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Abstract. In this work, we describe an integer version of ring-LWE
over the polynomial rings and prove that its hardness is equivalent to
one of the polynomial ring-LWE. Moreover, we also present a public key
cryptosystem using this variant of the polynomial ring-LWE.
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1 Introduction

Many cryptographic schemes based on discrete logarithms and integer factoring
problems are no longer secure once the quantum computer becomes a reality.
This is because Shor [21] presented an efficient quantum algorithm that solves
these hard problems. Currently, the most promising quantum-safe works are
based on the hardness of lattice problems like LWE-based cryptosystems [20],
Ring-LWE-based cryptosystems [13] and NTRU [11].

Compared with LWE, RLWE over the polynomial rings has an advantage of
efficiency. This is because the LWE-based cryptographic schemes have key sizes
and computation times that are at least quadratic in the security parameter.
To improve the efficiency of these schemes, Lyubashevsky, Peikert, and Regev
[13] defined a ring-based variant of LWE (RLWE) that uses algebraic structure,
and described a polynomial time quantum reduction from worst-case problems
on ideal lattices to the decisional RLWE. The LWE-based schemes can directly
adapt to the RLWE-based analogues, whose key sizes and computation times
reduce to almost linear in the security parameter. Furthermore, in recent years,
several new cryptographic schemes have been proposed around the RLWE prob-
lem [4,6,14,15].

However, the RLWE over the polynomial rings also has some shortcomings.
First, we can not compare the hardness relationship between the RLWE prob-
lems over the different polynomial rings. Second, there exist some weak RLWE
instances over the polynomial rings, although these instances do not appear in
RLWE-based applications [8,19,9]. Third, for the RLWE problems over the dif-
ferent polynomial rings, their computational efficiency is different and needs to
be re-optimized implementation for each of them.

This work is the first step in trying to solve the above problems. That is,
we describe an integer version of the ring-LWE over the polynomial rings and
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unify the framework of RLWEs over the different polynomial rings. We observe
that the integer version of the hard problem recently appeared in the work [2].
In [2], Aggarwal, Joux, Prakash, and Santha proposed a new public-key cryp-
tosystem (AJPS) using an integer version of NTRU, whose security relies on
the conjectured hardness of the Mersenne low hamming ratio assumption. How-
ever, Beunardeau, Connolly, Géraud, and Naccache [3] presented an algorithm
that recovers the secret key from the public key much faster than the security
estimates in [2].

1.1 Our contribution

Our main contribution is to describe an integer variant of ring-LWE over the
polynomial ring and show that its hardness is equivalent to that of the polyno-
mial ring-LWE.

In the RLWE problem, given q a prime integer, and a list of samples (al,bl =
als + el) ∈ R2

q , where Rq = Zq[x]/〈xn + 1〉, s ∈ Rq, al ∈ Rq are chosen inde-
pendently and uniformly from Znq , and el is chosen independently according to
the probability distribution χ = DZn,σ, find s. In the first variant of LWE, s
is chosen from the error distribution χ rather than uniformly at random, the
choice of other parameters remains unchanged. This variant becomes no easier
to solve than the decisional LWE [17,1].

In this work, we introduce an integer version of RLWE over the polynomial
rings (I-RLWE). In the I-RLWE problem, we replace x with q and convert RLWE
into I-RLWE. Given p = qn + 1, we draw many samples (al, bl = als+ el) ∈ Z2

p,

where al, s ← Rq, el ← DZn,σ, and al =
∑n

i=0
al,iq

i, s =
∑n

i=0
siq

i, el =∑n

i=0
el,iq

i, the problem is to find s. Similarly, we can also generate a variant

by sampling from the error distribution s ← χ and generating s. For this case,
we also call to sample s from χ.

Our second contribution is to present a public key cryptosystem (PKC) based
on I-RLWE. Given a sample of I-RLWE (a, b = as+ 2e) ∈ Z2

p that samples s, e

from the error distribution χ, and plaintext m =
∑n

i=0
miq

i with m ∈ {0, 1}n,

one first chooses r, e1, e2 from χ, and generates a ciphertext as (c1 = [ar +
2e1]p, c2 = [br + 2e2 + m]p). To decrypt the ciphertext (c1, c2), one computes

c = [c2 − c1s]p = [2e2 +m− 2e1s]p =
∑n

i=0
ciq

i, and recovers the plaintext m

from c. This is because all ci’s that only depend χ are “small”. Concrete details
see Section 4.

Organization. Section 2 recalls some background. Section 3 describes an
integer variant of RLWE and shows its hardness. Section 4 presents a public key
cryptosystem using this variant of RLWE.
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2 Preliminaries

2.1 Notations

Let Z,Q,R denote the ring of integers, the field of rational numbers, and the
field of real numbers. Let n be a positive integer and power of 2. Notation
[n] denotes the set {1, 2, ..., n}. Let R = Z[x]/〈xn + 1〉, Rq = Zq[x]/〈xn + 1〉,
and K = Q[x]/〈xn + 1〉. Vectors are denoted in bold lowercase (e.g. a), and
matrices in bold uppercase (e.g. A). We denote by aj the j-th entry of a vector
a, and ai,j the element of the i-th row and j-th column of A. We denote by
‖a‖2 (abbreviated as ‖a‖) the Euclidian norm of a. For A ∈ Rd×d, we define
‖A‖ = max{‖ai,j‖, i, j ∈ [d]}, where ‖ai,j‖ is the Euclidian norm corresponding
to the coefficient vector of ai,j .

