
iChing: A Scalable Proof-of-Stake Blockchain in the Open Se�ing
or, How to Mimic Nakamoto’s Design via Proof-of-Stake

Lei Fan
Shanghai Jiao Tong University

fanlei@sjtu.edu.cn

Hong-Sheng Zhou
Virginia Commonwealth University

hszhou@vcu.edu

July 5, 2017

Abstract

Bitcoin has proven to be very successful. �e Bitcoin blockchain is backed up by a large-scale network of miners
via proof-of-work mechanism. Unfortunately, these miners consume huge amount of non-recyclable resources
(electricity and computing hardware). To address this issue, alternative blockchain constructions via proof-of-stake
mechanism have been proposed. Unfortunately, those proposals either lack of security analysis or cannot scale to
a large network of nodes in the open network se�ing where new players can safely join the blockchain protocol.

In this paper, we propose iChing, the �rst scalable proof-of-stake blockchain in the open se�ing. We show that
our blockchain protocol can achieve several important security properties including common pre�x, chain quality,
chain growth, and chain soundness.

Contents
1 Introduction 1

1.1 Our solution . 1
1.2 Related work . 4

2 Model 4
2.1 Blockchain protocol executions . 5
2.2 Blockchain basics . 6
2.3 Security properties . 6

3 Proof-of-stake core-chain 7
3.1 Setup functionality FI

rCERT . 7
3.2 Our core-chain protocol . 9

4 Security analysis for core-chain 10
4.1 Preliminary . 10
4.2 Proof ideas . 12
4.3 Analysis with bounded delay . 13

4.3.1 Hybrid expriment . 13
4.3.2 Analysis in the worst delay se�ing . 13

4.4 Achieving chain growth property . 14
4.5 Achieving chain quality property . 15
4.6 Achieving common pre�x property . 16
4.7 Achieving chain soudness property . 18

5 From core-chain to blockchain 18
5.1 Setup functionality F̃I

rCERT . 18
5.2 Main blockchain protocol . 20
5.3 Analysis of blockchain protocol . 22

6 Extensions and Discussions 23

A Supporting Materials 27
A.1 Random Oracle Functionality FRO . 27
A.2 Multi-Session Certi�cate Authority Functionality F̂CA . 27
A.3 Multi-Session Signature Functionality F̂SIG . 28
A.4 Resource Certi�cate Authority Functionality FI

rCA . 29

1 Introduction
Bitcoin and proof-of-work mechanism. Bitcoin system [Nak08] has proven to be very successful. �e system
was designed and implemented by an unknown researcher, under the name Satoshi Nakamoto nine years ago. �e
key idea is to use proof-of-work (PoW) mechanism [DN93, Bac02] to maintain a global public distributed ledger, also
called blockchain, among a peer-to-peer network of nodes (called miners). Nakamoto’s design has unique features:
(1) the Bitcoin protocol can be executed in an open network environment, and all miners are allowed and encour-
aged/incentivized to invest certain amount of computing power to join the e�ort of maintaining the blockchain; (2)
the protocol has very lower communication complexity and can scale to a large network of nodes.

From proof-of-work to proof-of-stake. �e scalability of Bitcoin blockchain protocol is at a price: the system
has “absorbed” or “wasted” a huge amount of computing resources over the past several years. It is de�nitely desirable
to utilize alternative resources such as coins (also called stake) to secure a blockchain. If successful, the new system
will be “green” in the sense that it does not require a huge amount of non-recyclable computing power to back
up its security. A�empts have been made: proof-of-stake (PoS) mechanisms have been widely discussed in the
cryptocurrency community (e.g., [NXT14, Kwo14, Vas14, BGM16]). In a nutshell, in a proof-of-stake based blockchain
protocol, players are expected to prove ownership of a certain amount of recyclable resources (i.e., coins or stake).
Only the players that can provide such a proof are allowed to participate in the process of maintaining the blockchain.

Blockchain protocols with provable security. In the past years, the security of Bitcoin-like protocols has
been intensively investigated. Notably, Garay et al. [GKL15] took the provable security approach and investigated
Nakamoto’s blockchain in a cryptographic framework (please also see [PSS17]); they showed that, assuming the
majority of mining power is controlled by the honest players, Nakamoto’s blockchain protocol can achieve several
important security properties such as common pre�x, chain quality, and chain growth, as they de�ned in their cryp-
tographic framework. Very recently, Duong et al. [DZ17] identi�ed a new property, chain soundness, to ensure the
security of new players, and showed that Nakamoto’s protocol can achieve this new property. Indeed, Nakamoto
provided a scalable, proof-of-work based blockchain protocol which can be proven secure in the open network en-
vironment.

Alternative provably secure scalable blockchain protocols have been proposed recently. For example, Duong et
al. [DFZ16] constructed a scalable blockchain by combining proof-of-work and proof-of-stake mechanisms, in the
open se�ing: common pre�x, chain quality, and chain growth properties have been proved in their paper; chain
soundness property is missing but it can been proven [DFZ17]. At the same time, several scalable proof-of-stake
based protocols [CM17, KRDO17, DPS17]) were proposed: chain soundness property is missing in these propos-
als; in order to prove the chain soundness property, their blockchain protocols have to be augmented with certain
non-trivial mechanism (e.g., majority voting) to ensure new participants to securely join the protocol execution. Un-
fortunately, the augmented protocols cannot scale to a large network of nodes. �is leads to the following interesting
question:

Is that possible to construct a proof-of-stake based, scalable blockchain protocol in the open se�ing?

1.1 Our solution
We give an a�rmative answer to the above question. In this paper we provide a natural mimic of Nakamoto’s design
but via proof-of-stake mechanism. Next, we illustrate our basic ideas step by step.

Nakamoto’s design and proof-of-work (PoW) based core-chain. We �rst brie�y review Nakamoto’s design
ideas [Nak08]. �e blockchain in Bitcoin consists of a chain of ordered blocks B1,B2,B3, . . ., and PoW-players (i.e.,
miners) in each round (or time slot) a�empt to extend the blockchain with a new block by solving proof-of-work
puzzles [DN93, Bac02]. �e puzzle problem for each miner is de�ned by (1) the “context”, i.e., the latest block in the
longest blockchain in the miner’s view, and (2) the “payload”, i.e., the set of valid transactions to be included in the
new block, and a valid puzzle solution to the problem is de�ned by a hash inequality. More concretely, assume the

1

longest blockchain for a miner consists of ordered blocks B1,B2, . . . ,Bi, and Bi is the latest block. �e miner now
a�empts to �nd a valid puzzle solution nonce which can satisfy the following hash inequality:

H(hash(Bi), payload , nonce) < T

where H(·) and hash(·) are two hash functions, payload denotes a set of valid transactions to be included in the new
block, and T denotes the target of proof-of-work puzzle di�culty (which speci�es how di�cult to identify a puzzle
solution by making a hash query a�empt). In the case that a new valid solution, nonce, is identi�ed, such a solution
can be used for de�ning a new valid block Bi+1 as follows:

Bi+1 := 〈hi, payload , nonce〉

where hi := hash(Bi). �en the new block Bi+1 will be revealed by the miner, and broadcasted to the network
and then accepted by the remaining miners in the system. (We remark that, for simplicity, the above description is
oversimpli�ed; please see Section 6 for more discussions.)

We may consider an even further simpli�ed version of the above blockchain protocol, called Bitcoin core-chain

protocol. In the core-chain protocol, the payload will be ignored, and now puzzle is based on the following hash
inequality:

H(hash(Bi), nonce) < T

and the new block Bi+1 is de�ned as
Bi+1 := 〈hi, nonce〉

Proof-of-stake (PoS) based core-chain. To make our presentation accessible, we now present our proof-of-
stake based core-chain protocol. (We will explain why the idea works, and explain how to extend it to a full-�edged
blockchain immediately a�er the core-chain protocol.)

We intend to mimic Nakamoto’s design. As described above, Nakamoto’s Bitcoin blockchain is maintained by
PoW-players (i.e., miners); there, each winning PoW-player can extend the blockchain with a new block. In contrast,
our PoS based protocol will be maintained by PoS-players (i.e., stakeholders); now a PoS-player will extend the
blockchain with a new block. Similar to that in the PoW-based core-chain protocol, a wining PoS-player is chosen
with some probability but with a di�erent hash inequality. More concretely, assume the longest core-chain for a PoS-
player consists of the following ordered block-cores, B1,B2, . . . ,Bi; let round denote the current time (or round
number); consider a strengthened unique digital signature scheme1, (uKeyGen, uKeyVer, uSign, uVerify), and assume
the PoS-player holds the signing-veri�cation key pair (sk, pk). If the PoS-player is chosen, then the following hash
inequality holds:

H(hash(Bi), round, pk, σ) < T

where σ := uSignsk(hi, round), and hi := hash(Bi). �e new block-core Bi+1 is de�ned as

Bi+1 := 〈hi, round, pk, σ〉

We remark that our design is very similar to Nakamoto’s: the context here consists of the latest block-core in the

longest core-chain and the current time, and the payload in the core-chain is empty; the puzzle solution consists of a
PoS-player’s ver�cation key and his signature of the context.

Why the proof-of-stake based core-chain works? We are inspired by Nakamoto’s design [Nak08], and our
protocol can be viewed as a proof-of-stake analogy of Nakamoto’s. It has shown that Nakamoto’s blockchain can
achieve several important security properties [GKL15, PSS17, DZ17]. Next, we provide some high-level ideas that
why our protocol can also achieve these important security properties.

1Unique signature scheme was introduced by Lysyanskaya [Lys02]. In the strengthened version of unique signature scheme, the key genera-
tion and key veri�cation can be viewed as a variant of one-way relation (OWR) [DHLW10], and for each veri�cation key, there is only one valid
signing key. Furthermore, for each pair of veri�cation key and message, there exists only one signature. �e BLS signature [BLS01] can be a good
instantiation of the strengthened unique signature scheme. More details can be found in Appendix A.3.

2

First, in PoW blockchain, all of the players generate a new block in every round with very low probability. �e
expected number of blocks that are generated in one round is much less than 1. �is can be easily achieved by
selecting suitable di�culty target T in our hash inequality. Second, in Nakamoto’s proof-of-work based blockchain
protocol, under the assumption that honest players control the majority of computing power, the honest players have
higher probability to generate a block in a round than the malicious players. In our protocol, under the assumption
that he honest players control the majority of stake, the honest players will have higher probability to generate a
new block-core. �irdly, before seeing the broadcast solution, no one can predict who can generate a block in a
round. In our design, we put the signature of the previous block in the input of hash inequality. No one can predict
the signature of honest player, so no one can predict the result of others.

Finally, the players in Nakamoto’s protocol take the longest chain as the best chain; there the honest players
control major computing power which can ensure that the honest players can generate the longest chain with high
probability except the latest several blocks. As discussed above, the honest player will also generate the longest chain
in our scheme. So the players in our scheme can take the longest chains as the best chain. �is allows a new player
can take the longest chain as the best chain.

From core-chain to blockchain. We now start to extend the core-chain to a blockchain in which payload will be
included. Intuitively, the core-chain can be viewed as a (biased) random beacon; we can use the beacon to select a
PoS-player to generate a new block so that the blockchain can be extended. More concretely, once a new block-core
Bi+1 is generated by a PoS-player (in the core-chain protocol), then the PoS-player is selected for generating the
new block B̃i+1, in the following format

B̃i+1 = 〈hash(B̃i),Bi+1, X̃i+1, p̃k, σ̃〉

where σ̃ ← Signs̃k(h̃i,Bi+1, X̃i) and h̃i := hash(B̃i), and Bi+1 := 〈hi, round, pk, σ〉. Here we note that in
our blockchain protocol design, the PoS-player holds two pairs of keys, (sk, pk) of the unique signature scheme
(uKeyGen, uSign, uVerify), and (s̃k, p̃k) of a regular digital signature scheme (KeyGen,Sign,Verify). Now we hang
each block on the core-chain via the corresponding block-core; we can reduce the security of the blockchain protocol
to the the security of the core-chain protocol. Please also see Figure 1 for a pictorial illustration.

Rounds

G

B1 B2 B3 B4

B̃1 B̃2 B̃3 B̃4

. . .

Figure 1: Blockchain structure
Blockchain C̃ consists of initial setup information (i.e., genesis block) G , and then an ordered sequence of blocks B̃1, B̃2, B̃3,
Here, each block B̃i consists of a block-core Bi and additional information. A core-chain C consists of the initial setup information
G and the ordered sequence of block-cores B1,B2,B3,

Discussions. In the original Nakamoto’s design, adaptive di�culty adjustment mechanism has been introduced.
When more computing power is invested into the system, the di�culty target T will decrease (and now the winning
probability for each hash query will be smaller). In a proof-of-stake based system, we cannot expect the protocol is
always executed by the same number of players. In Section 6, we show how to mimic Nakamoto’s idea to enable our
proof-of-stake protocol with adaptive di�culty adjustment mechanism. In addition, our proof-of-stake protocol can

3

be improved so that it can work properly in the non-�at model. (In the non-�at model, players may have di�erent
amount of stake.) Finally, many ideas in Nakamoto’s design (e.g., suitable strategies for incentivizing the system and
for e�ectively managing transactions in blockchain) can also be “borrowed” into our protocol. Please see Section 6
for more details.

1.2 Related work
Cryptocurrency and proof-of-work. Anonymous digital currency was introduced by Chaum [Cha82] in the
early 1980s. �e �rst decentralized currency system, Bitcoin [Nak08], was launched about 30 years later, by incen-
tivizing a set of players to solve moderately-hard cryptographic puzzles (also called proof-of-work puzzles [DN93,
Bac02]). A�er that, many cryptocurrency systems were created based on proof-of-work puzzles (e.g., LiteCoin [Lit11],
Ethereum [But14, Woo14]).

