
On Space-Scarce Economy
In Blockchain Systems

Alexander Chepurnoy and Dmitry Meshkov

IOHK Research

Abstract. In this paper we study space-scarce economy in massively
replicated open blockchain systems. In these systems, such as Bitcoin,
memory to hold a current state snapshot needed to validate transactions
becomes the most scarce resource eventually. The issue is even more
critical for blockchain systems used to store data (votes, certificates, logs
etc.). Uncontrolled state size growth could lead to security issues, such
as denial-of-service attacks. Only technical solutions, not economic, have
been proposed to tackle this problem to the moment. In contrast, we
propose to add a new component to a transaction fee scheme based on
how much additional space will be needed for new objects created in
result of transaction processing and for how long they will live in the
state. We provide three possible options towards implementing the new
fee component, namely prepaid outputs, postpaid outputs and scheduled
payments. We provide an analysis of the model with respect to all the
three options. We show that the state growth could be bounded by a fee
factor, miners are getting additional stable rewards and lost coins are
being taken back into circulation eventually.

1 Introduction

Bitcoin [1] was introduced in 2008 by S. Nakamoto as a purely peer-to-peer
version of electronic cash with a ledger written into blockchain data structure
securely replicated by each network node. Security of the scheme is relied on
mining process. If majority of miners are honest, then Bitcoin meets its security
goals as formal analysis [2] shows. For work done a miner is claiming a reward
which consists of two parts. First, some constant number of bitcoins are created
out of thin air according to a predefined and hard-coded token emission schedule.
Second, a miner claims fees for all the transactions included into the block. A
transaction fee is set by a user during transaction creation. Transaction fees are
useful for an existing cryptocurrency economy for two reasons:

1. Incentivization of miners. A rational Bitcoin miner does not include all the
valid transactions into blocks as, due to the increased chances of orphaning
a block, the cost of adding transactions to a block could not be ignored [3,4].
As shown in [4], even in absence of block size limit, Bitcoin fee market is
healthy and the miners surplus is maximized at a finite quantity of block
space. Thus the miner is incentivized to produce a block of a limited size.



This means that only a subset of transactions which provides enough value
to a miner will be included in a block. A paper [4] provides a procedure to
calculate transaction fee based on block propagation time.

2. Limit resources usage and prevent spam. Besides of network utilization,
transaction processing requires a miner to spend some computational re-
sources. For most of the cryptocurrencies, a transactional language is lim-
ited (with Bitcoin Script [5] being one of the most limited), thus a number
of CPU cycles needed to process a transaction is strictly bounded and cor-
responding computational costs are not directly considered. In contrast, in
cryptocurrencies supporting smart contract languages, such as [6,7,8], trans-
action processing may require a lot of computations, and computational costs
are included in transaction fee. This cost is specific to concrete transactional
language and is out of scope of this paper.

A transaction in Bitcoin fully spends outputs from previous transactions, and
also creates new outputs of user-defined values. A notable and the only exception
is a coinbase transaction of a block which creates fixed amount of money out of
thin air and also claims transaction fees without referring to any outputs (a fee
for a non-coinbase transaction is sum of claimed outputs values minus sum of
values for created outputs). A node is checking a transaction in Bitcoin by using
a set of unspent outputs. In other cryptocurrencies a representation of a state
needed to validate and process an arbitrary transaction could be different (for
example, in Ethereum [9] such structure is called the world state and fixed by the
protocol). To process a transaction quickly, the state (or most accessed part of it)
should reside in random-access memory. Once it becomes too big to fit into RAM
an attacker can perform denial-of-service attacks against cryptocurrency nodes.
For example, during attacks on Ethereum in Autumn, 2016, an attacker added
about 18 million accounts to the state (whose size was less than 1 million ac-
counts before the attack) and then performed succesful denial-of-service attacks
against the nodes[10]. Similarly, in 2013 a denial-of-service attack against serial-
ized transactions residing in a secondary storage (HDD or SSD) was discovered
in Bitcoin[11].

