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Abstract. The GMR-2 cipher is a kind of stream cipher currently being used in Inmarsat satellite phones. It
has been proven that such cipher can be cracked using only one frame known keystream but with a moderate
executing times. In this paper, we present a new thorough security analysis of the GMR-2 cipher. We first study
the inverse properties and the relationship of the cipher’s components to reveal a bad one-way character of the
cipher. Then by introducing a new concept called “valid key chain” according to the cipher’s key schedule, we
for the first time propose a real-time inversion attack using one frame keystream. This attack contains three
phases: (1) table generation (2) dynamic table looks-up, filtration and combination (3) verification. Our analysis
shows that, using the proposed attack, the exhaustive search space for the 64-bit encryption key can be reduced
to about 213 when one frame (15 bytes) keystream is available. Compared with previous known attacks, this
inversion attack is much more efficient. Finally, the proposed attack are carried out on a 3.3GHz platform, and
the experimental results demonstrate that the 64-bit encryption-key could be recovered in around 0.02s on average.
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1 Introduction

1.1 Backgrounds and the GMR-2 Cipher

With the rapid evolution and development of 4G technologies, mobile phone systems are available worldwide
nowadays, still it is difficult to build a complete mobile network in some remote areas, such as outlying desert
areas, oceans, and mountains. Thus, to fill the gaps left behind by radio-based technologies, satellite phones
have been widely used in these areas. Currently, the commonly used satellite communication standards are
mainly developed by international standards organization ETSI [7], including the GMR-1 standard and the
GMR-2 standard. For instance, Thuraya phones are based on the GMR-1 standard, while the Inmarsat
phones adopt GMR-2 standard.

Given that the confidentiality is a very crucial aspect in satellite communications, the encryption algo-
rithms in the satellite phones should be strong enough to withstand various eavesdropping risks. For mobile
application scenario, many symmetric ciphers were developed and adopted as the cryptographic components
for secure communications, e.g., A5, SNOW, and ZUC, and their security were sufficiently evaluated in past
years [2, 6, 11, 12, 14–16]. However, the GMR cryptographic algorithms are not included in the officially pub-
lished GMR standards, and the details of these satellite cipher algorithms were non-public until the German
research team Driessen et al. uncovered the GMR-1 and the GMR-2 cipher by reverse engineering in 2012
[4, 5]. Their analysis results illustrate that both two ciphers are stream ciphers. In particular, the GMR-1
cipher is a proprietary variant of GSM A5/2 algorithm [4], thus the cryptanalytic methods against the A5/2
algorithm [1, 3] can almost be well-adopted to it. The GMR-2 cipher is an entirely newly designed stream
cipher, however, it has been found to be insecure for two types of known plaintext attacks. Driessen et
al. proposed a known plaintext attack against it for the first time based on the read-collision technique[4]
according to the key-scheduling features of the GMR-2 cipher. The time complexity of such attack is about
218 with approximately 50 ∼ 65 bytes of keystream. Li et al. further put forward a low data complexity
attack method called the dynamic guess-and-determine attack [13] which can break the GMR-2 cipher by
guessing about 28 bits on average when 15 bytes of keystream are available.
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1.2 Main Contribution and the Outline

Generally speaking, stream ciphers firstly generate keystreams by implementing a series of complex crypto-
graphic transformation on the initial vectors and the encryption-key, and then XOR the keystreams with
plaintexts to obtain the ciphertexts. Therefore, to resist known plaintext attack, a vital requirement of
stream ciphers is the one-way property, i.e., it must be difficult for the adversary to derive the encryption-
key from the keystream through inversion procedure. According to [8–10], Golic et al. proposed an inversion
attack methods against the keystream generator consisting of a linear feedback shift register and a nonlinear
filter, and proved the effectiveness of such attack in some cases.

In this paper, we study the inverse properties of the GMR-2 cipher to show a bad one-way character of
such cipher, then by introducing a new concept “valid key chain”, we propose what we call the inversion
attack against the GMR-2 cipher. Our proposed attack consists of three major phases: (1) table generation,
(2) dynamic table looks-up, filtration and combination, (3) verification. With the help of an extra 6KB
memory storage, this attack can reduce the exhaustive search space from 264 to about 213 on average when
one frame (15 bytes) keystream is available. This indicates that the inversion attack is very efficient and
practical which could lead to a real time crack on the GMR-2 cipher. The experimental results on a 3.3GHz
platform demonstrate that the 64-bit encryption-key can be completely retrieved in around 0.02s.

This paper is organized as follows: a brief introduction to the GMR-2 cipher is recalled in Section 2.
Section 3 and 4 analyse the inverse properties as well as the relationship of the the three components of the
GMR-2 cipher. Section 5 proposes the attack strategy and details the attack procedure. The experimental
results and the attack complexity will be subsequently analysed in Section 6. Finally, Section 7 gives a
concise summary of this paper.

2 Description of the GMR-2 Cipher

The GMR-2 cipher is a kind of stream cipher with 64-bit key-length. As shown in Fig. 1, the internal
states of the cipher include a 8-byte shift register S = (S7, S6, · · · , S0), a 8-byte encryption-key register
K = (K7,K6, · · · ,K0), a counter c ∈ {0, 1, · · · , 7}, and a toggle-bit t ∈ {0, 1}. They are transformed
through three components F , G, and H. At each clock l, the cipher generates one byte keystream, which we
denote by Zl.

