(see Sect. III) that we assume that the simulator is allowed
to freely remove money from the accounts of corrupt parties
and to add them to the accounts of other (corrupt or honest)
parties. This is used in the simulation, e.g., when a corrupt
party got caught on cheating and all the coins in a channel get
transferred to the other (honest) party (see Fig. 3 (C)).

E. Restrictions on the environment

Here we list the restrictions on the environment that were
already described informally in Sect. III-C.

1) The environment Z never asks the parties to open a
channel γ such that γ.id already exists in Σ.

2) The environment Z never asks the parties to open chan-
nels (ledger or virtual) when they have not enough funds
available.

3) If the environment Z asks the parties to open a virtual
channel γ then the channel with identifiers specified in
γ.subchan exists in Σ, and no closing procedure for them
has been initiated.

4) The environment never asks to close a ledger channel in
time earlier than γ.validity+5∆ where γ is a virtual chan-
nel whose opening has been initiated by the environment
(even if this opening was unsuccessful).
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Functionality L

The global functionality L is running with a set P of
parties P1, . . . , Pn and an adversary A. It accepts queries
of the following types:

Initialization

The functionality is initialized by a message
(x1, . . . , xn) ∈ Rn≥0 that describes the initial coin
distribution and comes from Z . The functionality stores
this tuple.

Adding coins

Upon receiving a message (add, Pi, y) (for Pi ∈ P and
y ∈ R≥0) let xi := xi + y.

Removing coins

Upon receiving a message (remove, Pi, y) (for Pi ∈ P
and y ∈ R≥0): if xi < y then do nothing, and otherwise
let xi := xi − y.

Fig. 4: The financial ledger functionality L.

5) If the environment Z asks one of the parties P ∈
δ.all-users to open a (ledger or virtual) channel δ (by
sending a message lc-open, or vc-open, respectively),
then it ask all the other parties in δ.all-users to do the
same (by sending the same message to them in the same
round).

6) The environment Z does not perform (or confirm) any
update procedures for channels whose closing has been
initiated.

7) If a previous update of a channel δ failed, then Z will
not request a new update of δ.

8) For every channel δ that the environment Z asks to open
the identifier δ.id is unique.

9) The environment always confirms an update that it ini-
tiated, and never confirms an update that she did not
initiate, i.e., Z sends to P ′ a message (update-ok) as
a reply to (update-requested, id , θ, α) if only only if
1 round earlier Z did not send (update, id , θ, α) to P
(cf. Fig. 5, Point (D)).

A consequence of these restrictions is that in our protocol
we can assume that all the honest parties have the same view
on what channels should be open. For example: β.Alice knows
that if she received a (vc-open, β) message from Z then
β.Bob also received such a message (in the same round). This,
in particular, means that if β.Bob refuses to participate in the
procedure of opening channel β then she must be corrupt.

F. Formal security definition

To formally define security we define two random vari-
ables denoting the output of Z in the real and ideal world.
More precisely, we denote the output of the environment
Z in the real world execution of a protocol channels in
presence of an ideal functionality C and an adversary A by
EXECZ,Achannels,C(λ). Here λ denotes the security parameter.
Notice that EXECZ,Achannels,C(λ) is in UC terminology often also
called the C hybrid world. In the ideal world, the parties
simply forward their inputs to the ideal functionality Channels
(see Fig. 5). The output of the environment after an ideal
execution against an ideal-world adversary S (often called a
simulator) with security parameter 1λ is in this case denoted
IDEALZ,SChannels,S(λ). We are now ready to state our main
security definition.

Definition 1: We say that a protocol channels and an ideal
functionality C implements the ideal functionality Channels if
for every adversary A, there exists a simulator S such that for
every environment Z (from the class described in Sect. III-C)
we have that

{EXECZ,Achannels,C(λ)}λ

is computationally indistinguishable from

{IDEALZ,SChannels,S(λ)}λ.

G. Security analysis

In the section we prove sketch the proof of the following
theorem (its complete proof will be provided in the extended
version of this paper).

Theorem 1: The protocol channels and an ideal functional-
ity C constructed in Sect. IV implement the ideal functionality
Channels.
Proof sketch. We have already informally argued about the
security of our scheme while presenting it in Sect. IV. Here we
focus on describing the simulator S for some fixed adversary
A. Recall that S interacts with the environment Z and the ideal
functionality Channels (via the so-called “dummy” parties, see
[4]), and its goal is to “emulate” the behavior of A for the
environment.

At the beginning the simulator S starts the adversary A
and corrupts the parties that A corrupts (for simplicity we
assume that A is static, i.e., he decides whom to corrupt at the
beginning of the execution of the protocol). The simulator also
generates the (public key, private key) pairs for all the users.
He passes the public keys of all the users to the corrupt users,
and to each corrupt Pi he also sends his private key ski. Then
S simulates the behavior of A, and watches the instructions
of A to the corrupt parties. Depending on the behavior of the
simulated A the simulator sends inputs of his choice to the
Channels functionality.