We denote [a]q = a mod q ∈ [0, q − 1] throughout this work. Similarly, for
a ∈ Zn (or a ∈ R ), [a]q denotes each entry (or each coefficient) [aj ]q ∈ [0, q− 1]
of a (or a).

2.2 Lattices and Ideal Lattices

An n-dimensional full-rank lattice L ⊂ Rn is the set of all integer linear com-

binations
∑n

i=1
yibi of n linearly independent vectors bi ∈ Rn. If we arrange

the vectors bi as the columns of matrix B ∈ Rn×n, then L = {By : y ∈ Zn}.
We say that B spans L if B is a basis for L. Given a basis B of L, we define
P (B) = {By|y ∈ Rn and yi ∈ [−1/2, 1/2)} as the parallelization corresponding
to B. We let det(B) be the determinant of B.

Given g ∈ R, we let I = 〈g〉 be the principal ideal lattice in R generated by
g, whose Z-basis is Rot(g) = (g, x · g, ..., xn−1 · g).

Given c ∈ Rn , σ > 0, the Gaussian distribution of a lattice L is defined
as DL,σ,c = ρσ,c(x)/ρσ,c(L) for x ∈ L , where ρσ,c(x) = exp(−π‖x − c‖2/σ2)),

ρσ,c(L) =
∑

x∈L
ρσ,c(x). In the following, we will write DL,σ,0 as DL,σ . We

denote a Gaussian sample as x ← DL,σ (or d ← DI,σ ) over the lattice L (or
ideal lattice I ).

Micciancio and Regev [16] introduced the smoothing parameter of lattices.
For an n-dimensional lattice L, and positive real ε > 0, we define its smoothing
parameter ηε(L) to be the smallest s such that ρ1/s(L

∗\{0}) ≤ ε, where L∗ is
the dual lattice of L.

Lemma 2.1 (Lemma 3.3 [16]). For any n-dimensional lattice L and posi-
tive real ε > 0, ηε(L) ≤

√
ln(2n(1 + 1/ε))/π · λn(L).

Lemma 2.2 (Lemma 4.4 [16]). For any n-dimensional lattice L, vector
c ∈ Rn and reals 0 < ε < 1, s ≥ ηε(L), we have

Pr
x←DL,s,c

{‖x− c‖ > s
√
n} ≤ 1 + ε

1− ε
· 2−n.
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2.3 Ring-LWE in Polynomial Rings

Throughout this paper, we only consider the integer version of ring-LWE for the
special ring R. However, we notice if the expansion factor of a polynomial ring
R = Zq[x]/〈f(x)〉 is small, then one can directly generate the integer version of
this ring using our method. For the ring-LWE defined by the number fields [13],
we will further study their integer versions.

For simplicity, we define the ring-LWE over the polynomial rings. We sample
a secret s ∈ R from some Gaussian distribution instead of uniform distribution
over Rq, since the latter is easily be transformed into the former [17,1].

Definition 2.3 (Ring-LWE Distribution). Let Ψ be a Gaussian distri-
bution with parameter σ over R. Given a secret s ← DZn,σ, a sample from the
ring-LWE distribution As,σ over Rq × Rq is generated by choosing a ← Rq,
e← DZn,σ, and outputting (a,b = as + e) ∈ Rq ×Rq.

Definition 2.4 (Computational Ring-LWE). The computational ring-
LWE problem, denoted RLWEq,σ, is defined as follows: given arbitrary many
independent samples from As,σ, find s.

Definition 2.5 (Decisional Ring-LWE). The decisional ring-LWE prob-
lem, denoted DRLWEq,σ, is to distinguish with non-negligible advantage between
arbitrary many independent samples from As,σ, and the same number of uni-
formly random and independent samples from Rq ×Rq.

According to [7], the ring-LWE over the polynomial ring R = Z[x]/〈xn + 1〉
is equivalent to the hard ring-LWE defined in [13].

Lemma 2.6 (Theorem 3.6 [13]). Let K be the mth cyclotomic number
field having dimension n = ϕ(m) and R = OK be its ring of integers. Let
α <

√
log n/n, and q ≥ 2, q = 1 mod m be a poly(n)-bounded prime such

that αq ≥ ω(
√

log n). Then there is a polynomial-time quantum reduction from
O(
√
n/α)-approximate SIVP (or SVP) on ideal lattices in K to DRLWEq,σ,

where σ = α(n/ log n)1/4.

3 Integer version of Ring-LWE

Here we describe an integer variant of the ring-LWE over the polynomial rings,
and prove that its hardness is equivalent to that of the polynomial RLWE.

For simplicity, let n be the security parameter, q > n3 be a prime, p = qn+1,
χ be a Gaussian distribution with parameter σ =

√
n over R, unless otherwise

stated.