The F-component can be treated as a key schedule part of the GMR-2 cipher, it combines two bytes
of the encryption-key with the previous output (a key-stream byte) to compute a 12-bit output. The G-
component is designed for mixing purpose, it is a linear function with 12-bit input and 12-bit output. The
H-component is a nonlinear filter, it consists of two parallel DES S-boxes with 16-bit input and 8-bit output.
The following subsections describe these three components in detail.
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Fig. 1. Overall Structure of the GMR-2 Cipher
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Fig. 2. The structure of F-component

Table 1. Definition of τ1 and τ2

α τ1(α) τ2(τ1(α)) α τ1(α) τ2(τ1(α))

(0,0,0,0) 2 6 (1,0,0,0) 3 7
(0,0,0,1) 5 3 (1,0,0,1) 0 4
(0,0,1,0) 0 4 (1,0,1,0) 6 2
(0,0,1,1) 6 2 (1,0,1,1) 1 5
(0,1,0,0) 3 7 (1,1,0,0) 5 3
(0,1,0,1) 7 1 (1,1,0,1) 7 1
(0,1,1,0) 4 4 (1,1,1,0) 4 4
(0,1,1,1) 1 5 (1,1,1,1) 2 6

2.1 Components of the GMR-2 cipher

F-component As the most interesting part of the cipher, the internal structure of F-component is depicted
in Fig. 2. The 8-byte encryption-key K = (K7,K6, . . . , ,K0) is fed into a 64-bit resister and it is unchanged
during the whole execution of the cipher. At each clock, the F-component selects two key bytes (one from the
lower side and the other from the upper side) for further computation, and the procedure can be described
formally as follows:

Assume the cipher is executed at the l-th clock, besides the 8-byte encryption-key K, the inputs of the
F-component also contain three variables c, t, and p, where c = l mod 8 is a counter ranging from 0 to
7 sequentially and repeatedly, t = c mod 2 is a toggle bit, and p = (p7, p6, . . . , p0) ∈ {0, 1}8 is a feedback
keystream byte that has already been generated in the last clock. We simply use p = Zl−1 to denote the
keystream byte that was generated at the previous (the (l − 1)-th) clock. The outputs of the F-component
consist of an 8-bit O0 and a 4-bit O1 with the following definitions:{

O0 =(Kτ1(α) ≫ τ2(τ1(α)))8

O1 =((((Kc ⊕ p)� 4)&0x0F)⊕ ((Kc ⊕ p)&0x0F))4
(1)

where α is defined by

α = N (t,Kc ⊕ p) =

{
((Kc ⊕ p)&0x0F))4 if t = 0

(((Kc ⊕ p)� 4)&0x0F)4 if t = 1
(2)
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Fig. 3. The structure of G-component
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Fig. 4. The structure of H-component

and τ1 : {0, 1}4 → {0, 1}3, τ2 : {0, 1}3 → {0, 1}3 are two functions implemented via table-looksup as shown
in Table 1.

G-component Fig. 3 illustrates the structure of the G-component, where B1, B2, and B3 are all linear
functions. G-component gets the outputs of the F-component (O0 and O1) and one-byte state register
S0 = (S0,7, S0,6, . . . , S0,0) as its inputs, and after a series of linear transformation, transposition, and XOR
operations, it outputs two 6-bit outputs O′0 and O′1, which can be expressed as follows:


O′0 = (O0,7 ⊕O0,4 ⊕ S0,5, O0,7 ⊕O0,6 ⊕O0,4 ⊕ S0,7, O0,7 ⊕ S0,4,

O0,5 ⊕ S0,6, O1,3 ⊕O1,1 ⊕O1,0, O1,3 ⊕O1,0)6
O′1 = (O0,3 ⊕O0,0 ⊕ S0,1, O0,3 ⊕O0,2 ⊕O0,0 ⊕ S0,3, O0,3 ⊕ S0,0,

O0,1 ⊕ S0,2, O1,2, O1,0)6

(3)

H-component H-component gets the two 6-bit outputs of the G-component as its input. Fig. 4 shows
the structure of H-component which is composed of two 6-in and 4-out S-boxes (S2 and S6) used in DES
algorithm. However, these two S-boxes have been reordered to account for the different addressing. Assume
that the 6-bit input of the S-box is (x5, x4, x3, x2, x1, x0)2, for GMR-2 cipher, the most-significant 4-bits
(x5, x4, x3, x2) determine the column index of the S-box while the least-significant 2-bits (x1, x0) select the
S-box row index. Finally, depending on the toggle-bit t, the output one-byte keystream can be defined by:

Zl =

{
(S2(O′1), S6(O′0))8 if t = 0

(S2(O′0), S6(O′1))8 if t = 1
(4)
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2.2 Mode of operation

As mentioned in [4], we can now describe the mode of operation for the GMR-2 cipher. When the cipher is
clocked at the l-th time, the state of the GMR-2 cipher will be changed as follows:

- The cipher generates one-byte keystream Zl based on the current value of the state-register S, the counter
c and the toggle bit t = c mod 2.

- The counter c is incremented by one, and when 8 is reached for c, c is reset to 0.
- The state-register S is shifted by one byte to the right, thus Si=Si+1, for i = 0, 1, 2, . . . , 6, and S7=Zl.

Meanwhile, p = S7 = Zl is passed to the F-component as the input parameter for the next iteration (the
(l + 1)-th clock).

The GMR-2 cipher is operated in two modes: the initialization mode and the generation mode.

Initialization Mode. In the initialization phase, the following steps are performed:

- The counter c = 0 and the toggle-bit t = 0.
- The 64-bit encryption-key is written into the resister in the F-component.
- The state-register S is initialized with a 22-bit frame-number N according to a special rule, which is not

detailed here as it is irrelevant with our attack.
- After c, t, S have been initialized, the cipher is clocked 8 times, but the resulting keystream is discarded.