�e security of Bitcoin system has been analyzed in the rational se�ing, e.g., [ES14, Eya15, NKMS15, KKKT16,
SSZ16, SBBR16], and also in the cryptographic se�ing, e.g., [GKL15, PSS17, SZ15, KP15, KP16, GKL17, DZ17]. Several
important cryptographic properties, common pre�x [GKL15, PSS17], chain quality [GKL15], chain growth [KP15], and
chain soundness [DZ17] have been considered for proof-of-work blockchain protocols.

Combining proof-of-work and proof-of-stake. �e idea of combining proof-of-work and proof-of-stake has
been studied in [KN12, Cry14, BLMR14, DFZ16, CDFZ17]. Very recently, Duong et al [DFZ16, DFZ17] provided the
�rst provably secure and scalable blockchain via proof-of-work/proof-of-stake in the open se�ing.

Proof-of-stake. Using virtual resources (i.e., stake) to construct cryptocurrency has been intensively considered
but in an ad hoc way, in the Bitcoin community. In high level, the proof-of-stake mechanism asks protocol players to
prove ownership of virtual resources. Only those players who can provide such proofs are allowed to maintain the
blockchain. Since the inception of the idea in an online forum [Bit11], several proof-of-stake proposals have been
introduced and/or implemented (e.g., [NXT14, Kwo14, Vas14, But15, BGM16]).

Very recently, several provably secure proof-of-stake based blockchain proposals (e.g., [CM17, KRDO17, DPS17])
have been developed. Unfortunately, chain soundness property is missing in these proposals; in order to achieve
the chain soundness property, these blockchain protocols have to be augmented with certain non-trivial mechanism
(e.g., majority voting) to ensure new participants to securely join the protocol execution. However, the augmented
protocols cannot scale to a large network of nodes. Before our work, how to construct a provably secure, scalable

proof-of-stake blockchain in the open se�ing is an open question.

Additional alternative mechanisms. Alternative consensus techniques via di�erent resources have been con-
sidered. For example, the physical storage resource is used in [PPK+15, MJS+14]. A hybrid proposal of utilizing
both computing and space resources, called proof-of-space-time was introduced in [MO16]. Recently, blockchain
protocols via trusted hardware have also been proposed [Int16].

Organization. In Section 2, we present the security analysis framework. In Section 3, we provide the details of our
proof-of-stake based core-chain construction, and then in Section 4 we give the security analysis. �en in Section 5,
we provide the construction of our main blockchain protocol as well as the security analysis. Further extensions and
related discussions can be found in Section 6. Finally, additional supporting materials can be found in Appendix A.

2 Model
In order to study the security of Bitcoin-like protocols, Garay et al. [GKL15] proposed a cryptographic framework
and showed that the (simpli�ed) Bitcoin can achieve several important security properties. �en, Pass et al. [PSS17]
extended Garay et al.’s framework [GKL15] by considering a more realistic communication network (i.e., partial
synchronous network) in which messages from honest players can be delayed with an upper bound units of time,
i.e., ∆ execution rounds. Duong et al [DZ17] extended the previous modeling e�ort further by considering even

4

more realistic scenario in which existing players and new players behavior di�erently. Below we describe the model
of protocol execution that formulated in previous framework [GKL15, PSS17, DZ17].

2.1 Blockchain protocol executions
Network communication. �e underlying communication for blockchain protocols are formulated via a func-
tionality FNET which captures the atomic unauthenticated “send-to-all” broadcast in a semi-synchronous communi-
cation se�ing. �e functionality is parameterized by an upper bound ∆ on the network latency, and interacts with
players under the direction of the adversary. More concretely, the functionality proceeds as follows. Whenever it
receives a message from a player, it would contact the adversary to ask the adversary to specify the delivery time for
the message. Note that, if the speci�ed delivery time exceeds the delay upper bound ∆, the functionality would not
follow the adversary’s instruction, and only delay the message to a maximum number of ∆ rounds. �at said, no
messages are delayed more than ∆ rounds. In addition, the adversary could read all messages sent by all honest play-
ers before deciding his strategy; the adversary may “spoof” the source of a message they transmit and impersonate
the (honest) sender of the message. �e functionality FNET is formally described in Figure 2.

Functionality FNET

�e functionality is parametrized by ∆, and interacts with a set P of PoS-players, and the adversary.
• Upon receiving (Broadcast,m) from a party P at round r where P ∈ P, send (Broadcast,m) to S

and record (P,m, b, r) where b = 0.
• Upon receiving (Delay,m,P′, t) from S where P′ ∈ P (here, the adversary can “spoof” the source of

the message), then
– If there is a record (P,m, b, r) such that b = 0 and t ≤ ∆, then send (Message,P′,m) to all other

PoS-players at round r + t and reset b := 1.
– Else, if t > ∆, send (Message,P′,m) to all other PoS-players at round r + ∆ and reset b := 1.
– Else, ignore the message.

Figure 2: Network functionality FNET.

�e execution of proof-of-stake blockchain protocol. Following Cane�i’s formulation of the “real world”
executions [Can00a, Can00b], we present an abstract model for proof-of-stake (PoS) blockchain protocol Π in the
{FSetup,FNET}-hybrid model. We consider the execution of the blockchain protocol Π that is directed by an envi-
ronment Z(1κ) (where κ is a security parameter), which activates a set P of PoS-players. �e execution proceeds
in rounds. �e environment Z can “manage” protocol players through an adversary A that can dynamically corrupt
honest parties.

More concretely, the {FSetup,FNET}-hybrid execution proceeds as follows. Each party in the execution is ini-
tialized with an initial state including all initial public information of the protocol Π, e.g., a genesis block. �e
environment Z �rst actives the adversary A and provides instructions for the adversary. �e execution proceeds in
rounds, and in each round, a protocol party could be activated by the environment or the functionalities.

In each round, each PoS-player P ∈ P, with a local state state (note that state originally includes the initial
state), proceeds as follows.

• When PoS-player P is activated by the environment Z by (Input-Stake,P, x) where x is the input from
the environment, and potentially receive subroutine output message (Message,P′,m) for any P′ ∈ P,
from FNET. It then interacts with the functionality FSetup and receives some output y .

• Next, execute the protocol Π on input its local state state , the value y received from the functionality
FSetup, an input from the environment x , and the message m received from the functionality FNET; and
then obtain an update local state state and an outgoing message m

′, i.e.,{state,m′} ← Π(state, x , y ,m).
A�er that, send (Broadcast,m′) to FNET and then return (Return-Stake,P) to the environment Z.

5

At any round r of the execution, Z can send message (Corrupt,P), where P ∈ P, to adversary A. Party P then
remains honest till round r + ∆. �en A will have access to the party’s local state and control P from round
r + ∆.

Let EXECFSetup,FNET

Π,A,Z be a random variable denoting the joint VIEW of all parties (i.e., all their inputs, random coins
and messages received, including those from the random oracle and signatures) in the above {FSetup,FNET}-hybrid
execution; note that this joint view fully determines the execution. Whenever FSetup,FNET are clear from context we
o�en write EXECΠ,A,Z.

Initial state. In our PoS blockchain system, we assume the stakes are already distributed before the system start.
We assume there are n PoS-players. A PoS-player Pi, where 1 ≤ i ≤ n, holds the signing-veri�cation key pair
(ski, pki) as account. A PoS-player Pi also holds vi stakes where vi > 0. �e initial public state I consists of a list
of entries (pki, vi). All players are allowed to access I to obtain the veri�cation key of a PoS-player and check the
stakes of a PoS-player. For simplicity, we focus on the �at model where every player has some amount of stakes, and
assume vi = 1. (We will consider the non-�at model where vi can be di�erent values in Section 6.)

Remark 2.1. For simplicity, we focus on the idealized “�at” model where all PoS-players have the same amount of

stake. Note that, in the reality, each di�erent honest PoS-player may have a di�erent amount of stake. In addition for

simplicity, we focus on the idealized “static di�culty” model where the number of PoS-players that who have stake, is

�xed during the course of the protocol execution. �at means, if some new PoS-players join the system, then the same

number of PoS-players will leave the system. In Section 6, we will discuss how to extend our main results in the idealized

�at, static di�culty model to the more realistic non-�at, adaptive di�culty se�ing.

2.2 Blockchain basics
A blockchain C consists of a sequence of ` concatenated blocksB0‖B1‖B2‖ · · · ‖B`, where ` ≥ 0 andB0 is the initial
block (genesis block). We use len(C) to denote blockchain length, i.e., the number of blocks in blockchain C; and here
len(C) = `. We use sub blockchain (or subchain) for referring to segment of a chain; here for example, C[1, `] refers
to an entire blockchain, whereas C[j,m], with j ≥ 1 and m ≤ ` would refer to a sub blockchain Bj‖ · · · ‖Bm. We
use C[i] to denote the i-th block Bi in blockchain C. If blockchain C is a pre�x of another blockchain C′, we write
C � C′. If a chain C is truncated the last κ blocks, we write C[¬κ].

2.3 Security properties
Security properties for existing players. Several important security properties for blockchain protocols have
been de�ned: common pre�x property [GKL15, PSS17], chain quality property [GKL15], and chain growth property

[KP15]. Next, we review the security de�nitions.
De�nition 2.2 (Chain growth for existing players). Consider a blockchain protocol Π with a set P of players in the

open se�ing. �e chain growth property Qcg with parameter g ∈ R, states the following:
for any existing honest player P′ with local chain C′ at round r′, and existing honest player P′′ with local chain C′′ at
round r′′, where P′,P′′ ∈ P and r′′ > r′, in the execution EXECΠ,A,Z, it holds that len(C′′)− len(C′) ≥ g(r′′ − r′).
De�nition 2.3 (Common pre�x for existing players). Consider a blockchain protocol Π with a set P of players in the

open se�ing. �e common pre�x property Qcp states the following:
for any existing honest player P′ with local chain C′ at round r′, and existing honest player P with local chain C at

round r, in the execution EXECΠ,A,Z, where P′,P ∈ P and r ≤ r′, it holds that C[¬κ] � C′.
De�nition 2.4 (Chain quality for exiting players). Consider a blockchain protocol Π with a set P of players in the

open se�ing. �e chain quality property Qcq, with parameters µ, `, where µ ∈ R and ` ∈ N, states the following:
for any existing honest player P ∈ P, with local chain C in round r, in EXECΠ,A,Z, it holds that for large enough `
consecutive blocks of C the ratio of honest blocks is at least µ.

6

Security properties for new players. Chain soundness property was recently introduced in [DZ17]. Intuitively,
we should provide the security guarantee that new players can obtain the recent blockchain which is compatible
with the local chain of an existing player in some recent rounds. �is property is not needed in the closed se�ing
where new players are not allowed. However, this property is critical for blockchain protocols in the open se�ing.
Without this security requirement, unsatisfactory protocols could be allowed. �e chain soundness de�nition is
formally described as follows.
De�nition 2.5 (Chain soundness for new players). Consider a blockchain protocol Π with a set P of players in the

open se�ing. Consider a new player P ∈ P with local chain C in round r, in EXECΠ,A,Z. �e chain soundness property
Qcs, with security parameter κ for new players, states the following: for any new player P in round r, there exists a
pair existing players P′ with local chain C′ at round r such that C′[¬κ] � C and C[¬κ] � C′′.

3 Proof-of-stake core-chain
In this section, we provide the details of our core-chain protocol. �is core-chain protocol will the further extended
to a full-�edged blockchain in Sections 5 and 6. We mimic Nakamoto’s design: Nakamoto’s protocol is maintained
by PoW-players (i.e., miners), and each winning PoW-player can extend the longest blockchain with a new block;
here, our core-chain protocol is maintained by PoS-players (i.e., stakeholders), and a winning PoS-player extends
the longest blockchain with a new block. In Nakamoto’s design, a PoW-player is chosen as the winner with some
probability based on a moderately hard puzzle (de�ned by a hash inequality); here, in our PoS based core-chain
protocol, a wining PoS-player is chosen with some probability but with a di�erent hash inequality.

More concretely, assume the longest core-chain for a PoS-player consists of the following ordered block-cores,
B1,B2, . . . ,Bi; let round denote the current time slots (or round number); consider a strengthened unique signa-
ture scheme (see Appendix A.3 and [Lys02, BLS01]) (uKeyGen, uKeyVer, uSign, uVerify), and assume the PoS-player
holds the signing-veri�cation key pair (sk, pk). If the PoS-player is chosen, then the following hash inequality holds:

H(hash(Bi), round, pk, σ) < T

where σ := uSign(sk, 〈hi, round〉), and hi := hash(Bi). �e new block-core Bi+1 is de�ned as

Bi+1 := 〈hi, round, pk, σ〉

We remark that our design is very similar to Nakamoto’s: the context here consists of the latest block-core in the

longest core-chain and the current time, and the payload in the core-chain is empty; the puzzle solution consists of a
PoS-player’s veri�cation key and his signature of the context.

Next we will provide a formal description for our protocol. We use a setup functionality FI
rCERT to capture the

hash inequality and the block-core signing/veri�cation. �is setup functionality can be implemented by using hash
function H(·) and a strengthened unique signature scheme (uKeyGen, uKeyVer, uSign, uVerify).

3.1 Setup functionality FI
rCERT

In our core-chain protocol design, we will use the setup functionality, resource certi�cation functionality FI
rCERT (in

Figure 3) that introduced by the authors in [DFZ16]. For completeness, we describe the functionality below.

Resource certi�cation functionality FI
rCERT. �e functionality consists of four phases, “Stake Resource Regis-

tration”, “Stake Election”, “Signature Generation” and “Stake Veri�cation”. At any time step, a PoS-player P can send
a register command (Stake-Register,P) to functionality FI

rCERT for registration. �e functionality then records
(P,bP) where bP = 1, if the party P is permi�ed. If the player discontinues the services, this bit is set to 0 indi-
cating that the stake would not be granted to this player any longer. �en, for each execution round, a registered
PoS-player P is granted one unit of the stake, and he can then request the functionality for leader election in this round.
Speci�cally, he can send message (Elect,P, context) to the functionality; the functionality then with probability p
selects this party as the leader and noti�es the player whether he is selected or not. Next, if the party P is elected

7

Functionality FI
rCERT

�e functionality is parameterized by a di�culty parameter p, a security parameter κ, initial setup information
I, and interacts with a set P of parties, as well as an adversary.

