
A Scalable Proof-of-Stake Blockchain

in the Open Se�ing
∗

(or, How to Mimic Nakamoto’s Design via Proof-of-Stake)

Lei Fan

Shanghai Jiao Tong University

fanlei@sjtu.edu.cn

Hong-Sheng Zhou

Virginia Commonwealth University

hszhou@vcu.edu

February 18, 2018

Abstract

Bitcoin and blockchain technologies have proven to be a phenomenal success. �e un-

derlying techniques hold huge promise to change the future of �nancial transactions, and

eventually the way people and companies compute, collaborate, and interact. At the same

time, the current Bitcoin-like proof-of-work based blockchain systems are facing many chal-

lenges. For example, a huge amount of energy/electricity is needed for maintaining the Bit-

coin blockchain.

We propose a new approach to constructing energy-e�cient blockchain protocols. More

concretely, we develop proof-of-stake based, scalable blockchain protocols in the open net-

work se�ing. Our contributions are as follows:

• We for the �rst time identify a new security property called chain soundness for proof-

of-stake based protocols, which captures the intuition of ensuring new players to join

the protocol execution securely.

• We for the �rst time formally investigate greedy strategies for proof-of-stake based

protocols; via a greedy strategy, the protocol players may extend the best blockchain

faster by a�empting to extend multiple positions, instead of only the latest block, in

the blockchain. We demonstrate a very useful upper bound of extending blockchain by

greedy players, which enables us to give the �rst natural mimic of Bitcoin blockchain

via proof-of-stake mechanism (without using any form of Byzantine fault tolerance).

• Our design is very simple, using only standard hash functions and unique digital sig-

natures, which makes our design very appealing in practice. Our blockchain achieves

important security properties including common pre�x, chain quality, chain growth,

and chain soundness, and is adaptively secure without assuming secure erasure.

∗
All results in this paper have been submi�ed to Eurocrypt 2018. In this version, the presentation has been

improved, according to the feedback from the Eurocrypt reviewers, and from multiple researchers. In addition, in

the current version, the related work part has been updated, and some discussions about rational a�acks including

nothing at stake a�acks, sel�sh mining a�acks, are added.

Contents
1 Introduction 2

1.1 Chain soundness . 3

1.2 Our construction . 3

1.3 Related work . 7

1.4 Organization. 8

2 Model 9
2.1 Blockchain protocol executions . 9

2.2 Security properties . 10

3 Proof-of-stake core-chain, the basic design and analysis 11
3.1 Setup functionality FrCERT . 12

3.2 Our core-chain protocol . 14

3.3 Security analysis for core-chain . 14

4 Securing the core-chain against a greedy adversary 24
4.1 Greedy strategies . 24

4.2 �e modi�ed core-chain protocol Πcore?
. 25

4.3 Security analysis . 25

5 Securing the core-chain against an adaptive adversary 31
5.1 Setup functionality F•rCERT . 31

5.2 �e modi�ed core-chain protocol Πcore•
. 32

5.3 Security analysis . 34

6 From core-chain to blockchain 38
6.1 Setup functionality F̃•rCERT . 38

6.2 Main blockchain protocol . 38

6.3 Analysis of blockchain protocol . 41

7 Extensions and Discussions 42

A Supporting Materials 48
A.1 Implementing FrCERT in the {F̂CA, F̂uSIG,FRO}-hybrid model 48

A.2 Multi-Session Certi�cate Authority Functionality F̂CA 50

A.3 Multi-Session Signature Functionality F̂uSIG . 51

A.4 Additional Functionalities . 53

1 Introduction
Bitcoin and proof-of-work mechanism. Cryptocurrencies like Bitcoin [40] have proven to be a

phenomenal success. �e system was designed and implemented by an unknown researcher, un-

der the name Satoshi Nakamoto nine years ago. �e underlying techniques hold huge promise

to change the future of �nancial transactions, and eventually the way people and companies

compute, collaborate, and interact. At the heart of these cryptocurrency systems are distributed

blockchain protocols, jointly executed by a large-scale peer-to-peer network of nodes called min-

ers via the so-called proof-of-work mechanism [23, 3]. �ese blockchain protocols implement a

highly trustworthy, append-only, and always-available public ledger, which can then be used to

implement a global payment system (as in Bitcoin) or a global computer (as in Ethereum [10]).

Nakamoto’s design has unique features: (1) the Bitcoin blockchain protocol can be executed in

an open network environment in which all miners are allowed to join/leave the protocol execution

at any moment they want; essentially, all miners are encouraged/incentivized to invest certain

amount of computing power to join the e�ort of maintaining the blockchain; (2) the protocol has

very low communication complexity and can scale to a large network of nodes.

From proof-of-work to proof-of-stake. �e scalability
1
of Bitcoin blockchain protocol is at a price:

the system has “wasted” a huge amount of computing resources over the past several years. It

is de�nitely desirable to utilize alternative resources such as coins (also called stakes) to secure

a blockchain. If successful, the new system will be “green” in the sense that it does not require

a huge amount of non-recyclable computing power to back up its security. A�empts have been

made: proof-of-stake (PoS) mechanisms have been widely discussed in the cryptocurrency com-

munity (e.g., [2, 36, 51, 5]). In a nutshell, in a proof-of-stake based blockchain protocol, players

are expected to prove ownership of a certain number of coins/stakes. Only the players that can

provide such a proof are allowed to participate in the process of maintaining the blockchain.

Blockchain protocols with provable security. In the past years, the security of Bitcoin-like proto-

cols has been investigated. For example, Garay et al. [27] took the provable security approach

and investigated Nakamoto’s blockchain in a cryptographic framework (please also see [44]);

they showed that, assuming the majority of mining power is controlled by the honest play-

ers, Nakamoto’s blockchain protocol can achieve several important security properties such as

common pre�x, chain quality, and chain growth, as they de�ned in their cryptographic frame-

work. However, how to ensure the security of new players has not been explicitly investigated

in [27, 44], yet.

Alternative provably secure scalable blockchain protocols have been investigated recently.

We highlight that, several proof-of-stake based protocols[17, 34, 20] have been proposed; these

protocols can achieve common pre�x, chain quality, and chain growth properties, and some can

be executed in a large-scale closed network. However, it is not clear if these protocols can be

scalable in the open se�ing. �is leads to the following interesting question:

Is that possible to construct a proof-of-stake based, scalable blockchain protocol with

provable security in the open se�ing?

1
�e term scalability has been used to measure di�erent capabilities of blockchain protocols. In this paper, we

focus on the number of independent network nodes, and we say a blockchain protocol is scalable if it can be executed

among a large-scale network of nodes (e.g., above ten thousands number of nodes as in Bitcoin).

2

1.1 Chain soundness
To answer the above question, we de�ne a new security property, chain soundness, to ensure new

players to join the protocol execution securely. Informally, considering a blockchain protocol

execution, the chain soundness property states that a new honest player’s best local chain is

consistent with any existing honest players’ local chains. See Subsection 2.2.3 for the formal

de�nition.

We note that, although Nakamoto’s protocol can be shown to achieve chain soundness, it

has not been explicitly investigated in [27, 44]. In addition, previous proof-of-stake proposals

(e.g., [17, 34, 20]) did not discuss the security when new players join the protocol execution, so

it is not clear if those protocols can achieve chain soundness. In this paper, we propose new

constructions, and we analyze their security in the open se�ing and we prove that they can

achieve chain soundness.

1.2 Our construction
Warm-up: Nakamoto’s design andproof-of-work (PoW) based core-chain We �rst brie�y

review Nakamoto’s design ideas [40]. �e blockchain in Bitcoin consists of a chain of ordered

blocks B1,B2,B3, . . ., and PoW-players (i.e., miners) in each round (or time slot) a�empt to ex-

tend the blockchain with a new block by solving proof-of-work puzzles [23, 3]. �e puzzle for

each miner is de�ned by (1) the “context”, i.e., the latest block in the longest blockchain in the

miner’s view, and (2) the “payload”, i.e., the set of valid transactions to be included in the new

block; and a valid puzzle solution to the problem is de�ned by a hash inequality. More concretely,

assume the longest blockchain for a miner consists of B1,B2, . . . ,Bi, and Bi is the latest block.

�e miner now a�empts to �nd a valid puzzle solution nonce which can satisfy the following

hash inequality:

H(hash(Bi), payload , nonce) < T

where H(·) and hash(·) are two hash functions, payload denotes the set of valid transactions to

be included in the new block, and T denotes the target of proof-of-work puzzle di�culty (which

speci�es how di�cult to identify a puzzle solution by making a hash query a�empt). In the case

that a new valid solution, nonce, is identi�ed, such a solution can be used for de�ning a new valid

block Bi+1 as follows:

Bi+1 := 〈hi, payload , nonce〉

where hi := hash(Bi). �en the new block Bi+1 will be revealed by the miner, and broadcasted

to the network and then accepted by the remaining miners in the system. (�e above description

is oversimpli�ed.)

We may consider an even further simpli�ed version of the above blockchain protocol, called

Bitcoin core-chain protocol. In the core-chain protocol, the payload will be ignored, and now

puzzle is based on hash inequality: H(hash(Bi), nonce) < T, and the new block Bi+1 is de�ned as

Bi+1 := 〈hi, nonce〉. (We o�en call the blocks in a blockchain protocol, blocks, while the blocks

in a core-chain protocol, block-cores.)

We note that, mimicking Nakamoto’s footprint via proof-of-stake mechanism is non-trivial,

and we have to address many technical challenges. To make our presentation more accessible,

we start with the basic version of our proof-of-stake based core-chain protocol, Πcore
, and then

3

present the improved versions Πcore?
and Πcore•

which deal with greedy strategies and adaptive

stake registrations, respectively. �ese eventually allow us to develop a full-�edged proof-of-

stake blockchain protocol Πmain
. Next, we illustrate our key ideas step by step.

1.2.1 Step 1, Πcore: Proof-of-stake (PoS) based core-chain, the basic version

We intend to mimic Nakamoto’s design. Our proof-of-stake (PoS) based protocol will be main-

tained by PoS-players (i.e., stakeholders); We �rst consider the basic strategy that all players

a�empt to extend the longest chain with a new block. Similar to that in the PoW-based pro-

tocol, a wining PoS-player is chosen with some probability but using a di�erent hash inequal-

ity. More concretely, assume the longest core-chain for a PoS-player consists of the following

ordered block-cores, B1,B2, . . . ,Bi; let round denote the current time (or round number); con-

sider a unique digital signature scheme [37]
2 (uKeyGen, uKeyVer, uSign, uVerify), and assume the

PoS-player holds the signing-veri�cation key pair (sk, pk). If the PoS-player is chosen, then the

following hash inequality holds:

H(hash(Bi), round, pk, σ) < T

where σ := uSign
sk

(hi, round), and hi := hash(Bi). �e new block-core Bi+1 is de�ned as

Bi+1 := 〈hi, round, pk, σ〉

We remark that our design is very similar to Nakamoto’s: the context here consists of the latest

block-core in the longest core-chain, and the payload in the core-chain is empty; the puzzle solu-

tion consists of the current time, a PoS-player’s veri�cation key and his signature of the context.

When the adversary (1) follows the basic strategy, i.e., extending the single longest chain,

and (2) has all stakes registered without being aware of the state of protocol execution, then our

protocol can be viewed as a proof-of-stake analogy of Nakamoto’s, and the security properties

i.e., chain growth, chain quality, and common pre�x (cf [27, 44]) can be demonstrated.
3

Achieving chain soundness. Chain soundness property ensures that new players can join the sys-

tem securely. Note that, a new player is not aware of the current state of the protocol execution

(because the player did not participate in the protocol execution). In our design, each (new or

existing) honest player takes the longest chain as the best chain. We can show that the adver-

sary now cannot generate a longer chain privately to “confuse” the new players (otherwise the

adversary can also confuse the existing honest players, which will violate the common pre�x

property).

�eorem 1.1 (informal). Consider core-chain protocol Πcore
where all players follow the basic strat-

egy of extending the longest chain; in addition, all players have their stakes registered without being

aware of the state of the protocol execution. If more than 51% stakes are honest, then the protocol

Πcore
can achieve chain growth, chain quality, common pre�x and chain soundness properties.

See Section 3 for more details.

2
�ere are multiple practical candidates of unique signature schemes in literature (e.g., [8]).

3
We note that generating an unpredictable solution in proof-of-stake protocol design has been previously con-

sidered in the Algorand proposal [17]. �e di�erence between Algorand proposal and our basic version Πcore
is that,

in our basic design the probability of �nding a solution in a round is very low as in Bitcoin, while this probability in

Algorand is high.

4

1.2.2 Step 2, Πcore?: Securing the core-chain against a greedy adversary

For the sake of simplifying our presentation, in the protocol Πcore
above, we focus on the se�ing

that all players follow the basic strategy to extend the core-chain. �at is, each player will make

a�empts to extend the single best chain in his/her local view. We note that, this basic strategy has

been widely adopted in the proof-of-work se�ing; there, extending a chain is expensive in the

sense that it requires signi�cant amount of computing power; it will be extremely costly to extend

multiple chains simultaneously. However, in the proof-of-stake se�ing, it is very cheap to extend

a chain. �e proof-of-stake players may follow a greedy strategy to extend the core-chain: they

make a�empts to extend a set of chains and expect to obtain additional advantage for extending

the best chain. Now we de�ne greedy strategies and then present a modi�ed protocol Πcore?
in

the presence of players who are following greedy strategies. (For the sake of simplifying our

presentation, we additionally assume that all players have their stakes registered without being

aware of the state of the protocol execution as in Πcore
in the previous step; �is restriction will

be removed in Πcore•
in the next step.)

De�ning greedy strategies. Consider a blockchain protocol execution. Let P be a protocol player.

Without loss of generality, there are multiple chains in P’s local view, and these chains form a

tree. �at is, the root of the tree is the genesis block, and each path from the root is a chain. �e

tree “grows” round a�er round: the length of each existing chain may increase, and new chains

will be created.

Let ` be the length of the longest chain at round r. Consider greedy parameter g where

0 ≤ g ≤ `. We say the player is g-greedy if, for all round r, the player makes a�empts to extend

a set of chains in which all chains have the length at least (` − g). Note that, when g = 0, the

g-greedy strategy is essentially the basic strategy that we considered in protocol Πcore
. When

g = `, we say the protocol player is fully-greedy.

Designing and analyzing protocols in the presence of greedy strategies. In order to defend against

an adversary who follow a greedy strategy, we may consider to modify our protocol by having

all honest players to follow the same greedy strategy. However, if an honest player follows the

fully greedy strategy, then he/she will have to maintain a “big” tree and make a�empts to extend

the tree from all nodes (including leafs and intermediate nodes in the tree). In practice, we o�en

make some tradeo�: an honest player may follow a weakened greedy strategy (even we are aware

that the adversary may follow the fully greedy strategy) so that the protocol can be signi�cantly

simpli�ed.

We demonstrate a very interesting upper bound: the fully greedy strategy will allow a PoS

player to improve his/her chance of extending chains with a factor at most e where e ≈ 2.718
(i.e., e is Euler’s number, or the base of the natural logarithm). �is upper bound allows us to

develop secure core-chain protocols against greedy adversaries. When the adversary follows the

fully greedy strategy and honest players follow the basic strategy, if more than 73% stakes are

honest, then the protocol can achieve the security properties. We have the following theorem.

�eorem 1.2 (informal). Consider core-chain protocol Πcore?
where honest players follow the 0-

greedy strategy (i.e., basic strategy) while adversarial players follow the fully-greedy strategy; in

addition, all players have their stakes registered without being aware of the state of the protocol

execution. If more than 73% stakes are honest, then the protocol Πcore?
can achieve chain growth,

chain quality, common pre�x and chain soundness properties.

5

If we are willing to complicate the protocol construction slightly, and let honest players to

follow the 2-greedy strategy, then our protocol can be secure under a more relaxed assumption

that honest players hold, not more than 73% stakes, but more than 57% stakes in the system.

�is assumption is very close to the “standard” honest majority 51%. We can have the following

theorem.

�eorem 1.3 (informal). Consider core-chain protocol Πcore?
where honest players follow the 2-

greedy strategy while adversarial players follow the fully-greedy strategy; in addition, all players

have their stakes registered without being aware of the state of the protocol execution. If more than

57% stakes are honest, then the protocol Πcore?
can achieve chain growth, chain quality, common

pre�x and chain soundness properties.

See Section 4 for more details.