Generation Mode. After the initialization is finished, the cipher is switched into generation mode to

produce and output actual keystream bytes. We use Z
(N)
l to denote the l-th keystream byte after initialization

with the frame number N . For each frame number N , the cipher will operate 15 clocks and generate a 15-
byte keystream. After that, the frame number N automatically increases by 1 and the state-register is
re-initialized with the new frame number, and then the cipher will generate another 15-byte keystream.
Assuming the frame number starts from 0, the actual keystream Z ′ is made up of blocks of 15 bytes that
are concatenated as follows:

Z ′ =
(
Z

(0)
0 , Z

(0)
1 , . . . , Z

(0)
14 ;Z

(1)
0 , Z

(1)
1 · · ·Z

(1)
14 ;Z

(2)
0 , . . .

)
(5)

3 Inverse Properties of the GMR-2 Cipher’s Components

The GMR-2 cipher consists of three components, in which the F-component plays a role of key schedule, the
G-component acts as a linear transformation, and the H-component implements a nonlinear transformation.
Both the cryptanalytic methods proposed in [4, 13] originate from the forward analysis of the GMR-2 cipher,
whereas our proposed inversion attack is inspired from the backward analysis, i.e., we try to reverse the
encryption procedure to deduce the encryption-key from the output keystream directly. Thus in this section,
we will first study the inverse properties of the three components which are related to our later analysis.

3.1 Inverse Property of the H-component

H-component is parallelly composed of two S-boxes, and it selects the column and row indices of the two
S-boxes through the toggle-bit t, as show in Eq. 4. In fact, We can extract the relationship between the
input (O′0, O

′
1) of H and the output Zl of H (the keystream byte) by “inverting” the two S-boxes. Thus, we

have the following proposition:

Proposition 1 For H-component, if the row index and the output of an S-box are known, the column index
can be uniquely determined; If only the outputs of both S-boxes are known, there will be 4× 4 = 16 different
corresponding row/column indices.
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3.2 Inverse Property of the G-component

Assume the shift register S0 is known, then G-component can be represented by an affine transformation.
We focus on how to extract the inputs O0 and O1 of G, given the output O′0 and O′1 along with S0. According
to [13] and Eq. 3, the link1 between the input and output of the G-component can be expressed by

{
y1 = W 1 · x 1 ⊕Q ′ · v
y2 = W 2 · x 2

(6)

where

W 1 =

(
A 0
0 A

)
,W 2 = (B) ,Q ′ =

(
C 0
0 C

)
,

A=


1 0 0 1
1 1 0 1
1 0 0 0
0 0 1 0

B=


1 0 1 1
1 0 0 1
0 1 0 0
0 0 0 1

 ,C =


0 0 1 0
1 0 0 0
0 0 0 1
0 1 0 0

 ,0=


0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0


and {

y1 =
(
O′0,5, O

′
0,4, O

′
0,3, O

′
0,2, O

′
1,5, O

′
1,4, O

′
1,3, O

′
1,2

)T
y2 =

(
O′0,1, O

′
0,0, O

′
1,1, O

′
1,0

)T ,


x 1 = (O0,7, O0,6, O0,5, O0,4, O0,3, O0,2, O0,1, O0,0)

T

x 2 = (O1,3, O1,2, O1,1, O1,0)
T

v = (S0,7, S0,6, S0,5, S0,4, S0,3, S0,2, S0,1, S0,0)
T

.

In the above formulas, x1, x2 and v are used to represent O0, O1 and S0, which is the input of G,
and (y1,y2) is used to represent a simple permutation of (O′0, O

′
1) which is the output of G. By carefully

observing the H-component, we can see that y1 corresponds to column indices of the two S-boxes, and y2
corresponds to row indices of the two S-boxes.

Now if we treat y1, y2 and v (thus O′0, O
′
1, and S0 ) as known values, while x1 and x2 (thus O0 and

O1) as unknown variables, the first/second formula in Eq. 6 can be regarded as a system of linear equations
with 8/4 variables. Since both A and B are invertible matrices, we get

{
x 1 = W −1

1 · y1 ⊕Q · v
x 2 = W −1

2 · y2
(7)

where

W −1
1 =

(
A−1 0
0 A−1

)
,W −1

2 =
(
B−1

)
,Q = W −1

1 ·Q
′ =

(
A−1 ·C 0

0 A−1 ·C

)
,

A−1 =


0 0 1 0
1 1 0 0
0 0 0 1
1 0 1 0

 ,B−1 =


0 1 0 1
0 0 1 0
1 1 0 0
0 0 0 1

 ,A−1 ·C =


0 0 0 1
1 0 1 0
0 1 0 0
0 0 1 1

 .

Therefore, we have the following proposition:

Proposition 2 For G-component, if O′0, O′1 and S0 (thus y1, y2 and v) are known values, then O0 and O1

(thus x 1 and x 2) can be calculated directly from Eq. 7. Specifically, O0 (thus x 1) is uniquely determined by
y1, and O1 (thus x 2) is uniquely determined by y2.

1 Note that the definition of the variable v in Eq. 6 in this paper is different from the one in Ref [13]. In fact, Q ′ · v in this
paper is equivalent to v1 as defined in Ref [13].
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3.3 Inverse Property of the F-component

F is the only component that relates to the original encryption-key bytes, thus it is critical for us to analyze.
At each clock, F-component selects Kc and Kτ1(α) for further computation. Kc is simply selected by the
counter c, while Kτ1(α) is selected by the subscript τ1(α) which can be determined according to Eq. 2 and
Table 1.