Stake Resource Registration.
1. Upon receiving a message (Stake-Register,P) from party P ∈ P, if there is an entry (P, 1), then

ignore the message. Otherwise, pass the message to the adversary. Upon receiving a message
(Stake-Registered,P) from the adversary, set bP := 1, record (P,bP), and pass the message to the
party P (the party P registered.)

2. Upon receiving a message (Stake-Unregister,P) from party P ∈ P, if no entry (P, 1) is recorded, then
return (Error) to P and halt. If there is an entry (P, 1) recorded, then set bP := 0, and update (P,bP),
and send (Stake-Unregistered,P) to the party P (the party P unregistered.)

For each round, set φP := 0 for every registered party P ∈ P, then proceed as follows.
Stake Election: Upon receiving (Elect,P, context) from a PoS-player P, proceed as follows.

1. If (P,bP) is recorded where bP = 1 and φP = 0, (the party P registered and granted one unit of stake)

with probability p, set φP := 1 and f := 1, send (Elected,P, f) to P, and record the entry
(P, context) (the party P is elected.)
with probability 1−p, set φP := 1 and f := 0, and send (Elected,P, f) to P (the party P is not elected.)

2. Otherwise, if any of the following cases occur:
(P,bP) is not recorded, (the party P is not registered yet)
or (P,bP) is recorded and bP = 0 (the party P registered and then unregistered),
or φP = 1, (the party P already used the granted stake unit)

�en set f := 0 and send (Elected,P, f) to P. (the party P is not elected)

Signature Generation:
Upon receiving (Core-Sign,P, context) from a party P, send (Core-Sign,P, context) to the adversary.
Upon receiving (Signature,P, context , σ) from the adversary, verify that no entry (P, context , σ, 0) is
recorded. If it is, then output an error message (Error) to P and halt. Else, output (Core-Signed,P, context , σ)
to P, and record the entry (P, context , σ, 1).
Stake Veri�cation: Upon receiving (Core-Verify,P, context , σ) from a party P′ ∈ P,

1. If there exists a record of the form (P, ·), (the party P is elected)
then send (Core-Verify,P, context , σ) to the adversary.
Upon receiving (Core-Verified,P, context , φ) from the adversary, do:

If (P, context , σ, 1) is recorded, then set f := 1.
Else, if P is not corrupted, and no entry (P, context , σ′, 1) for any σ′ is recorded, then set f := 0
and record the entry (P, context , σ, f).
Else, if there is an entry (P, context , σ, f ′), then set f := f ′.
Else, set f := φ, and record the entry (P, context , σ, f).

Output (Core-Verified,P, context , f) to the party P′.
2. Otherwise, if there is no record of the form (P, ·), (the party P is not elected)

set f := 0 and output (Core-Verified,P, context , f) to the party P′.

Figure 3: Resource certi�cation functionality FI
rCERT.

8

as the leader, the elected party then asks the functionality FI
rCERT to provide the signature of context . �e func-

tionality therefore requests the adversary to produce the signature by command (Core-Sign,P, context), and then
waits until the adversary responds by a signature σ. �e functionality a�er that checks if no entry (P, context , σ, 0)
has been recorded. Note that, the indicator 0 implies that this is not a valid signature (the veri�cation fails). If this
entry is not recorded, then the functionality simply passes the signature σ to P and stores (P, context , σ, 1). If en-
try (P, context , σ, 0) is already recorded, this implies no signature has been generated for context yet. �en, the
functionality outputs an error and halts.

Next, the veri�cation process of FI
rCERT proceeds as follows. Upon receiving a veri�cation request, the func-

tionality then asks the adversary to verify the signature. �e functionality, upon receiving the veri�cation decision
from the adversary, would ensure the completeness, unforgeability, and guarantees consistency properties of the
signature scheme.

How to implement functionality FI
rCERT? Functionality FI

rCERT can be easily implemented. As noticed in
[DFZ16], functionality FI

rCERT can be a “resource” analog of the multi-session version of certi�cate functionality
FCERT in [Can03]. Note that FCERT can be implemented in the {FCA,FSIG}-hybrid model [Can03]. We can fol-
low the approach to implement our functionality FI

rCERT. Here, the functionality FI
rCERT can be instantiated in the

{FI
rCA, F̂SIG}-hybrid model, where F̂SIG is a multi-session signature functionality [CR03] and the resource certi�cate

authority functionality FI
rCA can be implemented in the {F̂CA,FRO}-hybrid model. In addition, the multi-session cer-

ti�cate authority functionality F̂CA can be implemented by a “mature” blockchain. Please refer to Appendix A.2 for
more details about resource certi�cate authority functionality FI

rCA and multi-session signature functionalityF̂SIG;
note that, FI

rCA can be viewed as a “resource” analogy of the multi-session version of certi�cate authority function-
ality FCA in [Can03]. Note that FI

rCA can be instantiated in the {F̂CA,FRO}-hybrid model (details can be found in
[DFZ16]). �en F̂CA can be implemented by a mature blockchain. Please refer to Figure 4 for a hierarchical imple-
mentation of our FI

rCERT.

FI
rCERT

FI
rCA

F̂CA FRO

F̂SIG

Figure 4: A hierarchical implementation of FI
rCERT.

3.2 Our core-chain protocol
We now describe the core-chain protocol Πcore. Each PoS-player P, initially sets his local core-chain C := I. Once
activated by the environment on (Input-Stake,P) at round round, and received a core-chain set C from FNET, the
party P �nds the best valid core-chain Cbest by running the subroutine BestCore (in Figure 6), and then updates its
local core-chain C := Cbest.

Let ` be the length of core-chain C. In our design, only the elected PoS-players are allowed to generate new
block-cores (to extend the core-chain). Now, each registered PoS-player P will work on the right “context” which
consists of the latest block-core in the longest core-chain and the current time; formally context := 〈h`, round`+1〉
where C[`] is the latest block-core in the longest core-chain C, and h` := hash(C[`]), and round`+1 denotes the
current time. �e PoS-player P may query FI

rCERT by command (Elect,P, context) to see if he is selected. If the
PoS-player P is selected (with certain probability p), he would receive a message (Elected,P, f) from FI

rCERT such
that f = 1; then the PoS-player P queries the functionality to generate a signature for 〈h`, round`+1〉 via command
(Core-Sign,P, 〈h`, round`+1〉). Once receiving the signature σ from the functionality, the PoS-player P de�nes a

9

new block-core B := 〈〈h`, round`+1〉,P, σ〉, updates his local core-chain C and then broadcasts the local core-chain
to the network. Please refer to Figure 5 for more details of our core-chain protocol.

Note that here PoS-players have access to the functionality FI
rCERT. �e players need to register to the function-

ality FI
rCERT before querying the functionality.

Protocol Πcore

�e protocol is parameterized by the initial setup information I.
Let P be the set of PoS-players that already registered to the functionality FI

rCERT.
Initially, for each P ∈ P, set C := I, and state := I.

Upon receiving message (Input-Stake,P) from the environment Z at round round, the PoS-player P ∈ P,
with local state state , proceeds as follows.

1. Select the best local PoS core-chain:

Let C be the set of core-chains collected from FNET.
Compute Cbest := BestCore(C ∪ {C}, round), and set C := Cbest, and ` := len(Cbest)

2. A�empt to extend PoS core-chain:

Compute h` := hash(C[`]).
Stake election:

Send (Elect,P, 〈h`, round〉) to functionality FI
rCERT, and receive (Elected,P, f) from FI

rCERT.
Generate a new block-core:

If f = 1, send (Core-Sign,P, 〈h`, round〉) to functionality FI
rCERT,

and receive (Core-Signed,P, 〈h`, round〉, σ) from FI
rCERT.

If the signature σ is obtained, then set the new block-core B := 〈〈h`, round〉,P, σ〉,
and set C := C‖B , and state := state ∪ {C},
and then send (Broadcast, C) to FNET.

Return (Return-Stake,P) to the environment Z.

Figure 5: Our proof-of-stake core-chain protocol Πcore in the {FI
rCERT,FNET}-hybrid model. (See Figure 6 for the

subroutine BestCore.)

�e best core-chain strategy. Our proof-of-stake core-chain protocol Πcore uses the subroutine BestCore to sin-
gle out the best valid core-chain from a set of core-chains. Now we describe the rules of selecting the best core-chain.
Roughly speaking, a core-chain is the best one if it is the current longest valid core-chain. �e BestCore subroutine
is parameterized by the initial setup information I, and takes as input, a core-chain set C′ and the current time
information round′. Intuitively, the subroutine validates all C ∈ C′, then �nds the valid longest core-chain.

In more detail, BestCore proceeds as follows. On input the current set of core-chains C′ and the current time
information round′, and for each core-chain C, the subroutine then evaluates every block-core of the core-chain C
sequentially. Let ` be the length of C. Starting from the head of C, for every block-core C[i], for all i ∈ [`], in the
core-chain C, the BestCore subroutine (1) ensures that C[i] is linked to the previous block-core C[i − 1] correctly,
and (2) tests if the signature generated by that PoS-player can be veri�ed (by interacting with FI

rCERT). A�er the
validation, the best valid core-chain is the longest one. Please refer to Figure 6 for more details.

4 Security analysis for core-chain

4.1 Preliminary
Our core-chain protocol Πcore is in the “�at, static di�culty” model in which each PoS-player holds a unit of stake
and the total number of stakeholders is �xed. Let n be the total number of stakeholders in the protocol. Let p denote
the probability that a stakeholder is quali�ed to extend the core-chain in a round. Let ρ denote the ratio of malicious
stake. Let α0 = (1− ρ)np be the expected number of honest stakeholders that are quali�ed in a round to extend the

10

Subroutine BestCore

�e subroutine BestCore is parameterized by an initial setup information I, and with input (C′, round′).
For every chain C ∈ C′, and proceed as follows.

1. Set ` := len(C).
2. For i from ` to 0, verify block-core C[i], as follows.

• Parse C[i] into 〈〈hi−1, roundi〉,Pi, σi〉.
• If either i = ` and roundi < round′, or i < ` and roundi < roundi+1 and roundi+1 < round′, then

execute:
If hi−1 6= hash(C[i− 1]), then remove this core-chain C from C′.
Else if hi−1 = hash(C[i− 1]), send (Core-Verify,Pi, 〈hi−1, roundi〉, σi) to FI

rCERT.
Upon receiving message (Core-Verified,Pi, 〈hi−1, roundi〉, σi, fi) from FI

rCERT, if fi = 0 re-
move this core-chain C from C′.

Otherwise, remove the core-chain C from C′.

Set Cbest be the longest core-chain in C′. �en return Cbest as the output.

Figure 6: �e core-chain set validation subroutine BestCore.

longest core-chain. Let β0 = ρnp be the expected number of malicious stakeholders that are quali�ed in a round to
extend any chosen core-chain.

Here we assume np � 1. �is means the expected number of stakeholders that are quali�ed to extend a core-
chain in a round is much less than 1.2 Additionally, we assume that α0 = λ0β0 where λ0 ∈ (1,∞). We are now
ready to state our theorems for our core-chain protocol Πcore.
�eorem 4.1 (Chain growth). Consider core-chain protocol Πcore

in Section 3, an honest PoS-player P′ with best local

PoS core-chain C′ in round r′, and an honest PoS-player P′′ with best local core-chain C′′ in round r′′, where r′′ > r′.
�en we have

Pr
[
len(C′′)− len(C′) ≥ g · t

]
≥ 1− e−Ω(t)

where t = r′′ − r′, g = (1− δ)α, and δ > 0.

�eorem 4.2 (Chain quality). Consider α = λβ, λ > 1, and δ > 0. Consider core-chain protocol Πcore
in Section 3,

and an honest PoS-player with PoS core-chain C. Consider that ` consecutive block-cores of C are generated in s rounds,
where `g block-cores are generated by honest PoS-players. �en we have

Pr

[
`g
`
≥ µ

]
≥ 1− e−Ω(`)

where µ = 1− (1 + δ) 1
λ .

�eorem 4.3 (Common pre�x). Consider α = λβ, λ > 1, and δ > 0. Consider core-chain protocol Πcore
in Section 3.

and two honest PoS-players, P in round r and P′ in round r′, with the local best PoS core-chains C, C′, respectively, where
r′ ≥ r. �en we have

Pr [C[1, `] � C′] ≥ 1− e−Ω(κ)

where ` = len(C)−Θ(κ).

�eorem 4.4 (Chain soundness). Consider for every round, α = λβ, λ > 1, and δ > 0. Consider core-chain protocol

Πcore
in Section 3. and two honest PoS-players, P′ and P′′ in round r, with the local best PoS core-chains C′ and

C′′, respectively, where P′ is a new player and P′′ is an existing player in round r. �en we have C′[¬κ] � C′′ and
C′′[¬κ] � C′

2In Section 6, we will discuss how to tune the target di�culty in the hash inequality in an adaptive fashion.

11

Before the security analysis, we introduce some terms.
De�nition 4.5 (Honest successful round). We say a round r is an honest successful round, if in round r, at least one
honest PoS-player are allowed to extend the core-chain.

Let pg be the probability that a round is honest successful round. We have pg = 1 − (1 − p)(1−ρ)n. In the case
that np� 1, we have X ≈ p(1− ρ)n. �at is pg ≈ α0. In the following sections, we assume the probability that a
round is honest successful round is α0 directly.
De�nition 4.6 (Best public chain). Consider round r. We say a chain C is a public chain in round r if such C is known
by all honest players in round r. We say chain C is the best public chain in round r if it is the longest public chain in

round r.