1.2.3 Step 3, Πcore•: Securing the core-chain further, against an adaptive adversary

�e protocol Πcore?
above is expected to be executed in a less realistic se�ing where all players

must have their stakes registered without being aware of the state of the protocol execution. Re-

call that the hash inequality H(context , solution) < T is used in the process of extending the

chains. In reality, an adversary may have a stake registered based on the state of the protocol ex-

ecution. More concretely, the adversary can play a “rejection re-sampling” strategy to generate

keys, and then have his/her stake registered adaptively: the adversary �rst runs the key gener-

ation algorithm to obtain a key-pair (pk, sk), and then checks if the corresponding (pk, σ) is a

valid solution; if not, the adversary re-samples a new key-pair. �is adaptive stake registration

strategy enables the adversary (to be selected) to extend the chains with much higher probability.

To address this concern, we introduce a new policy to our protocol: to extend the chains with

new blocks, a player must have his/her stake registered much earlier.

�eorem 1.4 (informal). Consider core-chain protocol Πcore•
where honest players follow the 2-

greedy strategy while adversarial players follow the fully-greedy strategy. If more than 57% stakes

are honest, then the protocol Πcore•
can achieve chain growth, chain quality, common pre�x and

chain soundness properties.

See Section 5 for more details.

1.2.4 Step 4, Πmain: From the core-chain to a blockchain

In this step, we will “upgrade” the core-chain protocol to a regular blockchain protocol so that

payload (e.g., the transactions) can be included. Intuitively, the core-chain can be viewed as a

(biased) randomness beacon; we can use the beacon to select a PoS-player to generate a new block

so that the blockchain can be extended. More concretely, once a new block-core Bi+1 is generated

by a PoS-player (in the core-chain protocol), then the PoS-player is selected for generating the

new block B̃i+1, in the following format

B̃i+1 = 〈hash(B̃i),Bi+1, X̃i+1, p̃k, σ̃〉

where σ̃ ← Sign
s̃k

(h̃i,Bi+1, X̃i) , X̃i+1 is payload and h̃i := hash(B̃i), andBi+1 := 〈hi, round, pk, σ〉.
Here the PoS-player holds two pairs of keys, i.e., (sk, pk) of the unique signature scheme (uKeyGen,
uSign, uVerify), and (s̃k, p̃k) of a regular digital signature scheme (KeyGen, Sign,Verify). Now we

6

a�ach each block to the core-chain via the corresponding block-core; we can reduce the security

of the blockchain protocol to the security of the core-chain protocol. Please also see Figure 1 for

a pictorial illustration.

Rounds

G
B1 B2 B3 B4

B̃1 B̃2 B̃3 B̃4

. . .

Figure 1: Blockchain structure

Blockchain C̃ consists of initial setup information (i.e., genesis block) G , and then an ordered sequence of

blocks B̃1, B̃2, B̃3, Here, each block B̃i consists of a block-core Bi and additional information. A core-

chain C consists of the initial setup information G and the ordered sequence of block-cores B1,B2,B3,

Finally, we can show the following theorem.

�eorem 1.5 (informal). Consider blockchain protocol Πmain
where honest players follow the 2-

greedy strategy while adversarial players follow the fully-greedy strategy. If more than 57% stakes

are honest, then the protocol Πmain
can achieve chain growth, chain quality, common pre�x and

chain soundness properties.

See Section 6 for more details.

1.2.5 Discussions and further extensions

Our design can be extended in multiple directions, including enabling adaptive di�culty adjust-

ment and supporting light clients as in the original Bitcoin [40], and incentivizing the system via

be�er strategies (e.g., [45]), managing transactions in blockchain more e�ectively (e.g., [47]), and

more. Our design can also tolerate some well known rational a�acks such as nothing at stake

a�acks and sel�sh mining a�acks. Please see Section 7 for more details.

1.3 Related work
Cryptocurrency andproof-of-work. Anonymous digital currency was introduced by Chaum

[16] in the early 1980s. �e �rst decentralized currency system, Bitcoin [40], was launched about

30 years later, by incentivizing a set of players to solve moderately-hard cryptographic puzzles

(also called proof-of-work puzzles [23, 3]). A�er that, many cryptocurrency systems were created

based on proof-of-work puzzles (e.g., LiteCoin [1], Ethereum [10, 52]). Please refer to the online

textbook and course [41] and the survey [9].

�e security of Bitcoin system has been analyzed in the rational se�ing, e.g., [25, 24, 42, 31,

48, 49], and also in the cryptographic se�ing, e.g., [27, 44, 50, 32, 33, 28]. Several important

cryptographic properties, common pre�x [27, 44], chain quality [27], and chain growth [32], have

been considered for proof-of-work blockchain protocols.

7

Proof-of-stake. Using virtual resources (i.e., stake) to construct cryptocurrency has been in-

tensively considered. Since the inception of the idea in an online forum [7], several proof-of-stake

proposals have been introduced and/or implemented (e.g., [2, 36, 51, 11, 5]). We remark that these

proposals are ad hoc without formal security, and it is not clear how to formally prove the security

of these proposals.

formal security proo. works are ad hoc and do not provide formal security — we are also

unaware of ways to prove these protocols secure since many subtle choices made in our proto-

col turned out to be crucial in our proofs, and are possibly missing from these existing ad hoc

approaches.

Very recently, several provably secure proof-of-stake based blockchain proposals (e.g., [17,

34, 20, 46]) have been developed. Unfortunately, all of them su�er from some major drawbacks.

�e Sleepy protocol [46], is very e�cient but it is designed for the closed se�ing which means

new spawned players are not allowed to join the system during the execution. In the follow-up

work, Snow White [20], new players are allowed to join the system; but these new players need

to contact a group of honest majority players.

�e most related work is Algorand [17]. In Algorand, multiple players will be elected as

lead candidates for signing the next block. Another group of players need to be elected to run an

improved Byzantine Agreement (BA) protocol to determine which candidate block will be stored.

It is not clear whether these heavyweight protocols can be executed e�ciently in a large-scale

real-world open network. We argue that, without relying on any form of BA, our PoS protocol is

more suitable to be executed in the real world network environment (in which network delay is

non-trivial).

Ouroboros Praos [21] is concurrent and independent work of ours. In their work, the protocol

uses a veri�able random function (VRF) to elect a signer for next block. It is not clear if their

protocol can maintain its security when players follow the greedy strategies. We also note that,

in their design, honest users are expected to erase certain speci�ed secret data reliably; secure

data erasure is a strong assumption which may be too complicated to implement in practice.

Combining proof-of-work and proof-of-stake. �e idea of combining proof-of-work and

proof-of-stake has been studied in [35, 19, 6, 22, 18]. Very recently, Duong et al [22] provided

the �rst provably secure and scalable blockchain via proof-of-work/proof-of-stake in the open

se�ing.

Additional alternativemechanisms. Alternative consensus techniques via di�erent resources

have been considered. For example, the physical storage resource is used in [43, 38]. A hybrid pro-

posal of utilizing both computing and space resources, called proof-of-space-time was introduced

in [39]. Recently, blockchain protocols via trusted hardware have also been proposed [30, 53].

1.4 Organization.
�e remaining of the paper is organized as follows. In Section 2, we introduce an analysis frame-

work for proof-of-stake protocols. In Section 3, we construct the basic version of our proof-of-

stake based core-chain protocol, and then provide the security analysis. In Section 4, we intro-

duce greedy strategies, and develop a modi�ed proof-of-stake based core-chain protocol to defend

8

against greedy adversaries, and then analyze its security. In Section 5, we improve the modi�ed

core-chain protocol further so that it can be executed in the real world environment where the

players are allowed to register their key-pairs adaptively. In Section 6, we upgrade the core-chain

protocol to a full-�edged blockchain protocol. Finally, extensions and related discussions are

provided in Section 7. We note that, additional supporting materials can be found in Appendix A.

2 Model
In order to study the security of Bitcoin-like proof-of-work based protocols, Garay et al. [27]

proposed a cryptographic framework and showed that (a simpli�ed version of) Bitcoin protocol

can achieve several important security properties. �en, Pass et al. [44] strengthened Garay et

al.’s analysis by considering a more realistic communication network (i.e., partially synchronous

network) in which messages from honest players can be delayed with an upper bound number of

rounds. Below we de�ne a framework for analyzing proof-of-stake based blockchain protocols.

We note that we take many formulation ideas from the previous framework [27, 44].

2.1 Blockchain protocol executions
�e execution of proof-of-stake blockchain protocol. Following Cane�i’s formulation

of the “real world” executions [12, 13], we present an abstract model for proof-of-stake (PoS)

blockchain protocol Π in the {FSetup,FNET}-hybrid model, where FNET denotes the partially syn-

chronous network communication functionality (see Appendix A.4.1), and FSetup denotes the

setup functionality (which will be explained soon), for the PoS-players. We consider the exe-

cution of blockchain protocol Π that is directed by an environment Z(1κ) (where κ is a security

parameter), which activates a set P of PoS-players. �e environment Z can “manage” protocol

players through an adversary A that can dynamically corrupt honest parties. More concretely,

the {FSetup,FNET}-hybrid execution proceeds as follows. Each party in the execution is initialized

with an initial state including all initial public information e.g., a genesis block. �e environment

Z �rst actives the adversary A and provides instructions for the adversary. �e execution pro-

ceeds in rounds, and in each round, a protocol party could be activated by the environment or

the functionalities.

In each round, each PoS-player P ∈ P, with a local state state (note that state originally

includes the initial state), proceeds as follows.

• When PoS-player P is activated by the environment Z by (Input-Stake,P, x) where x
is the input from the environment, and potentially P receives subroutine output mes-

sage (Message,P′,m) for any P′ ∈ P, from FNET, the PoS-player P interacts with the

functionality FSetup and receives some output y from FSetup.

• Next, the PoS-player P executes the protocol Π on input its local state state , the value y
received from the functionalityFSetup, an input from the environment x , and the message

m received from the functionality FNET; and then P obtains an updated local state state
and an outgoing message m

′
, i.e.,{state,m′} ← Π(state, x , y ,m). A�er that, P sends

(Broadcast,m′) to FNET and then returns (Return-Stake,P) to the environment Z.

9

At any round r of the execution, Z can send message (Corrupt,P), where P ∈ P, to adver-

sary A. �en A will have access to the party’s local state and control P.

Let EXEC
FSetup,FNET

Π,A,Z be a random variable denoting the joint VIEW of all parties (i.e., all their inputs,

random coins and messages received) in the above {FSetup,FNET}-hybrid execution; note that

this joint view fully determines the execution. Whenever FSetup,FNET are clear from context we

o�en write EXECΠ,A,Z.

Remark 2.1. For simplicity, we focus on the idealized “�at” model where all PoS-players have the

same number of stakes. Note that, in the reality, each di�erent honest PoS-player may have a di�erent

amount of stake. In addition for simplicity, we focus on the idealized “static di�culty” model where

the number of PoS-players that who have stakes, is �xed during the course of the protocol execution.

�at means, if some new PoS-players join the system, then the same number of PoS-players will leave

the system. In Section 7, we will discuss how to extend our main results in the idealized �at, static

di�culty model to the more realistic non-�at, adaptive di�culty se�ing.

Remark 2.2 (Player joining and leaving). Protocol players are allowed to join the protocol execution
EXEC

FSetup,FNET

Π,A,Z . More explicitly, PoS-players, during their �rst interactions with the setup function-

ality FSetup, can have themselves registered.

However, it is very subtle to have PoS-players unregistered when they decide to leave the protocol

execution. In the current version of our modeling, we assume that when (honest) PoS-players leave

the protocol execution, they will erase their own local internal information. �at means, the protocol

execution is in the non-erasure model (except for these already unregistered players). For this reason,

we currently disabled the Stake-Unregister command in the FSetup (e.g., F
•
rCERT in Section 5) but

keep the Stake-Register command; we note that the Stake-Unregister comand can be added back

if certain sophisticated mechanisms are introduced.

2.2 Security properties
2.2.1 Blockchain basics

A blockchain C consists of a sequence of ` concatenated blocks B0‖B1‖B2‖ · · · ‖B`, where ` ≥ 0
and B0 is the initial block (genesis block). We use len(C) to denote blockchain length, i.e., the

number of blocks in blockchain C; and here len(C) = `. We use sub blockchain (or subchain) for

referring to segment of a chain; here for example, C[1, `] refers to an entire blockchain, whereas

C[j,m], with j ≥ 1 andm ≤ `would refer to a sub blockchainBj‖ · · · ‖Bm. We use C[i] to denote

the i-th block Bi in blockchain C. If blockchain C is a pre�x of another blockchain C ′, we write

C � C ′. If a chain C is truncated the last κ blocks, we write C[¬κ].

2.2.2 Chain growth, common pre�x, and chain quality

Previously, several fundamental security properties for proof-of-work blockchain protocols have

been de�ned: common pre�x property [27, 44], chain quality property [27], and chain growth prop-

erty [32]. Intuitively, the chain growth property states that the chains of honest players should

grow linearly to the number of rounds. �e common pre�x property indicates the consistency

of any two honest chains except the last κ blocks. �e chain quality property, aims at expressing

the number of honest blocks’ contributions that are contained in a su�ciently long and contin-

uous part of an honest chain. Speci�cally, for parameters ` ∈ N and µ ∈ (0, 1), the ratio of

10

honest input contributions in a continuous part of an honest chain has a lower bounded µ. We

follow the same spirit to de�ne the security properties for proof-of-stake blockchain protocols.

�e de�nitions for these properties are formally given as follows.

De�nition 2.3 (Chain growth). Consider a blockchain protocol Π with a set P of players. �e

chain growth property with parameter g ∈ R, states the following: for any honest player P′ with
local chain C ′ at round r′, and honest player P′′ with local chain C ′′ at round r′′, where P′,P′′ ∈ P

and r′′ > r′, in the execution EXECΠ,A,Z, it holds that len(C ′′)− len(C ′) ≥ g(r′′ − r′).
De�nition 2.4 (Common pre�x). Consider a blockchain protocol Π with a set P of players. �e

common pre�x property states the following: for any honest player P′ with local chain C ′ at round
r′, and honest player P with local chain C at round r, in the execution EXECΠ,A,Z, where P′,P ∈ P

and r ≤ r′, it holds that C[¬κ] � C ′.
De�nition 2.5 (Chain quality). Consider a blockchain protocol Π with a set P of players. �e chain

quality property with parameters µ, `, where µ ∈ R and ` ∈ N, states the following: for any honest

player P ∈ P, with local chain C in round r, in EXECΠ,A,Z, it holds, for large enough ` consecutive
blocks of C, the ratio of honest blocks is at least µ.

2.2.3 New property: Chain soundness

We here introduce a new security property, chain soundness, which is critical for blockchain pro-

tocols in the open se�ing. A good protocol in the open network environment, should ensure

honest new players to join the system securely. Intuitively, the protocol can help the new players

to obtain a blockchain which is compatible with the local chain of an existing honest player in

some recent rounds. While this property is not needed for protocols in the closed se�ing where

new players are not allowed, it is important for blockchains in the open network environments.

Without this security requirement, unsatisfactory protocols could be allowed. �e chain sound-

ness property can be described as follows.

De�nition 2.6 (Chain soundness). Consider a blockchain protocol Π with a set P of players. Con-

sider a new player P ∈ P with best local chain C in round r, in EXECΠ,A,Z. �e chain soundness

property states the following: for the new player P and any existing players P′ with best local chain
C ′ at round r, it holds that C ′[¬κ] � C and C[¬κ] � C ′.

3 Proof-of-stake core-chain, the basic design and analysis
High-level protocol description. �e informal description of our core-chain protocol Πcore

has

been illustrated in the Introduction: assume the longest core-chain for a PoS-player consists of

the following ordered block-cores, B1,B2, . . . ,Bi; let round denote the current time (or round

number); consider a unique digital signature scheme (uKeyGen, uKeyVer, uSign, uVerify), and

assume the PoS-player holds the signing-veri�cation key pair (sk, pk). If the PoS-player is

chosen, then the following hash inequality holds: H(hash(Bi), round, pk, σ) < T, where σ :=
uSign

sk
(hi, round), and hi := hash(Bi). �e new block-coreBi+1 is de�ned asBi+1 := 〈hi, round, pk, σ〉.

When the adversary (1) follows the basic strategy, i.e., extending the single longest chain,

and (2) has all stakes registered independent of the state of protocol execution, then our protocol

can be viewed as a proof-of-stake analogy of Nakamoto’s, and the security properties i.e., chain

growth, chain quality, and common pre�x (cf [27, 44]) can be demonstrated.

11

Formal protocol description. Next we will provide a formal description for our protocol. We use a

setup functionality FrCERT to capture the hash inequality and the block-core signing/veri�cation.

�is setup functionality can be implemented by using hash function H(·) and a strengthened

unique signature scheme (uKeyGen, uKeyVer, uSign, uVerify).

