
Blockcipher-based Authenticated Encryption:
How Small Can We Go? ?

Avik Chakraborti1, Tetsu Iwata2, Kazuhiko Minematsu3, and Mridul Nandi4

1 NTT Secure Platform Laboratories, Japan, chakraborti.avik@lab.ntt.co.jp
2 Nagoya University, Japan, iwata@cse.nagoya-u.ac.jp
3 NEC Corporation, Japan, k-minematsu@ah.jp.nec.com

4 Applied Statistics Unit, Indian Statistical Institute, Kolkata,
mridul.nandi@gmail.com

Abstract. This paper presents a lightweight blockcipher based authen-
ticated encryption mode mainly focusing on minimizing the implementa-
tion size, i.e., hardware gates or working memory on software. The mode
is called COFB, for COmbined FeedBack. COFB uses an n-bit blockci-
pher as the underlying primitive, and relies on the use of a nonce for
security. In addition to the state required for executing the underlying
blockcipher, COFB needs only n/2 bits state as a mask. Till date, for all
existing constructions in which masks have been applied, at least n bit
masks have been used. Thus, we have shown the possibility of reducing
the size of a mask without degrading the security level much. Moreover,
it requires one blockcipher call to process one input block. We show
COFB is provably secure up to O(2n/2/n) queries which is almost up to
the standard birthday bound. We first present an idealized mode iCOFB
along with the details of its provable security analysis. Next, we extend
the construction to the practical mode COFB. We instantiate COFB with
two 128-bit blockciphers, AES-128 and GIFT-128, and present their im-
plementation results on FPGAs. When instantiated with AES-128, COFB
achieves only a few more than 1000 Look-Up-Tables (LUTs) while main-
taining almost the same level of provable security as standard AES-based
AE, such as GCM. When instantiated with GIFT-128, COFB performs
much better in hardware area. It consumes less than 1000 LUTs while
maintaining the same security level. Both these figures show competi-
tive implementation results compared to other authenticated encryption
constructions.

Keywords: COFB, AES, GIFT, authenticated encryption, blockcipher.

1 Introduction

Authenticated encryption (AE) is a symmetric-key cryptographic primitive for
providing both confidentiality and authenticity. Due to the recent rise in com-
munication networks operated on small devices, the era of the so-called Internet
of Things, AE is expected to play a key role in securing these networks.

? A preliminary version of this paper was presented at CHES 2017 [23].

In this paper, we study blockcipher modes for AE with primary focus on
the hardware implementation size. Here, we consider the overhead in size, thus
the state memory size beyond the underlying blockcipher itself (including the
key schedule) is the criteria we want to minimize, which is particularly relevant
for hardware implementation. We observe this direction has not received much
attention until the launch of CAESAR competition (see below), while it would be
relevant for future communication devices requiring ultra low-power operations.

Generic Approaches. One generic approach for reducing the implementation
size of blockcipher modes is to use lightweight blockciphers. It covers a broad
area of use cases, where standard AES is not suitable due to the implementation
constraints, and one of the major criteria is area minimization. One of the most
popular lightweight blockciphers is PRESENT [19] proposed in 2007. Since then,
many have been proposed in the last decade, such as KATAN [22], LED [33],
PICCOLLO [58], PRINCE [21] and TWINE [59]. SIMON and SPECK [15] are
proposed by NSA in 2014. More recent designs are SKINNY (which is a tweakable
blockcipher [16]) and GIFT [13, 14].

The other approach is to use standard AES implemented in a tiny, serialized
core [47], where the latter is shown to be effective for various schemes including
popular CCM [5] or OCB [40] modes, as shown in [20] and [12]. Still, this requires
much larger number of clock cycles for each AES encryption than the standard
round-based implementation, and hence is not desirable when speed or energy
is also a criteria in addition to size.

AE Modes with Small Memory. CAESAR [3] is a competition for AE
started in 2012. It attracted 57 AE schemes, and there are new schemes that
were designed to minimize the implementation size while designed as a blockci-
pher mode (i.e. it uses a blockcipher as a black box). Among them, JAMBU [62]
is considered to be one of the most relevant mode to our purpose, which can
be implemented with (1.5n+ k)-bit state memory, using n-bit blockcipher with
k-bit key. However, the provable security result is not published for this scheme‡,
and the security claim about the confidentiality in the nonce misuse scenario was
shown to be flawed [50]. We also point out that the rate of JAMBU is 1/2, i.e.,
it makes two blockcipher calls to process one input block. CLOC and SILC [36,
37] have provable security results and were designed to minimize the implemen-
tation size, however, they have (2n + k)-bit state memory and the rate is also
1/2.

NIST Lightweight Cryptography Project. Recently, the growing impor-
tance of lightweight applications have also been addressed by NIST’s lightweight
cryptography project [44], which recognizes the apparent lack of suitable AE
standards to be used for lightweight applications. They highlighted the require-
ments under the backdrop of several arising applications like sensor networks,
health care, distributed control systems and several others, where highly resource
constrained devices communicate among themselves.

‡ The authenticity result was briefly presented in the latest specification [62].

2

We next summarize our contributions.

A New Type of Feedback Function. To reduce the state memory, it is natu-
ral to use feedback from the blocks involved in each blockcipher call, at the cost
of losing parallelizability. There are existing feedback modes (such as ciphertext-
feedback of CBC encryption), however, we found that none of them is enough to
fulfill our needs. We first formalize the feedback function as a linear function to
take blockcipher output (Y) and plaintext block (M) to produce the correspond-
ing ciphertext block (C) and the chain value as the next input to blockcipher
(X). This formalization covers all previous popular feedback functions. Then, we
propose a new type of feedback function, called combined feedback, where X is a
linear function (not a simple XOR) of M and Y . We show that if the above linear
function satisfies certain conditions we could build a provably-secure, small-state
AE. We first present a mode of tweakable random function which has additional
input called tweak in addition to n-bit block input, to demonstrate the effec-
tiveness of combined feedback and intuition for provable security. The proposed
scheme (iCOFB for idealized COmbined FeedBack) has a quite high provable se-
curity, comparable to ΘCB3 presented in the proof of OCB3 [40], and has small
memory (n-bit block memory plus those needed for the primitive). In addition
it needs one primitive call to process n-bit message block.

Blockcipher AE mode with Combined Feedback Function. Starting from
iCOFB, we take a further step to propose a blockcipher mode using combined
feedback. The main obstacle is the instantiation of tweakable random function
(or, equivalently tweakable blockcipher [43]) using a blockcipher. We could use
existing tweakable blockcipher mode for this purpose, e.g. XEX [51] by Rog-
away, and thanks to the standard birthday type security of XEX, the resulting
blockcipher mode would also have standard birthday type security. However, the
implementation of XEX or similar ones needs n-bit memory used as input mask
to blockcipher, in addition to the main n-bit state block, implying (2n+ k)-bit
state memory. Therefore, instead of relying on the existing tweakable blockcipher
modes, we instantiate the tweakable random function using only n/2-bit mask
and provide a dedicated security proof for our final proposal (mode), which we
call COFB. We show COFB achieves almost birthday bound security, roughly up
to O(2n/2/n) queries, based on the standard PRP assumption on the blockci-
pher.

COFB needs n/2-bit register for mask in addition to the registers requires for
holding round keys and the internal n-bit state for the blockcipher computation.
Hence the state size of COFB is 1.5n + k bits. The rate of COFB is 1, i.e, it
makes one blockcipher call to process one input block, meaning it is as fast as
encryption-only modes. On the downside, COFB is completely serial both for
encryption and decryption, which is inherent to the use of combined feedback.
However, we argue that this is a reasonable trade-off, as tiny devices are our
primal target platform for COFB. See Table 1 for comparison of COFB with
others. The description and the security analysis of COFB in Sect. 4 and 5 have
been described at the proceedings version of our paper in CHES 2017 [23].

3

Table 1. Comparison of AE modes, using an n-bit blockcipher with k-bit keys. An
inverse-free mode is a mode that does not need the blockcipher inverse (decryption)
function for both encryption and decryption. For JAMBU, the authenticity bound was
briefly presented in [62].

Scheme State Size Rate Parallel Inverse-Free Sec. Proof Ref

COFB 1.5n+ k 1 No Yes Yes This work

JAMBU 1.5n+ k 1/2 No Yes Partial [62]

CLOC/ SILC 2n+ k 1/2 No Yes Yes [36, 37]

iFEED 3n+ k 1 Only for Enc Yes Flawed [57] [64]

OCB ≥ 3n+ k 1 Yes No Yes [40, 51, 52]

Instantiations and Hardware Implementations. We instantiate and imple-
ment COFB with the 128-bit version of the blockcipher AES known as AES-128.
We also implement COFB with the 128-bit version of the blockcipher GIFT (de-
scribed as GIFT-128 in [13, 14]) to get an idea of the lightweight property of the
COFB mode by checking how small (hardware area) it can go with a lightweight
blockcipher. For the sake of completeness we compare our implementation fig-
ures with various schemes (not limited to blockcipher modes) listed in the hard-
ware benchmark framework called ATHENa [1]. The implementation details of
COFB[AES] have already been described in [23, 24]. COFB[AES] shows the im-
pressive performance figures of COFB both for size and speed compared to other
AES-based AE modes. Moreover, if we implement COFB with GIFT, then it
achieves much smaller area than COFB[AES] and is quite competitive to even
ad-hoc designs (see Sect. 6). The implementation details of COFB[GIFT] are also
described in Sect. 6, which is a new contribution compared to [23]. We have to
warn that this is a rough comparison ignoring differences in several implementa-
tion factors (see Sect. 6). Nevertheless, we think this comparison implies a good
performance of COFB among others even using the standard AES-128, and im-
plies COFB with a lightweight blockcipher to hit the limit of blockcipher-based
AE’s speed and size.

2 Preliminaries

Notation. We fix a positive integer n which is the block size in bits of the
underlying blockcipher EK . Typically, we consider n = 128 and AES-128 [7] is
the underlying blockcipher, where K is the 128-bit AES key. The empty string is
denoted by λ. For any X ∈ {0, 1}∗, where {0, 1}∗ is the set of all finite bit strings
(including λ), we denote the number of bits of X by |X|. Note that |λ| = 0. For
two bit strings X and Y , X‖Y denotes the concatenation of X and Y . A bit
string X is called a complete (or incomplete) block if |X| = n (or |X| < n
respectively). We write the set of all complete (or incomplete) blocks as B (or
B< respectively). Let B≤ = B< ∪B denote the set of all blocks. For B ∈ B≤, we

4

define B as follows:

B =

0n if B = λ

B‖10n−1−|B| if B 6= λ and |B| < n

B if |B| = n

Given non-empty Z ∈ {0, 1}∗, we define the parsing of Z into n-bit blocks as

(Z[1], Z[2], . . . , Z[z])
n←− Z, (1)

where z = d|Z|/ne, |Z[i]| = n for all i < z and 1 ≤ |Z[z]| ≤ n such that Z =
(Z[1] ‖Z[2] ‖ · · · ‖Z[z]). If Z = λ, we let z = 1 and Z[1] = λ. We write ||Z|| = z
(number of blocks present in Z). We similarly write (Z[1], Z[2], . . . , Z[z])

m←− Z
to denote the parsing of the bit string Z into m-bit strings Z[1], Z[2], . . . , Z[z−1]
and 1 ≤ |Z[z]| ≤ m. Given any sequence Z = (Z[1], . . . , Z[s]) and 1 ≤ a ≤ b ≤ s,
we represent the sub sequence (Z[a], . . . , Z[b]) by Z[a..b]. For integers a ≤ b,
we write [a..b] for the set {a, a + 1, . . . , b}. For two bit strings X and Y with
|X| ≥ |Y |, we define the extended xor-operation as

X⊕Y = X[1..|Y |]⊕ Y and

X ⊕ Y = X ⊕ (Y ‖0|X|−|Y |),

where (X[1], X[2], . . . , X[x])
1←− X and thus X[1..|Y |] denotes the first |Y | bits

of X. When |X| = |Y |, both operations reduce to the standard X ⊕ Y .
Let γ = (γ[1], . . . , γ[s]) be a tuple of equal-length strings. We define mcoll(γ) =

r if there exist distinct i1, . . . , ir ∈ [1..s] such that γ[i1] = · · · = γ[ir] and r is
the maximum of such integer. We say that {i1, . . . , ir} is an r-multi-collision set
for γ.