4.2 Proof ideas
Before providing the proof details in the next subsections, here we introduce the high-level proof ideas. In our
design, malicious players cannot prevent the honest players from being selected to generate new block-cores. �is
will guarantee the chain growth property. Furthermore, the total number of block-cores from malicious players are
bounded by the proportion of stakes they control. Since we assume that the honest players control more stakes
than the malicious players, for the same core-chain, the malicious players cannot contribute more block-cores than
the honest players. �is will give us the chain quality property. Finally, we assume the probability that all of the
stakeholders �nd a new block-core B in a round is very small. �is means, in most of the rounds, no new block-core
is broadcast, and all of the honest players will extend on the same core-chain. Note that, even all of malicious players
try to extend another core-chain, the growth rate of the malicious core-chain is still lower than that of the public
core-chain. �is will allow us to prove the common pre�x property. Our core-chain protocol will be executed in a
se�ing that the adversary can delay the messages from honest players up to certain say ∆, number of rounds. �e
honest players may be misled to work on a wrong core-chain during the delayed rounds. As a result, the e�ort from
the honest players is wasted during these delayed rounds. Our analysis will also take care of the network delay.

Chain growth. In order to calculate the chain growth rate, we consider the worst case for the honest players. �e
best strategy for the malicious players is to delay all of the messages from the honest players to discount the stakes
of honest players. We use α to denote the discounted number of block-cores that honest players can generate. We
have α = α0

1+∆α0
. (�e calculation steps can be found in next subsection.) We use a hybrid execution to formalize

the worst delay se�ing in the formal proof. In the hybrid execution, the malicious players contribute nothing to the
chain growth and delay all honest messages to decrease the chain growth rate. In the real execution, the probability
that an honest player is chosen will not be lower than that in the hybrid execution. �e message from malicious
players will not decrease the chain growth that contributed by honest players. �erefore, the chain growth rate is
not worse than that in the hybrid execution.

Chain quality. In order to reduce the core-chain quality, the best strategy for malicious parties is to generate as
more block-cores as they can. When the honest players generate and broadcast a new block-core, they will try to
send out another one to compete with the honest one. We focus on the worst case that the malicious players win
all of the competition. During any t consecutive rounds, the core-chain growth rate is αt on average. �e malicious
players will contribute βt block-cores. �e core-chain quality will remain at least 1− β

α .

Common pre�x. We assume α + β � 1. �is guarantees that the honest players will work on the same best
core-chain in most rounds. We also assume the majority of PoS-players are honest. Together, we have that the public
best chain is longer than any other core-chains a�er a su�cient long period. All of the honest players will converge
on the best public chain with high probability except the last several block-cores.

Chain soundness. For a new player, he will take the longest core-chain he received. As we discussed above, the
honest players can generate the longest chain except the latest several block-cores. �is means the new player can
choose the best core-chain as the existing players in the protocol.

12

4.3 Analysis with bounded delay
We assume that the malicious parties can delay messages up to ∆ number of rounds. (�is is guaranteed by FNET.)
When an honest PoS-player is quali�ed to generate a new PoS block-core, he will broadcast it to the system and
expect all parties to receive it. �e honest players may not obtain the best PoS core-chain and thus work on a
di�erent PoS core-chain. If an honest players produce a new PoS block-core during the delay time and later receive
a be�er PoS block-core, the PoS block-core will be useless and his e�ort during these time slots is wasted. In this
subsection, we provide a formal analysis for our core-chain protocol in the presence of the network delay.

4.3.1 Hybrid expriment

To analyze the best strategy of the adversary, and the worst scenario that may happen to the honest players, we
consider the following notations.
Let REAL(ω) = EXECΠcore,A,Z(ω) denote the typical execution of Πcore where

1. ω is the randomness in the execution,

2. Messages of honest players may be delayed by FNET in at most ∆ rounds.

Let HYBr(ω) = EXECrΠcore,A,Z(ω) denote the hybrid execution as in real execution except that a�er round r,
HYBr(ω) has the following modi�cations from REAL(ω):

1. �e randomness is �xed to ω as in HYBr(ω),

2. FNET delays all messages generated by honest PoS-players to exact ∆ rounds,

3. Remove all new messages sent by the adversary to honest players, and delay currently undelivered messages
from corrupted parties to the maximum of ∆ rounds,

4. Whenever some message is being delayed, no honest PoS-players query the functionality FI
rCERT until the

message is delivered.

In the REAL(ω) executions, the number of honest successful rounds is not less than in the HYBr(ω).
�e following lemma shows that the real execution is not worse than hybrid execution. In order to distinguish

core-chain in HYBr(ω) with in REAL(ω) executions, we use Chybrid to denote it.
Lemma 4.7. For all ω, r, t > 0, given two executionsREAL(ω) andHYBr(ω). Let r′ = r+t. For any honest PoS-player
P at round r′, let C′ denote the PoS core-chain of P at round r′ in the execution REAL(ω) and C′hybrid denote the PoS

core-chain of P at round r′ in the HYBr(ω). We then have len(C′) ≥ len(C′hybrid).

Proof. We prove this lemma by induction. We consider the initial state before round r. From the de�nition of hybrid
experiment, all players have same VIEW at round r. We have len(C) ≥ len(Chybrid). We suppose it holds for all
players before round s − 1. �e only case that len(Cs) < len(Cshybrid) is the player P received a new core-chain to
extend Cshybrid at round s in HYBr(ω). According to the de�nition of hybrid experiment, this extended PoS block-
core must be generated at round s−∆ by an honest player P∗, that makes len(Cshybrid) = len(Cs−∆

hybrid) + 1. At the
same time, the player P∗ must succeed to extend PoS block-core at round s − ∆ in REAL(ω). �is extension will
make Cs−∆

∗ increase by one block. For player P∗ is honest, P must have received the extension at (or before) round
r′. Pu�ing them together, we have len(C′) ≥ len(C′∆).

4.3.2 Analysis in the worst delay setting

As mentioned earlier, the malicious players can delay the messages for at most ∆ rounds. As a consequence, some
e�orts from honest players may be wasted. Below we develop a lemma for the “discount” version of honest players’
e�orts in the execution of HYBr(ω).

13

Lemma 4.8. Consider HYBr(ω) where the adversary is allowed to delay messages for at most ∆ rounds. Let α0 > 0
be the expected number of honest stakeholders that are chosen in a round. Let α be the actual probability that a round

s > r is an honest successful round. �en we have that

α =
α0

1 + ∆α0

Proof. In HYBr(ω), if round r′, where r′ > r, is an honest successful round, then no PoS-players will query func-
tionality FI

rCERT in the next ∆ rounds. Now, assume in HYBr(ω), there are c number of honest successful rounds,
from round r to round (r + t), where t > 0. We then have the number of actual working rounds for honest stake-
holders will remain t − ∆c. For each round, the probability that it is an honest successful round is α0. We have
α0(t−∆c) = c. �is implies that c = α0t

1+∆α0
. We then have α = α0

1+∆α0
.

Let VIEWr denote the VIEW at round r in REAL(ω) where r > 0. Let len(VIEWr) denote the length of the best
public PoS core-chain in VIEWr . �e following lemma demonstrates that each successful round would contribute
one PoS block-core to the best public PoS core-chain a�er ∆ rounds in an execution of HYBr(ω).
Lemma 4.9. Consider HYBr(ω). For any honest successful round s, where s > r, it holds that

len(VIEWs+∆)− len(VIEWs) ≥ 1

Proof. By De�nition 4.5, there is at least one honest PoS-player producing a PoS block-core at round s. Let Cshybrid be
the PoS core-chain that is extended by the PoS-player at round s. We have len(Cshybrid) ≥ len(VIEWs). At the end of
round s the honest player will broadcast the extended chain with length len(Cshybrid)+1. At the end of round s+∆,
all honest players will receive the extended core-chain, we have len(VIEWs+∆) ≥ len(Cs+∆

hybrid) = len(Cshybrid) + 1.
Pu�ing them together, we have len(VIEWs+∆)− len(VIEWs) ≥ 1.

Corollary 4.10. Consider HYBr(ω). Assume there are h number of honest successful rounds from round r to round
r + t where t > 0. �en it holds that

len(VIEWr+t+∆)− len(VIEWr) ≥ h

Proof. Let rk be the kth honest successful round where r < roundk < r+t and 1 ≤ k ≤ h. From Lemma 4.9, we have
len(VIEWroundk+∆)−len(VIEWroundk) ≥ 1. �en we have len(VIEWr+t)−len(VIEWr) ≥

∑h
i=1(len(VIEWroundk+∆)−

len(VIEWroundk)) ≥ h.

If we consider a long time running, we have t � ∆. In this case we can ignore ∆ rounds di�erence, that is
len(VIEWr+t)− len(VIEWr) ≥ h.

4.4 Achieving chain growth property
We here demonstrate that our core-chain protocol satis�es the growth property (De�nition 2.2). �e concrete state-
ment to be proved can be found in �eorem 4.1. We next �rst develop some useful lemmas.
Lemma 4.11. Consider HYBr(ω), and δ > 0. LetX be the number of honest successful rounds from round r to round
r + t, where t > 0. �en we have

Pr[X > (1− δ)αt] > 1− e−Ω(t)

Proof. Based on Lemma 4.8, we have that, on average, there are αt number of honest successful rounds in any
t consecutive rounds. By Cherno� bound, we have Pr[X ≤ (1 − δ)αt] ≤ e−δ

2αt/2. �us, we have Pr[X >

(1− δ)αt] > 1− e−δ2αt/2 = 1− e−Ω(t).

14

Lemma 4.12. Consider HYBr(ω) and δ > 0. Consider an honest PoS-player P with the best PoS core-chain Chybrid in

round r, and an honest PoS-player P′ with the best PoS core-chain C′hybrid in round r′, respectively, where r′ − r � ∆.

�en we have

Pr
[
len(C′hybrid)− len(Chybrid) ≥ g · t

]
≥ 1− e−Ω(t)

where t = r′ − r and g = (1− δ)α.

Proof. First, we note that Chybrid will be received by all honest players no later than round r + ∆ because player P
is honest. We have len(Chybrid) ≤ len(VIEWr+∆). Now we consider the chain growth from round r + ∆ to round
r′. For t � ∆, we have t ≈ t − ∆ for simplicity. From Lemma 4.11, in any t consecutive rounds the number
of honest successful round is more than (1 − δ)αt with the probability at least 1 − e−Ω(t). Together with Lemma
4.9 and Corollary 4.10, we have len(VIEWr

′
) − len(VIEWr+∆) ≥ (1 − δ)αt. Chain C′hybrid is an valid PoS core-

chain accepted by an honest PoS-player P′ at round r′. We have len(C′hybrid) ≥ len(VIEWr
′
). Put them together,

len(C′hybrid) − len(Chybrid) ≥ len(VIEWr
′
) − len(VIEWr+∆) ≥ (1 − δ)αt with probability at least 1 − e−Ω(t). �e

corresponding growth rate is g = (1− δ)α.

Reminder of �eorem 4.1. Consider core-chain protocol Πcore
in Section 3, an honest PoS-player P′ with best local

PoS core-chain C′ in round r′, and an honest PoS-player P′′ with best local core-chain C′′ in round r′′, where r′′ > r′.
�en we have

Pr
[
len(C′′)− len(C′) ≥ g · t

]
≥ 1− e−Ω(t)

where t = r′′ − r′, g = (1− δ)α, and δ > 0.

Proof. In order to distinguish the notation clearly, we use C′hybrid and C′′hybrid to denote the PoS core-chains of the
best core-chains of P at round r′ and r′′ in the execution of HYBr(ω). From Lemma 4.12, we have Pr[len(C′′)hybrid ≥
len(C′)hybrid + g · t] ≥ 1 − e−Ω(t) where t = r′′ − r′, in HYBr(ω). We now turn to the core-chain growth property
in EXECΠcore,A,Z. From the de�nition of hybrid execution, we know that all honest players have same initial status
at round r′. We have len(C′) = len(C′hybrid). By Lemma 4.7, we have len(C′′) ≥ len(C′′hybrid). It follows that,

Pr[len(C′′) ≥ len(C′) + g · t] ≥ Pr[len(C′′hybrid) ≥ len(C′hybrid) + g · t] ≥ 1− e−Ω(t)

where g = (1− δ)α. �is completes the proof.

4.5 Achieving chain quality property
�e chain-quality property (De�nition 2.4) ensures that the rate of honest input contributions in a continuous part
of an honest party’s core-chain has a lower bound. We then �nd the lower bound of the number of PoS block-
cores produced by the honest players. We further show that the number of block-cores produced by the adversarial
miners is bounded by the number of their stakes. Finally, we demonstrate that the ratio of honest PoS block-cores
in an honest player’s PoS core-chain is under a suitable lower bound in a su�cient number of rounds with an
overwhelming probability. First, we will build the relationship between length of a core-chain and the number of
rounds.
Lemma 4.13. Consider REAL(ω), and δ > 0. Let Z be the number of rounds in which ` consecutive block-cores are
generated. �en we have

Pr[Z > (1− δ)c`] > 1− e−Ω(`)

where c = 1
α+β .

Proof. All players can extend α+ β number of PoS block-cores in a round on average. In order to generate ` block-
cores, it will consume `

α+β rounds on average. Let c = 1
α+β , and Z be the number of rounds which generate the

` consecutive PoS block-cores. For any δ > 0, by using Cherno� bounds, we have Pr[Z ≤ (1 − δ)c`] ≤ e−δ
2c`/3.

�at is, Pr[Z > (1− δ)c`] > 1− e−δ2c`/3 = 1− e−Ω(`). �is completes the proof.