The inverse analysis of the F-component aims at deducing the above two selected key bytes from the
known output (O0, O1) and the feedback byte p. Rewriting the second formula of Eq. 1, Kc can be expressed
by O1 and p as follows 

Kc,7 ⊕Kc,3=O1,3 ⊕ p7 ⊕ p3
Kc,6 ⊕Kc,2=O1,2 ⊕ p6 ⊕ p2
Kc,5 ⊕Kc,1=O1,1 ⊕ p5 ⊕ p1
Kc,4 ⊕Kc,0=O1,0 ⊕ p4 ⊕ p0

(8)

For simplicity, let’s denote 
kh = (Kc,7,Kc,6,Kc,5,Kc,4)

T

k l = (Kc,3,Kc,2,Kc,1,Kc,0)
T

ph = (p7, p6, p5, p4)
T

p l = (p3, p2, p1, p0)
T

then Eq. 8 becomes

kh ⊕ k l = O1 ⊕ ph ⊕ p l. (9)

Therefore, for i = 0, 1, 2, 3, when O1,i ⊕ pi+4 ⊕ pi = 0, the candidate for (Kc,i+4,Kc,i) is selected from
{(0, 0), (1, 1)}, and when O1,i ⊕ pi+4 ⊕ pi = 1, the candidate can be only selected from {(0, 1), (1, 0)}. This
implies that given O1 and p, Eq. 8 has 16 solutions for Kc.

Similarly, rewriting the first formula of Eq. 1, Kτ1(α) can be obtained from O0 by

Kτ1(α) = O0 ≪ τ2(τ1(α)), (10)

where α is related to Kc and p, and can be calculated on the basis of the Eq. 2. That is to say, we can get
the value of α through p and the most/least-significant 4-bits of Kc. This leads to the following proposition:

Proposition 3 For F-component, if O1 and p are known, then all possible values of Kc can be narrowed
down from 28 to 24 according to Eq. 8; If O0, p, and Kc are known, the input key byte Kτ1(α) can be uniquely
retrieved by Eq. 10.

Now we have obtained three inverse properties of GMR-2 cipher’s components as described in Proposition
1, 2, 3. At the end of this section, let’s briefly discuss the links among these inverse components as depicted

in Fig. 5. Given the start point - a keystream byte Z
(N)
l at the l-th clock with frame number N , and assume

the feedback byte S0 and p is known. Then through H−1-component, 16 possible values of (O′0, O
′
1) will

be obtained. This is followed by passing through G−1-component, which results in 16 different values of
(O0, O1). And finally after F−1-component, each (O0, O1) will deduce 16 candidates for (Kc,Kτ1(α)). In
total, one can obtain at most 16 × 16 = 256 possible values for (Kc,Kτ1(α)). The detail analysis will be
described in the following section.
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Fig. 5. Links among the Three Inverse Components

4 Inverse Properties of the GMR-2 Cipher

In this section, we will analyze how these three inverse components interact with each other and show the
links between the keystream bytes and the original encryption key bytes.

Given a frame number N, let S
(l)
i denote the state of Si at the l -th clock and Z

(N)
l denote the keystream

byte at the l -th clock with N -th frame in the keystream generation phrase, then for 8 ≤ l ≤ 14 we have

S
(l)
0 = Z

(N)
l−8 and p = S

(l)
7 = Z

(N)
l−1 ,

which demonstrates that S
(l)
0 is equal to the keystream byte generated 8 clocks before, and p is equal to the

last keystream byte. Hence, for 8 ≤ l ≤ 14, both S
(l)
0 and p are known to us, so is the vector v as previously

defined. To this end, we only focus on the cipher at the (c + 8)-th clock with 0 ≤ c ≤ 6 in the following
analysis. The main results are the following two theorems.

Theorem 1. At the (c+ 8)-th clock with 0 ≤ c ≤ 6, if Kc is known, then the corresponding encryption-key

byte Kτ1(α) can be uniquely determined by the current keystream byte Z
(N)
c+8.

Proof. Since p is known at the (c+8)-th clock, from Eq. 2, knowing Kc can help us to calculate α, as well as
τ1(α) and τ2(τ1(α)) via looking up Table 1. Meanwhile, O1 (thus x 2) can be obtained from Eq. 1, based on
which y2 can be calculated from Eq. 6. Due to Proposition 1, y1 which corresponds to the column indices

for the two S-boxes can be uniquely determined from Z
(N)
c+8 and the row indices y2. Consequently, the value

of O0 can be uniquely determined by Proposition 2. At last, with the help of Proposition 3, Kτ1(α) can be
calculated definitely from O0, Kc and p. ut

Theorem 2. At the (c + 8)-th clock with 0 ≤ c ≤ 6, each keystream byte Z
(N)
c+8 exactly corresponds to 256

possible values of the triple (Kc,Kτ1(α), τ1(α)), where Kc is ranged from 0 to 255.

Proof. First, according to Proposition 1 and Proposition 2, each keystream byte Z
(N)
c+8 corresponds to 16

different O1, and for each O1, Proposition 3 further indicates the existence of 16 different candidates for Kc.
Next, by contradiction, we can prove that the candidates for Kc obtained by different O1 will be different

from each other. That is to say, assuming that O
(i)
1 6= O

(j)
1 holds, one can declaim that the candidates K

(i)
c

and K
(j)
c that are derived from O

(i)
1 and O

(j)
1 must be different. Otherwise if K

(i)
c = K

(j)
c , then Eq. 1 indicates

O
(i)
1 = O

(j)
1 , which contradicts the hypothesis.
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The above two steps demonstrate that each keystream byte Z
(N)
c+8 exactly corresponds to 256 values of

Kc. Moreover, through Theorem 1, τ1(α) and Kτ1(α) can be further uniquely obtained from the Kc and

Z
(N)
c+8 , which completes this proof. ut

Theorem 2 tells us that each Z
(N)
c+8 with 0 ≤ c ≤ 7 can deduce several triples (Kc, Kτ1(α), τ1(α)). Next,

let’s discuss how these triples can be further used to get new information on K. Here we list two rules that
are very crucial for our attack.