Authenticated Encryption and Security Definitions. An authenticated
encryption (AE) is an integrated scheme that provides both privacy of a plaintext
M ∈ {0, 1}∗ and authenticity of M as well as associated data A ∈ {0, 1}∗.
Taking a nonce N (which is a value never repeats at encryption) together with
associated data A and plaintext M , the encryption function of AE, EK , produces
a tagged-ciphertext (C, T) where |C| = |M | and |T | = t. Typically, t is fixed and
we assume n = t throughout the paper. The corresponding decryption function,
DK , takes (N,A,C, T) and returns a decrypted plaintextM when the verification
on (N,A,C, T) is successful, otherwise returns the atomic error symbol denoted
by ⊥.

Privacy. Given an adversary A, we define the PRF-advantage of A against E
as Advprf

E (A) = |Pr[AEK = 1]−Pr[A$ = 1]|, where $ returns a random string of
the same length as the output length of EK , by assuming that the output length
of EK is uniquely determined by the query. The PRF-advantage of E is defined
as

Advprf
E (q, σ, t) = max

A
Advprf

E (A) ,

5

where the maximum is taken over all adversaries running in time t and making
q queries with the total number of blocks in all the queries being at most σ. If
EK is an encryption function of AE, we call it the privacy advantage and write
as Advpriv

E (q, σ, t), as the maximum of all nonce-respecting adversaries (that
is, the adversary can arbitrarily choose nonces provided all nonce values in the
encryption queries are distinct).

Authenticity. We say that an adversary A forges an AE scheme (E ,D) if A
is able to compute a tuple (N,A,C, T) satisfying DK(N,A,C, T) 6= ⊥, without
querying (N,A,M) for some M to EK and receiving (C, T), i.e. (N,A,C, T) is
a non-trivial forgery.

In general, a forger is nonce-respecting with respect to encryption queries,
but can make qf forging attempts without restriction on N in the decryption
queries, that is, N can be repeated in the decryption queries and an encryption
query and a decryption query can use the same N . The forging advantage for
an adversary A is written as Advauth

E (A) = Pr[AEK ,DK forges], and we write

Advauth
E ((q, qf), (σ, σf), t) = max

A
Advauth

E (A)

to denote the maximum forging advantage for all adversaries running in time
t, making q encryption and qf decryption queries with total number of queried
blocks being at most σ and σf , respectively.

Unified Security Notion for AE. The privacy and authenticity advantages
can be unified into a single security notion as introduced in [31, 53]. Let A be
an adversary that only makes non-repeating queries to DK . Then, we define the
AE-advantage of A against E as

AdvAE
E (A) = |Pr[AEK ,DK = 1]− Pr[A$,⊥ = 1]| ,

where ⊥-oracle always returns ⊥ and $-oracle is as the privacy advantage. We
similarly define AdvAE

E ((q, qf), (σ, σf), t) = maxAAdvAE
E (A), where the maxi-

mum is taken over all adversaries running in time t, making q encryption and
qf decryption queries with the total number of blocks being at most σ and σf ,
respectively.

Blockcipher Security. We use a blockcipher E as the underlying primitive, and
we assume the security of E as a PRP (pseudorandom permutation). The PRP-
advantage of a blockcipher E is defined as Advprp

E (A) = |Pr[AEK = 1]−Pr[AP =
1]|, where P is a random permutation uniformly distributed over all permutations
over {0, 1}n. We write

Advprp
E (q, t) = max

A
Advprp

E (A) ,

where the maximum is taken over all adversaries running in time t and making
q queries. Here, σ does not appear as each query has a fixed length.

6

X[i]
M [i]

C[i]

ρ

X[i]
M [i]

C[i]

X[i]M [i]

C[i]

X[i]

M [i]

C[i]

X[i− 1] X[i− 1] X[i− 1]

X[i− 1]

G

EK EK

EK

EK

Fig. 3.1. Different types of feedback modes. We introduce the last feedback mode
(called the combined feedback mode) in our construction.

3 Idealized Combined Feedback Mode

In this section, we introduce our idealized combined feedback mode. Let EK be
the underlying primitive, a blockcipher, with key K. Depending on how the next
input block of EK is determined from the previous output of EK , a plaintext
block, or a ciphertext block, we can categorize different types of feedback modes.
Some of the feedback modes are illustrated in Fig. 3.1. The first three modes
are known as the message feedback mode, ciphertext feedback mode, and output
feedback mode, respectively. The examples using the first three modes can be
found in the basic encryption schemes [4] or AE schemes [5, 36, 37, 64]. The
fourth mode, which uses additional (linear) operation G : B → B, is new. We
call it combined feedback. In the combined feedback mode, the next input block
X[i] of the underlying primitive EK depends on at least two of the following three
values: (i) previous output EK(X[i− 1]), (ii) plaintext M [i], and (iii) ciphertext
C[i]. With an appropriate choice of G, this feedback mode turns out to be useful
for building small and efficient AE schemes. We provide a unified presentation
of all types of feedback functions below.

Definition 1 (Feedback Function). A function ρ : B×B → B×B is called a
feedback function (for an encryption) if there exists a function ρ′ : B×B → B×B
(used for decryption) such that

∀Y,M ∈ B, ρ(Y,M) = (X,C)⇒ ρ′(Y,C) = (X,M). (2)

ρ is called a plaintext or output feedback if X depends only on M or Y , respec-
tively (e.g., the first and third mode in Fig. 3.1). Similarly, it is called ciphertext
feedback if X depends only on C in the function ρ′ (e.g., the second mode in
Fig. 3.1). All other feedback functions are called combined feedback.

The condition stated in Eq. (2) is sufficient for inverting the feedback computa-
tion from the ciphertext. Given the previous output block Y = EK(X[i−1]) and

7

RN,A,(0,0) RN,A,(1,0) RN,A,(2,0) RN,A,(3,0) RN,A,(4,1)

0n

Y [0] Y [1] Y [2] Y [3]

Y [4]

X[1] X[2] X[3] X[4]

M [1] M [2] M [3] M [4]

C[1] C[2] C[3] C[4]

ρ ρ ρ ρ

Fig. 3.2. iCOFB: It is based on a tweakable random function RN,A,(a,b) and a feed-
back function ρ. The diagram shows how the tag and ciphertext computed for a three
complete blocks message.

a ciphertext block C = C[i − 1], we are able to compute (X,M) = (X[i],M [i])
by using ρ′(Y,C).

In particular, when G is not the zero function nor the identity function, the
combined feedback mode using this G is not reduced to the remaining three
modes. It can be described as ρ(Y,M) = (X,C) = (G(Y)⊕M,Y ⊕M).

3.1 iCOFB Construction

The idealized version of our construction is described in Fig. 3.3 and illustrated
in Fig. 3.2. Here we idealize in many ways from a real implementable AE con-
struction. This is a simple warm up for the sake of simplicity and to understand
the basic structure of our main construction. In the following construction, we
assume that the last message block is a complete block. In other words, all

messages are elements of B+ def
= ∪i≥1Bi. We denote the set of all non negative

integers as Z≥0. We also consider a tweakable random function R which takes
tweak (N,A, i, j) ∈ N × {0, 1}∗ × Z≥0 × Z≥0 where N is called a nonce chosen
from a nonce space N , A is associated data, and the pair of non negative integers
(i, j) is called a position-tweak.

3.2 The feedback function ρ

The function ρ : B ×B → B×B in the encryption algorithm is called a feedback
function. The function ρ should be chosen in a way such that there exists a
function ρ′ (as used in the decryption algorithm) for which decryption algorithm
correctly decrypts. In other words, we need an appropriate condition on ρ for
the correctness of the encryption algorithm. A necessary and sufficient condition
for ρ : B×B → B×B is the following: there exists a function ρ′ : B×B → B×B
such that Eq. (2) holds.

It is easy to see that for such a function ρ, the decryption algorithm correctly
decrypts a ciphertext. If we closely look into the correctness property, what we
need that given (Y,C), the value of M should be uniquely computable. Once M

8

Algorithm iCOFB-E(N,A,M)

1. (M [1],M [2], . . . ,M [m])
n←−M

2. t[0]← (0, 0)
3. Y [0]← RN,A,t[0](0

n)

4. for i = 1 to m
5. if i < m then t[i]← (i, 0)
6. else t[m]← (m, 1)
7. (X[i], C[i])← ρ(Y [i− 1],M [i])
8. Y [i]← RN,A,t[i](X[i])
9. C ← (C[1], . . . , C[m])

10. T ← Y [m]
11. return (C, T)

Algorithm iCOFB-D(N,A,C, T)

1. (C[1], C[2], . . . , C[c])
n←− C

2. t[0]← (0, 0)
3. Y [0]← RN,A,t[0](0

n)

4. for i = 1 to c
5. if i < c then t[i]← (i, 0)
6. else t[c]← (c, 1)
7. (X[i],M [i])← ρ′(Y [i− 1], C[i])
8. Y [i]← RN,A,t[i](X[i])
9. M ← (M [1], . . . ,M [c])

10. if T = Y [c] then return M
11. else return ⊥

Fig. 3.3. Encryption and decryption algorithms of iCOFB AE-mode. Here M ∈ Bm,
C ∈ Bc for some m, c ≥ 1 and ρ, ρ′ : B2 → B2. The choices of these functions are
described in Sect. 3.2.

is computed, X can be computed by applying ρ again. In this paper, we require
very lightweight function, e.g. linear function, on the choice of ρ. If ρ is a linear
function then we can express ρ by a 2n× 2n binary matrix(

E1,1 E1,2

E2,1 E2,2

)
where Ei,j ’s are n×n binary matrices and the line 7 in the encryption algorithm
of Fig. 3.3 becomes

X[i] = E1,1 · Y [i− 1] + E1,2 ·M [i],

C[i] = E2,1 · Y [i− 1] + E2,2 ·M [i].

We have the following lemma.

Lemma 1. If ρ is a linear function satisfying Eq. (2), then E2,2 must be invert-
ible.

Proof. If not, then there exist M 6= M ′ with E2,2 ·M = E2,2 ·M ′. Then, for any
Y , ρ(Y,M) = (X,C) and ρ(Y,M ′) = (X ′, C). However, ρ′(Y,C) cannot be both
(X,M) and (X ′,M ′). ut

Let ρ be a linear feedback function satisfying Eq. (2) (equivalently E2,2 is
invertible with the above matrix representation). Then, ρ′ can be chosen to be
a linear function defined as follows:

(E1,1 + E1,2E
−1
2,2E2,1) · Y [i− 1] + E1,2 · C[i] = X[i]

E−12,2E2,1 · Y [i− 1] + E−12,2 · C[i] = M [i].