�e power of the adversary. Finally, we note that in this section, the adversary will follow the

basic strategy in the sense that all the accounts are registered previously before the protocol

execution.

3.1 Setup functionality FrCERT

Resource certi�cation functionality FrCERT. �e functionality consists of several phases,

“Stake Resource Registration”, “Stake Election”, and “Block Veri�cation”. In this version of re-

source certi�cate functionality, the “Stake Resource Registration” phase is disabled, and we have

all PoS-player P registered initially. (Jumping ahead, in Section 5, a strengthened version of re-

source certi�cation functionality F•rCERT in Figure 10, will be introduced; there, at any time step, a

PoS-player P can send a register command to functionality F•rCERT for registration.) For simplic-

ity, we assume a registered PoS-player P is granted one unit of the stake, and he can then request

the functionality for leader election once in each execution round. We will extend this �at model

to non-�at model in Section 7.

Firstly, we will introduce “Stake Resource Registration” phase. In this phase, a player P send

(Elect,P, 〈hprev, round〉) to the functionality; the functionality requests adversary to produce

the signature by command (Core-Sign,P, 〈hprev, round〉) , and then waits until the adversary

responds with a signature σ. �e functionality then with probability p selects this party as the

leader and noti�es the player whether he is selected or not.In this phase, We remark that, the

elected party P can obtain only a single signature for a hprev
in one round; in previous certi�cate

or digital signature functionalities (see [14]), multiple signatures are allowed to be generated for

the same value. �en the functionality generate a unique id h for the player P as the identity of

a new block. With the id h , the functionality can distinguish every valid block. �e functionality

store a record of the form 〈hprev, round,P, σ, h, 1〉 for the new block. Here, hprev
is the id of the

previous block. So that the functionality can and trace the order of of blocks. �e functionality

return (Elected,P, h, σ, b) to P where b is used to indicate if P is elected in this round.

Secondly, the veri�cation process of FrCERT proceeds as follows. Upon receiving a veri�ca-

tion request, the functionality will check if the signature is valid by sending a request to adver-

sary. �en the functionality will also check there is a valid record of this block been recorded.

�is would ensure the completeness, unforgeability, and guarantees consistency properties of the

block.

How to implement functionality FrCERT? We note that, in [14], FCERT can be implemented

in the {FCA,FSIG}-hybrid model. We can follow the similar approach to implement our func-

tionality FrCERT in the {FrCA, F̂uSIG,FRO}-hybrid model. Please refer to Appendix A.1. Note that

F̂uSIG is a variant of the multi-session signature functionality [15] in the sense that, for each signer

only one signature is allowed to be generated for a value, and this variant can be realized by a

multi-session signature protocol based on unique signature scheme. In addition, the multi-session

12

Functionality FrCERT

�e functionality interacts with a set P of parties, as well as an adversary.

�e functionality is parameterized by a di�culty parameter p, a security parameter κ.

Initially, a set P0 of distinct players are registered, where P0 ⊆ P; �at is, for all P ∈ P0 the records

(P, 1) are stored.

Stake Resource Registration:
(�is phase is disabled, and all stake registration must be completed during initialization. In the strength-

ened version of the functionality in Figure 10, this phase will be enabled for supporting regular stake

registration.)

Stake Election: For each round, set φP,hprev := 0 for every registered party P ∈ P0.

Upon receiving (Elect,P, 〈hprev, round〉) from a PoS-player P, proceed as follows.

Set b := 0. (the party P is not elected by default)

1. If (P, 1) is recorded, and φP,hprev = 0, (the party P registered and granted one unit of stake)

Send (Core-Sign,P, 〈hprev, round〉) to the adversary.

Upon receiving (Signature,P, 〈hprev, round〉, σ), do:

If 〈hprev, round,P, σ, ·, ·〉 has been recorded, then ignore the input. (party P can only obtain one

signature for hprev
in a round.) Otherwise, send a request to the adversary for a unique value h ;

if 〈·, ·, ·, ·, h, ·〉 has been recorded, then ignore the input. Otherwise,

with probability p, set b := 1 (the party P is elected), and store a record of the form

〈hprev, round,P, σ, h, 1〉 in memory.

Set φP,hprev := 1
Send (Elected,P, h, σ, b) to P

Block Veri�cation:
Upon receiving (Core-Verify,P, 〈hprev, round〉, σ, h) from a party P′ ∈ P,

Set f := 0

1. Send (Core-Verify,P, 〈hprev, round〉, σ) to the adversary.

Upon receiving (Core-Verified,P, 〈hprev, round〉, φ) from the adversary, do:

If 〈hprev, round,P, σ, h, 1〉 is recorded, then set f := 1.

Else, if P is not corrupted, and no entry 〈hprev, round,P, σ′, h, 1〉 for any σ′ is recorded, then

set f := 0 and record the entry 〈hprev, round,P, σ, h, 0〉.
Else, if there is an entry 〈hprev, round,P, σ, h, f ′〉, then set f := f ′.
Else, set f := φ, and record the entry 〈hprev, round,P, σ, h, f〉.

Output (Core-Verified,P, 〈hprev, round〉, σ, h, f) to the party P′.

Figure 2: Resource certi�cation functionality FrCERT.

13

certi�cate authority functionality F̂CA could be implemented in multiple ways. For example, we

can instantiate functionality F̂CA via a (variant) of a “mature” blockchain such as Bitcoin. Please

refer to Appendix A.2 for more details about certi�cate authority functionality F̂CA, Appendix

A.3 for multi-session signature functionality F̂uSIG, and Appendix A.4.2 for random oracle func-

tionality FRO, respectively.

3.2 Our core-chain protocol
We now describe the core-chain protocol Πcore

. Each PoS-player P, once activated by the envi-

ronment on (Input-Stake,P) at round round, and received a core-chain set C from FNET, the

party P �nds the best valid core-chain Cbest by running the subroutine BestCore (in Figure 4),

and then updates its local core-chain C := Cbest.

Let ` be the length of core-chain C. In our design, only the elected PoS-players are al-

lowed to generate new block-cores (to extend the core-chain). Now, each registered PoS-player

P will work on the right “context” which consists of the latest block-core in the longest core-

chain and the current time; formally context := 〈hprev, round〉 where C[`] is the latest block-

core in the longest core-chain C, and hprev
is the identity returned by the functionality FrCERT

for C[`], and round denotes the current time. �e PoS-player P may query FrCERT by command

(Elect,P, context , C) to see if he is selected to extend C. If the PoS-player P is selected (with

certain probability p), he would receive a message (Elected,P, h, σ, b) from FrCERT such that

b = 1. Once receiving the signature σ from the functionality, the PoS-player P de�nes a new

block-core B := 〈〈hprev, h, round〉,P, σ〉, updates his local core-chain C and then broadcasts the

local core-chain to the network. Please refer to Figure 3 for more details of our core-chain proto-

col.

Note that here PoS-players have access to the functionality FrCERT. �e players need to reg-

ister to the functionality FrCERT before querying the functionality.

�e best core-chain strategy. Our proof-of-stake core-chain protocol Πcore
uses the subrou-

tine BestCore to single out the best valid core-chain from a set of core-chains. Now we describe

the rules of selecting the best core-chain. Roughly speaking, a core-chain is the best one if it is

the current longest valid core-chain. �e BestCore subroutine takes as input, a core-chain set C′

and the current time information round′. Intuitively, the subroutine validates all C ∈ C′, then

�nds the valid longest core-chain.

In more detail, BestCore proceeds as follows. On input the current set of core-chains C′ and

the current time information round′, and for each core-chain C, the subroutine then evaluates

every block-core of the core-chain C sequentially. Let ` be the length of C. Starting from the

head of C, for every block-core C[i], for all i ∈ [`], in the core-chain C, the BestCore subroutine

(1) ensures that C[i] is linked to the previous block-core C[i − 1] correctly, and (2) tests if the

signature generated by that PoS-player can be veri�ed (by interacting with FrCERT). A�er the

validation, the best valid core-chain is the longest one. Please refer to Figure 4 for more details.

3.3 Security analysis for core-chain
Our core-chain protocol Πcore

is in the “�at, static di�culty” model in which each PoS-playerholds

a unit of stake and the total number of stakeholders is �xed. Let n be the total number of stake-

14

Protocol Πcore

Initially, a set P0 of players are registered to the functionality FrCERT, where P0 ⊆ P. Initially, for each

P ∈ P, set C := ∅, and state := ∅.

Upon receiving message (Input-Stake,P) from the environment Z at round round, the PoS-player P ∈
P, with local state state , proceeds as follows.

1. Select the best local PoS core-chain:

Let C be the set of core-chains collected from FNET.

Compute Cbest := BestCore(C ∪ {C}, round), and set C := Cbest, and ` := len(Cbest)

2. A�empt to extend PoS core-chain:

Parse C[`] as 〈〈hprev

` , round`,P`, σ`〉, h`〉.

Stake election:

Send (Elect,P, 〈h`, round〉) to functionality FrCERT,

and receive (Elected,P, h`+1, σ, b) from FrCERT.

If b = 1, generate a new block-core:

Set the new block-core B := 〈〈h`, round,P, σ〉, h`+1〉,
and set C := C‖B , and state := state ∪ {C},
and then send (Broadcast, C) to FNET.

Return (Return-Stake,P) to the environment Z.

Figure 3: Our proof-of-stake core-chain protocol Πcore
in the {FrCERT,FNET}-hybrid model. (See

Figure 4 for the subroutine BestCore.)

holders in the protocol. Let p denote the probability that a stakeholder is quali�ed to extend the

core-chain in a round. Let ρ denote the ratio of malicious stake. Let α0 = (1 − ρ)np be the

expected number of honest stakeholders that are quali�ed in a round to extend the longest core-

chain. Let β0 = ρnp be the expected number of malicious stakeholders that are quali�ed in a

round to extend any chosen core-chain. Let α and β be the e�ective counterparts, respectively in

the network delay se�ing. Here we assume np � 1. �is means the expected number of stake-

holders that are quali�ed to extend a core-chain in a round is much less than 1. Additionally, we

assume that α0 = λβ0 where λ ∈ (1,∞).

We are now ready to state our theorem for our core-chain protocol Πcore
in the presence of

an adversary who extends blockchain via the basic strategy (i.e., extending a single chain once).

�eorem 3.1 (�eorem 1.1, restated). Consider core-chain protocol Πcore
where all players follow

the simple strategy of extending the longest chain; in addition, all players have their stake registered

independent of the state in the protocol execution. Let α and β be the e�ective expected number

of blocks generated by honest and malicious players in a round respectively. If α = λβ, λ > 1,
then the protocol Πcore

can achieve chain growth, chain quality, common pre�x and chain soundness

properties.

3.3.1 Proof ideas

Here we introduce the high-level proof ideas. In our design, malicious players cannot prevent

the honest players from being selected to generate new block-cores. �is will guarantee the

chain growth property. Furthermore, the total number of block-cores from malicious players

15

Subroutine BestCore

�e subroutine BestCore is allowed to access to the functionality FrCERT, and with input

(C′, round′).

For every chain C ∈ C′, and proceed as follows.

1. Set ` := len(C).

2. For i from ` down to 1, verify block-core C[i], as follows.

• Parse C[i] into 〈〈hprev

i , roundi,Pi, σi〉, hi〉.
Parse C[i− 1] into 〈〈hprev

i−1 , roundi−1,Pi−1, σi−1〉, hi−1〉.
• If roundi < round′ and roundi−1 < roundi , then execute:

If h
prev

i 6= hi−1, then remove this core-chain C from C′.

Else send (Core-Verify,Pi, 〈hprev

i , roundi〉, σi, hi) to FrCERT.

Upon receiving message (Core-Verified,Pi, 〈hprev

i , roundi〉, σi, hi, fi) from

FrCERT, if fi = 0 remove this core-chain C from C′.

Otherwise, remove the core-chain C from C′.

Set Cbest be the longest core-chain in C′. �en return Cbest as the output.

Figure 4: �e core-chain set validation subroutine BestCore.

are bounded by the proportion of stakes they control. Since we assume that the honest players

control more stakes than the malicious players, for the same core-chain, the malicious players

cannot contribute more block-cores than the honest players. �is will give us the chain quality

property. Finally, we assume the probability that the stakeholders �nd a new block-core B in a

round is very small. �is means, in most of the rounds, no new block-core is broadcast, and all of

the honest players will extend on the same core-chain. Note that, even all of malicious players try

to extend another core-chain, the growth rate of the malicious core-chain is still lower than that

of the public core-chain. �is will allow us to prove the common pre�x property. Our core-chain

protocol will be executed in a se�ing that the adversary can delay the messages from honest

players up to certain say ∆, number of rounds. �e honest players may be misled to work on a

wrong core-chain during the delayed rounds. As a result, the e�ort from the honest players is

wasted during these delayed rounds. Our analysis will also take care of the network delay.

Here we assume all players have their stakes registered without being aware of the state of

the protocol execution. In this way, players will have the same probability of extending the chain

with a block in a round. We will discuss adaptive adversary In Section 5, we will discuss how to

improve the core-chain protocol so that it can be executed in a more realistic se�ing.

Chain growth. In order to calculate the chain growth rate, we consider the worst case for the

honest players. �e best strategy for the malicious players is to delay all of the messages from

the honest players to discount the stakes of honest players. We use α to denote the discounted

number of block-cores that honest players can generate. We have α = α0

1+∆α0
. (�e calculation

steps can be found in Section 3.3.3.) We use a hybrid execution to formalize the worst delay

16

se�ing in the formal proof. In the hybrid execution, the malicious players contribute nothing

to the chain growth and delay all honest messages to decrease the chain growth rate. In the

real execution, the probability that an honest player is chosen will not be lower than that in the

hybrid execution. �e message from malicious players will not decrease the chain growth that

contributed by honest players. �erefore, the chain growth rate is not worse than that in the

hybrid execution.

Lemma 3.2 (Chain growth). Consider core-chain protocol Πcore
, an honest PoS-player P′ with best

local core-chain C ′ in round r′, and an honest PoS-player P′′ with best local core-chain C ′′ in round

r′′, where r′′ > r′. �en we have Pr
[
len(C ′′) − len(C ′) ≥ g · t

]
≥ 1 − e−Ω(t)

, where t = r′′ − r′,
g = (1− δ)α, and δ > 0.

Chain quality. In order to reduce the core-chain quality, the best strategy for malicious parties

is to generate as more block-cores as they can. When the honest players generate and broadcast

a new block-core, they will try to send out another one to compete with the honest one. We focus

on the worst case that the malicious players win all of the competition. During any t consecutive

rounds, the core-chain growth rate is αt on average. �e malicious players will contribute βt
block-cores. �e core-chain quality will remain at least 1− β

α
.

Lemma 3.3 (Chain quality). Consider α = λβ, λ > 1, and δ > 0. Consider core-chain protocol

Πcore
, and an honest PoS-player with core-chain C. Consider that ` consecutive block-cores of C, where

`good block-cores are generated by honest PoS-players. �en we have Pr
[
`good
`
≥ µ

]
≥ 1 − e−Ω(`)

,

where µ = 1− (1 + δ) 1
λ
.

Common pre�x. We assume α + β � 1. �is guarantees that the honest players will work

on the same best core-chain in most rounds. We also assume the majority of PoS-players are

honest. Together, we have that the public best chain is longer than any other core-chains a�er a

su�cient long period. All of the honest players will converge on the best public chain with high

probability except the last several block-cores.

Lemma 3.4 (Common pre�x). Consider α = λβ, λ > 1, and δ > 0. Consider core-chain protocol

Πcore
. and two honest PoS-players, P in round r and P′ in round r′, with the local best core-chains C,

C ′, respectively, where r′ ≥ r. �en we havePr [C[1, `] � C ′] ≥ 1−e−Ω(κ)
, where ` = len(C)−Θ(κ).

Chain soundness. For a new player, he will take the longest core-chain he received. As we

discussed above, the honest players can generate the longest chain except the latest several block-

cores. �is means the new player can choose the best core-chain as the existing players in the

protocol.

Lemma 3.5 (Chain soundness). Consider for every round, α = λβ, λ > 1, and δ > 0. Consider
core-chain protocol Πcore

. Consider two honest PoS-players, P′ and P′′ in round r, with the local best
core-chains C ′ and C ′′, respectively, where P′ is a new player and P′′ is an existing player in round

r. �en we have C ′[¬κ] � C ′′ and C ′′[¬κ] � C ′.

3.3.2 Basic terms

Before giving the details of the security analysis, we introduce some terms.

17

De�nition 3.6 (Honest successful round). We say a round r is an honest successful round, if in

round r, at least one honest PoS-playerare allowed to extend the core-chain.