Rule 1 Given one triple (Kc,Kτ1(α), τ1(α)) corresponding to the keystream byte Z
(N)
c+8 with 0 ≤ c ≤ 6, if

τ1(α) = c , we can compare Kτ1(α) with Kc:

– If Kc = Kτ1(α), it indicates that such Kc can be regarded as a candidate;

– If Kc 6= Kτ1(α), it means that such Kc cannot be a candidate, and should be discarded.

Rule 2 Given two triples
(
Km,Kτ1(αm), τ1(αm)

)
and

(
Kn,Kτ1(αn), τ1(αn)

)
which correspond to Z

(N)
m+8 and

Z
(N)
n+8 with 0 ≤ m 6= n ≤ 8:

– If τ1(αn) = m, we can compare Kτ1(αn) and Km:

• If Kτ1(αn) = Km, it indicates that such (Km,Kn) can be regarded as a candidate;

• If Kτ1(αn) 6= Km, such (Km,Kn) cannot be a candidate, and should be discarded.

– If τ1(αn) = τ1(αm), we can compare Kτ1(αn) and Kτ1(αm):

• If Kτ1(αn) = Kτ1(αm), it indicates that such (Km,Kn) can be regarded as a candidate;

• If Kτ1(αn) 6= Kτ1(αm), such (Km,Kn) cannot be a candidate, and should be discarded.

5 The Real-time Inversion Attack on the GMR-2 Cipher

In this section, we present a very efficient and practical attack against the GMR-2 cipher with low time and
data complexity. We call this attack the real-time inversion attack.

5.1 An Overview of the Inversion Attack

As shown in Fig. 6, we first briefly explain the inversion attack procedure, which is divided into the following
three phases:

Table 
generation VerificationLoop 

over?

Table
look-up 

Filtration 
Satisfied?Combination

Y

N

Y

Keystream Key

Dynamic table look-up, filtration and combination

N

Fig. 6. An overview of the inversion attack procedure
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 0
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   8 0
0
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Repeat 16 times

t
v

1
1
W

1
2
W

8
x1=O0

x2=O1

Eq. (2)  ( ) 1

Fig. 7. The Table Generation Procedure

Phase 1: Table generation. Intercept a certain number of keystream bytes (usually only one frame is
enoough), then adopt Theorem 2 to generate the 7 lists which map the keystream bytes at the (c + 8)-
th clock with 0 ≤ c ≤ 6 to the original key bytes. Meanwhile, build a virtual list for the 8-th original key
byte. We refer these lists as tables.

Phase 2: Dynamic table looks-up, filtration and combination. Look up the tables (8 lists) generated from
Phase 1 to obtain candidates for encryption key bytes, adopt Rule 1 ∼ 2 to further filter these candidates,
and combine these key bytes that agree with the filter condition and store them in a list. Meanwhile, discard
those that do not satisfies the constraints, and backtrack to a proper start-point for new table looks-up.
Repeat the steps of table looks-up, filtration and combination until all the candidate keys that meet the
constraints of Rule 1 and 2 are found.

Phase 3: Verification. Verify the correctness of those candidate keys obtained in Phase 2 via the intercepted
keystream bytes (usually the first 8 bytes of a frame is enough), discard all wrong 8-byte encryption-keys.

5.2 Phase 1: Table Generation

Without loss of generality, assume the frame number of the keystream bytes is N = 0, and let (Z
(0)
0 , Z

(0)
1 , · · · ,

Z
(0)
14 ) denote the known 15 bytes of keystream. To assure that the values of p and S0 = v are known, we

analyze the cipher at the (c + 8)-th clock with 0 ≤ c ≤ 6.

According to the mechanism of GMR-2 cipher, each keystream byte Z
(0)
c+8 is related with(

Kc,Kτ1(α), τ1(α), p, S
(c+8)
0 , t

)
=
(
Kc,Kτ1(α), τ1(α), Z

(0)
c+7, Z

(0)
c , c mod 2

)
,

which means that a mapping between
(
Z

(0)
c+8, Z

(0)
c+7, Z

(0)
c

)
and

(
Kc,Kτ1(α), τ1(α)

)
can be established in case c

is known. Thus, from the known keystream
(
Z

(0)
0 , Z

(0)
1 , · · · , Z(0)

14

)
, we can obtain 7 groups of

(
Z

(0)
c+8, Z

(0)
c+7, Z

(0)
c

)
with 0 ≤ c ≤ 6, and each group can be used to build 256 possible values of triple

(
Kc,Kτ1(α), τ1(α)

)
based

on Theorem 2.
To make a better explanation, one can refer the table generation procedure in Fig. 7. During this phase,

for each group of
(
Z

(0)
c+8, Z

(0)
c+7, Z

(0)
c

)
with 0 ≤ c ≤ 6, the following steps are performed:

1. Look up the two S-boxes to obtain the 16 values of (y1,y2) through the keystream byte Z
(0)
c+8 and the

toggle-bit t;
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2. Calculate the corresponding values of (x 1,x 2) via Eq. 7 for a given (y1,y2) from step (1), this also
corresponds to O0 and O1;

3. Find 16 different values of Kc for a given O1 according to the Eq. 8, and then get the related values of
Kτ1(α) and τ1(α) according to Theorem 1, which yields 16 triples (Kc,Kτ1(α), τ1(α));

4. Repeat step (2) and step (3) for 16 different values of (y1,y2), thereby yield 256 triples
(
Kc,Kτ1(α), τ1(α)

)
that are stored in a list denoted by Lc in which Kc is sorted in ascending order.