Definition 3.1 (I-RLWE Distribution). Given a secret s =
∑n−1

i=0
siq

i

with s ← DZn,σ, a sample from the I-RLWE distribution As,σ over Zp × Zp is

generated by choosing at random a← Zp, e =
∑n−1

i=0
eiq

i with e← DZn,σ, and

outputting (a, b = as+ e) ∈ Zp × Zp.
Definition 3.2 (Computational I-RLWE). The computational integer

ring-LWE problem, denoted I-RLWEq,σ, is defined as follows: given arbitrary
many independent samples from As,σ, find s.
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Definition 3.3 (Decisional I-RLWE). The decisional integer ring-LWE
problem, denoted I-DRLWEq,σ, is to distinguish with non-negligible advantage
between arbitrary many independent samples from As,σ, and the same number
of uniformly random and independent samples from Zp × Zp.

Before giving the hardness of I-RLWE, we first prove the following several
lemmas.

Given an element f ∈ R, if all coefficients fi, i ∈ {0, · · · , n− 1} of f are small,
then we can generate an integer modulo p corresponding to f.

Lemma 3.4 Suppose that f =

[∑n−1

i=0
fiq

i

]
p

=
∑n−1

i=0
hiq

i with |fi| <

q/2− 1. Then

hi = [fi − hi−1]q =

{
fi − hi−1 fi − hi−1 ≥ 0

fi − hi−1 + q fi − hi−1 < 0

where for i ∈ [n− 1],

hi−1 =

{
0 hi−1 ≤ q/2
1 hi−1 > q/2

;

for i = 0,

h−1 = hn−1 =

{
0 hn−1 ≤ q/2
−1 hn−1 > q/2

.

Proof. First, we determine hn−1 by fn−1 as follows:
Case 1: fn−1 < 0.
Since hn−1 = [fn−1 − hn−2]q and hn−2 ≥ 0, we have fn−1 − hn−2 < 0. So,

hn−1 > q/2 and h−1 = −1.
Case 2: fn−1 > 0.
By hn−2 ≤ 1, we get fn−1 − hn−2 ≥ 0. So, hn−1 < q/2 and hn−1 = 0.
Case 3: fn−1 = 0.
In this case, hn−1 depends on fn−2. h−1 = −1 when fn−2 < 0, and hn−1 = 0

when fn−1 > 0.
Similarly, if fn−2 = 0, then hn−1 recursively depends on fn−3, · · · , f1.
Now we use the induction method to prove the result.
For induction basis, consider i = 0.

If hn−1 = −1, then hn−1 > q/2. So, f =
∑n−1

i=0
hiq

i >
∑n−1

i=0
|fi|qi by

|fi| < q/2− 1. As a result, fn−1 < 0.

Again, by |fi| < q/2− 1, we have −p <
∑n−1

i=0
fiq

i < 0. Hence,

f =
∑n−1

i=0
fiq

i + p

=
∑n−1

i=0
fiq

i + qn + 1

= (fn−1 + q)qn−1 +
∑n−2

i=1
fiq

i + f0 + 1

= (fn−1 + q)qn−1 +
∑n−2

i=1
fiq

i + f0 − hn−1
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That is, h0 = [f ]q = [f0 − hn−1]q. Hence, if f0 − hn−1 < 0, then h0 =
f0 − hn−1 + q, otherwise h0 = f0 − hn−1.

If hn−1 = 0, then 0 ≤ hn−1 ≤ q/2. So, f =
∑n−1

i=0
hiq

i =
∑n−1

i=0
fiq

i by

|fi| < q/2− 1. Consequence, fn−1 ≥ 0. Hence, h0 = [f ]q = [f0]q = [f0 − hn−1]q.

By induction step, we assume that hi is correct for i ≤ k.

Now, we prove i = k + 1.

Since f =

[∑n−1

i=0
fiq

i

]
p

=
∑n−1

i=0
fiq

i + rp for some r ∈ {0, 1}, we have

[f ]qk+2 =

[∑n−1

i=0
fiq

i + rp

]
qk+2

=
[∑k+1

i=0
fiq

i + r
]
qk+2

=
∑k+1

i=0
hiq

i

.

If hk > q/2, then hk = 1 and fk−hk−1 < 0. So,−qk+1/2 <
∑k

i=0
fiq

i+r < 0

by |fi| < q/2− 1. That is,
∑k

i=0
hiq

i = qk+1 +
∑k

i=0
fiq

i + r. Thus,

[∑k+1

i=0
fiq

i + r
]
qk+2 =

[
(fk+1 − 1)qk+1 + qk+1 +

∑k

i=0
fiq

i + r
]
qk+2

=
[
(fk+1 − 1)qk+1 +

∑k

i=0
hiq

i
]
qk+2

=
∑k+1

i=0
hiq

i

Hence, we obtain hk+1 = [fk+1 − 1]q = [fk+1 − hk]q.

If hk < q/2, then hk = 0 and fk − hk−1 > 0. Similarly, we can get hk+1 =
[fk+1]q = [fk+1 − hk]q.