Let pgood be the probability that a round is honest successful round. We have pgood = 1− (1−
p)(1−ρ)n

. In the case that np � 1, we have X ≈ p(1 − ρ)n. �at is pgood ≈ α0. In the following

sections, we assume the probability that a round is honest successful round is α0 directly.

De�nition 3.7 (Best public chain). Consider round r. We say a chain C is a public chain in round

r if such C is known by all honest players in round r. We say chain C is the best public chain in

round r if it is the longest public chain in round r.

3.3.3 Analysis with bounded delay

We assume that the malicious parties can delay messages up to ∆ number of rounds. (�is is

guaranteed by FNET.) When an honest PoS-player is quali�ed to generate a new PoS block-core,

he will broadcast it to the system and expect all parties to receive it. �e honest players may not

obtain the best PoS core-chain and thus work on a di�erent PoS core-chain. If an honest players

produce a new PoS block-core during the delay time and later receive a be�er PoS block-core, the

PoS block-core will be useless and his e�ort during these time slots is wasted. In this subsection,

we provide a formal analysis for our core-chain protocol in the presence of the network delay.

Hybrid expriment To analyze the best strategy of the adversary, and the worst scenario that

may happen to the honest players, we consider the following notations.

Let REAL(ω) = EXECΠcore,A,Z(ω) denote the typical execution of Πcore
where

ω is the randomness in the execution,

Messages of honest players may be delayed by FNET in at most ∆ rounds.

Let HYBr(ω) = EXECrΠcore,A,Z(ω) denote the hybrid execution as in real execution except that

a�er round r, HYBr(ω) has the following modi�cations from REAL(ω):

�e randomness is �xed to ω as in HYBr(ω),

FNET delays all messages generated by honest PoS-players to exact ∆ rounds,

Remove all new messages sent by the adversary to honest players, and delay currently unde-

livered messages from corrupted parties to the maximum of ∆ rounds,

Whenever some message is being delayed, no honest PoS-players query the functionality

FrCERT until the message is delivered.

In REAL(ω), the number of honest successful rounds is not less than in the HYBr(ω). �e fol-

lowing lemma shows that the real execution is not worse than hybrid execution. In order to

distinguish core-chain in HYBr(ω) with in REAL(ω) executions, we use Chybrid to denote it.

Claim 3.8. For all ω, r, t > 0, given two executions REAL(ω) and HYBr(ω). Let r′ = r+ t. For any
honest PoS-player P at round r′, let C ′ denote the PoS core-chain of P at round r′ in the execution

REAL(ω) and C ′hybrid denote the PoS core-chain of P at round r′ in the HYBr(ω). We then have

len(C ′) ≥ len(C ′hybrid).

Proof. We prove this lemma by induction. We consider the initial state before round r. From

the de�nition of hybrid experiment, all players have same VIEW at round r. We have len(C) ≥
len(Chybrid). We suppose it holds for all players before round s− 1. �e only case that len(Cs) <

18

len(Cshybrid) is the player P received a new core-chain to extend Cshybrid at round s in HYBr(ω).

According to the de�nition of hybrid experiment, this extended PoS block-core must be generated

at round s −∆ by an honest player P∗, that makes len(Cshybrid) = len(Cs−∆
hybrid) + 1. At the same

time, the player P∗ must succeed to extend PoS block-core at round s − ∆ in REAL(ω). �is

extension will make Cs−∆
∗ increase by one block. For player P∗ is honest, P must have received

the extension at (or before) round r′. Pu�ing them together, we have len(C ′) ≥ len(C ′∆).

Analysis in the worst delay setting As mentioned earlier, the malicious players can delay

the messages for at most ∆ rounds. As a consequence, some e�orts from honest players may be

wasted. Below we develop a lemma for the “discount” version of honest players’ e�orts in the

execution of HYBr(ω).

Claim 3.9. Consider HYBr(ω) where the adversary is allowed to delay messages for at most ∆
rounds. Let α0 > 0 be the expected number of honest stakeholders that are chosen in a round. Let

α be the actual probability that a round s > r is an honest successful round. �en we have that

α = α0

1+∆α0
.

Proof. In HYBr(ω), if round r′, where r′ > r, is an honest successful round, then no PoS-players

will query functionality FrCERT in the next ∆ rounds. Now, assume in HYBr(ω), there are c
number of honest successful rounds, from round r to round (r + t), where t > 0. We then have

the number of actual working rounds for honest stakeholders will remain t−∆c. For each round,

the probability that it is an honest successful round is α0. We have α0(t−∆c) = c. �is implies

that c = α0t
1+∆α0

. We then have α = α0

1+∆α0
.

Let VIEWr denote the VIEW at round r in REAL(ω) where r > 0. Let len(VIEWr) denote the

length of the best public PoS core-chain in VIEWr. �e following lemma demonstrates that each

successful round would contribute one PoS block-core to the best public PoS core-chain a�er ∆
rounds in an execution of HYBr(ω).

Claim 3.10. Consider HYBr(ω). For any honest successful round s, where s > r, it holds that
len(VIEWs+∆)− len(VIEWs) ≥ 1.

Proof. By De�nition 3.6, there is at least one honest PoS-player producing a PoS block-core at

round s. Let Cshybrid be the PoS core-chain that is extended by the PoS-player at round s. We have

len(Cshybrid) ≥ len(VIEWs). At the end of round s the honest player will broadcast the extended

chain with length len(Cshybrid) + 1. At the end of round s + ∆, all honest players will receive

the extended core-chain, we have len(VIEWs+∆) ≥ len(Cs+∆
hybrid) = len(Cshybrid) + 1. Pu�ing them

together, we have len(VIEWs+∆)− len(VIEWs) ≥ 1.

Corollary 3.11. Consider HYBr(ω). Assume there are h number of honest successful rounds from

round r to round r + t where t > 0. �en it holds that len(VIEWr+t+∆)− len(VIEWr) ≥ h.

Proof. Let rk be the kth honest successful round where r < roundk < r+ t and 1 ≤ k ≤ h. From

Claim 3.10, we have len(VIEWroundk+∆) − len(VIEWroundk) ≥ 1. �en we have len(VIEWr+t) −
len(VIEWr) ≥

∑h
i=1(len(VIEWroundk+∆)− len(VIEWroundk)) ≥ h.

If we consider a long time running, we have t � ∆. In this case we can ignore ∆ rounds

di�erence, that is len(VIEWr+t)− len(VIEWr) ≥ h.

19

3.3.4 Achieving chain growth property

We here demonstrate that our core-chain protocol satis�es the growth property (De�nition 2.3).

�e concrete statement to be proved can be found in Lemma 3.2. We next �rst develop some

useful lemmas.

Claim 3.12. Consider HYBr(ω), and δ > 0. Let X be the number of honest successful rounds from

round r to round r + t, where t > 0. �en we have Pr[X > (1− δ)αt] > 1− e−Ω(t)
.

Proof. Based on Claim 3.9, we have that, on average, there are αt number of honest successful

rounds in any t consecutive rounds. By Cherno� bound, we have Pr[X ≤ (1− δ)αt] ≤ e−δ
2αt/2

.

�us, we have Pr[X > (1− δ)αt] > 1− e−δ2αt/2 = 1− e−Ω(t)
.

Claim 3.13. Consider HYBr(ω) and δ > 0. Consider an honest PoS-playerP with the best PoS core-

chain Chybrid in round r, and an honest PoS-playerP′ with the best PoS core-chain C ′hybrid in round

r′, respectively, where r′ − r � ∆. �en we have

Pr
[
len(C ′hybrid)− len(Chybrid) ≥ g · t

]
≥ 1− e−Ω(t)

where t = r′ − r and g = (1− δ)α.

Proof. First, we note that Chybrid will be received by all honest players no later than round r + ∆
because player P is honest. We have len(Chybrid) ≤ len(VIEWr+∆). Now we consider the chain

growth from round r + ∆ to round r′. For t � ∆, we have t ≈ t − ∆ for simplicity. From

Claim 3.12, in any t consecutive rounds the number of honest successful round is more than

(1 − δ)αt with the probability at least 1 − e−Ω(t)
. Together with Claim 3.10 and Corollary 3.11,

we have len(VIEWr
′
) − len(VIEWr+∆) ≥ (1 − δ)αt. Chain C ′hybrid is an valid PoS core-chain

accepted by an honest PoS-playerP′ at round r′. We have len(C ′hybrid) ≥ len(VIEWr
′
). Pu�ing

these together, we get len(C ′hybrid)− len(Chybrid) ≥ len(VIEWr
′
)− len(VIEWr+∆) ≥ (1−δ)αtwith

probability at least 1− e−Ω(t)
. �e corresponding growth rate is g = (1− δ)α.

Reminder of Lemma 3.2. Consider core-chain protocol Πcore
, an honest PoS-player P′ with best

local core-chain C ′ in round r′, and an honest PoS-player P′′ with best local core-chain C ′′ in round

r′′, where r′′ > r′. �en we have Pr
[
len(C ′′) − len(C ′) ≥ g · t

]
≥ 1 − e−Ω(t)

, where t = r′′ − r′,
g = (1− δ)α, and δ > 0.

Proof. In order to distinguish the notation clearly, we use C ′hybrid and C ′′hybrid to denote the PoS

core-chains of the best core-chains of P at round r′ and r′′ in the execution of HYBr(ω). From

Claim 3.13, we have Pr[len(C ′′)hybrid ≥ len(C ′)hybrid + g · t] ≥ 1 − e−Ω(t)
where t = r′′ − r′, in

HYBr(ω). We now turn to the core-chain growth property in EXECΠcore,A,Z. From the de�nition

of hybrid execution, we know that all honest players have same initial status at round r′. We

have len(C ′) = len(C ′hybrid). By Claim 3.8, we have len(C ′′) ≥ len(C ′′hybrid). It follows that,

Pr[len(C ′′) ≥ len(C ′) + g · t] ≥ Pr[len(C ′′hybrid) ≥ len(C ′hybrid) + g · t] ≥ 1− e−Ω(t)

where g = (1− δ)α. �is completes the proof.

20

3.3.5 Achieving chain quality property

�e chain-quality property (De�nition 2.5) ensures that the rate of honest input contributions in

a continuous part of an honest party’s core-chain has a lower bound. We then �nd the lower

bound of the number of PoS block-cores produced by the honest players. We further show that

the number of block-cores produced by the adversarial miners is bounded by the number of their

stakes. Finally, we demonstrate that the ratio of honest PoS block-cores in an honest player’s PoS

core-chain is under a suitable lower bound in a su�cient number of rounds with an overwhelming

probability. First, we will build the relationship between length of a core-chain and the number

of rounds.

Claim 3.14. Consider REAL(ω), and δ > 0. Let Z be the number of rounds in which ` consecutive
block-cores are generated. �en we have Pr[Z > (1− δ)c`] > 1− e−Ω(`)

where c = 1
α+β

.

Proof. All players can extend α+β number of PoS block-cores in a round on average. In order to

generate ` block-cores, it will consume
`

α+β
rounds on average. Let c = 1

α+β
, andZ be the number

of rounds which generate the ` consecutive PoS block-cores. For any δ > 0, by using Cherno�

bounds, we have Pr[Z ≤ (1 − δ)c`] ≤ e−δ
2c`/3

. �at is, Pr[Z > (1 − δ)c`] > 1 − e−δ
2c`/3 =

1− e−Ω(`)
. �is completes the proof.

Now we consider the contribution from honest players in any consecutive block-cores. If the

adversarial players want to contribute more PoS block-cores on the core-chain, they will try to

generate more PoS block-cores and beat the PoS block-cores from honest players in the compe-

tition. �us, the worst case is the adversarial players make use of all the stakes to generate PoS

block-cores and win all of the competition. First, we will prove the core-chain quality property

in any t consecutive rounds.

Claim 3.15. Consider REAL(ω), and an honest PoS-playerP with PoS core-chain C. Consider `
consecutive PoS block-cores of C that are generated from round r to round r + t. Assume α = λβ
where λ > 1. �en we have Pr[µ ≥ 1− (1 + δ) 1

λ
] > 1− e−Ω(t)

for any δ > 0, where µ is the ratio

of honest block-cores of the PoS core-chain C.

Proof. Consider the ` consecutive PoS block-cores of C that are generated from round r to round

r + t. From Lemma 3.2, we have Pr[` ≥ (1− δ∗)α · t] ≥ 1− e−Ω(t)
for any δ∗ > 0. Let Y be the

number of valid malicious PoS block-cores which are actually generated in t rounds to extend a

core-chain. By Cherno� bound, we have

Pr[Y < (1 + δ′)β · t] > 1− e−Ω(t)

We then have

Pr

[
µ ≥ `− Y

`

]
> 1− e−Ω(t)

�at is, By picking δ∗ and δ′ su�ciently small, we have

Pr

[
µ ≥ 1− (1 + δ)

1

λ

]
> 1− e−Ω(t)

for any δ > 0. �is completes the proof.

21

Now we are ready to prove the core-chain quality property for consecutive block-cores on a

core-chain.

Reminder of Lemma 3.3. Consider α = λβ, λ > 1, and δ > 0. Consider core-chain protocol

Πcore
, and an honest PoS-player with core-chain C. Consider that ` consecutive block-cores of C, where

`good block-cores are generated by honest PoS-players. �en we have Pr
[
`good
`
≥ µ

]
≥ 1 − e−Ω(`)

,

where µ = 1− (1 + δ) 1
λ
.

Proof. Let t be the rounds that the ` block-cores are generated. From Claim 3.14, we have Pr[t >
(1 − δ)c`] > 1 − e−Ω(`)

. From Claim 3.15, the ratio of honest PoS block-cores in t consecutive

rounds with ` PoS block-cores is µ ≥ 1 − (1 + δ) 1
λ

with probability at least 1 − e−Ω(t)
. Pu�ing

them together, the probability is at least 1− e−Ω(`)
. �is completes the proof.

3.3.6 Achieving common pre�x property

We now turn to proving the common pre�x property (De�nition 2.4) for the core-chain protocol

Πcore
. �e concrete statement can be found in Lemma 3.4. Before providing our formal proof, we

here give some informal proof ideas. First, from the assumption, we know that if the malicious

parties do not get any help from the honest parties, then they cannot produce more PoS block-

cores than the honest parties do. �at means if the malicious parties maintain a hidden, forked

core-chain, and try to extend it by themselves, then the hidden core-chain will be shorter than

the public core-chain. As the assumption α+β � 1, in most rounds there is no new block being

generated. �is means the honest players will have same view in most rounds. All of the honest

will be used to extend the same chain. �is will guarantee that the best public chain will dominate

the system. All of the honest players will accept the best public chain.

Recall the de�nition of best public PoS core-chain C: a) C has been received by all of the

honest players which means public. b) C is the best one among all of the public core-chains. �is

implies each honest player will not take any core-chain worse than best public core-chain in any

round . Before our proof, we need to de�ne the divergent length of two di�erent chains.

De�nition 3.16 (Divergent length). Given two di�erent core-chain C ′ and C ′′. Let B be the last

common block on C ′ and C ′′. Let `′ be the length from B to the end of C ′ and `′′ be the length from

B to the end of C ′′. �e divergent length of C ′ and C ′′ is ` = max{`′, `′′}.
Claim 3.17. Let α = λβ , λ > 1 and (α+β)∆� 1, exists δ > 0. Consider REAL(ω). Let C be the
best public core-chain in round r. Let C ′ be another valid core-chain which is di�erent with C. Let `
be the divergent length of C and C ′. We have Pr[len(C)− len(C ′) > (1− δ)`] > 1− e−Ω(`)

.

Proof. Suppose the last common block-core of C and C ′ is generated in round s = r − t. From

Claim 3.14, we have t > (1− δ) `
α+β

with probability no less than 1− e−Ω(`)
. Let X = len(C)−

len(Cs) be the length growth of best public core-chain in the t rounds, with Lemma 3.2, we have

X > (1 − δ)αt with probability no less than 1 − e−Ω(t)
During the t rounds, all the players will

generate (α+β)t block-cores which are longer than core-chain Cs on average. With the network

delay, this will confuse the honest players (α+β)∆t rounds on average. �at is the honest players

may contribute to other core-chain during the confusing rounds. Let Y be the block-cores that

the honest players contribute during the confusing rounds. We have Y = (α+β)∆tα on average.

For (α+ β)∆� 1, we have Y � X . Let Z be the number of block-cores that malicious players

22

can extend for a core-chain during the t rounds. We have Z = βt on average. With Cherno�

bounds, we have Z < (1 + δ)βt with probability no less than 1− e−Ω(t)
. Pu�ing these together,

we have Pr[X − (Y + Z) > (1 − δ)λ−1
λ+1

`] > 1 − e−Ω(t) = 1 − e−Ω(`)
. For λ > 1, we have

Pr[len(C)− len(C ′) > (1− δ)`] = Pr[X − (Y +Z) > (1− δ)`] > 1− e−Ω(`)
. �is completes the

proof.