It should be noted that the above table generation procedure cannot deduce any more information for

the 8-th original key byte K7 from the known keystream
(
Z

(0)
0 , Z

(0)
1 , · · · , Z(0)

14

)
, i.e., we can only assume

that the candidates for K7 ranges from 0 to 255, but the corresponding values of Kτ1(α) and τ1(α) are not
available. Thus we build a virtual list for K7 ranging from 0 to 255 but with empty values for Kτ1(α) and
τ1(α). In total, we generate 8 lists and each list is stored with 256 triples. These 8 lists are denoted by

{L0,L1,L2,L3,L4,L5,L6,L7} .

5.3 Phase 2: Dynamic Table Looks-up, Filtration and Combination

Now we have generated 8 lists from Phase 1, however, if we simply try exhaustive search using these
list without any strategy, there will be no advantage compared with the brute force attack. Thus, before
describing our proposed inversion attack strategy, we first introduce the following two concepts “key chain”
and “valid key chain” based on the 8 lists generated from Phase 1.

Definition 1. (Key Chain) A sequence of ordered key bytes

( (i1,Ki1), (i2,Ki2), · · · , (il,Kil) ) ,

where ij is the index (subscript) for Kij (1 ≤ j ≤ l), is called a key chain with length of l bytes if it satisfies
the following condition: for every 1 ≤ m ≤ l− 1, there exists a list Lim such that (Kim ,Kim+1 , im+1) ∈ Lim.
For convince, we simply use

Ki1 → Ki2 → · · · → Kil

to denote this key chain, where Ki1 is the starting node and Kil is the ending node.

Definition 2. (Valid Key Chain) A key chain Ki1 → Ki2 → · · · → Kil with length of l bytes is called a
valid key chain if it satisfies one of the following conditions:

1. There exists an index ij ∈ {i1, i2, · · · , il} such that (Kil ,Kij , ij) ∈ Lil;
2. il = 7 and there is no other valid key chain that contains the 8-th key byte K7;
3. There already exists a valid key chain with length of n bytes: Ki′1

→ Ki′2
→ · · · → Ki′n, meanwhile, there

exists an index ij ∈ {i′1, i′2, · · · , i′n} such that (Kil ,Kij , ij) ∈ Lil.

Example Given a key chain with length of three bytes: Ki1 → Ki2 → Ki3 , the following three cases imply
three kinds of valid key chains:

- there exists an index ij ∈ {i1, i2, i3} such that (Ki3 ,Kij , ij) ∈ Li3 , as show in Fig. 8(a)
- i3 = 7 and there is no other valid key chain that contains K7, as show in Fig. 8(b)
- there already exists a valid key chain with length of two bytes: Ki′1

→ Ki′2
, meanwhile, there exists an

index ij ∈ {i′1, i′2} such that (Ki3 ,Kij , ij) ∈ Li3 , as show in Fig. 8(c)

According to the definition, for GMR-2 cipher, the minimum length of a valid key chain is one byte,
meaning the key byte is associated with itself. While the maximum length is eight bytes, meaning all the
eight key bytes are connected in one chain. Moreover, all valid key chains must be disjoint with each other.
Therefore, an 8-byte encryption-key can be divide into at most 8 valid key chains, each containing just one
key byte, or at least 1 valid key chain, containing the whole 8 key bytes.
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Fig. 8. The Diagram of the Links for Valid Key Chains in the Example

Table 2. Definitions of the variables and candidate sets

Variable Definition Initialization

R The (i− 1) valid key chains obtained before:
R = {γ1, γ2, · · · , γi−1}.

∅

∆
The key chain currently being looked up:

∆ = γi =
(
δ
(i)
i1
→ δ

(i)
i2
→ · · · → δ

(i)
il−1

)
.

∅

Γ = {Γ1, Γ2}
The set of indices(subscripts) for the key bytes that has been
obtained by table looks-up, where Γ1 corresponds to the key

bytes in R, and Γ2 for key bytes in ∆.
∅

KC The candidate set of the complete 8-byte encryption-keys. ∅

(c,Kc)
Query point, querying the Kc-th row in the c-th list Lc,

it is also used as the control parameter for ending Phase 2.
(0, 0)

Main Idea of Phase 2. Using the concept of valid key chain, Phase 2 can be described as “dynamically
seeking all valid key chains (that accord with Rule 1 and 2 by table looks-up and the filtration) and combining
them to form candidates for the complete 8-byte encryption key”. Let’s define three candidate sets R, ∆
and KC, an index set Γ and a query point (c,Kc) as in Table 2. Using these symbols, and referring Fig.
9, the second phase of the inversion attack can be briefly explained as follows: (For the detail of the attack
procedure of Phase 2, one can refer Algorithm 1 and 2.)

1. Choose a starting node (query point) (0,K0), and for each possible value of K0 (ranging from 0 ∼ 255),
dynamically lookup the table (8 lists obtained from Phase 1) in a serialized manner to build up a key
chain ∆, and store the indices (subscripts) for the key bytes obtained in ∆ into the set Γ2. Once ∆
becomes “valid” through the filtration, treat ∆ = γ1 as the first layer of the valid key chain, and store
the key bytes of the chain as well as their indices (subscripts) into R, and copy these indices (subscripts)
into Γ1.

2. Choose a new starting node
(

min
(
Γ
)
,Kmin(Γ)

)
where min

(
Γ
)

is the minimum subscript for the key

bytes (K0 ∼ K7) that have not been obtained before (through table looks-up), and for each possible
value of such key byte (also ranging from 0 ∼ 255), continue to dynamically lookup the table and do the
filtration to build up an i-th layer of a valid key chain ∆ = γi with 1 ≤ i ≤ 8. Similarly update the sets
R = {γ1, γ2, · · · , γi}, Γ1 and Γ2.
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Fig. 10. The Procedure of Dynamic Table Looks-up in Phase 2

3. Check whether all valid key chains in R exactly cover the whole 8-byte encryption-key, if so, combine
these valid key chains, keep them in KC, and backtrack to the starting node of ∆ to find a new valid
key chain (in order to find new candidate keys), else go back to (2).