15

Now we consider the contribution from honest players in any consecutive block-cores. If the adversarial players
want to contribute more PoS block-cores on the core-chain, they will try to generate more PoS block-cores and beat
the PoS block-cores from honest players in the competition. �us, the worst case is the adversarial players make
use of all the stakes to generate PoS block-cores and win all of the competition. First, we will prove the core-chain
quality property in any t consecutive rounds.
Lemma 4.14. Consider REAL(ω), and an honest PoS-player P with PoS core-chain C. Consider ` consecutive PoS

block-cores of C that are generated from round r to round r + t. Assume α = λβ where λ > 1. �en we have

Pr[µ ≥ 1− (1 + δ)
1

λ
] > 1− e−Ω(t)

for any δ > 0, where µ is the ratio of honest block-cores of the PoS core-chain C.

Proof. Consider the ` consecutive PoS block-cores of C that are generated from round r to round r + t. From
�eorem 4.1, we have Pr[` ≥ (1 − δ∗)α · t] ≥ 1 − e−Ω(t) for any δ∗ > 0. Let Y be the number of valid malicious
PoS block-cores which are actually generated in t rounds to extend a core-chain. By Cherno� bound, we have

Pr[Y < (1 + δ′)β · t] > 1− e−Ω(t)

We then have
Pr

[
µ ≥ `− Y

`

]
> 1− e−Ω(t)

�at is, By picking δ∗ and δ′ su�ciently small, we have

Pr

[
µ ≥ 1− (1 + δ)

1

λ

]
> 1− e−Ω(t)

for any δ > 0. �is completes the proof.

Now we are ready to prove the core-chain quality property for consecutive block-cores on a core-chain.

Reminder of �eorem 4.2. Consider α = λβ, λ > 1, and δ > 0. Consider core-chain protocol Πcore
in Section 3,

and an honest PoS-player with PoS core-chain C. Consider that ` consecutive block-cores of C are generated in s rounds,
where `g block-cores are generated by honest PoS-players. �en we have

Pr

[
`g
`
≥ µ

]
≥ 1− e−Ω(`)

where µ = 1− (1 + δ) 1
λ .

Proof. Let t be the rounds that the ` block-cores are generated. From Lemma 4.13, we have Pr[t > (1 − δ)c`] >
1− e−Ω(`). From Lemma 4.14, the ratio of honest PoS block-cores in t consecutive rounds with ` PoS block-cores is
µ ≥ 1− (1 + δ) 1

λ with probability at least 1− e−Ω(t). Pu�ing them together, the probability is at least 1− e−Ω(`).
�is completes the proof.

4.6 Achieving common pre�x property
We now turn to proving the common pre�x property (De�nition 2.3) for the core-chain protocol Πcore. �e concrete
statement can be found in �eorem 4.3. Before providing our formal proof, we here give some informal proof ideas.
First, from the assumption, we know that if the malicious parties do not get any help from the honest parties, then
they cannot produce more PoS block-cores than the honest parties do. �at means if the malicious parties maintain
a hidden, forked core-chain, and try to extend it by themselves, then the hidden core-chain will be shorter than the
public core-chain. As the assumption α+β � 1, in most rounds there is no new block being generated. �is means
the honest players will have same view in most rounds. All of the honest will be used to extend the same chain. �is

16

will guarantee that the best public chain will dominate the system. All of the honest players will accept the best
public chain.

Recall the de�nition of best public PoS core-chain C: a) C has been received by all of the honest players which
means public. b) C is the best one among all of the public core-chains. �is implies each honest player will not take
any core-chain worse than best public core-chain in any round . Before our proof, we need to de�ne the divergent
length of two di�erent chains.
De�nition 4.15 (Divergent length). Given two di�erent core-chain C′ and C′′. Let B be the last common block on C′
and C′′. Let `′ be the length from B to the end of C′ and `′′ be the length from B to the end of C′′. �e divergent length

of C′ and C′′ is ` = max{`′, `′′}.
Lemma 4.16. Let α = λβ , λ > 1 and (α + β)∆ � 1, exists δ > 0. Consider REAL(ω). Let C be the best public

core-chain in round r. Let C′ be another valid core-chain which is di�erent with C. Let ` be the divergent length of C and
C′. We have Pr[len(C)− len(C′) > (1− δ)`] > 1− e−Ω(`)

.

Proof. Suppose the last common block-core of C and C′ is generated in round s = r − t. With Lemma 4.13, we
have t > (1 − δ) `

α+β with probability no less than 1 − e−Ω(`). Let X = len(C) − len(Cs) be the length growth
of best public core-chain in the t rounds, with �eorem 4.1, we have X > (1 − δ)αt with probability no less than
1− e−Ω(t) During the t rounds, all the players will generate (α+ β)t block-cores which are longer than core-chain
Cs on average. With the network delay, this will confuse the honest players (α+β)∆t rounds on average. �at is the
honest players may contribute to other core-chain during the confusing rounds. Let Y be the block-cores that the
honest players contribute during the confusing rounds. We have Y = (α+ β)∆tα on average. For (α+ β)∆� 1,
we have Y � X . Let Z be the number of block-cores that malicious players can extend for a core-chain during the
t rounds. We have Z = βt on average. With Cherno� bounds, we have Z < (1 + δ)βt with probability no less than
1 − e−Ω(t). Put them together, we have Pr[X − (Y + Z) > (1 − δ)λ−1

λ+1 `] > 1 − e−Ω(t) = 1 − e−Ω(`). For λ > 1,
we have Pr[len(C)− len(C′)] = Pr[X − (Y + Z) > (1− δ)`] > 1− e−Ω(`). �is completes the proof.

Lemma 4.17. Let α = λβ , λ > 1 and (α + β)∆ � 1. Consider δ > 0. Consider REAL(ω). Let C be the best public
core-chain in round r. Let C′ be another valid core-chain which is di�erent with C. Let ` be the divergent length of C and
C′. Consider a round r′ = r + t where t > 0, letX be the probability that C′ be a pre�x of a chain in round r′ which is

no worst than the best public core-chain. We have Pr[X] < e−Ω(`)
.

Proof. With Lemma 4.16, we have Pr[len(C) − len(C′) > (1 − δ)`] > 1 − e−Ω(`). For C′ is worse than the best
public core-chain from round r, the honest players will not extend it. In t rounds the malicious players can extend
βt block-cores on average. Meanwhile, in the t rounds, the best public core-chain will increase αt block-cores on
average. We have Pr[(β − α)t > 0] < e−Ω(t). In order to �x the distance of ` block-cores, the malicious players
will use `

β rounds with probability no less than 1− e−Ω(`) rounds. At the same time the best public core-chain will
increase more than ` block-cores with probability no less than 1−e−Ω(`). We have that the core-chain C′ will exceed
the best public core-chain in length with probability no more than e−Ω(`).

We are now ready to prove the main theorem which asserts that our protocol achieves the common-pre�x prop-
erty with an overwhelming probability in the security parameter κ. �e theorem is formally given as follows.

Reminder of �eorem 4.3. Consider α = λβ, λ > 1, and δ > 0. Consider core-chain protocol Πcore
in Section 3.

and two honest PoS-players, P in round r and P′ in round r′, with the local best PoS core-chains C, C′, respectively, where
r′ ≥ r. �en we have

Pr [C[1, `] � C′] ≥ 1− e−Ω(κ)

where ` = len(C)−Θ(κ).

Proof. Let Crpublic be the best public core-chain in round r. For C is accepted by a player it is must be be�er than
Crpublic. Let ` be the divergent length of C and Crpublic , from Lemma 4.16 we have ` < κ. Otherwise, C is be�er than
Crpublic with Negligible probability. In round r′, C′ is accepted by a honest player. It must be no worse than best
public core-chain. We use C′r to denote the pre�x of core-chain in round r. Let ` be the divergent length of Crpublic

and C′r . From Lemma 4.17, we have ` < κ. Otherwise, C′ is be�er than public core-chain in round r′ with a low

17

probability. Put them together, both C and C′r are divergent with Crpublic less than κ block-cores. �at is C and C′r
are divergent less than κ block-cores. �is completes the proof.

4.7 Achieving chain soudness property
We now turn to proving the chain soudnness property (De�nition 2.5) for the core-chain protocol Πcore. �e concrete
statement can be found in �eorem 4.4. Before providing our formal proof, we here give some informal proof ideas.
Our best chain strategy is longest chain as in PoW blockchain. As we discussed above, the malicious players can not
create a chain which grows faster than the best public chain. For a new spawn player, the malicious players can not
mislead him by provide a longer chain.

We are now ready to prove the main theorem which asserts that our protocol achieves the chain-soudness prop-
erty with an overwhelming probability in the security parameter κ. �e theorem is formally given as follows.

Reminder of�eorem 4.4. Consider for every round, α = λβ, λ > 1, and δ > 0. Consider core-chain protocol Πcore

in Section 3. and two honest PoS-players, P′ andP′′ in round r, with the local best PoS core-chains C′ and C′′, respectively,
where P′ is a new player and P′′ is an existing player in round r. �en we have C′[¬κ] � C′′ and C′′[¬κ] � C′

Proof. Let C be the best public chain in round r. �is imply both P′ and P′′ have received C. Let `′ be the divergent
length of C′ and C. From the Lemma 4.16, we have Pr[len(C)− len(C′) ≥ (1− δ)`′] > 1− e−Ω(`′). If C′[¬κ] � C, we
have len(C) > len(C′) with probability no less than 1− e−Ω(κ). �is contradict that Pi take C′ as the best chain. We
get C′[¬κ] � C. Similarly, we get C′′[¬κ] � C. Furthermore, because len(C′) ≥ len(C), we have the divergent length
of C is shorter than C′. We get C[¬κ] � C′. Similarly, we get C[¬κ] � C′′. Put them together, we get C′[¬κ] � C′′
and C′′[¬κ] � C′.

5 From core-chain to blockchain
In this section, we start to extend the core-chain protocol in Section 3 to a blockchain protocol in which payload
(transactions) will be included. Intuitively, the core-chain can be viewed as a (biased) random beacon; we can use the
beacon to select a PoS-player to generate a new block so that the blockchain can be extended. More concretely, once
a new block-core Bi+1 is generated by a PoS-player (in the blockchain protocol), then the PoS-player is selected for
generating the new block B̃i+1, in the following format

B̃i+1 = 〈hash(B̃i),Bi+1, X̃i+1, p̃k, σ̃〉

where σ̃ ← Signs̃k(h̃i,Bi+1, X̃i) and h̃i := hash(B̃i), and Bi+1 := 〈hi, round, pk, σ〉. Here we note that in our
blockchain protocol design, the PoS-player holds two pairs of keys, (sk, pk) of the strengthened unique signa-
ture scheme (uKeyGen, uSign, uVerify), and (s̃k, p̃k) of a regular digital signature scheme (KeyGen,Sign,Verify).
Here we note that in our blockchain protocol design, the PoS-player holds two pairs of keys, (sk, pk) of the
strengthened unique signature scheme (uKeyGen, uSign, uVerify), and (s̃k, p̃k) of a regular digital signature scheme
(KeyGen,Sign,Verify). Now the blocks in the main blockchain are “glued” with the block-cores in the blockchain,
and we can reduce the security of the blockchain protocol to the the security of the blockchain protocol.

In the formal description of our blockchain protocol below, we will use a slightly augmented setup function-
ality F̃I

rCERT to capture the hash inequality and the block and block-core signing/veri�cation. Similarly, this setup
functionality can be implemented by using hash function H(·) and a digital signature schemes.

5.1 Setup functionality F̃I
rCERT

In our blockchain protocol design, we will use the setup functionality, F̃I
rCERT (in Figure 7), which is an augmented

version of the resource certi�cation functionality in Section 3.1. �e �rst two phases, “Stake Resource Registration”
and “Stake Election”, are the same. But the remaining two phases, “Signature Generation” and “Stake Veri�cation”,
have been extended for both context and msg signing and veri�cation. (Note that, in FI

rCERT, only context signing
and veri�cation can be supported.)

18

Functionality F̃I
rCERT

�e functionality is parameterized by a di�culty parameter p, a security parameter κ, initial setup information I, and
interacts with a set P of parties, as well as an adversary.

Stake Resource Registration.
1. Upon receiving a message (Stake-Register,P) from party P ∈ P, if there is an entry (P, 1), then ignore the

message. Otherwise, pass the message to the adversary. Upon receiving a message (Stake-Registered,P) from the
adversary, set bP := 1, record (P,bP), and pass the message to the party P (the party P registered.)

2. Upon receiving a message (Stake-Unregister,P) from party P ∈ P, if no entry (P, 1) is recorded, then return
(Error) to P and halt. If there is an entry (P, 1) recorded, then set bP := 0, and update (P,bP), and send
(Stake-Unregistered,P) to the party P (the party P unregistered.)

For each round, set φP := 0 for every registered party P ∈ P, then proceed as follows.

Stake Election: Upon receiving (Elect,P, context) from a PoS-player P, proceed as follows.
1. If (P,bP) is recorded where bP = 1 and φP = 0, (the party P registered and granted one unit of stake)

with probability p, set φP := 1 and f := 1, send (Elected,P, f) to P, and record the entry (P, context) (the
party P is elected.)
with probability 1− p, set φP := 1 and f := 0, and send (Elected,P, f) to P (the party P is not elected.)

2. Otherwise, if any of the following cases occur:
(P,bP) is not recorded, (the party P is not registered yet)
or (P,bP) is recorded and bP = 0 (the party P registered and then unregistered),
or φP = 1, (the party P already used the granted stake unit)

�en set f := 0 and send (Elected,P, f) to P. (the party P is not elected)
Signature Generation:
Upon receiving (Core-Sign,P, context) from a party P, send (Core-Sign,P, context) to the adversary.
Upon receiving (Signature,P, context , σ) from the adversary, verify that no entry (P, context , σ, 0) is recorded. If it is,
then output an error message (Error) to P and halt. Else, output (Core-Signed,P, context , σ) to P, and record the entry
(P, context , σ, 1).
Upon receiving (Block-Sign,P,msg) from a party P, send (Block-Sign,P,msg) to the adversary.
Upon receiving (Signature,P,msg, σ̃) from the adversary, verify that no entry (P,msg, σ̃, 0) is recorded. If it is, then
output an error message (Error) to P and halt. Else, output (Block-Signed,P,msg, σ̃) to P, and record the entry
(P,msg, σ̃, 1).