Claim 3.18. Let α = λβ , λ > 1 and (α + β)∆ � 1. Consider δ > 0. Consider REAL(ω). Let C
be the best public core-chain in round r. Let C ′ be another valid core-chain which is di�erent with

C. Let ` be the divergent length of C and C ′. Consider a round r′ = r + t where t > 0, let X be the

probability that C ′ be a pre�x of a chain in round r′ which is no worst than the best public core-chain.
We have Pr[X] < e−Ω(`)

.

Proof. From Claim 3.17, we have Pr[len(C) − len(C ′) > (1 − δ)`] > 1 − e−Ω(`)
. For C ′ is worse

than the best public core-chain from round r, the honest players will not extend it. In t rounds

the malicious players can extend βt block-cores on average. Meanwhile, in the t rounds, the best

public core-chain will increase αt block-cores on average. We have Pr[(β−α)t > 0] < e−Ω(t)
. In

order to �x the distance of ` block-cores, the malicious players will use
`
β

rounds with probability

no less than 1 − e−Ω(`)
rounds. At the same time the best public core-chain will increase more

than ` block-cores with probability no less than 1 − e−Ω(`)
. We have that the core-chain C ′ will

exceed the best public core-chain in length with probability no more than e−Ω(`)
.

We are now ready to prove the main theorem which asserts that our protocol achieves the

common-pre�x property with an overwhelming probability in the security parameter κ. �e

theorem is formally given as follows.

Reminder of Lemma 3.4. Consider α = λβ, λ > 1, and δ > 0. Consider core-chain protocol

Πcore
. and two honest PoS-players, P in round r and P′ in round r′, with the local best core-chains C,

C ′, respectively, where r′ ≥ r. �en we havePr [C[1, `] � C ′] ≥ 1−e−Ω(κ)
, where ` = len(C)−Θ(κ).

Proof. Let Crpublic be the best public core-chain in round r. For C is accepted by a player it is must

be be�er than Crpublic. Let ` be the divergent length of C and Crpublic , from Claim 3.17 we have

` < κ. Otherwise, C is be�er than Crpublic with negligible probability. In round r′, C ′ is accepted by

a honest player. It must be no worse than best public core-chain. We use C ′r to denote the pre�x

of core-chain in round r. Let ` be the divergent length of Crpublic and C ′r. From Claim 3.18, we have

` < κ. Otherwise, C ′ is be�er than public core-chain in round r′ with a low probability. Pu�ing

these together, we have that both C and C ′r are divergent with Crpublic less than κ block-cores.

�at is C and C ′r are divergent less than κ block-cores. �is completes the proof.

3.3.7 Achieving chain soundness property

We now turn to proving the chain soundness property for the core-chain protocol Πcore
. �e

concrete statement can be found in Lemma 3.5, and will be restated below. Before providing the

formal proof, we here give some informal proof ideas. As in PoW-based blockchain protocols, in

our Πcore
, all players follow the longest chain. �at is, the longest chain is the best chain. �e

malicious players cannot create a chain which grows faster than the best public chain. �erefore,

the malicious players cannot mislead new players by providing them a longer chain.

23

Reminder of Lemma 3.5. Consider for every round, α = λβ, λ > 1, and δ > 0. Consider

core-chain protocol Πcore
. Consider two honest PoS-players, P′ and P′′ in round r, with the local best

core-chains C ′ and C ′′, respectively, where P′ is a new player and P′′ is an existing player in round

r. �en we have C ′[¬κ] � C ′′ and C ′′[¬κ] � C ′.

Proof. Let C be the best public chain in round r. �is implies that both P′ and P′′ have already

received the public best C. Let `′ be the divergent length of C ′ and C. From Claim 3.17, we have

Pr[len(C) − len(C ′) ≥ (1 − δ)`′] > 1 − e−Ω(`′)
. If C ′[¬κ] � C, we have len(C) > len(C ′)

with probability no less than 1 − e−Ω(κ)
. �is contradicts the fact that Pi already took C ′ as

the best chain. �erefore, we have C ′[¬κ] � C. Similarly, we can have C ′′[¬κ] � C. Note that

len(C ′) ≥ len(C), this means that the divergent length of C is shorter than C ′. We now have

C[¬κ] � C ′. Similarly, we can have C[¬κ] � C ′′. Pu�ing these together, we obtain C ′[¬κ] �
C ′′ and C ′′[¬κ] � C ′ which completes the proof.

4 Securing the core-chain against a greedy adversary
In Section 3, for the simplicity of presentation, we consider the se�ing that all players follow the

basic strategy to extend the core-chain. �at is, each player will make a�empts to extend the

single best chain in his/her local view. However, in the proof-of-stake se�ing, it is “very cheap”

to extend chains; a proof-of-stake player may take a greedy strategy to extend the core-chains:

he/she will make a�empts to extend a set of chains in his/her local view, and expects to obtain

additional advantage for extending the best chain.

In this section, we will formally study greedy strategies. We will �rst de�ne the greedy strate-

gies in Subsection 4.1, and then present a modi�ed core-chain protocol in Subsection 4.2; a�er

that, we will analyze the security of our modi�ed protocol in Subsection 4.3.

4.1 Greedy strategies
We now de�ne greedy strategies for a player. Consider a blockchain protocol execution. �ere

are multiple chains in a player’s local view; without loss of generality, these chains can be viewed

as a tree: the root of the tree is the genesis block, and each path from the root is a chain. �e tree

will “grow” round a�er round: the length of each existing chain may increase, and new chains

will be created. Let ` be the length of the longest chain at round r. A g-greedy player will a�empt

to extend a set of chains in which all chains have the length at least (` − g), where 0 ≤ g ≤ `.
More formally, we have the following de�nition.

Let ` be the length of the longest chain at round r. Consider greedy parameter g where

0 ≤ g ≤ `. We say the player is g-greedy if, for all round r, the player makes a�empts to extend

a set of chains in which all chains have the length at least (` − g). Note that, when g = 0, the

g-greedy is essentially the basic strategy that we considered in Πcore
. When g = `, we say the

protocol player is fully-greedy.

De�nition 4.1 (g-greedy strategy). Consider a blockchain protocol execution. Let P be a player of

the protocol execution, and T be a tree which consists of chains with the same genesis block, in P’s
local view. Let ` be the length of the longest chain at round r. We say the player is g-greedy if, for

all r, the player makes a�empts to extend all chains with length at least (`− g), where 0 ≤ g ≤ `.

24

If g = `, we say the player follows the fully-greedy strategy; if g = 0, we say the player follows

the basic (greedy) strategy.

Di�erent greedy strategies are illustrated in Figures 5, 6 and 7. �e players with di�erent

strategies will try to extend the blocks in the di�erent red rectangles. In Figure 5, the players

follow the basic strategy (0-greedy strategy), i.e., the players only make a�empts to extend the

longest chain. In Figure 6, players follow the 1-greedy strategy; that is, the players a�empt to

extend the longest chain as well as the chains with only one block behind. In Figure 7, the players

follow the full-greedy strategy; the players make a�empts to extend all chains.

Figure 5: Basic strategy (i.e., 0-

greedy strategy)

Figure 6: 1-greedy strategy Figure 7: Fully-greedy strategy

As we mentioned before, when a player follows a greedy strategy, he may extend the chains

faster. Next, we introduce ampli�cation ratio.

De�nition 4.2 (Ampli�cation ratio). Consider a PoS blockchain protocol. Let N0 be the number

of blocks that a group of players P contribute to extend a blockchain in a �xed number of rounds if

they follow the 0-greedy strategy on average. Let Ng be the number of blocks that the same group

of players P contribute to extend a blockchain in the same time period if they follow the g-greedy

strategy on average. We de�ne the ampli�cation ratio for following the g-greedy strategy as Ag =
Ng

N0

Jumping ahead, in next sections, we will show that the ampli�cation ratio for following the

fully-greedy strategy is Afully = 2.718, and the ampli�cation ratio for following the 2-greedy

strategy is A2 = 2.1. In addition, by de�nition, A0 = 1.

4.2 �e modi�ed core-chain protocol Πcore?

Next, we modify the core-chain protocol Πcore
in Section 3 into a new core-chain protocol Πcore?

where players follow the g-greedy strategy. Details can be found in Figure 8.

We note that, the subroutine BestCore has also been modi�ed into subroutine BestCore?; now

the modi�ed subroutine BestCore?, instead of returning the single longest chain, will output a set

of chains including the longest chain, and several chains that are slightly (i.e., g blocks) shorter

than the longest chain. Intuitively, the bigger the greedy parameter g is, the be�er the chance

that the player extend the set of chains. However, the (computation and storage) complexity of

the protocol is proportional to the greedy parameter g. In practice, we can choose g = 2 (and the

size of set Cbest is 10 on average).

4.3 Security analysis
In previous section, the security properties of protocol Πcore

have be proven under the assumption

of honest majority of stakes based on α and β. Now, we can prove the security properties of the

25

Protocol Πcore?

Initially, a set P0 of players are registered to the functionality FrCERT, where P0 ⊆ P.

Initially, for each P ∈ P, set C := ∅, and state := ∅.

Upon receiving message (Input-Stake,P) from the environment Z at round round, the PoS-player P ∈
P, with local state state , proceeds as follows.

1. Select the best local PoS core-chain:

Let C be the set of core-chains collected from FNET.

Compute Cbest := BestCore?(C ∪ {C}, round).

For each C ∈ Cbest, and ` := len(C): (BestCore? will return a best chain set and the players will

try to extend all)

2. A�empt to extend PoS core-chain:

Parse C[`] as 〈〈hprev

` , round`,P`, σ`〉, h`〉.

Stake election:

Send (Elect,P, 〈h`, round〉) to functionality FrCERT,

and receive (Elected,P, h`+1, σ, b) from FrCERT.

If b = 1, generate a new block-core:

Set the new block-core B := 〈〈h`, round,P, σ〉, h`+1〉,
and set C := C‖B , and state := state ∪ {C},
and then send (Broadcast, C) to FNET.

Return (Return-Stake,P) to the environment Z.

Figure 8: Our proof-of-stake core-chain protocol Πcore?
in the {FrCERT,FNET}-hybrid model. (See

Figure 9 for the subroutine BestCore?.)

modi�ed core-chain protocol Πcore?
but under the assumption of honest majority of e�ective stakes

based on α? and β?. Here α? = 2.1α and β? = 2.718β. We note that here α? � 1 and β? � 1
(since α� 1 and β � 1).

�eorem 4.3 (�eorem 1.3, restated). Consider core-chain protocol Πcore?
where honest players

follow the 2-greedy strategy while adversarial players follow the fully-greedy strategy; in addition,

all players have their stake registered without being aware of the state of the protocol execution. If

α? = λβ?, λ > 1, then the protocol Πcore?
can achieve chain growth, chain quality, common pre�x

and chain soundness properties.

4.3.1 Important lemmas, and e�ective stakes α? and β?

We now show a very interesting lemma (i.e., Lemma 4.4) that the ampli�cation ratio for following

the fully-greedy strategy is bounded by a factor e (the base of natural logarithm). Intuitively,

if protocol players follow the fully-greedy strategy and extend all chains, one of the relatively

shorter chains will become the longest chain with certain probability; that means, the longest

chain will be extended faster. However, we note that, the shorter the chain is, the probability of

being extended into the longest chain is lower; collectively, the longest chain will strictly increase

but will be bounded by a constant factor.

Lemma 4.4. Consider core-chain protocol Πcore?
. Assume that malicious players can generate a

26

Subroutine BestCore?

�e subroutine BestCore? is allowed to access to the functionality FrCERT, and with input

(C′, round′).

For every chain C ∈ C′, and proceed as follows.

1. Set ` := len(C).

2. For i from ` down to 1, verify block-core C[i], as follows.

• Parse C[i] into 〈〈hprev

i , roundi,Pi, σi〉, hi〉.
Parse C[i− 1] into 〈〈hprev

i−1 , roundi−1,Pi−1, σi−1〉, hi−1〉.
• If roundi < round′ and roundi−1 < roundi , then execute:

If h
prev

i 6= hi−1, then remove this core-chain C from C′.

Else send (Core-Verify,Pi, 〈hprev

i , roundi〉, σi, hi) to FrCERT.

Upon receiving message (Core-Verified,Pi, 〈hprev

i , roundi〉, σi, hi, fi) from

FrCERT, if fi = 0 remove this core-chain C from C′.

Otherwise, remove the core-chain C from C′.

Let Cbest be the longest core-chain in C′ and ` := len(Cbest). Set Cbest = ∅.
For any chain C ∈ C′ and len(C) ≥ `− g, Cbest = Cbest ∪ {C}. (g is a small constant, g = 2 typ-

ically.)

�en return Cbest as the output.

Figure 9: �e core-chain set validation subroutine BestCore?.

new block with probability β in a round. Assume that the malicious players follow the fully-greedy

strategy to extend a core-chain C ′ at round r′ into C ′′ at round r′′, where r′′ > r′. �en we have

Pr
[
len(C ′′)− len(C ′) < eβ · t

]
≥ 1− e−Ω(t)

where t = r′′ − r′ and e is the base of natural logarithm.

Proof. Let f(t, l) be the number of chains with length l + len(C ′) at round t+ r′, where 0 < t ≤
r′′ − r′. We have the initial boundary that f(0, 0) := 1.

We �rst discuss the average case. Recall that malicious players can generate a new block with

probability β in a round. We have

f(t, l) := f(t− 1, l) + f(t− 1, l − 1)β

on average. Note that, if we view β as a variable, the coe�cients of f(t, l) can be viewed as a

polynomial, and they will follow the Pascal’s Triangle. �at is, we have

f(t, l) =

(
t

l

)
βl

We now develop a simpli�ed form of f(t, l). We note that, in a round there is at most one

block that can be extended from an existing block on average. Let k be the number of rounds for

27

generating one block on average, and we have k > 1, and t = kl. Now we have:

f(t, l) =
t!

(l!)(t− l)!
βl

≈
√

2πttt

(
√

2πlll) · (
√

2π(t− l)(t− l)t−l)
· βl

=

√
2πkl(kl)kl

(
√

2πlll) · (
√

2π(kl − l)(kl − l)kl−l)
· βl

=

√
kl

2πl(kl − l)
· (kl)kl

ll(kl − l)kl−l
· βl

=

√
k

2π(k − 1)l

[
kk

(k − 1)k−1
· β
]l

�e second approximate equality above is based on Stirling’s approximation.

Note that, g(k) =
(
1 + 1

k

)k
is a monotone increasing function and limk→∞ g(k) = e. We now

have

(
k
k−1

)k−1
< e. �at is :

f(t, l) <

√
k

2π(k − 1)l
(keβ)l (1)

We note that the chains will always increase, and we will have at least one chain with length

l+ len(C ′); that means, we have f(t, l) ≥ 1. From Equation 1, we have

√
k

2π(k−1)l
(keβ)l ≥ 1; we

can then obtain keβ > 1. Otherwise, f(t, l) � 1 for large enough l. Recall that t = kl; we now

have l < eβ · t.
Next, we turn to the worst case discussion. With Cherno� bound, for any δ > 0, we have

Pr
[
l > (1 + δ)eβ · t

]
≤ −eΩ(t)

. Here l = len(C ′′) − len(C ′). We have Pr
[
len(C ′′) − len(C ′) <

eβ · t
]
≥ 1− e−Ω(t)

�is concludes the proof.

De�ning β?. We use β? to denote the equivalent expected number of blocks that malicious

players can extend a chain in a round. From Lemma 4.4, we have β? = eβ. �at is, the ampli�ca-

tion ratio of malicious players is bounded by e, the base of natural logarithm .

Next, we will show that, when honest players follow the g-greedy strategy and malicious

players follow the fully-greedy strategy, the number of blocks that malicious players contribute

in a chain is also bounded.

Lemma 4.5. Consider core-chain protocol Πcore?
in the presence of a fully-greedy adversary. Con-

sider a core-chain C ′ in round r′; this core-chain is extended to chain C ′′ in round r′′, where r′′ > r′.
Let t = r′′ − r′. Let X be the number of blocks that are generated by malicious players during the t
rounds. �en for any δ > 0, we have Pr[X < (1 + δ)β?t] > 1− e−Ω(t)

.

Proof sketch. First, consider the case that all the honest players follow the fully-greedy strategy.

From Lemma 4.4, we have len(C ′′)− len(C ′) < (1 + δ)e(α+ β)t with overwhelming probability.