Given two ring elements f,g ∈ R, if their coefficients are all “small”, then
the corresponding integer of their product is equal to the product of their cor-
responding integers modulo p.

Lemma 3.5 Suppose that f =
[∑n−1

i=0
fiq

i
]
p
, g =

[∑n−1

i=0
giq

i
]
p

with

f← DZn,σ, g← DZn,σ. Then h = [fg]p =
∑n−1

i=0
hiq

i, where

hi =

[∑
[j+k]n=i

(−1)b(j+k)/ncfjgk − hi−1
]
q

,

hi−1 =

{
0 hi−1 ≤ q/2
1 hi−1 > q/2

, i ∈ [n− 1];

hi−1 = hn−1 =

{
0 hn−1 ≤ q/2
−1 hn−1 > q/2

, i = 0.
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Proof. By f =
[∑n−1

j=0
fjq

j
]
p
, g =

[∑n−1

k=0
gkq

k
]
p
, we have

h = [fg]p

= [
∑n−1

j=0
fjq

j ×
∑n−1

k=0
gkq

k]p

= [
∑n−1

i=0
aiq

i]p,

where ai =
∑

[j+k]n=i
(−1)b(j+k)/ncfjgk, i = 0, 1, · · · , n− 1.

By Lemma 2.2, |fj | < n, |gk| < n with overwhelming probability. So, we have

|ai| ≤
∑

[j+k]n=i
|fj ||gk| ≤ n3 < q/2− 1.

Hence, the result is directly obtained by Lemma 3.4.
In Lemma 3.5, we only consider the product of two ring elements with “small”

coefficients. However, in the RLWE problem, only the coefficients of one element
are “small” , the coefficients of another element are uniformly distributed modulo
q. So, in the following lemma, we give the relationship between the product of
the corresponding integers of two elements and the corresponding integer of the
product of two elements.

Lemma 3.6 Given a← Rq, s← DZn,σ, b = as ∈ Rq, suppose that

a =

[∑n−1

i=0
aiq

i

]
p

, b =

[∑n−1

i=0
biq

i

]
p

, s =

[∑n−1

i=0
siq

i

]
p

.

Then,

[as− b]p =
∑n−1

i=0
riq

i,

where {
|ri| < n2 − n+ 3 ri ≤ q/2
|ri − q| < n2 − n+ 3 ri > q/2

.

Proof. By b = as ∈ Rq, we have

bi =

[∑
[j+k]n=i

(−1)b(j+k)/ncajsk

]
q

=
∑

[j+k]n=i
(−1)b(j+k)/ncajsk + cbiq

Since s← DZn,σ, |sk| < n by Lemma 2.2. By a← Rq, |aj | < q. So

|
∑

[j+k]n=i
(−1)b(j+k)/ncajsk| 5

∑
[j+k]n=i

|aj ||sk|

5
∑

[j+k]n=i
(n− 1)|aj |

< n(n− 1)q
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Hence |cbi | < n(n− 1) + 1.

Let h = [as]p =
∑n−1

i=0
hiq

i. Then,

hi =

[∑
[j+k]n=i

(−1)b(j+k)/ncajsk + cbi−1
− hi−1

]
q

=
[
bi − cbiq + cbi−1

− hi−1
]
q

=
[
bi + cbi−1

− hi−1
]
q
,

where for i ∈ [n− 1],

hi−1 =


0 0 ≤ bi−1 + cbi−2

− hi−2 < q

1 bi−1 + cbi−2
− hi−2 < 0

−1 bi−1 + cbi−2
− hi−2 ≥ q

;

for i = 0,

h−1 = hn−1 =


0 0 ≤ bn−1 + cbn−2 − hn−2 < q

−1 bn−1 + cbn−2
− hn−2 < 0

1 bn−1 + cbn−2
− hn−2 ≥ q

.

Thus, we obtain

[as− b]p = [h− b]p

= [
∑n−1

i=0
(hi − bi)qi]p

=
[
(−cbn−1 + hn−1)q0 +

∑n−1

i=1
(cbi−1 − hi−1)qi

]
p

=
∑n−1

i=0
riq

i,

Since |cbi |+ |hi| < n2 − n+ 2 < q/2− 1, i ∈ {0, 1, · · · , n− 1}, so by Lemma
3.4

ri =

{
[−cbn−1

+ hn−1 + rn−1]q i = 0

[cbi−1
− hi−1 − ri−1]q i ∈ [n− 1].

where, for i ∈ [n− 1],

ri−1 =

{
0 ri−1 ≤ q/2
1 ri−1 > q/2

;

for i = 0,

r−1 = rn−1 =

{
0 rn−1 ≤ q/2
−1 rn−1 > q/2

.

The result follows by |cbi |+ |hi|+ |ri−1| < n2 − n+ 3.
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After the above preparations, we now come to the position of the main results
in this work. In the following Lemma 3.7, we convert a sample of RLWE into
a sample of I-RLWE, whose noise increases a n factor than that of the origin
RLWE sample. In contrast, in Lemma 3.8, we convert a sample of I-RLWE into
a sample of RLWE, also at the expense of increasing noise.