Stake Veri�cation:
Upon receiving (Core-Verify,P, context , σ) from a party P′ ∈ P,

1. If there exists a record of the form (P, ·), (the party P is elected) then send (Core-Verify,P, context , σ) to the
adversary. Upon receiving (Core-Verified,P, context , φ) from the adversary, do:

If (P, context , σ, 1) is recorded, then set f := 1.
Else, if P is not corrupted, and no entry (P, context , σ′, 1) for any σ′ is recorded, then set f := 0 and record
the entry (P, context , σ, f).
Else, if there is an entry (P, context , σ, f ′), then set f := f ′.
Else, set f := φ, and record the entry (P, context , σ, f).

Output (Core-Verified,P, context , f) to the party P′.
2. Otherwise, if there is no record of the form (P, ·), (the party P is not elected)

set f := 0 and output (Core-Verified,P, context , f) to the party P′.

Upon receiving (Block-Verify,P,msg, σ̃) from a party P′ ∈ P,

1. If there exists a record of the form (P, ·), (the partyP is elected) then send (Core-Verify,P,msg, σ̃) to the adversary.
Upon receiving (Block-Verified,P,msg, φ̃) from the adversary, do:

If (P,msg, σ̃, 1) is recorded, then set f := 1.
Else, if P is not corrupted, and no entry (P,msg, σ̃′, 1) for any σ̃′ is recorded, then set f := 0 and record the
entry (P,msg, σ̃, f).
Else, if there is an entry (P,msg, σ̃, f ′), then set f := f ′.
Else, set f := φ̃, and record the entry (P,msg, σ̃, f).

Output (Block-Verified,P,msg, f) to the party P′.
2. Otherwise, if there is no record of the form (P, ·), (the party P is not elected)

set f := 0 and output (Block-Verified,P,msg, f) to the party P′.

Figure 7: Augmented resource certi�cation functionality F̃I
rCERT.

19

5.2 Main blockchain protocol
We now describe our PoS based blockchain protocol Πmain. �e blockchain protocol can be viewed as an augmented
version of the core-chain protocol in Section 3, and now it uses the augmented resource certi�cate functionality
F̃I
rCERT as setup functionality.

Protocol Πmain

�e protocol is parameterized by the initial setup information I.
Let P be the set of PoS-players that already registered to the functionality F̃I

rCERT.
Let P be the set of PoS-players that already registered to the functionality F̃I

rCERT.
Initially, for each P ∈ P, set C̃ := I, C := I, and state := I.

Upon receiving message (Input-Stake,P, X̃) from the environment Z at round round, the PoS-player P ∈ P,
with local state state , if V(X̃) = 1, proceeds as follows.

1. Select the best local PoS blockchain and the corresponding core-chain:

Let C̃ be the set of blockchains collected from FNET, and let C be the corresponding core-chain set.
Compute C̃best ← BestMain(C̃ ∪ {C̃}, round), and derive Cbest from C̃best,
set C := Cbest, C̃ := C̃best, and ` := len(C̃best).

2. A�empt to extend PoS blockchain:

Compute h` := hash(C[`]).
Stake election:

Send (Elect,P, 〈h`, round〉) to functionality F̃I
rCERT, and receive (Elected,P, f) from F̃I

rCERT.
Generate a new block-core:

If f = 1, send (Sign,P, 〈h`, round〉) to functionality F̃I
rCERT,

and receive (Signed,P, 〈h`, round〉, σ) from F̃I
rCERT.

If the signature σ is obtained, then set the new block-core B := 〈〈h`, round〉,P, σ〉,
and set C := C‖B , and state := state ∪ {C},

Generate a new block:

If the new block-core B is obtained, then compute h̃` := hash(C̃[`]),
send (Sign,P, 〈h̃`,B , X̃〉) to functionality F̃I

rCERT,
and receive (Signed,P, 〈h̃`,B , X̃〉, σ̃) from F̃I

rCERT.
set the new block B̃ := 〈〈h̃`,B , X̃〉,P, σ̃〉,
and set C̃ := C̃‖B̃ , and state := state ∪ {C̃},
and then send (Broadcast, C̃) to FNET.

Return (Return-Stake,P) to the environment Z.

Figure 8: Our proof-of-stake blockchain protocol Πmain in the {F̃I
rCERT,FNET}-hybrid model. (See Figure 9 for the

subroutine BestMain.)

As in the core-chain protocol, each PoS-player P, initially sets his local blockchain C̃ := I. Once activated by the
environment on (Input-Stake,P) at round round, and received a blockchain set C̃ from FNET, the party P �nds the
best valid blockchain C̃best by running the subroutine BestMain (in Figure 9), and then updates its local blockchain
C̃ := C̃best. Note that, the i-the block in blockchain C̃, is in the following format B̃i := 〈〈h̃i−1,Bi, X̃i〉,Pi, σ̃i〉. �at
means, from B̃i, we can obtain the i-th block-core Bi. We thus can derive the core-chain C from the blockchain C̃.

�en each registered PoS-player P a�empt to extend the core-chain. Let ` be the length of blockchain C̃.
(�e core-chain C is also with length `.) In our design, only the elected PoS-players are allowed to generate new
block-cores (to extend the blockchain). �e PoS-player P queries F̃I

rCERT by command (Elect,P, context), where
context := 〈h`, round`+1〉, to see if he is selected; note that here h` := hash(C[`]), and C[`] is the newest block-core
in the best core-chain.

If the PoS-player P is selected (with certain probability p), he can query the functionality to generate a signature
σ for context := 〈h`, round`+1〉. �en he de�nes a new block-core B`+1 := 〈〈h`, round`〉,P, σ〉, updates his local

20

core-chain C.
Once the new block-core B`+1 is generated, the PoS-player P can query the functionality to generate a signature

σ̃ for msg := 〈h̃`,B`+1, X̃`+1〉. �en he can de�ne a new block B̃`+1 := 〈〈h̃`,B`+1, X̃`+1〉,P, σ̃〉, and update his
local blockchain C̃. He then broadcasts the local blockchain to the network. Please refer to Figure 8 for more details
of our blockchain protocol.

�e best blockchain strategy. In Section 3, our proof-of-stake core-chain protocol Πcore uses the subroutine
BestCore to single out the best valid core-chain from a set of core-chains. Here we describe a similar strategy,
subroutine BestMain, to single out the best blockchain from a set of blockchains. �e subroutine BestMain here is
a slightly augmented version of the subroutine BestCore in our core-chain protocol.

Intuitively, a blockchain is the best one if it is the current longest valid blockchain. �e BestMain subroutine
is parameterized by the initial setup information I, and takes as input, a blockchain set C̃′ and the current time
information round′. Intuitively, the subroutine validates all C̃ ∈ C̃′, then �nds the valid longest blockchain.

In more detail, BestMain proceeds as follows. On input the current set of blockchains C̃′ and the current time
information round′, and for each blockchain C̃, the subroutine �rst unfolds the blockchain C̃ into the correspond-
ing core-chain C; the subroutine then evaluates every block-core of the core-chain C, and then every block of the
blockchain C̃, sequentially. Let ` be the length of C̃. (` is also the length of the corresponding core-chain C.) Start-
ing from the head of C, for every block-core C[i], for all i ∈ [`], in the core-chain C, the BestMain subroutine (1)
ensures that C[i] is linked to the previous block-core C[i − 1] correctly, and (2) tests if the signature generated by
that PoS-player can be veri�ed (by interacting with F̃I

rCERT). �en for every block-core C̃[i], for all i ∈ [`], in the
blockchain C̃, the BestMain subroutine (1) ensures that C̃[i] is linked to the previous block C̃[i− 1] correctly, and (2)
tests if the signature generated by that PoS-player can be veri�ed (by interacting with F̃I

rCERT). A�er the validation,
the best valid blockchain is the longest one. Please refer to Figure 9 for more details.

Subroutine BestMain

�e subroutine BestMain is parameterized by an initial setup information I, and with input (C̃′, round′).
For every chain C̃ ∈ C̃′, and proceed as follows.

1. Set ` := len(C̃). Derive C from C̃.
2. For i from ` to 1, verify block C̃[i], as follows.

• Parse C̃[i] into 〈〈h̃i−1,Bi, X̃i〉,Pi, σ̃i〉.
• Parse C[i] (i.e., Bi), into 〈〈hi−1, roundi〉,Pi, σi〉.
• If

(
i = ` and roundi < round′

)
, or

(
i < ` and roundi < roundi+1 and roundi+1 < round′

)
,

then execute:

– Verify the block-core C[i] as follows:
If hi−1 6= hash(C[i− 1]), then remove this chain C̃ from C̃′.
If hi−1 = hash(C[i− 1]), then send (Core-Verify,Pi, 〈hi−1, roundi〉, σi) to F̃I

rCERT.
Upon receiving message (Core-Verified,Pi, 〈hi−1, roundi〉, σi, fi) from F̃I

rCERT, if fi = 0
remove this chain C̃ from C̃′.

– Verify the block C̃[i] as follows:
If h̃i−1 6= hash(C̃[i− 1]), then remove this chain C̃ from C̃′.
If h̃i−1 = hash(C̃[i− 1]), then send (Block-Verify,Pi, 〈h̃i−1,Bi, X̃i〉, σ̃i) to F̃I

rCERT.
Upon receiving message (Block-Verified,Pi, 〈h̃i−1,Bi, X̃i〉, σ̃i, fi) from F̃I

rCERT, if fi = 0
remove this chain C̃ from C̃′.

Otherwise, remove the chain C̃ from C̃′.

Set C̃best be the longest chain in C̃′. �en return C̃best as the output.

Figure 9: �e chain set validation subroutine BestMain.

21

5.3 Analysis of blockchain protocol
Here we provide security analysis for our blockchain protocol. As mentioned before, our blockchain protocol can be
viewed as an augmented version of our core-chain protocol in Section 3; each security property of our blockchain
protocol can be reduced to the corresponding property of the core-chain protocol.

Chain growth. �e proof idea for achieving chain growth property is very clear. If a PoS-player is chosen to
generate a block-core in the core-chain, the PoS-player is also be chosen to generate the corresponding block in the
blockchain. �at means, when the core-chain is extended with a new block-core, the corresponding blockchain is
also extended with a new block. More formally, we have the following statement.
Corollary 5.1 (Chain growth). Consider the blockchain protocol Πmain

. Consider α = λβ, λ > 1, and δ > 0. Consider
an honest PoS-player with the best PoS blockchain C̃ in round r, and local PoS blockchain C̃′ in round r′, where r′ > r.
�en we have

Pr
[
len(C̃′)− len(C̃) ≥ g · t

]
≥ 1− e−Ω(t)

where t = r′ − r, g = (1− δ)α.

Proof. From the protocol, we know that every PoS blockchain C̃ is associated with a PoS core-chain C. Each valid
block-core B has a corresponding block B̃ . We have, len(C̃′) = len(C′) and len(C̃) = len(C). �at means, len(C̃′)−
len(C̃) = len(C′)− len(C). From the �eorem 4.1, we have

Pr
[
len(C̃′)− len(C̃) ≥ g · t

]
= Pr

[
len(C′)− len(C) ≥ g · t

]
≥ 1− e−Ω(t)

�is completes the proof.

Chain quality. Similarly, the proof idea for achieving chain quality property is very clear. If an honest player
contributes a block-core to the core-chain, he also contributes a block to the blockchain. More formally, we have the
following statement.
Corollary 5.2 (Chain quality). Consider the blockchain protocol Πmain

. Consider α = λβ, λ > 1, and δ > 0. Consider
an honest PoS-player with the best PoS blockchain C̃. Consider any ` consecutive blocks on C̃, including `g blocks are

generated by honest PoS-players. �en we have

Pr[
`g
`
≥ µ] ≥ 1− e−Ω(`)

where µ = 1− (1 + δ) 1
λ .

Proof. From the algorithms, we know that every PoS blockchain C̃ is associated with a PoS core-chain C. Let `core
g be

the number of block-cores from honest stakeholders on core-chain C. Let `main
g be the number of blocks from honest

stakeholders on blockchain C̃. Recall that both block-core C[i] and the corresponding block C̃[i] are signed by the
same stakeholder. We have `core = `main

g = `g . We also have that len(C) = len(C̃) = `. From the �eorem 4.2 we
have Pr[

`g
` ≥ µ] ≥ 1− e−Ω(`), where µ = 1− (1 + δ) 1

λ .

Common pre�x. Our analysis is based on the common pre�x analysis of core-chain. �e core-chain can achieve
common pre�x as we discussed. �e opportunity for malicious players to destroy common pre�x probability is to
generate di�erent blockchain for the same core-chain. For the malicious players can sign di�erent blocks for one
block-core, this will allow him to fork the blockchain. So the malicious players can fork the blockchain when they
are chosen to generate block. However, with the property of hash function, the malicious players can not generate
two blocks with same hash value. When an honest player is chosen to extend a block, he will only support one
blockchain. �en all of the honest players will converge on one blockchain.

22

Corollary 5.3 (Common pre�x). Consider the blockchain protocol Πmain
. Consider α = λβ, λ > 1, and δ > 0. and

two honest PoS-players, P in round r and P′ in round r′, with the local best PoS blockchains C̃, C̃′, respectively, where
r′ ≥ r. �en we have

Pr[C̃[1, `] � C̃′] ≥ 1− e−Ω(κ)

where ` = len(C)−Θ(κ).

Proof. As we discussed, C̃ and C̃′ are associated with core-chains C and C′ respectively. From the �eorem 4.3 we
know that Pr[C[1, `] � C′] ≥ 1− e−Ω(κ).