4. Repeat Step 1 ∼ 3 until all the candidate 8-byte encryption-keys are obtained.

How to dynamically lookup table to build up a key chain? Refer Fig 10, given a query point
(c,Kc) as the starting node of a chain ∆, c points to the list Lc, which is then used by the adversary to
look up in order to get

(
Kτ1(α1), τ1(α1)

)
that corresponds to its row value Kc. This is followed by a second

similar procedure, at this point, we have obtained a middle node
(
τ1(α1),Kτ1(α1)

)
, then τ1(α1) points to the

list Lτ1(α1), which indicates a new result
(
Kτ1(α2), τ1(α2)

)
by looking-up its row value Kτ1(α1). Repeat this

process, we can further get the next middle nodes
(
Kτ1(α3), τ1(α3)

)
· · · through the list Lτ1(α2) · · ·, thus we

will obtain a key chain

∆ = (c,Kc)→
(
τ1(α1),Kτ1(α1)

)
→
(
τ1(α2),Kτ1(α1)

)
→
(
τ1(α3),Kτ1(α3)

)
→ · · ·

which is then passed to the filtration procedure to check whether it is valid key chain.
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How to do the filtration to get a valid key chain? The purpose of the filtration is to check when the
key chain obtained through the table looks-up will be a valid key, this can be done by applying Rule 1 and
Rule 2 to discard the inconsistence cases. Moreover, during the filtration, we need to do the following extra
backtrack steps:

– If the ending node of a key chain disagrees with the constraints of Rule 1 and Rule 2, such chain would
not form a valid key chain, then one should backtrack to the starting node of the current key chain
∆ = γi, update Γ2 ← ∅, ∆ ← ∅, set a new value for this starting node (as the query point), then do a
similar procedure of dynamically table looks-up, filtration and combination.

– If the starting node of ∆ = γi goes beyond the range of 0 ∼ 255, we backtrack to the starting node of
the (i− 1)-th layer of the valid key chain γi−1 in R, and do a similar procedure. Repeat such procedure
until we backtrack to the first layer of the valid key chain γ1. If the starting node of γ1 is out of the
range of 0∼255, which indicates that all the valid key chains have been found, then we stop the Phase
2 of the inversion attack.

Algorithm 1 Inversion Attack: Phase 2 (Part I)

Input: keystream-related lists {L0,L1,L2,L3,L4,L5,L6,L7}.
Output: key candidate set KC.
Initialization: R← ∅;∆← ∅;Γ ← ∅;(c,Kc)← (0, 0); KC ← ∅.
repeat(

τ1(α),Kτ1(α)

)
← LookUpTable(c,Kc,Lc);

if τ1(α) ∈ Γ then /* Given that the τ1(α)-th key byte Kτ1(α) has already existed in the candidate sets, do

the filtration using Rule 2 */

if
(
τ1(α),Kτ1(α)

)
∈ ∆ or

(
τ1(α),Kτ1(α)

)
belongs to a certain valid key chain of R then

Γ2 ← Γ2 ∪ {c}; ∆← ∆ ∪ {(c,Kc)};
(c,Kc)← Combine(∆); /* The valid key chain obtained at this time agrees with the property (i) or

(iii) of Definition 2. */

else
(c,Kc)← BackTrack(∆);

end

else
if τ1(α) == c then

if Kτ1(α) == Kc then /* Do the filtration using Rule 1. */
Γ2 ← Γ2 ∪ {c}; ∆← ∆ ∪ {(c,Kc)};
(c,Kc)← Combine(∆); /* The valid key chain obtained at this time agrees with the property (i)

of Definition 2. */

else
(c,Kc)← BackTrack(∆);

end

else
if τ1(α) == 7 then

Γ2 ← Γ2 ∪ {c, 7}; ∆← ∆ ∪ {(c,Kc) , (7,K7)};
(c,Kc)← Combine(∆) ; /* The valid key chain obtained at this time agrees with the property

(ii) of Definition 2. */

else /* Continue to find the next node of the current key chain. */
∆← ∆ ∪ {(c,Kc)};
(c,Kc)← (τ1(α),Kτ1(α));

end

end

end

until Kc > 255 and c = 0;
return KC;
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Algorithm 2 Inversion Attack: Phase 2 (Part II)

Function Combine(∆) /* Combine a valid key chain or the whole 8-byte key, and return the new starting point

(query point) of a new key chain. */
R← R∪ {∆}; Γ1 ← Γ1 ∪ Γ2;
if Length(Γ1) == 8 then /* In this case, we have obtained a complete 8-byte candidate key, thus we save

it in KC and backtrack to the starting node to build up another candidate key. */
KC ← KC ∪R;
R ← R− {∆}; Γ1 ← Γ1 − Γ2;
(c,Kc)← BackTrack(∆);

else /* If not, we seek the next valid key chain. Here, Γ denotes the set of indices (subscripts) for the

key bytes that have not been obtained before. */

(c,Kc)←
(
min

(
Γ
)
, 0
)
;

end
Γ2 ← ∅; ∆← ∅;
return (c,Kc);

end

Function BackTrack(∆)

(c,Kc) ← StartingNodeOf(∆) ; /* Backtrack to the starting point of current key chain γi. */

Kc ← Kc + 1 ; /* Update the key value of the starting node of γi. */

if Kc > 255 then
if c = 0 then

return (c,Kc);
end
∆← γi−1;Γ2 ← SubscriptOf(∆); /* Update the current key chain. */

R← R− {∆};Γ1 ← Γ1 − Γ2;
(c,Kc) ← BackTrack(∆); /* Backtrack to the starting node of the previous valid key chain γi−1. */

end
Γ2 ← ∅; ∆← ∅;
return (c,Kc);

end

5.4 Phase 3: Verification

To exclude wrong candidate keys, Phase 3 tests the candidate keys stored in KC one by one, using the

first 8 bytes
(
Z

(0)
0 , Z

(0)
1 , · · · , Z(0)

7

)
of the known keystream. For each candidate key, the following steps are

performed:

1. Fulfill the key register K with the candidate key, and initialize the shift register S with the known frame
number;

2. Clock the cipher 8 times for initialization, and obtain the next 8 bytes keystream;
3. Compare this calculated keystream with the corresponding 8-byte of the intercepted known keystream.