We also express the above system of linear equations as

9

(
D1,1 D1,2

D2,1 D2,2

)
·
(
Y [i− 1]
C[i]

)
=

(
X[i]
M [i]

)
where Di,j ’s are n × n matrix determined from the above linear equations. In
particular, D1,1 = (E1,1 + E1,2E

−1
2,2E2,1), D1,2 = E1,2, D2,1 = E−12,2E2,1 and

D2,2 = E−12,2 . Throughout the paper we assume that E2,2 is invertible.
Let I and O denote the identity matrix and zero matrix, respectively, of size

n. We have seen that in all types of feedback modes, we define the ciphertext
block C as M ⊕Y . They differ how the next input block X is defined. Let ρOFB,
ρCFB, ρPFB denote the feedback functions for output, ciphertext and plaintext
feedback mode respectively. Then, we have

ρOFB =

(
I O
I I

)
, ρCFB =

(
I I
I I

)
, ρPFB =

(
O I
I I

)
.

In this paper, we consider combined feedback function. By combined feedback,
we mean that the following four matrices E1,1, E1,2, D1,1 and D1,2 are nonzero.
Note that these matrices represent the effect of output vector and plaintext or
ciphertext block to the next input block. In this paper we fix our choice of ρ
(and ρ′) as

ρ =

(
G I
I I

)
, ρ′ =

(
I +G I
I I

)
where G is an invertible matrix such that I +G is also invertible (see Fig. 3.1).
We will specify one choice of G later.

3.3 Security Analysis of the Idealized Construction

In this section we provide the security analysis of the idealized construction.
Now we prove that under a very minimal assumption on ρ, the idealized version
has perfect privacy and authenticity with negligible advantage. We say that a
linear feedback function ρ is valid (which is true for our choice of the feedback
function) if

(P1) E2,1 is invertible, (A1) D1,2 is invertible and (A2) D1,1 is invertible,

where (P1) is needed for the privacy notion and (A1) and (A2) are needed for
the authenticity notion. Here, A1 implies that for any two C 6= C ′ and for any
Y , D1,1 · Y + D1,2 · C 6= D1,1 · Y + D1,2 · C ′. Note that we assume that E−12,2 is
invertible for correctness. Thus, A2 means that the 2n× 2n feedback matrix for
ρ is also invertible. Another important implication of A2 is the following:

Pr[Y
$← B : D1,1 · Y +D1,2 · C = X] = 2−n, ∀(C,X) ∈ B2.

We have the following theorem.

Theorem 1. If ρ is valid then for adversary A making q encryption queries and
qf forging attempts having at most `f many blocks, we have

Advpriv
iCOFB(A) = 0, Advauth

iCOFB(A) ≤ qf (`f + 1)

2n
.

10

Proof. We consider an adversary A which make q nonce-respecting encryption
queries (Ai, Ni,Mi) and receives (Ci, Ti), 1 ≤ i ≤ q, and makes qf decryption
queries (N∗i , A

∗
i , C

∗
i , T

∗
i), 1 ≤ i ≤ qf . The intermediate variable Z appeared in

the both encryption and decryption algorithms are represented by Zi[j] for the
j-th computation of the i-th query, where Z can be A,M,C,X, Y and t (recall
that t is a position-tweak). Note that Ti, T

∗
i and Ni’s are single blocks.

Perfect Privacy. We prove the perfect privacy under the assumption that E2,1

is invertible (i.e. P1). To show perfect privacy, it would be sufficient to show
that C1, . . . , Cq are uniformly and independently distributed and this would be
true provided Y1, . . . , Yq are uniformly and independently distributed (due to P1
which says that keeping all other fixed, influence from Yi[j] to Ci[j] is bijective).
Note that Yi[j] = RNi,Ai,ti[j](Xi[j]). We know that a tweakable random function
returns a random string if the input concatenated with the tweak is fresh. So it
is sufficient to show that for all i, j, (Ni, Ai, ti[j], Xi[j]) is fresh. But this is easy
to see as A is a nonce-respecting adversary and for any i, the values of ti[j]’s are
distinct and hence (Ni, ti[j])’s are distinct for all (i, j).

Authenticity Advantage. We prove it in different cases of forging attempt.

Case (N∗, A∗) = (Ni, Ai).
W.o.l.g. we assume that i = 1. Let p be the length of the largest common prefix
of ((C1[1], t1[1]), . . . , (C1[m1], t1[m1])) and ((C∗[1], t∗[1]), . . . , (C∗[m∗], t∗[m∗])).
From the definition of tweak t[·], it is easy to see that p < min{m1,m

∗}. So, we
have

Y1[p] = Y ∗[p], (C1[p+ 1], t1[p+ 1]) 6= (C∗[p+ 1], t∗[p+ 1]).

Claim. (N∗, A∗, t∗[p+ 1], X∗[p+ 1]) is fresh among all tweaked inputs.

For the time being let us assume that this claim is true. So Y ∗[p + 1] is
uniformly distributed given the values obtained so far. By A2 condition, the
probability of the next input also remains fresh with probability at least (1−2−n).
We can continue this until the last tweaked input and so the last tweaked input
remains fresh with probability at least 1 − m∗

2n . So the forging probability is at

most (m∗+1)
2n for a single attempt.

Case (N∗, A∗) 6= (Ni, Ai) for all i.
In this case the first tweaked input (N∗, A∗, t∗[0], 0n) is fresh. We can similarly
apply the previous argument to claim that the last tweaked input remains fresh
with probability at least 1 − m∗

2n . So in this case also, the forging probability is

at most (m∗+1)
2n .

In the case of qf forging attempts, the success probability is at most
qf (`f+1)

2n

(from definition, m∗ ≤ `f). This completes the proof, and it remains to show
the proof of the claim.

11

Proof (of Claim). We prove this in two sub-cases. We first note that for all i 6=
p+1, t1[i] 6= t∗[p+1] and so it would be sufficient to show that (t1[p+1], X1[p+
1]) 6= (t∗[p+ 1], X∗[p+ 1]). If C1[p+ 1] = C∗[p+ 1] then X1[p+ 1] = X∗[p+ 1]
but t1[p+ 1] 6= t∗[p+ 1]. Similarly, when C1[p+ 1] 6= C∗[p+ 1], by A1 condition,
the next tweaked inputs are distinct.

ut

Remark 1. We would like to note the one of key argument in the proof. It says
that whenever we obtain a fresh tweaked input, with high probability the last
tweaked input remains fresh. So it would be sufficient to identify a position in
which the tweaked input for the forging attempt is fresh with high probability.
In the above proof for the idealized version, the position is (p + 1) and for this
position, tweaked input is fresh with probability one. For our main construction,
the freshness occurs with high probability instead of probability one. However,
the position will be determined in exactly the same way as we did here.

Now we see that P1 and A1 are also necessary. For example, if P1 is not
satisfied then we find a nonzero block d such that, dtr · E2,1 = 0n where dtr

denotes the transposition of the vector. Then, for any Y , dtr ·E2,2 ·M = dtr ·C
where C = E2,1 · Y + E2,2 · M . This observation can be used as a privacy
distinguisher.

Similarly if A1 is not satisfied then D1,2 is not invertible. So there exists a
nonzero d such that D1,2 ·d = 0n. Thus, D1,1 ·Y +D1,2 ·C∗ = D1,1 ·Y +D1,2 ·C
where C∗ = C + d. This observation can be extended to an authenticity attack.

4 COFB: a Small-State, Rate-1, Inverse-Free AE Mode

In this section, we present our proposal, COFB, which has rate-1 (i.e. needs one
blockcipher call for one input block), and is inverse-free, i.e., it does not need a
blockcipher inverse (decryption). In addition to these features, this mode has a
quite small state size, namely 1.5n + k bits, in case the underlying blockcipher
has an n-bit block and k-bit keys. We first specify the basic building blocks and
parameters used in our construction.

4.1 Specification

Key and Blockcipher. The underlying cryptographic primitive is an n-bit
blockcipher, EK . We assume that n is a multiple of 4. The key of the scheme is
the key of the blockcipher, i.e. K.

Masking Function. We define the masking function mask : {0, 1}n/2 × N2 →
{0, 1}n/2 as follows:

mask(∆, a, b) = αa · (1 + α)b ·∆ (3)

We may write mask∆(a, b) to mean mask(∆, a, b). Here, · denotes the multipli-
cation over GF(2n/2), and α denotes the primitive element of the field. For the

12

Y [4] Y [5] Y [6]

EK EK EK

X[4] X[6]X[5]

M [2] M [3]

mask∆(3, δA) mask∆(4, δA) mask∆(4, δA + δM)

C[2] C[3]

T

ρ

ρ1M [1]

Y [3]

C[1]

ρ ρ

A[1] A[2] A[3]

EK

0n/2 N

Y [0] Y [1] Y [2]

Y [3]ρ1

mask∆(1, 0) mask∆(2, 0) mask∆(2, δA)

EK EK EK

X[1] X[3]X[2]

ρ1 ρ1

Fig. 4.1. Encryption of COFB for 3-block associated data and plaintext.

primitive polynomial defining the field, we choose the lexicographically first one,
that is, p(x) = x64 + x4 + x3 + x + 1 following [6, 35]. Rogaway [51] showed that
for all (a, b) ∈ {0, . . . , 251}× {0, . . . , 210}, the values of αa · (1 +α)b are distinct.
If we follow the notations of [51], the right hand side of Eq. (3) could be written
as 2a3b∆. For other values of n, we need to identify the primitive element α of
the primitive polynomial and an integer L such that αa · (1 + α)b are distinct
for all (a, b) ∈ {0, . . . , L} × {0, . . . , 4}. Then the total allowed size of a message
and associated data would be at most nL bits. We need this condition to prove
the security claim. In particular, we have the following properties of the masking
function.

Lemma 2. For any (a, b) 6= (a′, b′) chosen from the set {0, . . . , L}× {0, . . . , 4}
(as described above), c ∈ {0, 1}n/2 and a random n/2 bit string ∆, we have

Pr[mask∆(a, b)⊕mask∆(a′, b′) = c] =
1

2n/2
, and Pr[mask∆(a, b) = c] =

1

2n/2
.

Proof of the first equation trivially follows from the fact that αa · (1 + α)b

are distinct for all (a, b) ∈ {0, . . . , L} × {0, . . . , 4}.
Similar masking functions are frequently used in other modes, such as [9,

45, 51], however, the masks are full n bits. The use of n-bit masking function

13

usually allows to redefine the AE scheme as a mode of XE or XEX tweakable
blockcipher [51], which significantly reduces the proof complexity. In our case,
to reduce the state size, we decided to use the n/2-bit masking function, and as
a result the proof is ad-hoc and does not rely on XE or XEX.

Feedback Function. Let Y ∈ {0, 1}n and (Y [1], Y [2], Y [3], Y [4])
n/4←−− Y , where

Y [i] ∈ {0, 1}n/4. We define G : B → B as G(Y) = (Y [2], Y [3], Y [4], Y [4]⊕ Y [1]).
We also view G as the n × n non-singular matrix, so we write G(Y) and G · Y
interchangeably. For M ∈ B≤ and Y ∈ B, we define ρ1(Y,M) = G · Y ⊕M . The
feedback function ρ and its corresponding ρ′ are defined as

ρ(Y,M) = (ρ1(Y,M), Y ⊕M),

ρ′(Y,C) = (ρ1(Y, Y ⊕C), Y ⊕C).