Furthermore, the honest players, playing the same strategy as that by malicious players, will

contribute more than
α

α+β
(len(C ′′) − len(C ′))(1− δ) blocks with overwhelming probability. We

28

use Y to denote the number of blocks that are contributed by malicious players. We have Y <
(1 + δ)eβt blocks with overwhelming probability.

Second, consider the case that the honest players follow the g-greedy strategy where g is a

small constant such as 2. In this case the chain will grow slower than that in the previous case,

on average. As a result, in any round, the malicious players will have less opportunity to extend

the chain than that in the previous case. �erefore, we have X < Y . Pu�ing these together, we

have Pr[X < (1 + δ)β?t] > 1− e−Ω(t)
.

De�ning α?. We next show another lemma stating that, honest players, by following the 2-

greedy strategy, can obtain extra advantage for extending the public chain.

Lemma 4.6. Consider core-chain protocol Πcore?
where greedy parameter is g = 2. Assume ma-

licious players do not help honest players to extend any chain. Let t be the number of rounds for

extending the longest chain with one new block. �en we have t ≈ 1
2.1α

on average.

Proof. Assume that the length of the longest chain at round r is l, and the length of the longest

chain at round r′ is l+ 1. �at is t = r′− r. We further assume, in round r, the number of chains

with length l− 1 is x, and the number of chains with length l− 2 is y . (We also assume only one

chain, i.e., the longest chain, is with length l.)
For simplicity, we assume the chain will grow with a steady rate and we here only investigate

the average case. In this case with the above assumption, in round r′ the length of the longest

chain will increase to l + 1, and the number of chains with length l will be x and the number of

chains with length l − 1 will be y.

Consider the longest chain ,with length l+1 in round r′, it is extended by some players during

the t rounds from a chain with length l. At round r there is 1 chain with length l and at round

r′ there are x chains with length l. On average, we have
1+x

2
αt = 1. With similar arguments,

considering the chain with length l in round r′, they are extended from a chain with length l. On

average, we have
x+y

2
αt = x − 1. Finally, considering the chain with length l − 1 in round r′,

they are extended from a chain with length l. On average, we have yαt = y − x. Pu�ing these

together, we have:
1+x

2
αt = 1

x+y
2
αt = x− 1

yαt = y − x
(2)

�at is αt ≈ 0.48. We get t ≈ 1
2.1α

.

�is lemma shows that, if the honest players follow the 2-greedy strategy they will extend the

longest chain with 1 block in t ≈ 1
2.1α

rounds on average. If we use α? to denote the equivalent

expected number of blocks that the honest players will extend a chain in a round, we have α? =
2.1α. �at is, the ampli�cation ratio (of extending chains by honest players) is A2 = 2.1.

4.3.2 Security properties in the presence of a fully-greedy adversary

Based on the above discussions, we have α? = A2α � 1 and β? = eβ � 1, where A2 = 2.1.

Here we assume, α � 1 and β � 1. We have α? � 1 and β? � 1. �en similarly, the security

properties will still hold if we change the previous assumption of honest majority of stakes based

on α and β, into the assumption of honest majority of e�ective stakes based on α? and β?.

29

Chain growth. Honest players will extend blockchain faster if they follow, not the basic strat-

egy, but the g-greedy strategy, where g > 0, and the chain growth rate will increase. From

Lemma 3.2, we have:

Corollary 4.7 (Chain growth). Consider core-chain protocol Πcore?
in the presence of a fully-greedy

adversary. Consider an honest PoS-playerP′ with best local PoS core-chain C ′ in round r′, and
an honest PoS-playerP′′ with best local core-chain C ′′ in round r′′, where r′′ > r′. �en we have

Pr
[
len(C ′′)− len(C ′) ≥ g · t

]
≥ 1− e−Ω(t)

where t = r′′ − r′, g = (1− δ)α?, and δ > 0.

Chain quality. A g-greedy adversary can extend a chain faster than basic adversary, when

g > 0. Intuitively, this will reduce the chain quality. However, from Lemma 4.5, the number of

blocks from malicious players on any chain is bounded. If we assume the honest players extend

chains faster than the malicious players, the chain quality property will still hold as in Lemma 3.3.

Corollary 4.8 (Chain quality). Consider α? = λβ?, λ > 1, and δ > 0. Consider core-chain protocol
Πcore?

with a greedy adversary. Consider an honest PoS-player with PoS core-chain C. Consider that
` consecutive block-cores of C, where `good block-cores are generated by honest PoS-players. �en we

have Pr
[
`good
`
≥ µ

]
≥ 1− e−Ω(`)

where µ = 1− (1 + δ) 1
λ
.

Common pre�x. We note that, if a fully-greedy adversary cannot extend chains faster than

the g-greedy honest players, he cannot generated a longer forked chain to violate the common

pre�x property. From Lemma 3.4 we have:

Corollary 4.9 (Common pre�x). Consider α? = λβ?, λ > 1, and δ > 0. Consider core-chain

protocol Πcore?
with a fully-greedy adversary. Consider two honest PoS-players, P in round r and

P′ in round r′, with the local best PoS core-chains C, C ′, respectively, where r′ ≥ r. �en we have

Pr [C[1, `] � C ′] ≥ 1− e−Ω(κ)
where ` = len(C)−Θ(κ).

Chain soundness. As in Lemma 3.5, the protocol can achieve chain soundness property. Oth-

erwise the common pre�x property will be violated.

Corollary 4.10 (Chain soundness). Assume for every round, α? = λβ?, λ > 1, and δ > 0. Consider
core-chain protocol Πcore?

with a fully-greedy adversary. Consider two honest PoS-players, P′ and
P′′ in round r, with the local best core-chains C ′ and C ′′, respectively, where P′ is a new player and

P′′ is an existing player in round r. �en we have C ′[¬κ] � C ′′ and C ′′[¬κ] � C ′.

4.3.3 Simulation of greedy strategy

In this section, through a simulation (in Python), we illustrate the ampli�cation ratio when a

player follows the 2-greedy strategy, instead of following the basic strategy (i.e., 0-greedy strat-

egy). �e simulation result �ts the theoretical calculation well; please see Table 1 for details. In

our simulation, we consider in the system, there are 10000 honest players, and the di�culty tar-

get T = 1
100000

. In addition, we consider parameter α = 0.1, and the honest players follows the

2-greedy strategy. We run the simulation for 1000 rounds as a test, and we collect the data from

5 tests and calculate the mean value.

From above discussion, we have that the ampli�cation ratio is 2.1 when players follow the

2-greedy strategy. Recall that, from previous section, we have that the ampli�cation ratio is

30

Table 1: Simulation with the 2-greedy strategy

0-greedy 2-greedy Ampli�cation ratio

�eoretical Value 100 210 2.1

Simulated Mean Value 100.4 210.2 2.1

e = 2.718 when players follow the fully-greedy strategy. In addition, by de�nition, the ampli�-

cation ratio is 1 when players follow the basic strategy (0-greedy strategy). Now we can obtain the

following result (see Table 2): when honest players follow the 0-greedy (or, 0-greedy, 2-greedy,

respectively) strategy, and malicious players follow the 0-greedy (or, fully-greedy, fully-greedy,

respectively) strategy, to ensure the security of the core-chain protocol, 51% (or, 73%, 57%, re-

spectively) majority of stakes must be honest.

Table 2: Honest majority for ensuring security

Honest Players Malicious Players Honest Majority

(ensuring security)

0-greedy 0-greedy 51%

0-greedy fully-greedy 73%

2-greedy fully-greedy 57%

5 Securing the core-chain against an adaptive adversary
In previous sections (Sections 3 and 4), we assume that all players must generate their key-pairs

(so that they can have their stakes registered), before they join and be aware of the state of

the protocol execution. �e process of extending the chains is based on the hash inequality

H(context , solution) < T. Note that, there players are not aware of context before generating

the keys; the unpredictability of H will ensure that all players have the same probability to �nd a

solution.

In this section, we consider the practical se�ing where players are allowed to have their stakes

registered during the protocol execution. �e protocols in the previous sections will not work; the

adversary now knows the context, and he can play a “rejection re-sampling” strategy to gener-

ate their keys adaptively. More concretely, the adversary �rst runs key generation algorithm to

obtain a key-pair (pk, sk), and then check if the corresponding (pk, σ) is a valid solution; if not,

the adversary will repeat the process. By adopting this strategy, malicious players can increase

the probability that their stakes are chosen to extend the chain. To defend against this serious

rejection re-sampling a�ack, we will modify the protocol Πcore?
. We will propose the strategy

that players are allowed to extend the chains only if they have had their stakes registered many

rounds earlier.

5.1 Setup functionality F•rCERT

In our core-chain protocol design, we will use a modi�ed setup functionality, resource certi�ca-

tion functionality F•rCERT (in Figure 10). Our idea is that we only allow players who registered

31

rounds earlier to be quali�ed to extend the chain. �is will e�ectively discourage players to reg-

ister accounts adaptively to gain advantage. In order to achieve this, functionality F•rCERT must

keep track of the exact position/round when an account is registered.

Compared with the originalFrCERT, the players in the setP are registered in a tree structure T .

�e tree structure T is an abstraction of the real blockchains jointly from all real players. �e root

of T is corresponding to the genesis block of the blockchain. A node on the tree is mapped from

a block on a blockchain. When a player generate a block successfully, F•rCERT will also generate

a corresponding node for the tree. A path of the tree from root to a node corresponds to a real

blockchain. �e registration information of a valid player is con�rmed by a block on a blockchain

which is a node on a branch of the tree. �e system can keep track of the players registration

history with the help of the tree structure T . Furthermore, with the help of T , F•rCERT can get the

height of the block in which a player is registered; F•rCERT can also check if the registration block

is an ancestor of the current block. Given a blockchain C in the protocol the functionality F•rCERT
can identity the corresponding path on T .

As de�ned in FrCERT earlier, the modi�ed functionality F•rCERT consists of three phases, “Stake

Resource Registration”, “Stake Election” and “Stake Veri�cation”. At any time, a PoS-player P
can send a registration command (Stake-Register,P, C) to functionality F•rCERT for registration

where C is the speci�ed blockchain that P to be registered. Please note that, P will be registered

in the new generated leaf node of C and will also be mapped on the tree T . �e functionality

then records (P,bP) where bP = 1, if the party P is permi�ed. �en, for each execution round, a

registered PoS-player P is granted one unit of the stake, and he can then request the functionality

for leader election in this round. Just like in the basic FrCERT, this is processed in “Stake Election”

phase. �e di�erence here is that a player will be veri�ed more carefully to prevent adaptive

registration. Intuitively, only a player who registers on the pre�x of a chain can be elected to

extend a block on this chain. �is veri�cation is abstracted as subroutine StakeVerification (in

Figure 11).

Finally, the block veri�cation request (Core-Verify,P, 〈hprev, round〉, σ, h, C, i) will proceed

as follows. In the request, the functionality will verify if the i-th block on the C is valid. Upon

receiving a veri�cation request, the functionality would check if there is a corresponding path

on the T with C. �e functionality then veri�es if the signature is valid for the block. �en the

functionality will check if the player is registered long enough before the block is generated. We

use the parameter η to denote that the account is registered η blocks before.

5.2 �e modi�ed core-chain protocol Πcore•

In order to prevent the malicious players from generating and registering a key for the next block

adaptively, the protocol is modi�ed as:

• A player is quali�ed to be elected to sign a block in the functionality F•rCERT (see Figure 10),

only if his key pair has been registered at least η blocks before.

• Given two divergent blockchains, if the divergent parts are more than η blocks the chain

which generates the η blocks earlier is the be�er one.

With this modi�cation, malicious players cannot register a biased key pair for the following

η blocks to increase the probability he will be elected. However, there is still an issue that the

32

Functionality F•rCERT

�e functionality interacts with a set P of parties, as well as an adversary.

�e functionality is parameterized by a di�culty parameter p, a security parameter κ, a stake registration

bound η, as well as a tree T . Initially, a set P0 of players are enabled, where P0 ⊆ P; and for all P ∈ P0

the records (P, 1) are stored at the root of the tree T .

Stake Resource Registration.

1. Upon receiving a message (Stake-Register,P, C) from party P ∈ P, retrieve path corresponding

with C . If there is an entry (P, 1) with location path′ in the tree T , and path′ ≺ path, then

ignore the message. Otherwise, pass the message to the adversary. Upon receiving a message

(Stake-Registered,P) from the adversary, set bP := 1, record (P,bP) with location path in

the tree T , and pass the message to the party P. (the party P registered.)

�e Stake-Registered will take e�ect only a�er a block is generated on the C.

Stake Election:
For each round, set φP,hprev := 0 for every registered party P ∈ P.

Upon receiving (Elect,P, 〈hprev, round〉, C) from a PoS-player P, proceed as follows.

Retrieve path corresponding with C and l = len(C).

Set b := 0. (the party P is not elected by default)

1. If StakeVerification(path,P, l) = 1 and φP,hprev = 0 , send (Core-Sign,P, 〈hprev, round〉) to the

adversary.

Upon receiving (Signature,P, 〈hprev, round〉, σ), do:

If 〈hprev, round,P, σ, ·, ·〉 has been recorded, then ignore the input. Otherwise, send a request

to the adversary for a unique value h ; if 〈·, ·, ·, ·, h, ·〉 has been recorded, then ignore the input.

Otherwise,

with probability p, set b := 1 (the party P is elected), and store a record of the form

〈hprev, round,P, σ, h, 1〉 in memory.

Set φP,hprev := 1
Output (Elected,P, h, σ, b) to P.

Block Veri�cation:
Upon receiving (Core-Verify,P, 〈hprev, round〉, σ, h, C, i) from party P′ ∈ P,

Retrieve path corresponding with C.

Set f := 0

1. If StakeVerification(path,P, i) = 1, send (Core-Verify,P, 〈hprev, round〉, σ) to the adversary.

Upon receiving (Core-Verified,P, 〈hprev, round〉, φ) from the adversary, do:

If path[i] = 〈hprev, round,P, σ, h, 1〉, then set f := 1.

Else, if P is not corrupted, and no entry 〈hprev, round,P, σ′, h, 1〉 for any σ′ is recorded, then

set f := 0 and record the entry 〈hprev, round,P, σ, h, 0〉.
Else, if there is an entry 〈hprev, round,P, σ, h, f ′〉, then set f := f ′.
Else, set f := φ, and record the entry 〈hprev, round,P, σ, h, f〉.

2. Retrieve the registration path′ of P.

If path′ ⊀ path or i− len(path′) ≤ η, then set f := 0.

Output (Core-Verified,P, 〈hprev, round〉, σ, h, f) to the party P′.

Figure 10: Resource certi�cation functionality F•rCERT.

33

Subroutine StakeVerification

�is subroutine veri�es if a player is valid with input 〈path,P, i〉.
Set f := 0

1. If there exists a record of the form (P, 1) on the path which is located on the j-th block where

j < i,

set f := 1.

Output f .

Figure 11: Stake veri�cation subroutine StakeVerification.

malicious players may register a biased key pair for a round, η blocks later. We will prove this

issue can be resolved if we further improve the best chain strategy. �e intuition is that if the

malicious players prepare a biased key pair for a public chain, then the honest player will win

some blocks among the η blocks with high probability. �e malicious players cannot predict

the signature of honest players, so he cannot predict the input of the blocks η blocks a�er. �is

means that the malicious players cannot get advantage for η blocks a�er if the chain is public. If

the malicious players decide to extend a hidden blockchain, he can prepare a biased player for a

block η blocks a�er. However, he will lose the chain growth competition for the �rst η blocks.

Hence, we modify the BestCore? into BestCore• as in Figure 13:

5.3 Security analysis
In previous section, the security properties of protocol Πcore?

have be proven under the assump-

tion of honest majority of e�ective stakes based on α? and β?. Now, under the same assumption,

we will show that our modi�ed core-chain protocol Πcore•
can also achieve the same proper-

ties. Please note that our new adversary is stronger since there is not restriction on how players

are registered with respect to the protocol execution. More concretely, we have the following

theorem:

�eorem 5.1 (�eorem 1.5, restated). Consider core-chain protocol Πcore•
where honest players

follow the 2-greedy strategy while adversarial players follow the fully-greedy strategy. If α? = λβ?,
λ > 1, then the protocol Πcore•

can achieve chain growth, chain quality, common pre�x and chain

soundness properties.

5.3.1 Important lemmas

In our modi�ed protocol Πcore•
, malicious players cannot register key pairs so that they can extend

the chains immediately. What the malicious players can do, however, is to register biased key

pairs now, and then try to extend the chains many rounds later. We will prove that malicious

players cannot obtain additional advantage by playing this strategy. First, we will show that the

probability that malicious players are able to predict the latest block of the best public chain is

negligible.