If they match, the correct key is found, otherwise, this candidate key is discarded.

6 Experimental Results and Complexity Analysis

In order to verify our proposed attack, in this section, we do some experiments and give the complexity
analysis.

6.1 Experimental Results

We carried out 10000 experiments on a 3.3GHz plantform for GMR-2 cipher with random frame numbers
and keys. Our results demonstrate that the retrieved encryption-key may not be unique for a known 15-
byte keystream at some cases. In other words, there exist multiple encryption-keys corresponding to the
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Fig. 11. The frequence distribution of the number of candidate keys (The numbers on horizontal axis are in thousand times,
and each interval contains the left value.)
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Fig. 12. The frequence distribution of attack time

same 15-byte keystream, and these encryption-keys usually differs one byte from each other. More precisely,
each 15-byte keystream indicates 1.03 encryption-keys on average, in which approximately 97.2% of the
keystreams indicate a unique encryption-key, and the remaining 2.8% keystreams indicate multiple (at most
four) encryption-keys. Thus, to overcome this problem, one additional keystream byte of another frame
is needed in these cases, which means that 9 bytes of keystream are totally exploited in the third phase.
Therefore, plus one frame of keystream leveraged in Phase 1, the required number of keystream bytes for
the whole attack is 15 ∼ 16.

To make a better comparison, the frequence of candidate keys in Phase 2 for each attack are counted
with average number 7755 and the distribution is shown in Fig. 11, which shows that one needs to verify
7755 times on average during Phase 3. Meanwhile, the consuming time for each attack are also counted with
distribution shown in Fig. 12, which shows that the 8-byte encryption-key can be deduced in around 0.02s
on average, where 0.08ms is consumed to generate the table, 3.37ms are consumed to verify the candidates
and the rest 16.55ms are consumed by Phase 2.

We also point out that if we perform the forward verification each time an 8-byte candidate key is
combined during Phase 2, which means alternating Phase 2 and Phase 3 at the same time, then once an
8-byte candidate key passes the forward verification of the 9 bytes of keystream, the attack can be stopped,
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Fig. 13. Optimized inversion attack procedure

in this case, we can accelerate the inversion attack. This optimized inversion attack shows that the average
number for verifying is reduced to 3980 and the time consumed is about 0.01s on average. The optimized
attack procedure is depicted in Fig. 13.

6.2 Complexity Analysis

Time complexity analysis. The time complexity of our inversion attack consists of the time of table gen-
eration, dynamic table looks-up and filtration as well as the verification. This can be analysed from the
experimental statistics. But for convince, we just focus on the exhaustive search space. As we do verification
for 7755 ≈ 213 times on average, the exhaustive search space is thus about 213, which could be further
reduced to 3980 ≈ 212 on average when adopting the optimized attack.

Data complexity analysis. The data complexity of our attack is 15 ∼ 16 bytes of keystream. In 10000
experiments, approximately 97.2% of the encryption-keys can be uniquely determined by the 15 bytes of
keystream, and the rest (about 2.8%) cases need an extra keystream byte. Thus, 15× 97.2% + 16× 2.8% ≈
15.03 bytes of keystream are needed to distinguish the right encryption-key from the 213 candidates on
average.

Memory complexity analysis. The memory complexity of our attack stems mainly from the table (8 lists)
generated in Phase 1. Since each list is filled up with 256 triples (Kc,Kτ1(α), τ1(α)), our attack needs about
256× 3× 8 Byte = 6K Bytes of storage space.

7 Conclusions

In this paper, we propose a very efficient, real-time inversion attack against the GMR-2 cipher. It can retrieve
the complete 8-byte encryption-key from only 1 frame (15 bytes) of keystream on average, the exhaustive
search space can be reduced to about 213 and the memory complexity is 6KB.

Table 3 is the comparison between the known cryptanalytic results and ours, from which we can see
that the inversion attack proposed in this paper possesses evident superiority compared with the dynamic
guess-and-determine attack and the read-collision based attack. Given one frame (15 bytes) of keystream,
one can break the GMR-2 cipher with only 0.02s on a 3.3GHz platform. This again demonstrates that there
exists serious security flaws in the GMR-2 cipher, and it is crucial for service providers to upgrade the
cryptographic modules of the system in order to provide confidential communication.
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Table 3. Cryptanalytic results on the GMR-2 cipher

Method Data Brute Force Space Memory Time

Read-Collision Based Technique [4] 15 ∼ 20 frames 210 ∼ -
Read-Collision Based Technique [4] 4 ∼ 5 frames 218 ∼ -
Dynamic Guess-and-Determine [13] 1 frame 228 ∼ 280sN

Inversion Attack (This Paper) 1 frame 213 6KB 0.02s4

Optimized Inversion Attack (This Paper) 1 frame 212 6KB 0.01s4

N: Experimental plantform: 3.3 GHz platform; Number of experiments: 1000
4: Experimental plantform: 3.3 GHz platform; Number of experiments: 10000
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