Note that when (X,M) = ρ′(Y,C) then X = (G ⊕ I) · Y⊕C. Our choice of G
ensures that I ⊕G is also invertible matrix. So when Y is chosen randomly for
both computations of X (through ρ and ρ′), X also behaves randomly. We need
this property when we bound probability of bad events later.

Tweak Value for The Last Block. Given B ∈ {0, 1}∗, we define δB ∈ {1, 2}
as follows:

δB =

{
1 if B 6= λ and n divides |B|
2 otherwise.

(4)

This will be used to differentiate the cases that the last block of B is n bits or
shorter, for B being associated data or plaintext or ciphertext. We also define a
formatting function Fmt for a pair of bit strings (A,Z), where A is associated
data and Z could be either a plaintext or a ciphertext. Let (A[1], . . . , A[a])

n←− A
and (Z[1], . . . , Z[z])

n←− Z. We define t[i] as follows:

t[i] =

(i, 0) if i < a

(a− 1, δA) if i = a

(i− 1, δA) if a < i < a+ z

(a+ z − 2, δA + δZ) if i = a+ z

Now, the formatting function Fmt(A,Z) returns the following sequence:(
(A[1], t[1]), . . . , (A[a], t[a]), (Z[1], t[a+ 1]), . . . , (Z[z], t[a+ z])

)
,

where the first coordinate of each pair specifies the input block to be processed,
and the second coordinate specifies the exponents of α and 1 + α to determine
the constant over GF(2n/2). Let Z≥0 be the set of non-negative integers and X
be some non-empty set. We say that a function f : X → (B × Z≥0 × Z≥0)+ is
prefix-free if for all X 6= X ′, f(X) = (Y [1], . . . , Y [`]) is not a prefix of f(X ′) =
(Y ′[1], . . . , Y ′[`′]) (in other words, (Y [1], . . . , Y [`]) 6= (Y ′[1], . . . , Y ′[`])). Here, for
a set S, S+ means S ∪ S2 ∪ · · · , and we have the following lemma.

14

Algorithm Mask-Gen(K,N)

1. Y [0]← EK(0n/2 ‖N)

2. (Y 1[0], . . . , Y 4[0])
n/4←−− Y [0]

3. ∆← Y 2[0] ‖Y 3[0]
4. return (∆,Y [0])

Algorithm COFB-EK(N,A,M)

1. (∆,Y [0])← Mask-Gen(K,N)
2. (A[1], . . . , A[a])

n←− A
3. (M [1], . . . ,M [m])

n←−M
4. for i = 1 to a− 1
5. ∆← 2∆
6. X[i]← (A[i]⊕G · Y [i− 1])⊕∆
7. Y [i]← EK(X[i])
8. if |A[a]| = n then ∆← 3∆
9. else ∆← 32∆

10. X[a]← (A[a]⊕G · Y [a− 1])⊕∆
11. Y [a]← EK(X[a])
12. for i = 1 to m− 1
13. X[i+ a]← (M [i]⊕G · Y [i+ a− 1])⊕∆
14. Y [i+ a]← EK(X[i+ a])
15. C[i]← Y [i+ a− 1]⊕M [i]
16. if i < m− 1 then ∆← 2∆
17. if |M [m]| = n then ∆← 3∆
18. else ∆← 32∆
19. X[a+m]← (M [m]⊕G · Y [a+m− 1])⊕∆
20. C[m]← Y [a+m− 1]⊕M [m]
21. T ← EK(X[a+m])
22. return (C, T)

Algorithm COFB-DK(N,A,C, T)

1. (∆,Y [0])← Mask-Gen(K,N)
2. (A[1], . . . , A[a])

n←− A
3. (C[1], . . . , C[c])

n←− C
4. for i = 1 to a− 1
5. ∆← 2∆
6. X[i]← (A[i]⊕G · Y [i− 1])⊕∆
7. Y [i]← EK(X[i])
8. if |A[a]| = n then ∆← 3∆
9. else ∆← 32∆

10. X[a]← (A[a]⊕G · Y [a− 1])⊕∆
11. Y [a]← EK(X[a])
12. for i = 1 to c− 1
13. X[i+a]← (C[i]⊕Y [i+a−1]⊕G ·Y [i+a−1])⊕∆
14. M [i]← Y [i+ a− 1]⊕ C[i]
15. Y [i+ a]← EK(X[i+ a])
16. if i < c− 1 then ∆← 2∆
17. if |C[a]| = n then ∆← 3∆
18. else ∆← 32∆
19. X[a+ c]← (C[c]⊕Y [a+ c−1]⊕G ·Y [a+ c−1])⊕∆
20. M [c]← Y [a+ c− 1]⊕C[c]
21. T ′ ← EK(X[a+ c])
22. M ← (M [1], . . . ,M [c])
23. if T ′ = T then return M
24. else return ⊥

Fig. 4.2. The encryption and decryption algorithms of COFB.

Lemma 3. The function Fmt(·) is prefix-free.

The proof is more or less straightforward and hence we skip it.
We present the specifications of COFB in Fig. 4.2, where α and (1 + α) in

Eq. (3) are written as 2 and 3. See also Fig. 4.1. The encryption and decryption
algorithms are denoted by COFB-EK and COFB-DK . We remark that the nonce
length is n/2 bits, which is enough for the security up to the birthday bound.
The nonce is processed as EK(0n/2 ‖N) to yield the first internal chaining value.
The encryption algorithm takes non-empty A and non-empty M , and outputs
C and T such that |C| = |M | and |T | = n. The decryption algorithm takes
(N,A,C, T) with |A|, |C| 6= 0 and outputs M or ⊥. Note that some of building
blocks described above are not presented in Fig. 4.2, since they are introduced
for the proof. An equivalent presentation using them is presented in Fig. 5.1.

5 Security of COFB

We present the security analysis of COFB in Theorem 2. Before going to the
proof, as mentioned earlier, we would like to mention that we use the function

15

Fmt and Lemma 3 in the proof to make it easy to understand. We would also
like to mention that, we instantiate iCOFB with COFB by choosing

RN,A,(i,j)(X) =

f(N,A) if i = 0, j = 0

EK(X ⊕mask∆(a+ i− 1, δA)) if i < m, j = 0

EK(X ⊕mask∆(a+m− 2, δA + δM)) if i = m, j = 1

where f(N,A) is the function that simulates the associated data phase and
outputs Y [a] (Line 1–11, Fig. 4.2, K is implicit and chosen uniformly from the
key space and X = 0n in this case). ∆ (computed using EK and N), a, m, δA
and δM are described as in the previous section, and we instantiate ρ by the
feedback function described in the previous section. However, the security proof
of COFB does not follow from that of iCOFB, since as a tweakable PRF, the
security of R is only guaranteed up to n/4 bits, and thus we cannot rely on the
hybrid argument to show the security of COFB. We next proceed with our proof
for our instantiation.

Theorem 2 (Main Theorem).

AdvAE
COFB((q, qf), (σ, σf), t) ≤ Advprp

AES(q′, t′) +
0.5(q′)2

2n
+

4σ + 0.5nqf
2n/2

+
qf + (q + σ + σf) · σf

2n
,

where q′ = q+ qf +σ+σf , which corresponds to the total number of blockcipher
calls through the game, and t′ = t+O(q′).

Proof. Without loss of generality, we can assume q′ ≤ 2
n
2−1, since otherwise the

bound obviously holds as the right hand side becomes more than one. The first
transition we make is to use an n-bit (uniform) random permutation P instead of
EK , and then to use an n-bit (uniform) random function R instead of P. This two-
step transition requires the first two terms of our bound, from the standard PRP-
PRF switching lemma and from the computation to the information security
reduction (e.g., see [17]). Then what we need is a bound for COFB using R,
denoted by COFB-R. That is, we prove

AdvAE
COFB-R((q, qf), (σ, σf),∞) ≤ 4σ + 0.5nqf

2n/2
+
qf + (q + σ + σf) · σf

2n
. (5)

For i = 1, . . . , q, we write (Ni, Ai,Mi) and (Ci, Ti) to denote the i-th encryption
query and response. Here, Ai = (Ai[1], . . . , Ai[ai]), Mi = (Mi[1], . . . ,Mi[mi]),
and Ci = (Ci[1], . . . , Ci[mi]). Let `i = ai + mi, which denotes the total in-
put block length for the i-th encryption query. We write Xi[j] (resp. Yi[j]) for
i = 1, . . . , q and j = 0, . . . , `i to denote the j-th input (resp. output) of the
internal R invoked at the i-th encryption query, where the order of invocation
follows the specification shown in Fig. 4.2. We remark that Xi[0] = 0n/2‖Ni
and Yi[`i] = Ti for all i = 1, . . . , q. Similarly, we write ∆i to denote Y 2

i [0]‖Y 3
i [0]

where Y 1
i [0]‖ · · · ‖Y 4

i [0]
n/4←−− Yi[0].

16

We introduce the following relaxations in the game, which only gain the ad-
vantage. First, after completing all queries and forging attempts (i.e. decryption
queries), let the adversary learn all the Y -values for all encryption queries only.
We remark that any X-values computed at the message processing phase (not
the AD processing phase) of the i-th encryption query are immediately deter-
mined by the i-th query-response tuple, (Ni, Ai,Mi, Ci, Ti) and Yi values from
the property of feedback function, and ∆-values (it is a part of Y [0]).

In case of the ideal oracle, all these variables corresponding to Y will be cho-
sen uniformly and independently, where at the plaintext encryption phase Yi[j] is
randomly chosen and used to determine Ci[j] as Ci[j] = Yi[j−1] ⊕Mi[j], and at
AD processing phase it is a dummy and has no influence to the response (Ci, Ti).
For decryption queries, the ideal oracle always returns ⊥ (here we assume that
the adversary makes only fresh queries).

Coefficients-H Technique. We outline the Coefficients-H technique developed
by Patarin, which serves as a convenient tool for bounding the advantage (see
[49, 60]). We will use this technique (without giving a proof) to prove our main
theorem. Consider two oracles O0 = ($,⊥) (the ideal oracle for the relaxed game)
and O1 (real, i.e. our construction in the same relaxed game). Let V denote the
set of all possible views an adversary can obtain. For any view τ ∈ V, we will
denote the probability to realize the view as ipreal(τ) (or ipideal(τ)) when it is in-
teracting with the real (or ideal respectively) oracle. We call these interpolation
probabilities. Without loss of generality, we assume that the adversary is deter-
ministic and fixed. Then, the probability space for the interpolation probabilities
is uniquely determined by the underlying oracle. As we deal with stateless ora-
cles, these probabilities are independent of the order of query responses in the
view. Suppose we have a set of views, Vgood ⊆ V, which we call good views, and
the following conditions hold:

1. In the game involving the ideal oracle O0 (and the fixed adversary), the
probability of getting a view in Vgood is at least 1− ε1.

2. For any view τ ∈ Vgood, we have ipreal(τ) ≥ (1− ε2) · ipideal(τ).

Then we have |Pr[AO0 = 1] − Pr[AO1 = 1]| ≤ ε1 + ε2. The proof can be found
at (say) [60]. Now we proceed with the proof of Theorem 2 by defining certain
Vgood for our games, and evaluating the bounds, ε1 and ε2.