Lemma 5.2. Let chain C be the best valid public chain with length ` in round r. Suppose the length
of best valid public chain C ′ will be `+ η in round r + t. �e probability that the malicious players

34

Protocol Πcore•

Initially, a set P0 of players are registered to the functionality F•rCERT.

Upon receiving message (Register-Stake,P) from the environment Z at round round,

Let C be the set of core-chains collected from FNET.

For each C ∈ C, send (Stake-Register,P, C) to functionality F•rCERT.

Upon receiving message (Input-Stake,P) from the environment Z at round round, the PoS-player P ∈
P, proceeds as follows.

1. Select the best local PoS core-chain:

Let C be the set of core-chains collected from FNET.

Compute Cbest := BestCore•(C, round).

2. A�empt to extend PoS core-chain:

For each C ∈ Cbest, and ` := len(C): (BestCore• will return a best chain set and the players will

try to extend all)

Parse C[`] as 〈〈hprev

` , round`,P`, σ`〉, h`〉.
Set hprev := h`.

Stake election: Send (Elect,P, 〈h`, round〉, C) to functionality F•rCERT, and receive

(Elected,P, h`+1, σ, b) from F•rCERT.

If b = 1, generate a new block-core: Set the new block-core B := 〈〈h`, round,P, σ〉, h`+1〉,
and set C := C‖B , and state := state ∪ {C}, and then send (Broadcast, C) to FNET.

Return (Return-Stake,P) to the environment Z.

Figure 12: Our proof-of-stake core-chain protocol Πcore•
in the {F•rCERT,FNET}-hybrid model.

(See Figure 13 for the subroutine BestCore•.)

predict the last block on chain C ′ in round r is e−Ω(η)
at most in round r.

Proof. From chain quality property, we know that the honest players will contribute blocks in

the last η blocks with probability no less than 1− e−Ω(η)
. Blocks generated by honest players are

unpredictable for malicious players. We have that the malicious players cannot predict any block

from honest players before it is published. Furthermore, he cannot predict the last block of C ′ in
round r if there is a honest block on chain C ′ at last. We get the conclusion that the malicious

players predict the last block of chain C ′ in round r is at most e−Ω(η)
.

If malicious players cannot predict the last block the best chain, then he cannot have a biased

key pair registered so that the corresponding stakeholder can be chosen in a future round with

much higher probability. From Lemma 5.2, we conclude that a malicious player, by playing adap-

tive key registration strategy, cannot improve the probability that he is chosen for extending the

public chain. Next, we will show that the malicious players cannot gain advantage, by playing

this adaptive strategy, for extending a private (hidden) chain.

Lemma 5.3. Assume the malicious players fork a hidden chain C from a block during t rounds.
Let `hidden < η be the length of the forked hidden chain C. Assume the length of public best chain

increase `public blocks during this t rounds. We have Pr[`public > `hidden] > 1− e−Ω(`hidden)
.

35

Subroutine BestCore•

�e subroutine BestCore• is allowed to access to the functionality F•rCERT, and with input

(C′, round′).

For every chain C ∈ C′, and proceed as follows.

1. Set ` := len(C).

2. For i from ` down to 1, verify block-core C[i], as follows.

• Parse C[i] as 〈〈hprev

i , roundi,Pi, σi〉, hi〉.
Parse C[i− 1] as 〈〈hprev

i−1 , roundi−1,Pi−1, σi−1〉, hi−1〉.
• If roundi < round′ and roundi−1 < roundi , then execute:

If h
prev

i 6= hi−1, then remove this core-chain C from C′.

Else send (Core-Verify,Pi, 〈hprev

i , roundi〉, σi, hi, C, i) to F•rCERT.

Upon receiving message (Core-Verified,Pi, 〈hprev

i , roundi〉, σi, hi, fi) from

F•rCERT, if fi = 0 remove this core-chain C from C′.

Otherwise, remove the core-chain C from C′.

Let Cbest := ∅
For every chain C ∈ C′ do

If Cbest = ∅ then Cbest := C
Let ` be the divergent length of Cbest with C, `′ be the divergent length of C with Cbest.

• If ` < η and `′ < η

– If ` < `′ then Cbest := C

• If ` ≥ η or `′ ≥ η
Let t′ be the round number for the η-th divergent block on Cbest. Set t′ :=∞ if ` < η

Let t be the round number for the η-th divergent block on C. Set t :=∞ if `′ < η

– If t < t′ then Cbest := C.

Let ` := len(Cbest). Set Cbest := ∅.
For any chain C ∈ C′ and len(C) ≥ `− g, let `′ be the divergent length of C with Cbest ,

if `′ < η then Cbest := Cbest ∪ {C}. (g is a small constant, g = 2 typically.)

�en return Cbest as the output.

Figure 13: �e core-chain set validation subroutine BestCore•.

Proof. From the modi�ed protocol, we also know that the adaptive key generation will not a�ect

the �rst η blocks. It is said that the adaptive strategy will not help the malicious players to

shorten the rounds for the �rst η blocks. �e probability that `hidden > `public equals to the

probability that the malicious players break common pre�x property. From Corollary 4.9, we

have Pr[`public > `hidden] > 1− e−Ω(`hidden)
.

36

From the modi�ed protocol, we know that if there are two divergent chains, the honest players

will compare the �rst η di�erent blocks. Suppose η is large enough. From Lemma 5.3, we know

that the hidden chain will not be accepted with overwhelming probability, even the adversary

follows the adaptive key registration strategy. �at means, the adaptive key registration strategy

is not helpful for extending the hidden chain.

5.3.2 Security properties in the presence of an adaptive adversary

Chain growth. Honest players in protocol Πcore•
will extend the chains in the same way as

that in protocol Πcore?
. From Corollary 4.7 we have:

Corollary 5.4 (Chain growth). Consider core-chain protocol Πcore•
in the presence of a fully-greedy

and adaptive adversary. Consider an honest PoS-player P′ with best local PoS core-chain C ′ in round
r′, and an honest PoS-player P′′ with best local core-chain C ′′ in round r′′, where r′′ > r′. �en we

have Pr
[
len(C ′′)− len(C ′) ≥ g · t

]
≥ 1− e−Ω(t)

, where t = r′′ − r′, g = (1− δ)α?, and δ > 0.

Chain quality. From Lemma 5.3 and 5.2, the adversary cannot obtain additional advantage by

playing the adaptive strategy. �at is, they cannot produce more blocks by adaptively selecting

key-pairs and having their stakes registrated. From Corollary 4.8 we have:

Corollary 5.5 (Chain quality). Consider α? = λβ?, λ > 1, and δ > 0. Consider core-chain protocol
Πcore•

with a greedy and adaptive adversary. Consider an honest PoS-player with PoS core-chain C.
Consider that ` consecutive block-cores of C, where `good block-cores are generated by honest PoS-

players. �en we have Pr
[
`good
`
≥ µ

]
≥ 1− e−Ω(`)

, where µ = 1− (1 + δ) 1
λ
.

Common pre�x. Again, from Lemma 5.3 and Lemma 5.2, the adversary cannot obtain extra

bene�t by playing the adaptive strategy. �ey cannot produce more blocks by adaptively selecting

key pairs. From Corollary 4.9 we have:

Corollary 5.6 (Common pre�x). Consider α? = λβ?, λ > 1, and δ > 0. Consider core-chain

protocol Πcore•
with a fully-greedy and adaptive adversary. Consider two honest PoS-players, P in

round r and P′ in round r′, with the local best PoS core-chains C, C ′, respectively, where r′ ≥ r. �en

we have Pr [C[1, `] � C ′] ≥ 1− e−Ω(κ)
, where ` = len(C)−Θ(κ).

Chain soundness. As in Corollary 4.10, we can achieve the chain soundness property because

we use the longest chain is the best chain policy. Otherwise, if a new player accepts a chain which

is not the best public chain, this chain will also be accepted by existing players. �e common

pre�x property will be violated.

Corollary 5.7 (Chain soundness). Consider for every round, α? = λβ?, λ > 1, and δ > 0. Consider
core-chain protocol Πcore•

with a fully-greedy and adaptive adversary. Consider two honest PoS-

players, P′ and P′′ in round r, with the local best core-chains C ′ and C ′′, respectively, where P′ is a
new player and P′′ is an existing player in round r. �en we have C ′[¬κ] � C ′′ and C ′′[¬κ] � C ′.

37

6 From core-chain to blockchain
In this section, we start to extend the core-chain protocol in Section 5 to a blockchain protocol

in which payload (transactions) will be included. We want to emphasize that the payload cannot

be included into the core block directly. If the payload is in the core block, the malicious players

may try to brute-force di�erent payloads to get the solution that satis�es the hash inequality.

Furthermore, the scheme must guarantee that a malicious player can not change the payload he

signed before. In a concurrent work, Ouroboros Praos [21] requires honest users are able to

erase the signing key a�er it is used to sign a block. �is is a strong assumption and it may be

too complicated to implement. On contrary, our construction here requires nothing more other

than a regular signature.

Intuitively, the core-chain can be viewed as a (biased) random beacon; we can use the beacon

to select a PoS-player to generate a new block with payload. �e block with payload will also be

linked as a hash chain which is called main blockchain. More concretely, once a new block-core

Bi+1 is generated by a PoS-player (in the blockchain protocol), then the PoS-player is selected to

generate the new block B̃i+1, in the following format B̃i+1 = 〈hash(B̃i),Bi+1, X̃i+1, p̃k, σ̃〉where

σ̃ ← Sign
s̃k

(h̃i,Bi+1, X̃i) and h̃i := hash(B̃i), and Bi+1 := 〈hi, round, pk, σ〉. X̃i+1 is payload.

Here we note that in our blockchain protocol design, the PoS-player holds two combined pairs

of keys, (sk, pk) of the strengthened unique signature scheme (uKeyGen, uSign, uVerify), and

(s̃k, p̃k) of a regular digital signature scheme (KeyGen, Sign,Verify). Now the blocks in the main

blockchain are “glued” with the block-cores in the blockchain, and we can reduce the security of

the blockchain protocol to the security of the blockchain protocol.

In the formal description of our blockchain protocol below, we will use a slightly augmented

setup functionality F̃•rCERT to capture the hash inequality and the block and block-core sign-

ing/veri�cation. Similarly, this setup functionality can be implemented by using hash function

H(·) and a digital signature scheme.

6.1 Setup functionality F̃•rCERT

In our blockchain protocol design, we will use the setup functionality, F̃•rCERT (in Figure 14),

which is an augmented version of the resource certi�cation functionality in Section 5.1. �e �rst

two phases, “Stake Resource Registration” and “Stake Election”, remain the same. A new phase,

“Signature Generation”, is de�ned to be utilized to sign a main block. And “Block Veri�cation” is

extended to verify main block.

6.2 Main blockchain protocol
We now describe our PoS based blockchain protocol Πmain

. �e blockchain protocol can be

viewed as an augmented version of the core-chain protocol in Section 5.2, and now it uses the aug-

mented resource certi�cate functionality F̃•rCERT as setup functionality. �e functionality F̃•rCERT
has the same phases as of F•rCERT. �e di�erence is F̃•rCERT will provide extra service for main

block signature and veri�cation.

As in the core-chain protocol, for each PoS-player P, once activated by the environment on

(Input-Stake,P) at a round, and received a blockchain set C̃ from FNET, the party P �nds the

best valid blockchain C̃best by running the subroutine BestMain (in Figure 16), and then updates

38

Functionality F̃•rCERT

�e functionality performs same functions with F•rCERT when receiving commands for Stake Resource
Registration, Stake Election, and Block Veri�cation.

In addition:

Signature Generation:
Upon receiving (Block-Sign,P,msg) from a party P, send (Block-Sign,P,msg) to the adversary.

Upon receiving (Signature,P,msg , σ̃) from the adversary, verify that no entry (P,msg , σ̃, 0)
is recorded. If it is, then output an error message (Error) to P and halt. Else, output

(Block-Signed,P,msg , σ̃) to P, and record the entry (P,msg , σ̃, 1).

Block Veri�cation:
Upon receiving (Block-Verify,P,msg , σ̃) from a party P′ ∈ P,

1. If there exists a record of the form (P, ·), (the party P is elected) then send

(Block-Verify,P,msg , σ̃) to the adversary. Upon receiving (Block-Verified,P,msg , φ̃) from

the adversary, do:

If (P,msg , σ̃, 1) is recorded, then set f := 1.

Else, if P is not corrupted, and no entry (P,msg , σ̃′, 1) for any σ̃′ is recorded, then set f := 0
and record the entry (P,msg , σ̃, f).

Else, if there is an entry (P,msg , σ̃, f ′), then set f := f ′.

Else, set f := φ̃, and record the entry (P,msg , σ̃, f).

Output (Block-Verified,P,msg , f) to the party P′.

2. Otherwise, if there is no record of the form (P, ·), (the party P is not elected)

set f := 0 and output (Block-Verified,P,msg , f) to the party P′.

Figure 14: Augmented resource certi�cation functionality F̃•rCERT.

its local blockchain C̃ := C̃best. Note that, the i-th block in blockchain C̃, is in the following

format B̃i := 〈〈h̃i−1,Bi, X̃i〉,Pi, σ̃i〉. �at means, from B̃i, we can obtain the i-th block-core

Bi. We thus can derive the core-chain C from the blockchain C̃. If the PoS-player P is se-

lected (with certain probability p), he can query the functionality to generate a signature σ for

context := 〈h`, round`+1〉. �en he de�nes a new block-core B`+1 := 〈〈h`, round`〉,P, σ〉, up-

dates his local core-chain C. Once the new block-core B`+1 is generated, the PoS-player P can

query the functionality to generate a signature σ̃ for msg := 〈h̃`,B`+1, X̃`+1〉. �en he can de-

�ne a new block B̃`+1 := 〈〈h̃`,B`+1, X̃`+1〉,P, σ̃〉, and update his local blockchain C̃. He then

broadcasts the local blockchain to the network. Please refer to Figure 15 for more details of our

blockchain protocol. In the veri�cation phase, the functionality F̃•rCERT will verify if the main-

chain is valid a�er the core-chain is veri�ed to ensure the payload is correct.

In Section 5, our proof-of-stake core-chain protocol Πcore•
uses the subroutine BestCore• to

single out the best valid core-chain from a set of core-chains. Here we describe a similar strategy,

subroutine BestMain, to single out the best blockchain from a set of blockchains. �e subroutine

BestMain here is a slightly augmented version of the subroutine BestCore• in our core-chain

protocol. Intuitively, a blockchain is the best one if it is the current longest valid blockchain. �e

BestMain subroutine takes as input, a blockchain set C̃′ and the current time information round′.

Intuitively, the subroutine validates all C̃ ∈ C̃′, then �nds the valid longest blockchain.

In more detail, BestMain proceeds as follows. On input the current set of blockchains C̃′ and

the current time information round, and for each blockchain C̃, the subroutine �rst unfolds the

39

Protocol Πmain

Πmain
performs same as Πcore•

by calling subroutine BestMain and F̃•rCERT instead of BestCore• and

F•rCERT.

In addition, in Stake election :

If the player is elected to generate a block a�er generating a core-block he will:

• A�empt to extend PoS blockchain:

– Generate a new block:

If the new block-core B is obtained, then compute h̃` := hash(C̃[`]), send

(Sign,P, 〈h̃`,B , X̃〉) to functionality F̃•rCERT, and receive (Signed,P, 〈h̃`,B , X̃〉, σ̃) from

F̃•rCERT.

set the new block B̃ := 〈〈h̃`,B , X̃〉,P, σ̃〉, and set C̃ := C̃‖B̃ , and state := state ∪ {C̃},
and then send (Broadcast, C̃) to FNET.

Figure 15: Our proof-of-stake blockchain protocol Πmain
in the {F̃•rCERT,FNET}-hybrid model.

(See Figure 16 for the subroutine BestMain.)

blockchain C̃ into the corresponding core-chain C; the subroutine then evaluates every block-core

of the core-chain C, and then every block of the blockchain C̃, sequentially. Let ` be the length of

C̃. (` is also the length of the corresponding core-chain C.) Starting from the head of C, for every

block-core C[i], for all i ∈ [`], in the core-chain C, the BestMain subroutine (1) ensures that C[i]
is linked to the previous block-core C[i− 1] correctly, and (2) tests if the signature generated by

that PoS-player can be veri�ed (by interacting with F̃•rCERT). �en for every block-core C̃[i], for all

i ∈ [`], in the blockchain C̃, the BestMain subroutine (1) ensures that C̃[i] is linked to the previous

block C̃[i− 1] correctly, and (2) tests if the signature generated by that PoS-player can be veri�ed

(by interacting with F̃•rCERT). A�er the validation, the best valid blockchain set is selected. Please

refer to Figure 16 for more details.