The main purpose of this paper is to consider a new mandatory component
in a transaction fee scheme reflecting state growth. In all known cryptocurren-
cies of today, an element of the state once created lives possibly forever without
paying anything for that. This leads to continuously increasing state (we point
to Bitcoin unspent transaction outputs (UTXO) set size as an example [12]).
Moreover, state may grow fast during spam attack, for example, 15 million out-
puts were quickly put into UTXO set during spam attacks against Bitcoin in
July 2015 [13], and most of these outputs are not spent yet. The paper [14] is
proposing a technical solution for non-mining nodes where only miners hold the
full state (assuming that they can invest money in random-access memory of
sufficiently big capacity), while other nodes are checking proofs of state trans-
formations generated by miners, and size of a proof (in average and also in a
worst case) is about log(S) in regards with a state size S. Nevertheless, big state
could lead to centralization of mining or SPV mining [15], and these concerns



should be addressed. Also, there is an increasing demand to use a blockchain as
a data storage, and storing permanently objects in the state without a cleaning
procedure is not a viable option.

We propose an economic solution to the problem of unreasonable state growth
(such as spam attacks, or objects not being using anymore but still living in the
blockchain). The solution is a new mandatory fee component. We state that a
user should pay fee for both the additional space needed to store objects created
by a transaction, and also for lifetime of new bytes. This model is usual for cloud
storage services where users pay for gigabytes of data per month. We provide
a possibility for miners to control their storage requirements by changing a fee
factor. Later in this paper we will refer to this new fee component as to a space-
time fee.

Proposed fee regime is promoting money circulation in the blockchain econ-
omy. The limited lifetime of a state element also leads to lost coins being taken
back into circulation (supposedly by miners).

Summarizing, we study an economy where quick-access storage of a node in a
massively-replicated system becomes the most scarce system resource eventually.
Thus we call such an economy a space-scarce economy.

1.1 Assumptions

Here we provide assumptions our model is based on:

– all the fees for a block are going to a single miner like in Bitcoin. There
are proposals to share the rewards for a block within a group of miners, for
example in [16,17], and they are out of scope of the paper.

– a state is a set of unspent outputs. An output is not modifiable so can be
only created and then spent at whole.

– an output is protected by a spending condition which is defined as a logical
formula. Predicates in the formula can refer to properties of a blockchain
(for example, its current height available via variable Height), spending
transaction tx and the output out itself. We assume that it is possible
to compare two scripts, and also it is possible to determine whether the
spending transaction contains an output with a given property. For exam-
ple, tx.has_output(script = out.script) evaluates to true if the spending
transaction contains an output with the same script as the output has. Note
that Bitcoin Script is too limited to support scripts comparison as well as
using the spending transaction and the output to spend in a spending con-
dition.

– for simplicity, we assume that a block is of a finite size but all the transac-
tions a miner has at a moment of block generation can be packed into it, if
otherwise is not stated explicitly.

– time is measured via height which is a number of blocks since an initial
block (a genesis block) till a block of interest.

– all anyone-can-spend outputs are collected by miners immediately as they
appear.



– we are considering minimal mandatory fees in the paper. All the nodes are
checking that a fee paid by a transaction is not less than a minimum and
rejecting the whole block if it contains a transaction violating fee rules. Thus
a fee regime is considered as a part of consensus protocol in our work. A user
can pay more than the minimum to have a higher priority for a transaction
of interest.

1.2 Structure of the Paper

The paper is organized as follows. A design of our new fee component is provided
in Section 2. The model then is analyzed in Section 3. In Section 4 we observe
related work, and in Section 5 we shape a plan for further research.

2 The Model

In our model transaction fee f consists of 3 parts: validation and processing
cost fv, propagation cost fp and state space-time difference cost fs, and fs is
non-negative:

f = fv + fp + fs, f ≥ 0 (1)

Validation and propagation costs are non-negative and assumed to be in-
dependent from the space-time fee. It is possible for fs to be negative since a
transaction may decrease size of the state. The space-time fee fs depends on
size of outputs to be marked as spent, remaining lifetimes for them, newly cre-
ated outputs and their time to live. If a transaction is freeing some space-time
Tcleared and claiming space-time Tfilled, then the resulting space-time fee can be
defined as fs = K · (Tfilled−Tcleared), where K is a space-time price. As time in
a blockchain system is associated with blocks (precisely, height of a block), and
space is measured in byte, K is to be a price of byte per block. We assume that
miners can steadily change this price like they change “gas” limit per block in
Ethereum. For example, a miner can be given a right to raise or lower K value
by 0.1% per block. Or miners can vote during an epoch of 1, 000− 2, 000 blocks
on whether to raise or lower K for the next epoch by 1%, or leave it intact.