Views. In our case, a view τ is defined by the following tuple:

τ = ((Ni, Ai,Mi, Yi)i∈{1,...,q}, (N
∗
i′ , A

∗
i′ , C

∗
i′ , T

∗
i′ , Z

∗
i′)i′∈{1,...,qf}),

where Z∗i′ denotes the output of the decryption oracle D (it is always ⊥ when we
interact with the ideal oracle) for the i′-th decryption query (N∗i′ , A

∗
i′ , C

∗
i′ , T

∗
i′).

Note that Yi denotes (Yi[0], . . . , Yi[`i]) = Yi[0..`i], where `i = ai + mi, and ai
(resp. mi) denotes the block length of Ai (resp. Mi). Here we implicitly use the
fact that given a complete blockMi[j], the mapping from Yi[j] to Ci[j] is bijective

17

and hence keeping those Yi[j] values instead of Ci[j] is sufficient. Similarly we
define c∗i′ and a∗i′ , and write `∗i′ = a∗i′ + c∗i′ .

Let (Li[j], Ri[j])
n/2←−− Xi[j] for all i ∈ [1..q] and j ∈ [1..`i]. For any i, let pi

denote the length of the longest common prefix of Fmt(A∗i , C
∗
i) and Fmt(Aj , Cj)

where Nj = N∗i . If there is no such j, we define pi = −1. Since Fmt is prefix-free,
it holds that pi < min{`∗i , `j}. We observe that pi is unique for all i = 1, . . . , qf ,
as there is at most one encryption query that uses the same nonce as N∗i .

Bad Views. Now we define a bad view. The complement of the set of bad views
is defined to be the set of good views. A view is called bad if one of the following
events occurs:

B1: Li[j] = 0n/2 for some i ∈ [1..q] and j > 0.

B2: Xi[j] = Xi′ [j
′] for some (i, j) 6= (i′, j′) where j, j′ > 0.

B3: mcoll(R) > n/2, where R is the tuple of all Ri[j] values. Recall that

(Li[j], Ri[j])
n/2←−− Xi[j].

B4: X∗i [pi + 1] = Xi1 [j1] for some i, i1, j1 with pi as defined above. Note that
when pi ≥ 0, X∗i [pi + 1] is determined from the values of Y .

B5: For some Z∗i 6= ⊥. This clearly cannot happen for the ideal oracle case.

We add some intuitions on these events. When B1 does not hold, thenXi[j] 6=
Xi′ [0] for all i, i′, and j > 0. Hence ∆i will be completely random. When B2 does
not hold, then all the inputs for the random function are distinct for encryption
queries, which makes the responses from encryption oracle completely random in
the “real” game. When B3 does not hold, then at the right half of Xi[j] we see at
most n/2 multi-collisions. A successful forgery is to choose one of the n/2 multi-
collision blocks and forge the left part so that the entire block collides. Forging
the left part has 2−n/2 probability due to randomness of masking. Finally, when
B4 does not hold, then the (pi + 1)-st input for the i-th forging attempt will be
fresh with a high probability and so all the subsequent inputs will remain fresh
with a high probability.

A view is called good if none of the above events hold. Let Vgood be the set of
all such good views. The following lemma bounds the probability of not realizing
a good view while interacting with a random function (this will complete the
first condition of the Coefficients-H technique).

Lemma 4.

Pr
ideal

[τ 6∈ Vgood] ≤ 4σ + 0.5nqf
2n/2

.

Proof (of Lemma 4). Throughout the proof, we assume all probability notations
are defined over the ideal game. We bound all the bad events individually and
then by using the union bound, we will obtain the final bound. We first de-

velop some more notation. Let (Y 1
i [j], Y 2

i [j], Y 3
i [j], Y 4

i [j])
n/4←−− Yi[j]. Similarly,

we denote (M1
i [j],M2

i [j])
n/2←−−Mi[j].

18

(1) Pr[B1] ≤ σ/2n/2: We fix a pair of integers (i, j) for some i ∈ [1..q] and
j ∈ [1..`i]. Now, Li[j] can be expressed as

(Y 2
i [j − 1]‖Y 3

i [j − 1])⊕ (αa · (1 + α)b ·∆i)⊕M1
i [j]

for some a and b. Note that when j > 1, ∆i and Yi[j − 1] are independently
and uniformly distributed, and hence for those j, we have Pr[Li[j] = 0n/2] =
2−n/2 (apply Lemma 2 after conditioning Yi[j − 1]). Now when j = 1, we
have the following three possible choice: (i) Li[1] = (1 + α) · ∆i ⊕ Cons if
ai ≥ 2, (ii) Li[1] = α · ∆i ⊕ Cons if ai = 1 and the associated data block
is full, and (iii) Li[1] = α2 · ∆i ⊕ Cons if ai = 1 and the associated data
block is not full, for some constant Cons. In all cases by applying Lemma 2,
Pr[B1] ≤ σ/2n/2.

(2) Pr[B2] ≤ σ/2n/2: For any (i, j) 6= (i′, j′) with j, j′ ≥ 1, the equality event
Xi[j] = Xi′ [j

′] has a probability at most 2−n since this event is a non-trivial
linear equation on Yi[j − 1] and Yi′ [j

′− 1] and they are independent to each
other. Note that σ2/2n ≤ σ/2n/2 as we are estimating probabilities.

(3) Pr[B3] ≤ 2σ/2n/2: The event B3 is a multi-collision event for randomly
chosen σ many n/2-bit strings as Y values are mapped in a regular manner
(see the feedback function) to R values. From the union bound, we have

Pr[B3] ≤
(
σ

n/2

)
1

2(n/2)·((n/2)−1)
≤ σn/2

2(n/2)·((n/2)−1)
≤
(σ

2(n/2)−1

)n/2
≤ 2σ

2n/2
,

where the last inequality follows from the assumption (σ ≤ 2(n/2)−1).

(4) Pr[B4 ∧B1c ∧B3c] ≤ 0.5nqf/2
n/2: We fix some i and want to bound the

probability Pr[X∗i [pi + 1] = Xi1 [j1] ∧B1c ∧B3c] for some i1, j1. If pi = −1
(i.e., N∗i does not appear in encryption queries), then N∗i is fresh as left
n/2 bits of all Xi[j] is non-zero for all j > 0 (since we also consider B1
does not hold). So the probability is zero. Now we consider pi ≥ 0. The
event B3c implies that at most n/2 possible values of (i1, j1) are possible
for which X∗i [pi + 1] = Xi1 [j1] can hold. Fix any such (i1, j1). Now it is
sufficient to bound the probability for equality for the left n/2 bits. We
first consider the case where j1 = pi + 1. Now from the definition of pi,
(C∗i [pi + 1], t∗i [pi + 1]) 6= (Ci1 [pi + 1], ti1 [pi + 1]). If ti[pi + 1] = ti1 [pi + 1]
then the bad event cannot hold with probability one. Otherwise, we obtain
a non-trivial linear equation in ∆i1 and apply Lemma 2, and we also use
the fact that G + I is non singular. A similar argument holds for the other
choices of j1. Therefore, the probability for the atomic case is at most 2−n/2,
and because we have at most qf ·n/2 chances, Pr[B4∧B1c∧B3c] is at most
(n/2) · qf · 1/2n/2.

Summarizing, we have

Pr
ideal

[τ 6∈ Vgood] ≤ Pr[B1] + Pr[B2] + Pr[B3] + Pr[B4 ∧B1c ∧B3c]

≤ σ

2n/2
+

σ

2n/2
+

2σ

2n/2
+

0.5nqf
2n/2

=
4σ + 0.5nqf

2n/2
,

which concludes the proof. ut

19

Lower Bound of ipreal(τ). We consider the ratio of ipreal(τ) and ipideal(τ). In
this paragraph we assume that all the probability space, except for ipideal(∗), is
defined over the real game. We fix a good view

τ = ((Ni, Ai,Mi, Yi)i∈{1,...,q}, (N
∗
i′ , A

∗
i′ , C

∗
i′ , T

∗
i′ , Z

∗
i′)i′∈{1,...,qf}),

where Z∗i′ = ⊥. We separate τ into

τe = (Ni, Ai,Mi, Yi)i∈{1,...,q} and τd = (N∗i′ , A
∗
i′ , C

∗
i′ , T

∗
i′ , Z

∗
i′)i′∈{1,...,qf},

and we first see that for a good view τ , ipideal(τ) equals to 1/2n(q+σ).

Now we consider the real case. Since B1 and B2 do not hold with τ , all
inputs of the random function inside τe are distinct, which implies that the
released Y -values are independent and uniformly random. The variables in τe
are uniquely determined given these Y -values, and there are exactly q+σ distinct
input-output of R. Therefore, Pr[τe] is exactly 2−n(q+σ).

We next evaluate

ipreal(τ) = Pr[τe, τd] = Pr[τe] · Pr[τd|τe] =
1

2n(q+σ)
· Pr[τd|τe]. (6)

We observe that Pr[τd|τe] equals to Pr[⊥all|τe], where ⊥all denotes the event
that Z∗i = ⊥ for all i = 1, . . . , qf , as other variables in τd are determined by τe.

Let η denote the event that, for all i = 1, . . . , qf , X∗i [j] for pi < j ≤ `∗i is not
colliding to X-values in τe and X∗i [j′] for all j′ 6= j. For j = pi + 1, the above
condition is fulfilled by B4, and thus Y ∗i [pi + 1] is uniformly random, and hence
X∗i [pi + 2] is also uniformly random, due to the property of feedback function
(here, observe that the mask addition between the chain of Y ∗i [j] to X∗i [j + 1]
does not reduce the randomness).

Now we have Pr[⊥all|τe] = 1−Pr[(⊥all)
c|τe], and we also have Pr[(⊥all)

c|τe] =
Pr[(⊥all)

c, η|τe] + Pr[(⊥all)
c, ηc|τe]. Here, Pr[(⊥all)

c, η|τe] is the probability that
at least one T ∗i for some i = 1, . . . , qf is correct as a guess of Y ∗i [`∗i]. Here Y ∗i [`∗i]
is completely random from η, hence using the union bound we have

Pr[(⊥all)
c, η|τe] ≤

qf
2n
.

For Pr[(⊥all)
c, ηc|τe] which is at most Pr[ηc|τe], the above observation suggests

that this can be evaluated by counting the number of possible bad pairs (i.e. a
pair that a collision inside the pair violates η) among the all X-values in τe
and all X∗-values in τd, as in the same manner to the collision analysis of e.g.,
CBC-MAC using R. For each i-th decryption query, the number of bad pairs is
at most (q + σ + `∗i) · `∗i ≤ (q + σ + σf) · `∗i . Therefore, the total number of bad
pairs is

∑
1≤i≤qf (q + σ + σf) · `∗i ≤ (q + σ + σf) · σf , and we have

Pr[(⊥all)
c, ηc|τe] ≤

(q + σ + σf) · σf
2n

.