Lemma 3.7 Given a sample of RLWE (a,b
′

= as + e) ∈ Rq × Rq, there
exists a polynomial time algorithm, which transforms this sample into a sample
of I-RLWE (a, b

′
= as+ e

′
) ∈ Zp × Zp, such that

a =
∑n−1

i=0
aiq

i, b
′

=
∑n−1

i=0
b
′

iq
i, s =

∑n−1

i=0
siq

i,

e
′

=
∑n−1

i=0
e
′

iq
i,where

{
|e′i| < n2 + 6 e

′

i ≤ q/2
|e′i − q| < n2 + 6 e

′

i > q/2

Proof. We denote b = as ∈ Rq, and b
′

= b + e ∈ Rq.

Let h = [as]p =
∑n−1

i=0
hiq

i, b =

[∑n−1

i=0
biq

i

]
p

.

By Lemma 3.6,

[b− h]p = [
∑n−1

i=0
(bi − hi)qi]p =

∑n−1

i=0
riq

i,

where bi − hi = ri + kiq with ri ∈ [0, q − 1], |ki| ≤ 1.
By Lemma 2.2, |ei| < n. So, b

′

i = [bi + ei]q = bi + ei + diq such that |di| ≤ 1.

That is, b
′

=
∑n−1

i=0
b
′

iq
i =

∑n−1

i=0
(bi + ei + diq)q

i.

Hence,

[b
′
− as]p = [b

′
− h]p

= [
∑n−1

i=0
(b
′

i − hi)qi]p

= [
∑n−1

i=0
(bi + ei + diq − hi)qi]p

= [
∑n−1

i=0
((bi − hi) + ei + diq)q

i]p

= [
∑n−1

i=0
(ri + kiq + ei + diq)q

i]p

= [(r0 − kn−1 + e0 − dn−1)q0 +
∑n−1

i=1
(ri + ki−1 + ei + di−1)qi]p

=
∑n−1

i=0
e
′

iq
i

It is not difficult to verify e
′

i = ri+ki−1+ei+di−1−e
′

i−1, where for i ∈ [n−1],

e
′

i−1 =


0 0 ≤ ri−1 + ki−2 + ei−1 + di−2 + e

′

i−2 < q

1 ri−1 + ki−2 + ei−1 + di−2 + e
′

i−2 < 0

−1 ri−1 + ki−2 + ei−1 + di−2 + e
′

i−2 ≥ q
;
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for i = 0,

e
′

i−1 =


0 0 ≤ ri−1 + ki−2 + ei−1 + di−2 + e

′

i−2 < q

−1 ri−1 + ki−2 + ei−1 + di−2 + e
′

i−2 < 0

1 ri−1 + ki−2 + ei−1 + di−2 + e
′

i−2 ≥ q
.

Let r̃i =

{
ri ri ≤ q/2
ri − q ri > q/2

, and ẽ
′

i = r̃i + ki−1 + ei + di−1 − e
′

i−1.

Since |ei| < n, |ki−1| ≤ 1, |di−1| ≤ 1, |e
′

i−1| ≤ 1, and |r̃i| < n2 − n + 3 by

Lemma 3.6, we obtain |ẽ′i| < n2 + 6.
The proof is complete.
Lemma 3.8 Given a sample of I-RLWE (a, b

′
= as + e) ∈ Zp × Zp, there

exists a polynomial time algorithm, which transforms this sample into a sample

of RLWE (a,b
′

= as + e
′
) ∈ Rq ×Rq, such that{
|e′i| < n2 + 3 e

′

i ≤ q/2
|e′i − q| < n2 + 3 e

′

i > q/2

Proof. By a =
∑n−1

i=0
aiq

i, b
′

=
∑n−1

i=0
b
′

iq
i, s =

∑n−1

i=0
siq

i, we generate

a = (a0, a1, · · · , an−1),

b
′

= (b
′

0, b
′

1, · · · , b
′

n−1).

We denote b = as ∈ Rq, and b =
∑n−1

i=0
biq

i.

Let h = [as]p =
∑n−1

i=0
hiq

i. Then by Lemma 3.6,

hi =

[∑
[j+k]n=i

(−1)b(j+k)/ncajsk + cbi−1
− hi−1

]
q

=
[
bi + cbi−1

− hi−1
]
q
,

By e =
∑n−1

i=0
eiq

i, we get

b
′

= [as+ e]p

= [
∑n−1

i=0
(hi + ei)q

i]p

= [
∑n−1

i=0
(bi + cbi−1 − hi−1 + ei)q

i]p

=
∑n−1

i=0
b
′

iq
i

Hence, b
′

i = bi + cbi−1
− hi−1 + ei + b

′

i−1, where for i ∈ [n− 1],

b
′

i−1 =


0 0 ≤ bi−1 + cbi−2 − hi−2 + ei−1 + b

′

i−2 < q

1 bi−1 + cbi−2
− hi−2 + ei−1 + b

′

i−2 < 0

−1 bi−1 + cbi−2
− hi−2 + ei−1 + b

′

i−2 ≥ q

;
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for i = 0,

b
′

i−1 =


0 0 ≤ bi−1 + cbi−2 − hi−2 + ei−1 + b

′

i−2 < q

−1 bi−1 + cbi−2 − hi−2 + ei−1 + b
′

i−2 < 0

1 bi−1 + cbi−2
− hi−2 + ei−1 + b

′

i−2 ≥ q

.