Based on the assumption that α = λβ and λ > 1, we can have that the malicious players are not able to
generate more than Θ(κ) blocks before an honest player is chosen to generate block with high probability. All of the
honest players will converge on the same chain. Put them together, we have Pr[C̃[1, `] � C̃′] ≥ 1 − e−Ω(κ) where
` = len(C)−Θ(κ).

Chain soundness. A new player will accept a blockchain (in which the corresponding core-chain is included). �e
proof idea for achieving chain soundness property of our blockchain protocol directly follows that for the core-chain
protocol. We have the following statement.
Corollary 5.4 (Chain soundness). Consider the blockchain protocol Πmain

. Consider for every round, α = λβ, λ > 1,
and δ > 0. �ere are two honest PoS-players, P′ and P′′ in round r, with the local best PoS blockchains C̃′ and C̃′′,
respectively. LetP′ be a new player andP′′ be an existing player in round r. �enwe have C̃′[¬κ] � C̃′′ and C̃′′[¬κ] � C̃′.

Proof. Blockchains C̃′ and C̃′′ are associated with core-chains C′ and C′′ respectively. From the �eorem 4.4 we know
that C′[¬κ] � C′′ and C′′[¬κ] � C′. We immediately have C̃′[¬κ] � C̃′′ and C̃′′[¬κ] � C̃′.

6 Extensions and Discussions
In order to make our design practical, additional mechanisms are needed. As mentioned before, our design is a natural
mimic of Nakamoto’s but via proof-of-stake. �is is a unique feature: we can easily “borrow” many of Nakamoto’s
ideas (and also follow-up ideas), to our design. In this section, we mention a few of them.

Blockchain with adaptive di�culty. In Bitcoin, in order to keep a steady chain growth rate, the system adjusts
the PoW hash target di�culty adaptively. �e smaller target, the lower probability to get a valid PoW block by a hash
function query, and vice versa. Our scheme can be extended to support adaptive di�culty easily. As in Nakamoto’s
system, the target di�culty is adjusted every m blocks for some integer m. �e time span of di�culty adjustment is
called an epoch; and let t be the expected time of an epoch. Let ti be the the actual time span of the i-th epoch, and
Ti be the target di�culty in the i-th epoch. We have the target di�culty in the (i+ 1)-th epoch as follows:

Ti+1 =
ti
t
Ti

From the equation above we can observe that, if ti > t then Ti+1 > Ti and vice-versa. In the case that ti > t, the
stakeholders spend longer time to obtain m blocks; it means the system requires more time than expected for the
i-th epoch; thus, the target di�culty should be increased so that the stakeholders can �nd new blocks faster in the
next epoch. �is negative feedback mechanism makes the system stable. To extend a PoS blockchain, we modify the
hash inequality as H(hash(Bi), round, pk, σ) < Ti. A player will test if he is quali�ed to sign a PoS-block based on
the current target di�culty Ti.

Blockchain in the non-�atmodel. Our ideas in Section 3 and in Section 5 are described in the “�at” model, where
all PoS-players are assumed to hold the same amount of stake (and they are selected as the wining player with the
same probability in each round). In reality, PoS-players have di�erent amounts of stake. We next discuss how to

23

extend our design ideas properly into this more realistic “non-�at” model. Consider a PoS-player, with veri�cation-
signing key pair (pk, sk), holding v number of stakes. Let Tj denote the target di�culty in the current epoch, i.e.,
the j-th epoch. We change the hash inequality as the follows:

H(hash(Bi), round, pk, σ) < vTi

Now we argue that the winning probability of a PoS-player for generating a new block-core is proportional to the
amount of stake he controls. We assume the total amount of stakes in the whole system is n; consider hash function
H : {0, 1}∗ 7→ {0, 1}κ. We assume np � 1, where p = Ti

2κ . Now the PoS-player can play di�erent strategies. If
the PoS-player puts his v coins in one account, the probability that he is selected to sign a PoS block is vp. If the
PoS-player puts his v coins in v accounts and every account has one stake, the probability that an account is selected
to sign a PoS block is p. �e outputs of hash function are independent for di�erent veri�cation keys. �e total
probability that the PoS-player is selected is 1− (1− p)v ≈ vp. �at is, the probability a stakeholder is selected in
the non-�at model is (approximately) equal to the accumulated probability that he distributes the stakes to di�erent
accounts as in the �at-model. For a PoS-player, the probability that he is selected only depends on the total amount
of stakes he controls.

Other considerations. We can also mimic Nakamoto’s design and incentivize the players to participate in the
protocol by collecting the “rewards”. We note that new ideas (e.g., [PS16]) can be adopted. To extend our design idea
to a full-�edged blockchain protocol, we also need to use authenticated data structure to more e�ectively manage
the transactions. In stead of straightforwardly including the entire “payload” X̃i in the block B̃i (as in Section 5, and
in [GKL14, PSS17]), we can store a Merkle root in B̃i. New ideas (e.g., [RMCI16]) can also be used in our design.

Acknowledgement: We thank Tuyet Duong and Jonathan Katz for helpful discussions about scalable blockchain
protocols in the open network se�ing.

References
[Bac02] Adam Back. Hashcash — A denial of service counter-measure. 2002. http://hashcash.org/papers/

hashcash.pdf.
[BGM16] Iddo Bentov, Ariel Gabizon, and Alex Mizrahi. Currencies without proof of work. In Bitcoin Workshop, 2016.
[Bit11] Bitcointalk. Proof of stake instead of proof of work. July 2011. Online post by �antumMechanic, available at https:

//bitcointalk.org/index.php?topic=27787.0.
[BLMR14] Iddo Bentov, Charles Lee, Alex Mizrahi, and Meni Rosenfeld. Proof of activity: Extending bitcoin’s proof of work via

proof of stake [extended abstract]. SIGMETRICS Perform. Eval. Rev., 42(3):34–37, December 2014.
[BLS01] Dan Boneh, Ben Lynn, and Hovav Shacham. Short signatures from the Weil pairing. In Colin Boyd, editor, ASI-

ACRYPT 2001, volume 2248 of LNCS, pages 514–532. Springer, Heidelberg, December 2001.
[BR93] Mihir Bellare and Phillip Rogaway. Random oracles are practical: A paradigm for designing e�cient protocols. In

Proceedings of the 1st ACM Conference on Computer and Communications Security, CCS ’93, pages 62–73. ACM, 1993.
[But14] Vitalik Buterin. A next-generation smart contract and decentralized application platform. 2014. https://github.

com/ethereum/wiki/wiki/White-Paper.
[But15] Vitalik Buterin. Understanding serenity, part 2: Casper. 2015. https://blog.ethereum.org/2015/12/

28/understanding-serenity-part-2-casper/.
[Can00a] Ran Cane�i. Security and composition of multiparty cryptographic protocols. Journal of Cryptology, 13(1):143–202,

2000.
[Can00b] Ran Cane�i. Universally composable security: A new paradigm for cryptographic protocols. Cryptology ePrint

Archive, Report 2000/067, 2000. http://eprint.iacr.org/2000/067.
[Can03] Ran Cane�i. Universally composable signatures, certi�cation and authentication. Cryptology ePrint Archive, Report

2003/239, 2003. http://eprint.iacr.org/2003/239.

24

http://hashcash.org/papers/hashcash.pdf
http://hashcash.org/papers/hashcash.pdf
https://bitcointalk.org/index.php?topic=27787.0
https://bitcointalk.org/index.php?topic=27787.0
https://github.com/ethereum/wiki/wiki/White-Paper
https://github.com/ethereum/wiki/wiki/White-Paper
https://blog.ethereum.org/2015/12/28/understanding-serenity-part-2-casper/
https://blog.ethereum.org/2015/12/28/understanding-serenity-part-2-casper/
http://eprint.iacr.org/2000/067
http://eprint.iacr.org/2003/239

[CDFZ17] Alexander Chepurnoy, Tuyet Duong, Lei Fan, and Hong-Sheng Zhou. Twinscoin: A cryptocurrency via proof-of-work
and proof-of-stake. In Cryptology ePrint Archive, Report 2017/232, 2017. https://eprint.iacr.org/2017/
232.

[Cha82] David Chaum. Blind signatures for untraceable payments. In David Chaum, Ronald L. Rivest, and Alan T. Sherman,
editors, CRYPTO’82, pages 199–203. Plenum Press, New York, USA, 1982.

[CM17] Jing Chen and Silvio Micali. Algorand. In arXiv:1607.01341, May 2017. http://arxiv.org/abs/1607.01341.
[CR03] Ran Cane�i and Tal Rabin. Universal composition with joint state. In Dan Boneh, editor, CRYPTO 2003, volume 2729

of LNCS, pages 265–281. Springer, Heidelberg, August 2003.
[Cry14] CryptoManiac. Proof of stake. NovaCoin wiki, 2014. https://github.com/novacoin-project/

novacoin/wiki/Proof-of-stake.
[DFZ16] Tuyet Duong, Lei Fan, and Hong-Sheng Zhou. 2-hop blockchain: Combining proof-of-work and proof-of-stake securely.

In Cryptology ePrint Archive, Report 2016/716, 2016. https://eprint.iacr.org/2016/716.
[DFZ17] Tuyet Duong, Lei Fan, and Hong-Sheng Zhou. 2-hop blockchain: Combining proof-of-work and proof-of-stake securely.

2017. Manuscript.
[DHLW10] Yevgeniy Dodis, Kristiyan Haralambiev, Adriana López-Alt, and Daniel Wichs. Cryptography against continuous

memory a�acks. In 51st FOCS, pages 511–520. IEEE Computer Society Press, October 2010.
[DN93] Cynthia Dwork and Moni Naor. Pricing via processing or comba�ing junk mail. In Ernest F. Brickell, editor, CRYPTO’92,

volume 740 of LNCS, pages 139–147. Springer, Heidelberg, August 1993.
[DPS17] Phil Daian, Rafael Pass, and Elaine Shi. Snow white: Robustly recon�gurable consensus and applications to provably

secure proofs of stake. In Cryptology ePrint Archive, Report 2016/919, April 2017. http://eprint.iacr.org/
2016/919.

[DZ17] Tuyet Duong and Hong-Sheng Zhou. A note on proof-of-work blockchains in the open se�ing. 2017. Manuscript.
[ES14] I�ay Eyal and Emin Gün Sirer. Majority is not enough: Bitcoin mining is vulnerable. In Nicolas Christin and Reihaneh

Safavi-Naini, editors, FC 2014, volume 8437 of LNCS, pages 436–454. Springer, Heidelberg, March 2014.
[Eya15] I�ay Eyal. �e miner’s dilemma. In 2015 IEEE Symposium on Security and Privacy, pages 89–103. IEEE Computer Society

Press, May 2015.
[GKL14] Juan Garay, Aggelos Kiayias, and Nikos Leonardos. �e bitcoin backbone protocol: Analysis and applications. Cryp-

tology ePrint Archive, Report 2014/765, 2014. http://eprint.iacr.org/2014/765.
[GKL15] Juan A. Garay, Aggelos Kiayias, and Nikos Leonardos. �e bitcoin backbone protocol: Analysis and applications. In

Elisabeth Oswald and Marc Fischlin, editors, EUROCRYPT 2015, Part II, volume 9057 of LNCS, pages 281–310. Springer,
Heidelberg, April 2015.

[GKL17] Juan A. Garay, Aggelos Kiayias, and Nikos Leonardos. �e bitcoin backbone protocol with chains of variable di�culty.
In CRYPTO, 2017. https://eprint.iacr.org/2016/1048.

[HMQ04] Dennis Ho�einz and Jörn Müller-�ade. Universally composable commitments using random oracles. In Moni Naor,
editor, TCC 2004, volume 2951 of LNCS, pages 58–76. Springer, Heidelberg, February 2004.

[Int16] Intel. Proof of elapsed time (poet). 2016. https://intelledger.github.io/introduction.html.
[KKKT16] Aggelos Kiayias, Elias Koutsoupias, Maria Kyropoulou, and Yiannis Tselekounis. Blockchain mining games. In Pro-

ceedings of the 2016 ACM Conference on Economics and Computation (EC), pages 365–382, 2016.
[KN12] Sunny King and Sco� Nadal. PPCoin: Peer-to-peer crypto-currency with proof-of-stake. 2012. https://

peercoin.net/assets/paper/peercoin-paper.pdf.
[KP15] Aggelos Kiayias and Giorgos Panagiotakos. Speed-security tradeo�s in blockchain protocols. Cryptology ePrint

Archive, Report 2015/1019, 2015. http://eprint.iacr.org/2015/1019.
[KP16] Aggelos Kiayias and Giorgos Panagiotakos. On trees, chains and fast transactions in the blockchain. Cryptology ePrint

Archive, Report 2016/545, 2016. http://eprint.iacr.org/2016/545.
[KRDO17] Aggelos Kiayias, Alexander Russell, Bernardo David, and Roman Oliynykov. Ouroboros: A provably secure proof-of-

stake blockchain protocol. In CRYPTO, 2017. http://eprint.iacr.org/2016/889.
[Kwo14] Jae Kwon. Tendermint: Consensus without mining. 2014. https://tendermint.com/static/docs/

tendermint.pdf.