20

Module Mask-Gen(K,N)

1. Y [0]← EK(0n/2 ‖N)

2. (Y 1[0], . . . , Y 4[0])
n/4←−− Y [0]

3. ∆← Y 2[0]‖Y 3[0]
4. return (∆,Y [0])

Algorithm COFB-EK(N,A,M)

1. (∆,Y [0])← Mask-Gen(K,N)
2. (A[1], . . . , A[a])

n←− A
3. (M [1], . . . ,M [m])

n←−M
4. `← a+m
5. ((B[1], t[1]), . . . , (B[`], t[`]))← Fmt(A,M)
6. for i = 1 to `
7. X[i]← (B[i]⊕G · Y [i− 1]) ⊕ mask∆(t[i])
8. Y [i]← EK(X[i])
9. if i > a then

10. C[i− a]← Y [i− 1] ⊕ M [i− a]
11. T ← Y [`]
12. return (C, T)

Algorithm COFB-DK(N,A,C, T)

1. (∆,Y [0])← Mask-Gen(K,N)
2. (A[1], . . . , A[a])

n←− A
3. (C[1], . . . , C[c])

n←− C
4. `← a+ c
5. ((B[1], t[1]), . . . , (B[`], t[`]))← Fmt(A,C)
6. for i = 1 to `
7. if i ≤ a then
8. X[i]← (B[i]⊕G · Y [i− 1])⊕mask∆(t[i])
9. else X[i] ← (B[i] ⊕ Y [i − 1] ⊕ G · Y [i − 1])

⊕ mask∆(t[i])
10. Y [i]← EK(X[i])
11. for i = 1 to c
12. M [i]← Y [i+ a− 1] ⊕ C[i]
13. M ← (M [1], . . . ,M [c])
14. T ′ ← Y [`]
15. if T ′ = T then return M
16. else return ⊥

Fig. 5.1. A presentation of COFB using Fmt function. This is equivalent to Fig. 4.2.

Combining all, we have

ipreal(τ) =
1

2n(q+σ)
· Pr[τd|τe] = ipideal(τ) · Pr[⊥all|τe]

≥ ipideal(τ) · (1− (Pr[(⊥all)
c, η|τe] + Pr[(⊥all)

c, ηc|τe]))

≥ ipideal(τ) ·
(

1− qf + (q + σ + σf) · σf
2n

)
.

ut

6 Hardware Implementation of COFB

6.1 Overview

COFB primarily aims to achieve a lightweight implementation on small hardware
devices. For such devices, the hardware resource for implementing memory is
often the dominant factor of the size of entire implementation, and the scalability
by parallelizing the internal components is not needed. In this respect, COFB’s
small state size and completely serial operation is quite desirable.

For implementation aspects, COFB is simple, as it consists of a blockcipher
and several basic operations (bitwise XOR, the feedback function, and the con-
stant multiplications over GF(2n/2)). Combined with the small state size, this
implies that the implementation size of COFB is largely dominated by the un-
derlying blockcipher. In this section we provide hardware implementation de-
tails of COFB using two blockciphers, AES and GIFT. Here, GIFT is a family of

21

Table 2. Clock cycles per message byte for COFB[AES].

Message length (Bytes)
16 32 64 128 256 512 1024 2048 4096 16384 32768

cpb 2.93 2.22 1.86 1.68 1.59 1.54 1.52 1.51 1.50 1.50 1.50

Table 3. Clock cycles per message byte for COFB[GIFT].

Message length (Bytes)
16 32 64 128 256 512 1024 2048 4096 16384 32768

cpb 5.441 5.283 5.204 5.164 5.145 5.135 5.130 5.127 5.126 5.125 5.125

lightweight blockcipher proposed by Banik et al. [13]. It employs a structure sim-
ilar to PRESENT [19] while improves efficiency by carefully choosing S-box and
the bit permutation. It has 64-bit and 128-bit block versions, both have 128-bit
key. We write GIFT-128 or simply write GIFT to denote the 128-bit-block ver-
sion. We write COFB[AES] and GIFT-128 to denote COFB using AES-128 and
COFB[GIFT] respectively.

We provide the number of clock cycles needed to process input bytes, as a
conventional way to estimate the speed. Here, COFB[AES] taking a-block AD
(associated data) and an m-block message needs 12(a+m) + 23 cycles. Table 2
shows the number of average cycles per input message bytes, which we call cycles
per byte (cpb), assuming AD has the same length as message and the underlying
blockcipher has 128-bit block. That is, the table shows (12 · 2m+ 23)/16m.

Similarly, COFB[GIFT] needs 41 · (a+m) + 81 cycles for a-block AD and an
m-block message. Table 3 shows the number of average cycles per input message
bytes, which we call cycles per byte (cpb), assuming AD has the same length
as message and the underlying blockcipher has 128-bit block. That is, the table
shows (41 · 2m+ 81)/16m.

6.2 Hardware Architecture

We describe the implementation details of both COFB[AES] and COFB[GIFT].
These are basic round based implementations without any pipelining, and em-
ploy module architecture. We primary focus on the encryption-only circuit, how-
ever, the combined encryption and decryption circuit should have very small
amount of overhead thanks to the inverse-freeness (i.e. no blockcipher decryp-
tion routine is needed) and simplicity of the mode. Due to the similarity between
the associated data and the message processing phase, the same hardware mod-
ules are used in both phases. A single bit switch is used to distinguish between
the two types of input data. The main architecture consists of the modules de-
scribed below. We remark that, there is also a Finite State Machine (FSM) which
controls the flow by sending signal to these modules. The FSM has a rather sim-
ple structure, and is described below. Then, the overall hardware architecture is

22

described in Fig. 6.2. We would like to mention that both the versions can be
described with the same hardware architecture as they have exactly the same
interface. Hence, we often use BC instead of the underlying blockcipher, where
BC ∈ {AES-128,GIFT-128}. We also assume that BC comprises of r rounds.

1. State Registers. The state registers are used to store the intermediate
states after each iteration. We use a 128-bit State register to store the 128-
bit BC block state, a 64-bit ∆ register to store the 64-bit mask applied to
each BC input, and a 128-bit Key register to store the 128-bit key. The
round key of BC is stored in the additional 128-bit register (Round Key),
however, this is included in the BC module.

2. BC Round. BC round function module runs one BC round computation
and produces a 128-bit output, using two 128-bit inputs, one from the State
and the other from (internal) Round Key registers. The latter register is
initialized by loading the master key, stored in the Key register, each time
the BC function is invoked. The output of BC module is stored into the
State register, which is the input for the next round. The entire operation
is serial, while the internal round computation and the round key generation
run in parallel, and needs r + 1 cycles to perform full BC encryption.

3. Feedback Function ρ. The ρ module is to compute the linear feedback
function ρ on the 128-bit data block and the 128-bit intermediate state value
(output from the BC computation). The output is a 128-bit ciphertext and
a 128-bit intermediate state (to be masked and stored to the State register).

4. Mask Update. uMask module updates the mask stored in ∆ register.
uMask receives the current mask value and updates it by multiplying with
α or (1 + α) or (1 + α)2 based on the signals generated by the FSM, where
signals are to indicate the end of the message and the completeness of the
final block process.

5. FSM. The control of the complete design can be described by a finite state
machine (FSM). We provide a separate and simple view of FSM in Fig. 6.1.
The FSM consists of 9 states and starts with the Reset St. This state is
idle and followed by a Load St, which initializes the BC state by load-
ing nonce (before the first BC invocation). After the initialization, FSM
enters into the BC invocation phase to encrypt the nonce. This phase con-
sists of BC Reset St to reset BC parameters, BC Start St for key whiten-
ing, BC Round St to run one BC round and BC Done St to indicate the
end of the BC invocation. Depending on whether the current blockcipher
call is final or not, the FSM either releases the tag or it enters to the
Compute ρ Add Mask St, which computes the ρ function, updates mask
and partially masks the blockcipher input. The FSM sends two additional
bits EOM to denote the end of data block and isComplete to denote the
last data block is complete or not. Next it enters the BC Reset St for
the next blockcipher invocation. After the last BC invocation it enters the
Release Tag St. Finally, the FSM enters the end state. We use a 4-bit reg-
ister to keep track of the states. It is to be noted that, in addition to the

23

state transition, FSM also sends the corresponding relevant signals to the
top modules.

BC
Module
FSM

Roundctr< r

Else,
EOM,

isComplete

Roundctr= r

Start Reset St Load St

BC Reset St

BC Start St

BC Round St

BC Done St

Release Tag St

End St

Compute ρ
Add Mask St

If Final
Block

Fig. 6.1. FSM for COFB[BC] Hardware Implementation

Basic Implementation. We describe a basic flow of our implementation, which
generally follows the pseudocode of Fig. 4.2. Prior to the initialization, State
register is loaded with 064 ‖N . Once State register is initialized, the initialization
process starts by encrypting the nonce (064 ‖N) with BC. Then, 64 bits of the
encrypted nonce is chopped by the “chop” function as in Fig. 6.2, and this
chopped value is stored into the ∆ register (this is initialization of ∆). After
the initialization, 128-bit associated data blocks are fetched and sent to the ρ
module along with the previous BC output to produce a 128 bit intermediate
state. This state is partially masked with 64-bit ∆ for every BC call. After all
the associated data blocks are processed, the message blocks are processed in the
same manner, except that the ρ function produces 128-bit ciphertext blocks in
addition to the intermediate state values. Finally, after the message processing
is over, the tag is generated using an additional BC call.

Combined Encryption and Decryption. As mentioned earlier, we here fo-
cus on the encryption-only circuit. However, due to the similarity between the
encryption and the decryption modes, the combined hardware for encryption
and decryption can be built with a small increase in the area, with the same
throughput. This can be done by adding a control flow to a binary signal for
mode selection.

24

064||N

State

128

128128

128 128

128

128

128

BCr

Key

ρρ

∆

128

C

uMask

T

chop
128 64

AD/M

64

||064⊕⊕⊕

128128
64

Fig. 6.2. Hardware Circuit Diagram

Table 4. FPGA implementation results of COFB[AES]

Platform
Slice

Registers LUTs Slices

Frequency

(MHz)

Throughput

(Gbps) Mbps/LUT Mbps/Slice

Virtex 6 594 1051 449 267.20 2.85 2.71 6.35

Virtex 7 593 1440 564 274.84 2.93 2.03 5.19

6.3 Implementation Results

We have implemented both COFB[AES] and COFB[GIFT] on Xilinx Virtex 6 and
Virtex 7, using VHDL and Xilinx ISE 13.4. Table 4 presents the implementation
results of COFB on Virtex 7 with the target device xc7vx330t and Virtex 6 with
the target device xc6vlx760. We employ RTL approach and a basic iterative
type architecture (128-bit round based implementation). The areas are listed in
the number of Slice Registers, Slice LUTs and Occupied Slices. We also report
frequency (MHz), Throughput (Gbps), and throughput-area efficiency. Table 4
presents the mapped hardware results of COFB[AES]. In this paper, we have
slightly optimized the implementation in [23, 24] to get a better estimate of the
number of slice registers.

For AES-128, we use the implementation available from Athena [1] main-
tained by George Mason University. This implementation stores all the round
subkeys in a single register to make the AES implementation faster and paralleliz-
able. However, the main motivation of COFB is to reduce hardware footprint.
Hence, we change the above implementation to a sequential one such that it
processes only one AES round in a single clock cycle. This in turn eliminates the
need to store all the round subkeys in a single register and reduces the hardware
area consumed by the AES module.