To make it impossible to distinguish between the simulated
and the real execution, the simulator needs to emulate the
messages sent to the corrupt parties by the C functionality
and by the other (honest) parties. Recall also that the adversary
A “controls the network” meaning that he decides when the
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(A) Opening a ledger channel:

Upon receiving a message (lc-open, β) from β.Alice with β.balance(β.Alice) coins in round τ , where β is a ledger channel,
proceed as follows:

1) Within round τ + ∆ remove xA := β.balance(β.Alice) coins from β.Alice’s account on the ledger L.
2) If within time ∆ after Step 1 was completed you receive a message (lc-open, β) from party β.Bob, then remove

xB := β.balance(β.Bob) coins from β.Bob’s account on the ledger L, and add β to Σ. Output (lc-opened) to parties
in β.end-users and to the simulator S, and stop.
Otherwise within time 2∆ after Step 1 was completed add xA coins to the account of β.Alice on the ledger L and
(lc-not-opened) to β.Alice.

(B) Opening and closing a virtual channel:

1) Upon receiving a message m = (vc-open, γ) (where γ is a virtual channel) from all the parties in γ.all-users (within
2 rounds), do the following:

a) for P ∈ γ.end-users remove γ.balance(P ) coins to P ’s account in Σ(γ.subchan(P )).
b) remove γ.balance(γ.Bob) coins from the account of γ.Ingrid in Σ(γ.subchan(γ.Alice)), and γ.balance(γ.Alice) coins

from the account of γ.Ingrid in Σ(γ.subchan(γ.Bob)).
Then add γ to Σ, output (vc-opened) to the parties in γ.all-users, and go to Step 2.
If within 2 rounds (from receiving m for the first time) you do not receive m from all the parties in γ.all-users then
output vc-not-opened to them and stop.

2) Wait until round γ.validity (in the meanwhile accepting the “channel update” requests that concern γ, see below).
When this round comes let γ̂ := Σ(γ.id) be the current version of γ, and execute the following operations within round
γ.validity + 5∆ + 1:

a) for P ∈ γ.end-users add γ̂.balance(P ) coins to P ’s account in Σ(γ.subchan(P )).
b) add γ̂.balance(γ.Bob) coins to the account of γ.Ingrid in Σ(γ.subchan(γ.Alice)), and γ̂.balance(γ.Alice) coins to

the account of γ.Ingrid in Σ(γ.subchan(γ.Bob)),
Output (vc-closed) to the parties γ.all-users and erase γ̂ from Σ.

(C) Ledger/virtual channel update:

Upon receiving a message m := (update, id , θ, α) (such that there exists a channel δ ∈ Σ with identifier id ) from a party
P ∈ δ.end-users. Send a message (update-requested, id , θ, α) to P ′ := δ.other-party(P ).
Once P ′ replies with a message (update-ok) replace δ in Σ with a channel δ̂ that is equal to δ, except that
δ̂.balance := δ.balance + θ and send (updated) to P .

(D) Ledger channel closing:

Upon receiving a message (lc-close, id) (such that there exists a ledger channel β ∈ Σ with identifier id ) from a party
P ∈ β.end-users do the following:

1) If there exists open virtual channels built over β, then ignore this message.
2) Otherwise within time ∆ add β.balance(β.Alice) coins to β.Alice’s account on L, and β.balance(β.Bob) coins to

β.Bob’s account on L, respectively. Erase β from Σ and send (lc-closed) to the parties in β.end-users and to the
adversary.

Fig. 5: Functionality Channels run by a set of parties P := {P1, . . . , Pn} and an adversary A. The functionality maintains a
channel space Σ that is initially empty. See Sect. III-B for a informal description of these procedures.

messages are delivered, subject to some timing constraints. In
particular, we assumed that sending message to C takes time
at most ∆. In our protocol the honest parties always send
messages to C early enough so that they reach C before its
“too late” (e.g. an honest β.Bob always sends the lc-opening

message to C immediately after receiving message lc-open
from β.Alice in Step 2.2 on Fig. 1 (A)). On the other hand,
the corrupt parties, may send such messages at any time they
want. Therefore our simulator has to observe the network and
watch how much delay A introduces when delivering a given
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message m to C, and based on this decide whether m was
delivered “on time” or not.