25

https://eprint.iacr.org/2017/232
https://eprint.iacr.org/2017/232
http://arxiv.org/abs/1607.01341
https://github.com/novacoin-project/novacoin/wiki/Proof-of-stake
https://github.com/novacoin-project/novacoin/wiki/Proof-of-stake
https://eprint.iacr.org/2016/716
http://eprint.iacr.org/2016/919
http://eprint.iacr.org/2016/919
http://eprint.iacr.org/2014/765
https://eprint.iacr.org/2016/1048
https://intelledger.github.io/introduction.html
https://peercoin.net/assets/paper/peercoin-paper.pdf
https://peercoin.net/assets/paper/peercoin-paper.pdf
http://eprint.iacr.org/2015/1019
http://eprint.iacr.org/2016/545
http://eprint.iacr.org/2016/889
https://tendermint.com/static/docs/tendermint.pdf
https://tendermint.com/static/docs/tendermint.pdf

[Lit11] Litecoin. 2011. https://litecoin.org.
[Lys02] Anna Lysyanskaya. Unique signatures and veri�able random functions from the DH-DDH separation. In Moti Yung,

editor, CRYPTO 2002, volume 2442 of LNCS, pages 597–612. Springer, Heidelberg, August 2002.
[MJS+14] Andrew Miller, Ari Juels, Elaine Shi, Bryan Parno, and Jonathan Katz. Permacoin: Repurposing bitcoin work for data

preservation. In 2014 IEEE Symposium on Security and Privacy, pages 475–490. IEEE Computer Society Press, May 2014.
[MO16] Tal Moran and Ilan Orlov. Proofs of space-time and rational proofs of storage. Cryptology ePrint Archive, Report

2016/035, 2016. http://eprint.iacr.org/2016/035.
[Nak08] Satoshi Nakamoto. Bitcoin: A peer-to-peer electronic cash system. 2008. https://bitcoin.org/bitcoin.

pdf.
[NKMS15] Kartik Nayak, Srijan Kumar, Andrew Miller, and Elaine Shi. Stubborn mining: Generalizing sel�sh mining and com-

bining with an eclipse a�ack. Cryptology ePrint Archive, Report 2015/796, 2015. http://eprint.iacr.org/
2015/796.

[NXT14] NXT Community. Nxt whitepaper. 2014. https://www.dropbox.com/s/cbuwrorf672c0yy/
NxtWhitepaper v122 rev4.pdf.

[PPK+15] Sunoo Park, Krzysztof Pietrzak, Albert Kwon, Joël Alwen, Georg Fuchsbauer, and Peter Gaži. Spacemint: A cryp-
tocurrency based on proofs of space. Cryptology ePrint Archive, Report 2015/528, 2015. http://eprint.iacr.
org/2015/528.

[PS16] Rafael Pass and Elaine Shi. FruitChains: A fair blockchain. Cryptology ePrint Archive, Report 2016/916, 2016. http:
//eprint.iacr.org/2016/916.

[PSS17] Rafael Pass, Lior Seeman, and Abhi Shelat. Analysis of the blockchain protocol in asynchronous networks. In EURO-

CRYPT, 2017. https://eprint.iacr.org/2016/454.
[RMCI16] Leonid Reyzin, Dmitry Meshkov, Alexander Chepurnoy, and Sasha Ivanov. Improving authenticated dynamic dictio-

naries, with applications to cryptocurrencies. Cryptology ePrint Archive, Report 2016/994, 2016. http://eprint.
iacr.org/2016/994.

[SBBR16] Okke Schrijvers, Joseph Bonneau, Dan Boneh, and Tim Roughgarden. Incentive compatibility of bitcoin mining pool
reward functions. In Bitcoin Workshop, 2016.

[SSZ16] Ayelet Sapirstein, Yonatan Sompolinsky, and Aviv Zohar. Optimal sel�sh mining strategies in bitcoin. In Financial

Cryptography and Data Security (FC), 2016.
[SZ15] Yonatan Sompolinsky and Aviv Zohar. Secure high-rate transaction processing in bitcoin. In Rainer Böhme and Tatsuaki

Okamoto, editors, FC 2015, volume 8975 of LNCS, pages 507–527. Springer, Heidelberg, January 2015.
[Vas14] Pavel Vasin. Blackcoin’s proof-of-stake protocol v2. 2014. http://blackcoin.co/

blackcoin-pos-protocol-v2-whitepaper.pdf.
[Woo14] Gavin Wood. Ethereum: A secure decentralized transaction ledger. 2014. http://gavwood.com/paper.pdf.

26

https://litecoin.org
http://eprint.iacr.org/2016/035
https://bitcoin.org/bitcoin.pdf
https://bitcoin.org/bitcoin.pdf
http://eprint.iacr.org/2015/796
http://eprint.iacr.org/2015/796
https://www.dropbox.com/s/cbuwrorf672c0yy/NxtWhitepaper_v122_rev4.pdf
https://www.dropbox.com/s/cbuwrorf672c0yy/NxtWhitepaper_v122_rev4.pdf
http://eprint.iacr.org/2015/528
http://eprint.iacr.org/2015/528
http://eprint.iacr.org/2016/916
http://eprint.iacr.org/2016/916
https://eprint.iacr.org/2016/454
http://eprint.iacr.org/2016/994
http://eprint.iacr.org/2016/994
http://blackcoin.co/blackcoin-pos-protocol-v2-whitepaper.pdf
http://blackcoin.co/blackcoin-pos-protocol-v2-whitepaper.pdf
http://gavwood.com/paper.pdf

A Supporting Materials
We here describe some functionalities which can be useful for our protocols in the body. We also discuss some of
their implementations.

A.1 Random Oracle Functionality FRO

�e random oracle model (e.g., [BR93]) captures an idealization of a hash function. We here present the random
oracle functionality FRO that has been de�ned in [HMQ04].

Functionality FRO

�e functionality FRO is parameterized by a security parameter κ, and interacts with a set P of parties, and an
adversary. �e functionality keeps a list L (which is initially empty) of pairs of bitstrings.

1. Upon receiving a value (m) (with m ∈ {0, 1}∗) from some party P ∈ P or from the adversary, proceed
as follows.

• If there is a pair (m, h̃) for some h̃ ∈ {0, 1}κ in the list L,set h := h̃.
• if there is no such pair, choose uniformly h ∈ {0, 1}κ and store the pair (m,h) in L.

Once h is set, reply to the requesting party with (h).

Figure 10: Random oracle functionality FRO.

A.2 Multi-Session Certi�cate Authority Functionality F̂CA

We present the certi�cate authority functionality following the modeling of [Can03, CR03].

Functionality F̂CA

�e functionality F̂CA interacts with a set P of parties, and an adversary.

1. Upon receiving message (Register, sid, ssid, v) from party P ∈ P , verify that ssid = (P, ssid′) for some
ssid′. If not, ignore the request. Otherwise, send (Register, sid, ssid, v) to the adversary; upon receiving
(Registered, sid, ssid,) from the adversary, then record the pair (ssid, v).

2. Upon receiving message (Retrieve, sid, ssid) from party P′ ∈ P, send (Retrieve, sid, ssid,P′) to the
adversary, upon receiving (Retrieved, sid, ssid,P′) from the adversary. �en, if there is a recorded pair
(ssid, v) output (Retrieved, sid, ssid, v) to P′. Else output (Retrieved, sid, ssid,⊥) to P′.

Figure 11: Multi-session certi�cate authority functionality F̂CA.

27

A.3 Multi-Session Signature Functionality F̂SIG

We present the multi-session version of the digital signature functionality in [Can03].

Functionality F̂SIG

�e functionality F̂SIG interacts with a set of signers {S1, . . . , Sk}, and a set of veri�ers {V1, . . . , Vn}, and an
adversary S.
Key Gerneration: Upon receiving a message (Keygen, sid, ssid) from a signer P ∈ {S1, . . . , Sk}, verify that
ssid = (P, ssid′) for some ssid′. If not, ignore the request. Otherwise, hand (Keygen, sid, ssid) to the adversary.
Upon receiving (Verification-Key, sid, ssid, pk) from the adversary, output (Verification-Key, sid, ssid, pk)
to the party P .
Signature Generation: Upon receiving a message (Sign, sid, ssid,m) from a signer P ∈ {S1, . . . , Sk}, verify
that ssid = (P, ssid′) for some ssid′. If not, ignore the request. Otherwise, send (Sign, sid, ssid,m) to the ad-
versary. Upon receiving (Signature, sid, ssid,m, σ) from the adversary, verify that no entry (ssid,m, σ, pk, 0)
is recorded. If it is, then output an error message to P and halt. Otherwise, output (Signature, sid, ssid,m, σ)
to P , and record the entry (ssid,m, σ, pk, 1).
Signature Veri�cation: Upon receiving a message (Verify, sid, ssid,m, σ, pk′) from some party P ∈
{V1, . . . , Vn}, hand (Verify, sid, ssid,m, σ, pk′) to the adversary. Upon receiving (Verified, sid, ssid,m, φ)
from the adversary, do:

1. If pk′ = pk and the entry (ssid,m, σ, pk, 1) is recorded, then set f := 1.
2. Else, if pk′ = pk, the signer of subsession ssid is not corrupted, and no entry (ssid,m, σ′, pk, 1) for any
σ′ is recorded, then set f := 0.

3. Else, if there is an entry (ssid,m, σ, pk′, f ′) recorded, then let f := f ′.
4. Else, let f := φ and record the entry (ssid,m, σ, pk′, φ).

Output (Verified, sid, ssid,m, f) to P .

Figure 12: Multi-session signature functionality F̂SIG.

Strengthened unique signature scheme. Unique signature scheme was introduced in [Lys02]. Here we con-
sider a strengthened version which consists of four algorithms, a randomized key generation algorithm uKeyGen, a
deterministic key veri�cation algorithm uKeyVer, a deterministic signing algorithm uSign, and a deterministic ver-
i�cation algorithm uVerify. Essentially, (uKeyGen, uKeyVer) can be view a variant of one-way relation [DHLW10],
and we expect for each veri�cation key there exists only one signing key. We also expect for each pair of message
and veri�cation key, there exists only one signature. We have the following de�nition.
De�nition A.1. We say (uKeyGen, uKeyVer, uSign, uVerify) is a strengthened unique signature scheme, if it satis�es:

Correctness of key generation: Honestly generated key pair can always be veri�ed. More formally, it holds that

Pr [(pk, sk)← uKeyGen(1κ) : uKeyVer(pk, sk) = 1] ≥ 1− negl(κ)

Uniqueness of signing key: �ere does not exist two di�erent valid signing keys for a veri�cation key. More formally, for

all ppt adversary A, it holds that

Pr [(pk, sk1, sk2)← A(1κ) : uKeyVer(pk, sk1) = 1 ∧ uKeyVer(pk, sk1) = 1 ∧ sk1 6= sk2] ≤ negl(κ)

Correctness of signature generation: For any message x, it holds that

Pr [(pk, sk)← uKeyGen(1κ);σ := uSign(sk, x) : uVerify(pk, x, σ) = 1] ≥ 1− negl(κ)

Uniqueness of signature generation: For any message x, it holds that

Pr [(pk, sk)← A(1κ) : uVerify(pk, x, σ1) = 1 ∧ uVerify(pk, x, σ2) = 1 ∧ σ1 6= σ2] ≤ negl(κ)

28

Unforgeability of signature generation: For all ppt adversary A,

Pr
[
(pk, sk)← uKeyGen(1κ); (x, σ)← AuSign(sk,·)(1κ) : uVerify(pk, x, σ) = 1 ∧ (x, σ) 6∈ Q

]
≤ negl(κ)

where Q is the history of queries that the adversary A made to signing oracle uSign(sk, ·).

Instantiations for the strengthened unique signature scheme. E�cient instantiations can be found in liter-
ature. For example, the well-known BLS signature [BLS01] can be a good candidate.

A.4 Resource Certi�cate Authority Functionality FI
rCA

At any time step, a PoS-player P could send a register command (CA-Register,P, B, pk) to ask for registration. �e
functionality then records (P, B, pk) (if permi�ed by the adversary), with probability p. �en, for each execution
round, a di�erent player P could request the functionality retrieving the message registered by P, the functionality
then returns the record of P if it permi�ed by the adversary. Otherwise, the player Pj′ will not receive pk. �e
formal description of FI

rCA is given in Figure 13.

Functionality FI
rCA

�e functionality is parameterized by a PoS parameter p, a security parameter κ, initial setup information I,
and interacts with a set P of PoS-players, as well as an adversary.
Registration. Upon receiving a message (CA-Register,P, B, pk) from party P ∈ P where pk ∈ {0, 1}poly(κ), it
then passes the message to the adversary. Upon receiving a message (CA-Registered,P) from the adversary,

1. With probability p, set f := 1, then record (P, B, pk), and pass (CA-Registered,P, f) to the party.
2. With probability 1− p, set f := 0, and pass (CA-Registered,P, f) to the party.

Retrieve: Upon receiving (Retrieve,P, B) from a player P′ ∈ P, send (Retrieve,P,P′) to the adversary, and
wait for a message (Retrieved,P,P′) from the adversary. �en, if there is a recorded entry (P, B, pk), output
(Retrieved, pk) to P′. Else, output (Retrieved,⊥) to P′.

Figure 13: Resource certi�cate authority functionality FI
rCA.

�ere are multiple ways to instantiate FI
rCA. Intuitively, in our main application scenario, FI

rCA is implemented
by a protocol in {F̂CA,FRO}-hybrid model, and then multi-session certi�cate authority functionality F̂CA can be
implemented by an already “mature” blockchain (i.e., Bitcoin). Please see [DFZ16] for details.

29

	Introduction
	Our solution
	Related work

	Model
	Blockchain protocol executions
	Blockchain basics
	Security properties

	Proof-of-stake core-chain
	Setup functionality FIrCERT
	Our core-chain protocol

	Security analysis for core-chain
	Preliminary
	Proof ideas
	Analysis with bounded delay
	Hybrid expriment
	Analysis in the worst delay setting

	Achieving chain growth property
	Achieving chain quality property
	Achieving common prefix property
	Achieving chain soudness property

	From core-chain to blockchain
	Setup functionality IrCERT
	Main blockchain protocol
	Analysis of blockchain protocol

	Extensions and Discussions
	Supporting Materials
	Random Oracle Functionality FRO
	Multi-Session Certificate Authority Functionality CA
	Multi-Session Signature Functionality SIG
	Resource Certificate Authority Functionality FIrCA