For GIFT-128, we use our own implementation in FPGA. The implementation
is round based without any pipelining. The architecture uses three registers
State, RK and Round to hold the blockcipher state, current round key and the
round counter respectively. The architecture is divided into four modules SN ,

25

Table 5. FPGA implementation results of COFB[GIFT]

Platform
Slice

Registers LUTs Slices

Frequency

(MHz)

Throughput

(Gbps) Mbps/LUT Mbps/Slice

Virtex 6 342 771 355 612.91 1.91 2.48 5.51

Virtex 7 342 771 316 712.99 2.23 2.89 6.62

BP , ARK and ARC, UKEY . operations. SN module applies a 4-bit sbox to
each of the 4-bit nibbles of the state. BP applies the bit permutation on the
state. ARK performs the round key addition on the state and ARC applies
round constant addition on the state. UKEY updates the round key and stores
it in RK. The architecture also uses another module EXT to extract a part of
the round key to be added to the state. The hardware implementation results in
slice registers, slice LUTs and Slices are presented in Table 5.

6.4 Hardware Flexibility of the COFB Design

COFB is itself very lightweight and it uses a few operations other than the block-
cipher computations. Below in Table 6 and 7, we present the hardware area
occupied by the blockcipher and the other modules for both COFB[AES] and
COFB[GIFT] on Vertex 6. We observe that COFB[AES] consumes low hardware
footprint and the majority of the hardware footprint is used by AES, whereas in
COFB[GIFT] the implementation size is much smaller as the underlying block-
cipher GIFT is much lighter than AES. This depicts that implementation area
optimized blockcipher will be the most efficient one.

Table 6. COFB[AES]: Area utilization by modules in Virtex 6

Modules Slices LUTs

Total 449 1051

AES 311 657

Others 138 394

Table 7. COFB[GIFT]: Area utilization by modules in Virtex 6

Modules Slices LUTs

Total 355 771

GIFT 155 346

Others 200 425

26

6.5 Benchmarking with ATHENa Database

We compare our implementation of COFB with the results published in ATHENa
Database [2], taking Virtex 6 and Virtex 7 as our target platforms. We first warn
that this is a rough comparison. Here, we ignore the overhead to support the
GMU API and the fact that ours is encryption-only while the others are (to
the best of our knowledge) supporting both encryption and decryption, and the
difference in the achieved security level, both quantitative and qualitative. We
acknowledge that supporting GMU API will require some additional overhead
to the current figures of COFB. Nevertheless, we think the current figures of
COFB suggest that small hardware implementations (small for AES-128 and
even smaller with GIFT-128) are possible compared with other blockcipher AE
modes shown in the table, using the same AES-128 and GIFT-128, even if we add
a circuit for supporting GMU API and decryption.

We also remark that it is basically hard to compare COFB using AES-128
or GIFT-128 with other non-block-cipher-based AE schemes in the right way,
because of the difference in the primitives and the types of security guarantee.
For example, ACORN is built from scratch and does not have any provable
security result, and is subjected to several cryptanalyses [27, 55, 54, 42]. Joltik and
JAMBU-SIMON employ lightweight (tweakable) blockciphers allowing smaller
implementation than AES, and Sponge AE schemes (ASCON, Ketje, NORX, and
PRIMATES-HANUMAN) use a keyless permutation of a large block size to avoid
key scheduling circuit and have the provable security relying on the random
permutation model. In Table 8 and 9, we provide the comparison table both
Vertex 6 and Vertex 7 platforms.

7 Conclusion

This paper presents COFB, a blockcipher mode for AE focusing on minimizing
the state size. When instantiated with an n-bit blockcipher, COFB operates at
rate-1, and requires state size of 1.5n bits, and is provable secure up to O(2n/2/n)
queries based on the standard PRP assumption on the blockcipher. In fact this
is the first scheme fulfilling these features at once. A key idea of COFB is a
new type of feedback function combining both plaintext and ciphertext blocks.
We first present an idealized version of COFB, named iCOFB along with its
provable security analysis. We instantiate COFB with the AES-128 blockcipher.
We also present two hardware implementation results for COFB with AES-128
and GIFT-128 blockcipher respectively. These two implementations demonstrate
the effectiveness of our approach.

References

1. ATHENa: Automated Tool for Hardware Evaluation. https://cryptography.

gmu.edu/athena/.
2. Authenticated Encryption FPGA Ranking. https://cryptography.gmu.edu/

athenadb/fpga_auth_cipher/rankings_view.

27

Table 8. Comparison on Virtex 6 [2]. In the “Primitive” column, SC denotes Stream
cipher, (T)BC denotes (Tweakable) blockcipher, and BC-RF denotes the blockcipher’s
round function.

Scheme Primitive LUT Slices T’put (Gbps) Mbps / LUT Mbps / Slice

ACORN [61] SC 455 135 3.112 6.840 23.052

AEGIS [63] BC-RF 7592 2028 70.927 9.342 34.974

AES-COPA [10] BC 7754 2358 2.500 0.322 1.060

AES-GCM [29] BC 3175 1053 3.239 1.020 3.076

AES-OTR [46] BC 5102 1385 2.741 0.537 1.979

AEZ [34] BC-RF 4597 1246 8.585 0.747 2.756

ASCON [28] Sponge 1271 413 3.172 2.496 7.680

CLOC [37] BC 3145 891 2.996 0.488 1.724

DEOXYS [39] TBC 3143 951 2.793 0.889 2.937

ELmD [26] BC 4302 1584 3.168 0.736 2.091

JAMBU-AES [62] BC 1836 652 1.999 1.089 3.067

JAMBU-SIMON [62] BC (non-AES) 1222 453 0.363 0.297 0.801

Joltik [38] TBC 1292 442 0.853 0.660 0.826

Ketje [18] Sponge 1270 456 7.345 5.783 16.107

Minalpher [56] BC (non-AES) 2879 1104 1.831 0.636 1.659

NORX [11] Sponge 2964 1016 11.029 3.721 10.855

PRIMATES-HANUMAN [8] Sponge 1012 390 0.964 0.953 2.472

OCB [41] BC 4249 1348 3.122 0.735 2.316

SCREAM [32] TBC 2052 834 1.039 0.506 1.246

SILC [37] BC 3066 921 4.040 1.318 4.387

Tiaoxin [48] BC-RF 7123 2101 52.838 7.418 25.149

TriviA-ck [25] SC 2118 687 15.374 7.259 22.378

COFB[AES] BC 1051 449 2.850 2.710 6.350

COFB[GIFT] BC 771 355 1.91 2.48 5.51

3. CAESAR: Competition for Authenticated Encryption: Security, Applicability, and
Robustness. http://competitions.cr.yp.to/caesar.html/.

4. Recommendation for Block Cipher Modes of Operation: Methods and Techniques.
NIST Special Publication 800-38A, 2001. National Institute of Standards and
Technology.

5. Recommendation for Block Cipher Modes of Operation: The CCM Mode for Au-
thentication and Confidentiality . NIST Special Publication 800-38C, 2004. Na-
tional Institute of Standards and Technology.

6. Recommendation for Block Cipher Modes of Operation: The CMAC Mode for
Authentication. NIST Special Publication 800-38B, 2005. National Institute of
Standards and Technology.

7. NIST FIPS 197. Advanced Encryption Standard (AES). Federal Information
Processing Standards Publication, 197, 2001.

8. Elena Andreeva, Begül Bilgin, Andrey Bogdanov, Atul Luykx, Florian Mendel,
Bart Mennink, Nicky Mouha, Qingju Wang, and Kan Yasuda. PRIMATEs
v1.02. Submission to CAESAR. 2016. https://competitions.cr.yp.to/round2/
primatesv102.pdf.

9. Elena Andreeva, Andrey Bogdanov, Atul Luykx, Bart Mennink, Elmar Tis-
chhauser, and Kan Yasuda. Parallelizable and Authenticated Online Ciphers. In
ASIACRYPT (1), volume 8269 of LNCS, pages 424–443. Springer, 2013.

10. Elena Andreeva, Andrey Bogdanov, Atul Luykx, Bart Mennink, Elmar Tis-
chhauser, and Kan Yasuda. AES-COPA v.2. Submission to CAESAR. 2015.
https://competitions.cr.yp.to/round2/aescopav2.pdf.

28

Table 9. Comparison on Virtex 7 [2].

Scheme LUT Slices T’put (Gbps) Mbps / LUT Mbps / Slice

ACORN 499 155 3.437 6.888 22.174

AEGIS 7504 1983 94.208 12.554 47.508

AES-COPA 7795 2221 2.770 0.355 1.247

AES-GCM 3478 949 3.837 1.103 4.043

AES-OTR 4263 1204 3.187 0.748 2.647

AEZ 4686 1645 8.421 0.719 2.047

ASCON 1373 401 3.852 2.806 9.606

CLOC 3552 1087 3.252 0.478 1.561

DEOXYS 3234 954 1.472 0.455 2.981

ELmD 4490 1306 4.025 0.896 3.082

JAMBU-AES 1595 457 1.824 1.144 3.991

JAMBU-SIMON 1200 419 0.368 0.307 0.878

Joltik 1261 390 0.402 0.319 1.031

Ketje 1125 351 8.718 7.749 24.838

Minalpher 2941 802 2.447 0.832 3.051

NORX 2881 857 10.328 3.585 12.051

PRIMATES-HANUMAN 1148 370 1.072 0.934 2.897

OCB 4269 1228 3.608 0.845 2.889

SCREAM 2315 696 1.100 0.475 1.580

SILC 3040 910 4.365 1.436 4.796

Tiaoxin 7556 1985 75.776 10.029 38.174

TriviA-ck 2221 684 14.852 6.687 21.713

COFB[AES] 1440 564 2.93 2.03 5.19

COFB[GIFT] 771 316 2.23 2.89 6.62

11. Jean-Philippe Aumasson, Philipp Jovanovic, and Samuel Neves. NORX v3.0. Sub-
mission to CAESAR. 2016. https://competitions.cr.yp.to/round3/norxv30.

pdf.

12. Subhadeep Banik, Andrey Bogdanov, and Kazuhiko Minematsu. Low-Area Hard-
ware Implementations of CLOC, SILC and AES-OTR. DIAC 2015.

13. Subhadeep Banik, Sumit Kumar Pandey, Thomas Peyrin, Yu Sasaki, Siang Meng
Sim, and Yosuke Todo. GIFT: A small present - towards reaching the limit of
lightweight encryption. In Fischer and Homma [30], pages 321–345.

14. Subhadeep Banik, Sumit Kumar Pandey, Thomas Peyrin, Siang Meng Sim, Yosuke
Todo, and Yu Sasaki. GIFT: A small present. IACR Cryptology ePrint Archive,
2017:622, 2017.

15. Ray Beaulieu, Douglas Shors, Jason Smith, Stefan Treatman-Clark, Bryan Weeks,
and Louis Wingers. The SIMON and SPECK lightweight block ciphers. In Pro-
ceedings of the 52nd Annual Design Automation Conference, San Francisco, CA,
USA, June 7-11, 2015, pages 175:1–175:6. ACM, 2015.

16. Christof Beierle, Jérémy Jean, Stefan Kölbl, Gregor Leander, Amir Moradi,
Thomas Peyrin, Yu Sasaki, Pascal Sasdrich, and Siang Meng Sim. The SKINNY
family of block ciphers and its low-latency variant MANTIS. In Matthew Rob-
shaw and Jonathan Katz, editors, Advances in Cryptology - CRYPTO 2016 - 36th
Annual International Cryptology Conference, Santa Barbara, CA, USA, August 14-
18, 2016, Proceedings, Part II, volume 9815 of Lecture Notes in Computer Science,
pages 123–153. Springer, 2016.