Now by b
′

= as + e
′

= b + e
′ ∈ Rq, we have

e
′

i = [b
′

i − bi]q = [cbi−1
− hi−1 + ei + b

′

i−1]q.

Since |ei| < n, |cbi | < n(n− 1) + 1 by Lemma 2.2, 3.6, thus we have,

|cbi−1
− hi−1 + ei + b

′

i−1| < n(n− 1) + 1 + 1 + n+ 1 = n2 + 3.

The proof is complete.
For simplicity, in the proofs of Lemma 3.7, 3.8, we directly use n as the noise

upper bound of a new sample, instead of O(
√
nσ) by Lemma 2.2. In fact, we have

showed that the Gaussian noise parameter in the converting samples becomes
O(nσ). Of course, we can also add a Gaussian noise with parameter O(nσ) to
a converted sample to refresh its noise. Thus, we have obtained the following
results from Lemma 3.7, 3.8.

Theorem 3.9 The decisional ring-LWE problem DRLWEq,σ is reduced to
the decisional integer ring-LWE problem I-DRLWEq,O(nσ). Moreover, the deci-
sional integer ring-LWE problem I-DRLWEq,σ is reduced to the decisional ring-
LWE problem DRLWEq,O(nσ).

Proof. By Lemma 3.7, 3.8, the result directly follows from the transformation
of samples between them.

4 Public key cryptosystem

In this section, we first present a public key cryptosystem based on the integer
version of ring-LWE over the polynomial rings (I-RLWE), then show its correct-
ness and security.

4.1 Construction

Let n be the security parameter.
Key Generation: (pk, sk)← KeyGen(1n).
(1) Choose a prime q = O(n3), and set p = qn + 1.
(2) Choose at random a← Zp.
(3) Sample s← DZn,σ, e← DZn,σ with σ = O(

√
n).

(4) Set s =
∑n−1

i=0
siq

i, e =
∑n−1

i=0
2eiq

i.

(5) Set b = [as+ e]p.
(6) Output the public key pk = {q, (a, b)}, and the secret key sk = {s}.
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Encryption: (c1, c2)← Enc(pk,m).

(1) Given a plaintext m ∈ {0, 1}n, set m =
∑n−1

i=0
miq

i.

(2) Sample r← DZn,σ, e1, e2 ← DZn,σ.

(3) Set r =
∑n−1

i=0
riq

i, ej =
∑n−1

i=0
2ejiq

i, j ∈ [2].

(4) Compute c1 = [ar + e1]p, c2 = [br + e2 +m]p.

(5) Output (c1, c2) a ciphertext.

Decryption: m← Dec(sk, (c1, c2)).

(1) Given sk and a ciphertext (c1, c2), compute t0 = [c2 − c1s]p.
(2) For i = 0, 1, · · · , n− 1

(2.1) Compute di = [ti]q.

(2.2) Compute ti+1 = bti/qc.
(2.3) If di > q/2, then set di = di − q, ti+1 = ti+1 + 1.

(3) Set d0 = d0 − 1 if dn−1 < 0.

(4) Set mi = [di]2, i ∈ {0, 1, · · · , n− 1}.
(5) Output the plaintext m.

Remark 4.1 (1) Our scheme uses the parity of noise in a ciphertext to
encode a plaintext. Similar to [13], we can also use bq/2c to compute m =∑n−1

i=0
(mibq/2c)qi and generate a ciphertext. In this case, the decryption algo-

rithm seem to be easier. That is, it directly determines the ith plaintext bit by
checking di. If q/4 < di < (3/4)q, then mi = 1; otherwise mi = 0.

(2) To improve the efficiency of our scheme, we can use some special number
q = 2t with a positive integer t. This is because the encryption and decryption
algorithms take less time. Furthermore, the multiplication between two large
integers can directly apply FFT-based algorithms [10], as a result, our scheme
can use an arbitrary positive integer n instead of n = 2k in RLWE that is to use
FFT-based algorithms.

(3) The NTRU scheme over the polynomial rings [11,22] can be directly
converted into an integer scheme of NTRU. For example, consider the NTRU
scheme in [22]. Let q = 2t, p = qn − 1 with a prime n, the public key h =
3f/(3g+1) ∈ Zq[x]/〈xn − 1〉, and the secret key s = 3g+1 ∈ Z[x]/〈xn − 1〉.
Then, one can generate an integer scheme of NTRU as follows: the public key is

h =

[∑n−1

i=0
hiq

i

]
p

, and the secret key s =

[∑n−1

i=0
siq

i

]
p

.

4.2 Correctness

For the correctness of our scheme, we only require to prove that the algorithm
Dec correctly recover the plaintext in a ciphertext.