We consider three options for the fee to be charged. Concretely, prepaid out-
puts are defined in Section 2.1, postpaid outputs are described in Section 2.2 and
scheduled payments are proposed in Section 2.3.

2.1 Prepaid Outputs

First option we are going to analyze is prepaid outputs. In this model, an output
of size B is prepaid for a duration of Lmax blocks (Lmax is to be set explicitly in
a transaction creating the output). After Lmax blocks after transaction inclusion
into the blockchain, anyone (presumably, a miner generating first block after the
expiration) is able to spend the output. Thus a spending script for any output



must be a combination of a regular user-defined spending script a condition on
Lmax:

(Height > out.height+ Lmax) ∨ (regular_script) (2)

where Height is current blockchain height and regular_script is user-defined
spending script for the output. A mandatory minimal space-time fee to be paid
by a transaction creating the output is following:

fs−prepaid = K · (
∑
i

(Bi · (Lmax_i −Height))−
∑
j

(Bj · (Lmax_j −Height)))

(3)

2.2 Postpaid Outputs

In the second model, a user pays fee for consumed space-time when he spends an
output. When an output is spent its lifetime is known so resulting transaction
fee can be calculated as:

fs−postpaid =
∑
i

(Ki ·Bi · (Hspent_i −Hcreation_i)) (4)

where Hcreation_i and Hspent_i are heights where i-th output was created
and spent respectively. Note that each output has its own space-time price Ki

which is the K value at the time of the output creation. We note that for output
value V a height Hmax exists when the whole output value will be consumed by
the space-time fee:

Hmax = Hcreation +
V

K ·B
(5)

After that anyone should be able to spend this output, and a spending script
looks like

(Height > out.height+Hmax) ∨ (regular_script) (6)

2.3 Scheduled Payments

The last model we introduce is a combination of the prepaid and postpaid mod-
els. Like in the postpaid model, a user pays for an output when he spends it in a
transaction. In addition, the output is also enforced to be moved after a known
duration Ds since being touched last time. That is, if the user do not move
the coins before this, then anyone (presumably, a miner) can create a transac-
tion claiming this output, returning all the coins back to the owner except of a
space-time fee K ·B ·Ds. A spending script for the output would be like:



(regular_script)∨
(Height > (out.height+Ds) ∧ (out.value ≤ K ·B ·Ds∨

tx.has_output(value = out.value−K ·B ·Ds, script = out.script)))

(7)

In this model Ds is another protocol parameter which may be fixed by a
protocol design or changed via miners voting like K.

3 Analysis of the Model

In this section we provide analysis of the model. We show how the proposal is
meeting its main goal which is the state size control. We get estimations for
additional miners rewards as well as lost coins recirculation. Throughout this
section we use following values got from the Bitcoin network at the moment of
writing the paper (February, 2017):

– number of unspent transaction outputs: Nutxo ≈ 45, 000, 000
– number of coins in circulation: Ncoins ≈ 16, 000, 000 BTC
– mean value of an output: Vmean ≈ 0.35 BTC
– simple payment transaction fee: fp ≈ 0.0002 BTC
– mean output size: Bmean ≈ 36 Bytes
– time interval between blocks: Tblock ≈ 10 minutes
– transaction fees per block: Mpg ≈ 1 BTC
– constant block reward: Mc = 12.5 BTC
– average number of outputs spent in a block Nmoved ≈ 5, 500

We use the numbers from the Bitcoin to make calculations for some typical
cases as this is the most used cryptocurrency with the longest history known.
However, a cryptocurrency with our proposal being deployed would have different
values for its metrics. Thus the results from this section should be considered as
initial estimations.

We study money flows in a space-scarce economy while dividing them into
two types. Miners claim lost coins and also charge every output in the system
state every block. Users are incentivized to move coins more frequently thus
increasing mining rewards due to increased economic activity.

3.1 Lost coins recirculation

The need of lost coins recirculation has been discussed in the literature [18,19]
in regards with combat deflation that will eventually occur in cryptocurrencies
with fixed supply. Possible cryptocurrency supply is known by design but actual
supply is not known due to lost keys [20]. Deflation is a problem for traditional
monetary systems, however, it is still an open question whether it will be prob-
lematic for the Bitcoin economy [21,22].



Our model provides lost coins recirculation mechanism by design. In this
section we study how recirculation depends from charging approach chosen as
well as parameters.