29

17. Mihir Bellare, Joe Kilian, and Phillip Rogaway. The security of the cipher block
chaining message authentication code. J. Comput. Syst. Sci., 61(3):362–399, 2000.

18. Guido Bertoni, Michaël Peeters Joan Daemen, Gilles Van Assche, and Ronny Van
Keer. Ketje v2. Submission to CAESAR. 2016. https://competitions.cr.yp.

to/round3/ketjev2.pdf.
19. Andrey Bogdanov, Lars R. Knudsen, Gregor Leander, Christof Paar, Axel

Poschmann, Matthew J. B. Robshaw, Yannick Seurin, and C. Vikkelsoe.
PRESENT: An Ultra-Lightweight Block Cipher. In CHES 2007, pages 450–466,
2007.

20. Andrey Bogdanov, Florian Mendel, Francesco Regazzoni, Vincent Rijmen, and
Elmar Tischhauser. ALE: AES-Based Lightweight Authenticated Encryption. In
FSE 2013, pages 447–466, 2013.

21. Julia Borghoff, Anne Canteaut, Tim Güneysu, Elif Bilge Kavun, Miroslav Kneze-
vic, Lars R. Knudsen, Gregor Leander, Ventzislav Nikov, Christof Paar, Christian
Rechberger, Peter Rombouts, Søren S. Thomsen, and Tolga Yalçin. PRINCE -
A Low-Latency Block Cipher for Pervasive Computing Applications - Extended
Abstract. In ASIACRYPT 2012, pages 208–225, 2012.

22. Christophe De Cannière, Orr Dunkelman, and Miroslav Knezevic. KATAN and
KTANTAN - A family of small and efficient hardware-oriented block ciphers. In
Christophe Clavier and Kris Gaj, editors, Cryptographic Hardware and Embed-
ded Systems - CHES 2009, 11th International Workshop, Lausanne, Switzerland,
September 6-9, 2009, Proceedings, volume 5747 of Lecture Notes in Computer Sci-
ence, pages 272–288. Springer, 2009.

23. Avik Chakraborti, Tetsu Iwata, Kazuhiko Minematsu, and Mridul Nandi.
Blockcipher-based authenticated encryption: How small can we go? In Fischer
and Homma [30], pages 277–298.

24. Avik Chakraborti, Tetsu Iwata, Kazuhiko Minematsu, and Mridul Nandi.
Blockcipher-based authenticated encryption: How small can we go? IACR Cryp-
tology ePrint Archive, 2017:649, 2017.

25. Avik Chakraborti and Mridul Nandi. TriviA-ck-v2. Submission to CAESAR. 2015.
https://competitions.cr.yp.to/round2/triviackv2.pdf.

26. Nilanjan Datta and Mridul Nandi. Proposal of ELmD v2.1. Submission to CAE-
SAR. 2015. https://competitions.cr.yp.to/round2/elmdv21.pdf.

27. Prakash Dey, Raghvendra Singh Rohit, and Avishek Adhikari. Full key recovery
of ACORN with a single fault. J. Inf. Sec. Appl., 29:57–64, 2016.

28. Christoph Dobraunig, Maria Eichlseder, Florian Mendel, and Martin Schläffer.
Ascon v1.2. Submission to CAESAR. 2016. https://competitions.cr.yp.to/

round3/asconv12.pdf.
29. Morris Dworkin. Recommendation for block cipher modes of operation: Ga-

lois/counter mode (GCM) and GMAC. NIST Special Publication 800-38D, 2011.
csrc.nist.gov/publications/nistpubs/800-38D/SP-800-38D.pdf.

30. Wieland Fischer and Naofumi Homma, editors. Cryptographic Hardware and Em-
bedded Systems - CHES 2017 - 19th International Conference, Taipei, Taiwan,
September 25-28, 2017, Proceedings, volume 10529 of Lecture Notes in Computer
Science. Springer, 2017.

31. Ewan Fleischmann, Christian Forler, and Stefan Lucks. McOE: A Family of Almost
Foolproof On-Line Authenticated Encryption Schemes. In FSE 2012, pages 196–
215, 2012.

32. Vincent Grosso, Gaëtan Leurent, Francois-Xavier Standaert, Kerem Varici, An-
thony Journault, Francois Durvaux, Lubos Gaspar, and Stéphanie Kerckhof.

30

SCREAM Side-Channel Resistant Authenticated Encryption with Masking. Sub-
mission to CAESAR. 2015. https://competitions.cr.yp.to/round2/screamv3.
pdf.

33. Jian Guo, Thomas Peyrin, Axel Poschmann, and Matthew J. B. Robshaw. The
LED Block Cipher. In CHES 2011, pages 326–341, 2011.

34. Viet Tung Hoang, Ted Krovetz, and Philip Rogaway. AEZ v4.2: Authenticated En-
cryption by Enciphering. Submission to CAESAR. 2016. https://competitions.
cr.yp.to/round3/aezv42.pdf.

35. Tetsu Iwata and Kaoru Kurosawa. OMAC: One-Key CBC MAC. In FSE, pages
129–153, 2003.

36. Tetsu Iwata, Kazuhiko Minematsu, Jian Guo, and Sumio Morioka. CLOC: Au-
thenticated Encryption for Short Input. In FSE 2014, pages 149–167, 2014.

37. Tetsu Iwata, Kazuhiko Minematsu, Jian Guo, Sumio Morioka, and Eita Kobayashi.
CLOC and SILC. Submission to CAESAR. 2016. https://competitions.cr.yp.
to/round3/clocsilcv3.pdf.

38. Jérémy Jean, Ivica Nikolić, and Thomas Peyrin. Joltik v1.3. Submission to CAE-
SAR. 2015. https://competitions.cr.yp.to/round2/joltikv13.pdf.

39. Jérémy Jean, Ivica Nikolić, and Thomas Peyrin. Deoxys v1.41. Submission to
CAESAR. 2016. https://competitions.cr.yp.to/round3/deoxysv141.pdf.

40. Ted Krovetz and Phillip Rogaway. The Software Performance of Authenticated-
Encryption Modes. In FSE, pages 306–327, 2011.

41. Ted Krovetz and Phillip Rogaway. OCB(v1.1). Submission to CAESAR. 2016.
https://competitions.cr.yp.to/round3/ocbv11.pdf.

42. Frédéric Lafitte, Liran Lerman, Olivier Markowitch, and Dirk Van Heule. SAT-
based cryptanalysis of ACORN. IACR Cryptology ePrint Archive, 2016:521, 2016.

43. Moses Liskov, Ronald L. Rivest, and David Wagner. Tweakable Block Ciphers. In
CRYPTO, pages 31–46, 2002.

44. Kerry A. McKay, Larry Bassham, Meltem Snmez Turan, and Nicky Mouha. Report
on Lightweight Cryptography. 2017. http://nvlpubs.nist.gov/nistpubs/ir/

2017/NIST.IR.8114.pdf.
45. Kazuhiko Minematsu. Parallelizable Rate-1 Authenticated Encryption from Pseu-

dorandom Functions. In EUROCRYPT, volume 8441 of LNCS, pages 275–292.
Springer, 2014.

46. Kazuhiko Minematsu. AES-OTR v3.1. Submission to CAESAR. 2016. https:

//competitions.cr.yp.to/round3/aesotrv31.pdf.
47. Amir Moradi, Axel Poschmann, San Ling, Christof Paar, and Huaxiong Wang.

Pushing the Limits: A Very Compact and a Threshold Implementation of AES. In
EUROCRYPT 2011, pages 69–88, 2011.

48. Ivica Nikolić. Tiaoxin – 346. Submission to CAESAR. 2016. https://

competitions.cr.yp.to/round3/tiaoxinv21.pdf.
49. J. Patarin. Etude des Générateurs de Permutations Basés sur le Schéma du D.E.S.

Phd Thèsis de Doctorat de l’Université de Paris 6, 1991.
50. Thomas Peyrin, Siang Meng Sim, Lei Wang, and Guoyan Zhang. Cryptanalysis of

JAMBU. In FSE 2015, pages 264–281, 2015.
51. Phillip Rogaway. Efficient Instantiations of Tweakable Blockciphers and Refine-

ments to Modes OCB and PMAC. In ASIACRYPT, pages 16–31, 2004.
52. Phillip Rogaway, Mihir Bellare, and John Black. OCB: A block-cipher mode of

operation for efficient authenticated encryption. ACM Trans. Inf. Syst. Secur.,
6(3):365–403, 2003.

53. Phillip Rogaway and Thomas Shrimpton. A Provable-Security Treatment of the
Key-Wrap Problem. In EUROCRYPT, pages 373–390, 2006.

31

54. Md. Iftekhar Salam, Harry Bartlett, Ed Dawson, Josef Pieprzyk, Leonie Simpson,
and Kenneth Koon-Ho Wong. Investigating cube attacks on the authenticated
encryption stream cipher ACORN. In ATIS 2016, pages 15–26, 2016.

55. Md. Iftekhar Salam, Kenneth Koon-Ho Wong, Harry Bartlett, Leonie Ruth Simp-
son, Ed Dawson, and Josef Pieprzyk. Finding state collisions in the authenticated
encryption stream cipher ACORN. In Proceedings of the Australasian Computer
Science Week Multiconference, page 36, 2016.

56. Yu Sasaki, Yosuke Todo, Kazumaro Aoki, Yusuke Naito, Takeshi Sugawara, Yu-
miko Murakami, Mitsuru Matsui, and Shoichi Hirose. Minalpher v1.1. Submission
to CAESAR. 2015. https://competitions.cr.yp.to/round2/minalpherv11.

pdf.
57. Willem Schroé, Bart Mennink, Elena Andreeva, and Bart Preneel. Forgery and

Subkey Recovery on CAESAR Candidate iFeed. In SAC, volume 9566 of LNCS,
pages 197–204. Springer, 2015.

58. Kyoji Shibutani, Takanori Isobe, Harunaga Hiwatari, Atsushi Mitsuda, Toru Ak-
ishita, and Taizo Shirai. Piccolo: An Ultra-Lightweight Blockcipher. In CHES
2011, pages 342–357, 2011.

59. Tomoyasu Suzaki, Kazuhiko Minematsu, Sumio Morioka, and Eita Kobayashi.
TWINE : A Lightweight Block Cipher for Multiple Platforms. In SAC 2012, pages
339–354, 2012.

60. Serge Vaudenay. Decorrelation: A Theory for Block Cipher Security. J. Cryptology,
16(4):249–286, 2003.

61. Hongjun Wu. ACORN: A Lightweight Authenticated Cipher (v3). Submission to
CAESAR. 2016. https://competitions.cr.yp.to/round3/acornv3.pdf.

62. Hongjun Wu and Tao Huang. The JAMBU Lightweight Authentication Encryption
Mode (v2.1). Submission to CAESAR. 2016. https://competitions.cr.yp.to/

round3/jambuv21.pdf.
63. Hongjun Wu and Bart Preneel. AEGIS : A Fast Authenticated Encryption Algo-

rithm (v1.1). Submission to CAESAR. 2016. https://competitions.cr.yp.to/

round3/aegisv11.pdf.
64. Liting Zhang, Wenling Wu, Han Sui, and Peng Wang. iFeed[AES] v1. Submission

to CAESAR. 2014. https://competitions.cr.yp.to/round1/ifeedaesv1.pdf.

32