Lemma 4.2 Given sk and a ciphertext (c1, c2), the algorithm Dec correctly
decrypts the plaintext m.
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Proof. By Enc, we have c1 = [ar+e1]p, c2 = [br+e2+m]p. Since b = [as+e]p,
by Dec, we get

t0 = [c2 − c1s]p
= [br + e2 +m− (ar + e1)s]p

= [er + e2 − e1s+m]p

=
∑n−1

i=0
diq

i.

Since r =
∑n−1

i=0
riq

i, s =
∑n−1

i=0
siq

i, e =
∑n−1

i=0
2eiq

i, ej =
∑n−1

i=0
2ejiq

i,

we obtain

er = [
∑n−1

i=0
(2
∑

[j+k]n=i
(−1)b(j+k)/ncejrk)qi]p = [

∑n−1

i=0
2uiq

i]p

e1s = [
∑n−1

i=0
(2
∑

[j+k]n=i
(−1)b(j+k)/nce1jsk)qi]p = [

∑n−1

i=0
2viq

i]p

t0 = [er + e2 − e1s+m]p = [
∑n−1

i=0
(2ui + 2e2i − 2vi +mi)q

i]p =
∑n−1

i=0
diq

i

Using Lemma 2.2, we get |2ui| < 2n3, |2vi| < 2n3, |2e1i | < 2n. So,

|2ui + 2e2i − 2vi +mi| < 4n3 + 2n+ 1 < q/2− 1, i ∈ {0, 1, · · · , n− 1}.

By Lemma 3.4, di = [2ui + 2e2i − 2vi +mi − di−1]q, i ∈ {0, 1, · · · , n− 1}.
For i = 0, we have

d0 = [2u0 + 2e20 − 2v0 +m0 − dn−1]q

=

{
2u0 + 2e20 − 2v0 +m0 − dn−1 2u0 + 2e20 − 2v0 +m0 − dn−1 ≥ 0

2u0 + 2e20 − 2v0 +m0 − dn−1 + q 2u0 + 2e20 − 2v0 +m0 − dn−1 < 0

By Step (2.3), if d0 > q/2, then d0 = d0− q = 2u0 + 2e20 − 2v0 +m0− dn−1,
otherwise d0 = 2u0 + 2e20 − 2v0 +m0 − dn−1.

Using Step (3), the algorithm Dec subtracts dn−1 according to the sign of
dn−1, and obtain d0 = 2u0 + 2e20 − 2v0 +m0. Thus, m0 = [d0]2 by Step (4).

Similarly, Dec can correctly recover all other bits of the plaintext m by
mi = [di]2, i ∈ {1, · · · , n− 1}.

4.3 Security

Similar to [13], the semantic security of our scheme follows from two applica-
tions of the pseudorandomness of I-RLWE. So, the security of our public key
cryptosystem depends on the hardness of I-RLWE, which is equivalent to the
hardness of RLWE by Theorem 3.9.
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5 Implementation and Comparison

To evaluate the encryption and decryption capabilities of the proposed approach,
and access its consuming time on different security level, we conduct one group of
experiments. The experiment environment setup is as follows. We implemented
our NTRU-type public key cryptosystem over the NTL library. All program-
s were run on the physical machine, which has a 3.20GHz Intel Core i5-3470
processor, and 8GB of RAM.

Table 1 is our concrete parameter settings, and Table 2 is the performance
comparison of I-RLWE and RLWE.

From our experiments result, we notice that if we directly encrypt plaintexts
by applying our public key scheme, its performance is relatively weak, especially
for the ciphertext expansion rate. However, if we use our public key scheme for
key encapsulation mechanism, our scheme will be relatively practical.

Table 1. The concrete parameter settings of our implementation

Problem Security level n q σ p the size of pk the size of sk
(bits) (prime) (bits) (bits)

RLWE 80 512 134217757 23 28672 14336

RLWE 168 1024 1073741827 32 63488 31744

RLWE 200 1024 16411 2 30720 15360

RLWE 232 2048 32771 2 65536 32768

I-RLWE 80 512 134217757 23 qn + 1 28672 14336

I-RLWE 168 1024 1073741827 32 qn + 1 63488 31744

I-RLWE 200 1024 16411 2 qn + 1 30720 15360

I-RLWE 232 2048 32771 2 qn + 1 65536 32768

Table 2. The performance comparison of I-RLWE and RLWE

Problem Security Length per Length per Expansion Time per Time per Successful
level plaintext ciphertext rate encryption decryption rate
(bits) (bits) (bits) (ms) (ms) (%)

RLWE 80 512 28672 56 22.06 16.54 100

RLWE 168 1024 63488 62 51.55 35.16 100

RLWE 200 1024 30720 30 39.29 19.00 100

RLWE 232 2048 65536 32 84.18 41.13 100

I-RLWE 80 512 28672 56 16.58 13.52 100

I-RLWE 168 1024 63488 62 66.81 113.78 100

I-RLWE 200 1024 30720 30 20.12 24.56 100

I-RLWE 232 2048 65536 32 77.93 99.06 100
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Table 3. The concrete parameter settings of our NTRU-type scheme

Security level λ ρ β n xn + 1 the size of pk the size of sk
(bits) (prime) (the number of factors) (bits) (bits)