Fee for keeping output of size B in the state for L blocks is K ·B · L. In
Postpaid and Scheduled payments models space-time fee is taken from output
value itself so when keys for an output which value is Voutput are lost the coins
will be taken back to circulation after Lmax blocks:

Lmax =
Voutput
K ·B

(8)

Maximum lifetime of a concrete output depends on the miner-controlled K
parameter and user-defined output size and value. For a typical case in Bitcoin:

Lmax ≈
1

100 ·K
(9)

From this equation it is possible to calculate K by specifying target expected
lifetime for an output of an average size. For example, in case of targeted 50 years
period of recirculation for an average output, value of K parameter would be
about 10−9. We will use this estimatedK value further in the analysis. Significant
difference between Postpaid and Scheduled payments is that in Postpaid lost
output will return to economy all at once after potentially big Lmax period,
while in the Scheduled payments mode they will return to economy by portions
during this period. This makes Scheduled payments preferable to Postpaid in
regards with mining rewards stability. Anyway coins recirculation rate for both
the modes in a long-term would be calculated as

Rpostpaid = Rscheduled =
Nlost · Voutput

Lmax
= Nlost ·K ·B (10)

where Nlost is the number of outputs with lost keys. Assuming current Bit-
coins statistics, Nlost ≈ 106 and K = 10−9 we can estimate that ≈ 0.036 bitcoins
are to be released from abandoned outputs in every block.

In the Prepaid mode a user defines Lmax by himself when he creates an output
and number of released coins after Lmax is equals to output value Voutput rather
than much smaller space-time fee fs. Note that Lmax do not directly depends
on K and coins recirculation rate will only depend on Voutput, user-defined Lmax

and number of lost outputs Nlost:

Rprepaid =
Nlost · Voutput

Lmax
(11)

Assuming that K = 10−9 we can estimate difference between prepaid and
postpaid models:

Rprepaid

Rpostpaid
=

Voutput
K ·B · Lmax

≈ 107

Lmax
(12)

For example, if user-defined coin recirculation period Lmax = 10 years, then
Rprepaid

Rpostpaid
≈ 19



Concluding, our fee model by its design provides a way to return lost coins
to circulation thus preventing potential deflation. Postpaid model has a disad-
vantage that lost coins could be returned to circulation in far future. In Prepaid
model coin recirculation rate is presumably much higher than in other models
and Scheduled payments mode is the most smooth way to recycle coins.

3.2 User-Driven Money flow

From users point of view, the longer you keep some output, the bigger space-time
fee you pay. Thus the proposed fee regime provides an incentive to move coins
more frequently stimulating economic activity. In all the fee models introduced
in Section 2, a user pays K ·B coins every block for keeping his output in the
state.

Currently in Bitcoin Nmoved outputs are moved in a block, and this number
can be defined as:

Nmoved =
Nutxo

Lmu
(13)

where Lmu is mean lifetime of an output. We can then define Lmu as:

Lmu =
Nutxo

Nmoved
(14)

In Bitcoin, Lmu ≈ 8182 blocks.
We expect users moving coins more frequently thus mean lifetime becomes

Lmi < Lmu. Lmi depends on K and also on blockchain-specific usage scenarios.
Increasement in money flow could be calcualted as:

∆Nmoved = Nutxo

Lmi
− Nutxo

Lmu
= Nutxo · Lmu−Lmi

Lmu·Lmi

3.3 Miner rewards

Incentivizing mining is very important for viability of a cryptocurrency economy.
In addition to usual propagation fee, the new fee regime provides two new sources
of miner’s income: a space-time fee and lost coins in the Prepaid model.

Thus in the Prepaid model:

M3 =Mpropagation +Mspace−time +Mlost (15)

In other models:

M2 =Mpropagation +Mspace−time (16)

We now calculate the difference with reward Mpg (propagation fees) miners
have in Bitcoin. We assume that number of inputs per transaction is the same,
then number of transactions as well propagation fees are to be increased in the
same way as Nmoved:



Mpropagation =Mpg · (1 +
Lmu − Lmi

Lmu · Lmi
) (17)

A space-time reward depends on state size and space-time price K only:

Mspace−time =

Nutxo∑
i=1

Ki ·Bi ≈ K ·Nutxo ·B (18)

Recirculation reward in the Prepaid model:

Mlost =
Nlost · Voutput

Lmax
(19)

Thus the additional mining reward is:

∆M2 =M2 −Mpg =Mpg ·
Lmu − Lmi

Lmu · Lmi
+K ·Nutxo ·B (20)

∆M3 =Mpg ·
Lmu − Lmi

Lmu · Lmi
+K ·Nutxo ·B +

Nlost · Voutput
Lmax

(21)

We remark that space-time reward K ·Nutxo ·B does not depend on network
throughput and can be easily predicted. thus it can be considered as a constant
block reward making mining more stable and thus securing the network. The
value of it may be controlled by adjusting K parameter.