Below we describe how different parts of the channels

protocol are handled by the simulator. Observe that the only
non-trivial cases are when some of the parties participating in
a given part of the protocol (eg.: β.end-users or γ.all-users) are
corrupt and some are honest. This is because the case when all
of them are corrupt is easy to handle, since the simulator can
just internally simulate the execution of corrupt parties, and
then take care of distributing coins that result from this (recall
that he has power to freely transfer coins between the honest
parties). It is also easy (by inspecting the protocol) that if all
the parties are honest then they perfectly emulate the execution
of the ideal functionality.

a) Ledger channel opening.
This part starts when Z sends an (lc-open, β) message to

both β.end-users in some round τ . Simulating it is straightfor-
ward: the simulator simply simulates the contract functionality,
plays the role of the honest party to the corrupt one, and
removes the coins from the ledger when the parties send
messages with coins to the contract (and refunds this money
to β.Alice if the channel is not open).

b) Channel updating.
The part for updating a ledger or virtual channel δ starts

when Z sends an m = (update, id , θ, α) message to the
update initiator P ∈ δ.end-users. If P is corrupt then S sends
m to P . If in the next round P sends the updating message
to P ′ := δ.other-party(P ) (with all the parameters computed
correctly) then S sends m (in the name of P ) to the ideal func-
tionality Channels. Then in the next round S sends to P the
confirmation message from P ′ (recall that by Restriction 9 we
assumed that the environment always confirms such updates).
Note that this requires signing messages with P ′ private key,
but S can do it, since he knows the private keys of all the
parties.

Simulating the update procedure is a bit more tricky in case
when the initiator P is honest and the confirmer P ′ is corrupt.
This is because the confirmer may not send his signature on
the updated channel state back to P , but, since he already
knows P ’s signature on it, he can use it when the channel is
closed.

We distinguish two cases. The first case is when the transfer
is beneficial to P ′, i.e., θ(P ′) > 0. In this case we will assume
that even if P ′ does not immediately send her signature on
the updated state to P then the update did happen. Intuitively,
this is because any “rational” P ′ will use this new updated
state during the channel closing. Hence the simulator sends
(update-ok) in the name of P ′ to the ideal functionality
Channels, no matter if P ′ sends his signature on the new state
to P or not. Of course, an “irrational” P ′ can still use the old
channel state when the channel is closed, and get less coins
than he could get by posting the newest version of the state.
This is not a problem, since the simulator can always remove
these extra coins from the account of P ′ and move them to
the account of P immediately after channel closing has been
performed.

The case when θ(P ′) ≤ 0 is symmetric. In this case, if the
simulated corrupt P ′ does not send his confirmation on the
update immediately to P , then the simulator does not send
(in the name of P ′) the message (update-ok) to the ideal
functionality Channels. In other words, we make P conclude
that P ′ did not accept a transfer that was beneficial to P .
Again, it can happen during the channel closing that P ′ will
use the newer version (“against his own financial interest”).
This again can be corrected by the simulator S transferring
the coins from P ′ to P immediately after channel closing.

c) Ledger channel closing.
This part starts when Z sends to P a message

(lc-close, id). It can also be started by a corrupt user of
a ledger channel β whenever the adversary instructs him to
do so. As in the case of channel opening the simulation is
also straightforward: the simulator simply simulates the other
parties and the contract functionality for the corrupt party,
and sends the lc-close message Channels once P successfully
closes a channel. The only thing that we need to remember
is that if a corrupt P̂ ∈ β.end-users may submit a version of
a channel that is less beneficial for him, but newer, than the
latest version that the other user of β submits (see above). As
described above, in this case S simply moves the appropriate
amount of coins from P̂ ’s account in the ledger to the account
of β.other-party(P̂ ) to “correct” this difference.

d) Virtual channel opening
This part starts when Z sends a message (vc-open, γ) to

all parties in γ.all-users. The simulation proceeds as in the
previous cases, i.e., the simulator simulates the behavior of the
corrupt parties, and emulates the honest parties for them. When
the simulated honest parties output a (vc-opened) message
then the simulator sends the (vc-open, γ) message in the
name of corrupted P ∈ γ.all-users to the ideal functionality
Channels and lets the ideal functionality immediately output
(vc-opened) to all the users. This is ok, since, as we argued
while presenting the protocol, the honest parties will always
agree on whether the channel has been opened or not.

e) Virtual channel closing
Closing of virtual channel starts automatically when time

γ.validity comes. As argued in Sect. IV-B the virtual channel
is always closed, as long as at least one party on γ.all-users is
honest. Again, the simulator simulates the corrupt parties, and,
depending on their behavior instructs the ideal functionality
Channels to send the (vc-closed) message in the right mo-
ment to the honest parties (in time at most γ.validity+5∆+1).

In the extended version of this paper we will provide
a complete description of the simulator, and the argument
why the output {IDEALZ,SChannels,S(λ)}λ in the ideal world is
computationally indistinguishable from the real-world output
{EXECZ,Achannels,C(λ)}λ. 2
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