80 120 30 3600 18013 2 18013 3600

112 144 36 5184 25931 2 25931 5184

128 160 40 6400 32003 2 32001 6400

160 200 50 10000 50021 2 50021 10000

Table 4. The performance of our NTRU-type scheme

Security Length per Length per Expansion Time per Time per Testing Successful
level plaintext ciphertext rate encryption decryption frequency rate
(bits) (bits) (bits) (ms) (ms) (%)

80 120 18013 150 3.382 3.198 2000 100

112 144 25931 180 5.744 5.547 2000 100

128 160 32003 200 7.693 8.209 2000 100

160 200 50021 250 11.613 15.735 2000 100

To further evaluate the performance of our scheme. In the following, we
present computational experiments of our NTRU-type scheme. Table 3 is our
concrete parameter settings. We define different security level with different pa-
rameter values. Table 4 is the performance result of our NTRU-type scheme.
Note that the estimate of the security level mainly relies upon the time com-
plexity of the classical meet-in-the-middle attack on our NTRU-type scheme.

When security level is 80 (λ=120, ρ=30, β=3600, n=18013), we have 100%
successful rate for testing frequency=2000, and average excryption/decryption
time is about 3ms with 150 expansion rate. When security level is 160 (λ=200,
ρ=50, β=10000, n=50021), we have 100% successful rate for testing frequen-
cy=2000, and average excryption/decryption time is about 15ms with 250 ex-
pansion rate. From our experiments result, we can notice that if we directly
encrypt plaintexts by applying our public key scheme, its performance is rela-
tively weak, especially for the ciphertext expansion rate. However, if we use our
public key scheme for key encapsulation mechanism, our scheme will be relatively
practical and effective.

It should be noted that we did not optimize our implementation and only
illustrate the relative practicality of our construction.

According to the parameter settings of NTRU, the vector (g, f) in L1 has
size (df + dg)

1/2, where df , dg are the number of the non-zero coefficients of
f, g, respectively. Since det(L1) = qn, the Gaussian heuristic suggests that (g, f)
is in general the shortest vector in L1. However, the current lattice reduction
algorithm that find (g, f) requires exponential in the security parameter n.

Similarly, for our NTRU-type system, given the public key h = g/f over
Z2[x]/(xn + 1), we can also construct a lattice from h. Owing to using the
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unbalanced private key f , we only need to use the 2β rows of the circulant matrix
H generated by h. The reaseon is that fh = (s+ 1)h+ s(x2βh) = f1h+ f2h. As
a reasult, we write a matrix form as follows:

L2 =

 2In×n 0 0
H[ 0 : β − 1] Iβ×β 0
H[2β : 3β − 1] 0 Iβ×β

 (1)

where H is a circulant matrix generated from h, H[i : j] represents the sub-
matrix of the i-th row to the j-th row of H.

By our parameter settings, the vector (g, f1, f2) in L2 has size (3ρ+ 1)1/2 or
(3ρ−1)1/2. Since det(L2) = 2n, the Gaussian heuristic suggests that (g, f1, f2) is
usually the shortest vector in L2. When n is large enough, the lattice reduction
algorithm that computes (g, f1, f2) requires time complexity at about 2O(n).

6 Conclusions and discussions

In this work, we describe an integer version of RLWE over the polynomial rings
and show that its hardness is equivalent to the polynomial RLWE. This one-
dimensional LWE problem with structural noise is corresponding to the hard one-
dimensional LWE problem with exponential modulus in the security parameter
[5]. This point is also consistent with the result in [5] that shows the tradeoff
between the dimension and the modulus of LWE instances.

Furthermore, the I-RLWE problem also provides a new perspective on the
difficulty of the problem. That is, the difficulty of the problem is not only related
to the magnitude of noise, but also to the dispersion of noise.

For the I-RLWE problem, if we keep the number of noise bits of the problem
unchanged, but put these scattered, structured noise together, then we obtain a
corresponding one-dimensional LWE problem.

For example, for I-RLWE with q > n3 and σ ≤
√
n, currently there exists

no efficient algorithm that solves I-RLWE. However, for the corresponding one-
dimensional LWE with p = qn > n3n and α = σn, there exists an efficient
algorithm that solves this one-dimensional LWE.

Without loss of generality, given a sample of the one-dimensional LWE (a, b =
a×s+e mod p), where a← U(Zp), and s, e← χ = DZ,α, we generate the lattice
L(B) with

B =

b 0 x
a 1 0
p 0 0

 .

According to Minkowski’s first theorem, λ1(L) ≤
√

3|det(B)|1/3. Again, v =
(e,−s, x) ∈ L and ‖v‖ �

√
3|det(B)|1/3. So, v is very likely the shortest vector

of L, and can be obtained by using the LLL algorithm [?]. As a result, the
one-dimensional LWE with the above parameters is not secure.

On the other hand, for the one-dimensional LWE with α > p1/2, the above
lattice attack does not work.
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So, our analysis demonstrates that the hardness of I-RLWE relies on not only
the size of noise, but also the dispersion of noise.
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