3.4 State size

In this section we analyze the main goal of the proposed fee model which is to
control size of the state. We study two most important cases. First, we estimate
how big the state should be to give miners rewards comparable to Bitcoin’s con-
stant block reward of today (12.5 bitcoins per block at the moment of writing
this paper). Second, we study what is the maximum size of state could be con-
sidering an attacker having all the coins in the system initially and performing
constant spam attack.

Constant Rewards. For a state of size S miner is getting S · K space-time
fees every block. For them to be a replacement for the current constant reward
in Bitcoin Mc following equality should hold:

S ·K =Mc (22)

which leads to 13 GB state for K = 10−9 BTC
Byte·Block .



Spam Attack. We consider an attacker who creates an output roughly of size of
a block Sblock for every block in a row. Initially the attacker has all the Ncoins of
the system and he does not buy new coins during the attack (miners do not sell
the coins to him). We also assume thatK is constant during the attack (however,
in real world miners would probably raise K during the attack). As soon as each
block space-time fee should be paid for all previously created outputs, maximum
possible number of such outputs Omax is to be calculated from equation:

Ncoins =

Omax∑
i

K · Sblock · i ≈ K · Sblock ·O2
max/2 (23)

assuming that number of unspent outputs is big enough. Resulting state size:

S = Sblock ·Omax =

√
2 ·Ncoins · Sblock

K
(24)

which is about 183 gigabytes for Bitcoin network parameters and K = 10−9

BTC
Byte·Block . Note that it is upper-bound of state size calculated from non-realistic
assumptions that all available supply will be put into the attack, and that miners
do not raise K during the attack.

Summarizing, the new fee regime allows to control state growth with K
parameter and allows to estimate preferable state size as well as an upper bound.
Reasonable K value for a Bitcoin-like system leads to state of 13 GB in case of
replacing current constant block rewards in Bitcoin with space-time fees, and of
183 GB for the spam attack backed by all the system tokens. Thus the model is
preventing spam attacks like [13] and provides guarantee that miners can have
state fit in RAM.

4 Related Work

Ethereum [9] introduced a fee to cover computational costs for processing a
transaction (via rewarding a miner), with a mandatory minimum. A price of
a computational unit (which is an instruction of Ethereum Virtual Machine)
is controlled by miners via adjusting “gas” price. We consider to adopt this
approach toward charging users for consuming space-time units.

FreiCoin [23] is a cryptocurrency with demurrage. Demurrage-adjusted run-
ning balance (aggregated for all the outputs associated with a key) is to be
recalculated when a transaction is touching any output which is a part of the
balance. Unlike FreiCoin, miners are watching over the state constantly to clean
it in our proposal, and coins being lost are getting back into circulation (in
FreiCoin, outputs forgotten do live forever in the unspent outputs set).

In PascalCoin [24], if an account has not made any operations for 420,480
blocks then its balance is considered as forgotten and miner can claim it. Our
approach to recover lost coins is more flexible and natural.



5 Further Work

We left some questions for further research:

– it is interesting to see how tokens in a cryptocurrency with a proposed fee
component can be compared with a Gesell’s demurrage currency [25].

– an interesting research vector is how to find appropriate mandatory minimal
fv, fp, fs values. Another question is how these components can be combined
in a compound minimal transaction fee f . Aside of a simple sum, one possible
option is to set f = max(fp, fv, fs).

– for currency blockchains, a subsidized period of free storage could be applied.
One possible option is discussed in Appendix ??.

– a possible interaction with the problem of blockchain instability without the
constant block reward [26] in the setting of increased fee supply is another
concern to study.

– miners can choose different strategies on changing K value, based on esti-
mated demand curve and storage pricing. Finding a set of optimal strategies
is the another interesting topic to study.
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