Subroutine BestMain

�e subroutine BestMain is allowed to access to the functionality F̃•rCERT, and with input

(C̃′, round).

For every chain C̃ ∈ C̃′, and proceed as follows.

1. Set ` := len(C̃). Derive C from C̃.

2. Perform same as in BestCore•.

In addition verify each block on C̃ by query (Block-Verify,Pi, 〈h̃i−1,Bi, X̃i〉, σ̃i) to

F̃•rCERT.

Perform same best chain strategy with C̃ as in BestCore•.

Figure 16: �e chain set validation subroutine BestMain.

40

6.3 Analysis of blockchain protocol
As mentioned before, our blockchain protocol Πmain

can be viewed as an augmented version of

the core-chain protocol Πcore•
in Section 5; each security property of our blockchain protocol

can be reduced to the corresponding property of the core-chain protocol. We note that, as in the

core-chain protocol Πcore•
, the security properties hold under the assumption of honest majority

of e�ective stakes based on α? and β?.

�eorem 6.1. Consider blockchain protocolΠmain
where honest players follow the 2-greedy strategy

while adversarial players follow the fully-greedy strategy. If α? = λβ?, λ > 1, then the protocol

Πmain
can achieve chain growth, chain quality, common pre�x and chain soundness properties.

Chain growth. Chain growth property comes from that of the core-chain protocol. If a PoS-

player is chosen to generate a block-core in the core-chain, the PoS-player is also be chosen to

generate the corresponding block in the blockchain. �at means, when the core-chain is extended

with a new block-core, the corresponding blockchain is also extended with a new block. More

formally, we have the following statement.

Corollary 6.2 (Chain growth). Consider the blockchain protocol Πmain
. Consider α? = λβ?, λ > 1,

and δ > 0. Consider an honest PoS-player with the best PoS blockchain C̃ in round r, and local PoS
blockchain C̃ ′ in round r′, where r′ > r. �en we have Pr

[
len(C̃ ′)− len(C̃) ≥ g · t

]
≥ 1− e−Ω(t)

,

where t = r′ − r, g = (1− δ)α?.

Proof. From the protocol, we know that every PoS blockchain C̃ is associated with a PoS core-

chain C. Each valid block-core B has a corresponding block B̃ . We have, len(C̃ ′) = len(C ′) and

len(C̃) = len(C). �at means, len(C̃ ′)− len(C̃) = len(C ′)− len(C). From Corollary 5.4, we have

Pr
[
len(C̃ ′) − len(C̃) ≥ g · t

]
= Pr

[
len(C ′) − len(C) ≥ g · t

]
≥ 1 − e−Ω(t)

. �is completes the

proof.

Chain quality. Similarly, if an honest player contributes a block-core to the core-chain, he also

contributes a block to the blockchain. More formally, we have the following statement.

Corollary 6.3 (Chain quality). Consider the blockchain protocol Πmain
. Consider α? = λβ?, λ > 1,

and δ > 0. Consider an honest PoS-player with the best PoS blockchain C̃. Consider any ` consecutive
blocks on C̃, including `good blocks are generated by honest PoS-players. �en we have Pr[

`good
`
≥

µ] ≥ 1− e−Ω(`)
where µ = 1− (1 + δ) 1

λ
.

Proof. From the algorithms, we know that every PoS blockchain C̃ is associated with a PoS core-

chain C. Let `core

good be the number of block-cores from honest stakeholders on core-chain C. Let

`main

good be the number of blocks from honest stakeholders on blockchain C̃. Recall that both block-

core C[i] and the corresponding block C̃[i] are signed by the same stakeholder. We have `core

good =

`main

good = `good. We also have that len(C) = len(C̃) = `. From Corollary 5.5 we have Pr[
`good
`
≥

µ] ≥ 1− e−Ω(`)
, where µ = 1− (1 + δ) 1

λ
.

Common pre�x. Our analysis is based on the common pre�x analysis of core-chain. �e

core-chain can achieve common pre�x as we discussed. �e opportunity for malicious players to

destroy common pre�x probability is to generate di�erent blockchain for the same core-chain. For

41

the malicious players can sign di�erent blocks for one block-core, this will allow him to fork the

blockchain. So the malicious players can fork the blockchain when they are chosen to generate

block. However, with the property of hash function, the malicious players can not generate two

blocks with same hash value. When an honest player is chosen to extend a block, he will only

support one blockchain. �en all of the honest players will converge on one blockchain.

Corollary 6.4 (Common pre�x). Consider the blockchain protocol Πmain
. Consider α? = λβ?,

λ > 1, and δ > 0. Consider two honest PoS-players, P in round r and P′ in round r′, with the local

best PoS blockchains C̃, C̃ ′, respectively, where r′ ≥ r. �en we have Pr[C̃[1, `] � C̃ ′] ≥ 1− e−Ω(κ)
,

where ` = len(C)−Θ(κ).

Proof. As we discussed, C̃ and C̃ ′ are associated with core-chains C and C ′ respectively. From

Corollary 5.6 we know that Pr[C[1, `] � C ′] ≥ 1− e−Ω(κ)
.

Based on the assumption that α? = λβ? and λ > 1, we can have that the malicious players

are not able to generate more than Θ(κ) blocks before an honest player is chosen to generate

block with high probability. All of the honest players will converge on the same chain. Put them

together, we have Pr[C̃[1, `] � C̃ ′] ≥ 1− e−Ω(κ)
where ` = len(C)−Θ(κ).

Chain soundness. A new player will accept a blockchain (in which the corresponding core-

chain is included). �e proof idea for achieving chain soundness property of our blockchain

protocol directly follows that for the core-chain protocol. We have the following statement.

Corollary 6.5 (Chain soundness). Consider the blockchain protocol Πmain
. Consider for every

round, α = λβ, λ > 1, and δ > 0. �ere are two honest PoS-players, P′ and P′′ in round r,
with the local best PoS blockchains C̃ ′ and C̃ ′′, respectively. Let P′ be a new player and P′′ be an
existing player in round r. �en we have C̃ ′[¬κ] � C̃ ′′ and C̃ ′′[¬κ] � C̃ ′.

Proof. Blockchains C̃ ′ and C̃ ′′ are associated with core-chains C ′ and C ′′ respectively. From

Lemma 3.5 we know that C ′[¬κ] � C ′′ and C ′′[¬κ] � C ′. We immediately have C̃ ′[¬κ] � C̃ ′′
and C̃ ′′[¬κ] � C̃ ′.

7 Extensions and Discussions
Our design is a natural mimic of Nakamoto’s but via proof-of-stake. We can easily “borrow”

many ideas in Nakamoto’s white paper (and in follow-up papers), to our design. Our design can

tolerate well-known rational a�acks. In this section, we discuss a few of them.

Blockchain with adaptive di�culty adjustment. In Bitcoin, in order to maintain a steady

chain growth rate, the system adjusts the PoW hash target di�culty adaptively. �e smaller

target, the lower probability to get a valid PoW block by a hash function query, and vice versa.

Our scheme can be extended to support adaptive di�culty easily. As in Nakamoto’s system,

the target di�culty is adjusted every m blocks for some integer m. �e time span of di�culty

adjustment is called an epoch; and let t be the expected time of an epoch. Let ti be the actual

time span of the i-th epoch, and Ti be the target di�culty in the i-th epoch. We have the target

di�culty in the (i+ 1)-th epoch as follows:

Ti+1 =
ti
t
Ti

42

From the equation above we can observe that, if ti > t then Ti+1 > Ti and vice-versa. In the

case that ti > t, the stakeholders spend longer time to obtain m blocks; it means the system

requires more time than expected for the i-th epoch; thus, the target di�culty should be increased

so that the stakeholders can �nd new blocks faster in the next epoch. �is negative feedback

mechanism makes the system stable. To extend a PoS blockchain, we modify the hash inequality

as H(hash(Bi), round, pk, σ) < Ti. A player will test if he is quali�ed to sign a PoS-block based

on the current target di�culty Ti.

Blockchain in the non-�at model. Our ideas in previous sections are described in the “�at”

model, where all PoS-players are assumed to hold the same number of stakes (and they are se-

lected as the wining player with the same probability in each round). In reality, PoS-players

have di�erent amounts of stake. We next discuss how to extend our design ideas properly into

this more realistic “non-�at” model. Consider a PoS-player, with veri�cation-signing key pair

(pk, sk), holding v number of stakes. Let Tj denote the target di�culty in the current epoch, i.e.,

the j-th epoch. We change the hash inequality as follows:

H(hash(Bi), round, pk, σ) < vTi

Now we argue that the winning probability of a PoS-player for generating a new block-core is

proportional to the amount of stake he controls. We assume the total amount of stakes in the

whole system is n; consider hash function H : {0, 1}∗ 7→ {0, 1}κ. We assume np � 1, where

p = Ti
2κ

. Now the PoS-player can play di�erent strategies. If the PoS-player puts his v coins

in one account, the probability that he is selected to sign a PoS block is vp. If the PoS-player

puts his v coins in v accounts and every account has one stake, the probability that an account

is selected to sign a PoS block is p. �e outputs of hash function are independent for di�erent

veri�cation keys. �e total probability that the PoS-player is selected is 1− (1− p)v ≈ vp. �at

is, the probability a stakeholder is selected in the non-�at model is (approximately) equal to the

accumulated probability that he distributes the stakes to di�erent accounts as in the �at-model.

For a PoS-player, the probability that he is selected only depends on the total amount of stakes

he controls.

Nothing at stake. Nothing at stake is a rational a�ack against the PoS blockchain, where the

optimal strategy for any rational player is to validate every chain, i.e. greedily, so that the player

gets his reward no ma�er which fork wins.

Our design can e�ectively defeat nothing at stake a�ack. As shown in Section 4, in the mod-

i�ed core-chain protocol Πcore?
, players follows the g-greedy strategy. As we pointed out earlier,

nothing at stake a�ackers will follow the full-greedy strategy to try to obtain the best outcome.

From Lemma 4.4, we have proved that in our protocol, the ampli�cation ratio for nothing at stake

a�ackers (following the full-greedy strategy) is bounded, which means the number of blocks that

a�ackers can contribute to a chain is also bounded. �e length of chains will grow and follow

Pascal’s Triangle coe�cients with greedy players. Based on the above results, we have showed

that in the presence of full-greedy adversary, our protocol can still achieve chain soundness.

Sel�sh mining. Sel�sh mining is a signi�cant threat to the cryptocurrenies. �is is where one

miner or mining pool do not publish and distribute a valid solution to the rest of the network

43

once they solve the puzzle. Following this strategy, sel�sh miners will continuously maintain

a lead during the whole mining process. Several analysis showed that the rewards that sel�sh

miners can claim does not necessarily re�ect the computing power they control. �is greatly

endangers the fairness of the PoW blockchain. In general, PoS systems are even more vulnerable

to the sel�sh miners. �is is because sel�sh miners in a PoS system can predict the moment they

should generate two or more blocks on a private hidden chain in a given round.

Our design can e�ectively weaken the a�ect of sel�sh mining. As shown in Section 4, in the

modi�ed core-chain protocol where adversaries follow the g-greedy strategy (meaning players

will try to extend the longest g layers of blockchain instead of the longest one),the blocks gener-

ated by the honest players will be defeated by the ones from sel�sh miners only if they are shorter

more than g blocks. �e greater g is, the lower the probability that sel�sh miners succeed.

Synchronization. In our construction, in the hash inequality H(hash(Bi), round, pk, σ) < Ti,

each player relies on his local clock to set the value round. In our security analysis in previous

sections, for simplicity, we assume these local clocks can be perfectly synchronized via a global

clock. In our future work, we will improve our security analysis so that our protocol can be based

on a “relaxed” global clock (in the sense that, players’ local clocks may deviate from the “idealized”

clock slightly). We note that, this “relaxed” global clock can be instantiated via the Network

Time Protocol (NTP). Typically, NTP can synchronize players within tens of milliseconds over

the public Internet.

Other considerations. We can also mimic Nakamoto’s design and incentivize the players to

participate in the protocol by collecting the “rewards”. We note that new ideas (e.g., [45]) can

be adopted. To extend our design idea to a full-�edged blockchain protocol, we also need to use

authenticated data structure to more e�ectively manage the transactions. In stead of straightfor-

wardly including the entire “payload” X̃i in the block B̃i (as in Section 6, and in [27, 44]), we can

store a Merkle root in B̃i. New ideas (e.g., [47]) can also be used in our design.

Acknowledgement: We are very grateful to Andrew Miller and Jonathan Katz for many useful

discussions about proof-of-stake protocol design; in particular, we thank Andrew for pointing out

a technical issue in an early version [26] of this proposal, and Jonathan for verifying the current

results. We thank Alex Chepurnoy, Yi Ding, Tuyet Duong, and Yanxue Jia for helpful discussions

about scalable blockchain protocols in the open network se�ings, and for proofreading the early

versions of the paper. Finally, we thank Euorcrypt 2018 PC for their valuable feedback, and the

presentation has been improved based on their suggestions.

References
[1] Litecoin. 2011. h�ps://litecoin.org.

[2] NXT whitepaper. 2014. h�ps://www.dropbox.com/s/cbuwrorf672c0yy/NxtWhitepaper v122 rev4.

pdf.

[3] A. Back. Hashcash — A denial of service counter-measure. 2002. h�p://hashcash.org/papers/

hashcash.pdf.

44

https://litecoin.org
https://www.dropbox.com/s/cbuwrorf672c0yy/NxtWhitepaper_v122_rev4.pdf
https://www.dropbox.com/s/cbuwrorf672c0yy/NxtWhitepaper_v122_rev4.pdf
http://hashcash.org/papers/hashcash.pdf
http://hashcash.org/papers/hashcash.pdf

[4] M. Bellare and P. Rogaway. Random oracles are practical: A paradigm for designing e�cient proto-

cols. In Proceedings of the 1st ACM Conference on Computer and Communications Security, CCS ’93,

pages 62–73. ACM, 1993.

[5] I. Bentov, A. Gabizon, and A. Mizrahi. Currencies without proof of work. In Bitcoin Workshop, 2016.

[6] I. Bentov, C. Lee, A. Mizrahi, and M. Rosenfeld. Proof of activity: Extending bitcoin’s proof of work

via proof of stake. In SIGMETRICS Perform. Eval. Rev., pages 34–37. ACM, 2014.

[7] Bitcointalk. Proof of stake instead of proof of work. July 2011. Online post by �antumMechanic,

available at h�ps://bitcointalk.org/index.php?topic=27787.0.

[8] D. Boneh, B. Lynn, and H. Shacham. Short signatures from the Weil pairing. In C. Boyd, editor,

ASIACRYPT 2001, volume 2248 of LNCS, pages 514–532. Springer, Heidelberg, Dec. 2001.

[9] J. Bonneau, A. Miller, J. Clark, A. Narayanan, J. A. Kroll, and E. W. Felten. SoK: Research perspectives

and challenges for bitcoin and cryptocurrencies. In 2015 IEEE Symposium on Security and Privacy,

pages 104–121. IEEE Computer Society Press, May 2015.

[10] V. Buterin. A Next-Generation Smart Contract and Decentralized Application Platform. 2014. h�ps:

//github.com/ethereum/wiki/wiki/White-Paper.

[11] V. Buterin. Understanding serenity, part 2: Casper. 2015. h�ps://blog.ethereum.org/2015/12/28/

understanding-serenity-part-2-casper/.

[12] R. Cane�i. Security and composition of multiparty cryptographic protocols. Journal of Cryptology,

13(1):143–202, 2000.

[13] R. Cane�i. Universally composable security: A new paradigm for cryptographic protocols. Cryptol-

ogy ePrint Archive, Report 2000/067, 2000. h�p://eprint.iacr.org/2000/067.

[14] R. Cane�i. Universally composable signatures, certi�cation and authentication. Cryptology ePrint

Archive, Report 2003/239, 2003. h�p://eprint.iacr.org/2003/239.

[15] R. Cane�i and T. Rabin. Universal composition with joint state. In D. Boneh, editor, CRYPTO 2003,

volume 2729 of LNCS, pages 265–281. Springer, Heidelberg, Aug. 2003.

[16] D. Chaum. Blind signatures for untraceable payments. In D. Chaum, R. L. Rivest, and A. T. Sherman,

editors, CRYPTO’82, pages 199–203. Plenum Press, New York, USA, 1982.

[17] J. Chen and S. Micali. Algorand. In arXiv:1607.01341, May 2017. h�p://arxiv.org/abs/1607.01341.

[18] A. Chepurnoy, T. Duong, L. Fan, and H.-S. Zhou. Twinscoin: A cryptocurrency via proof-of-work and

proof-of-stake. In Cryptology ePrint Archive, Report 2017/232, 2017. h�ps://eprint.iacr.org/2017/232.

[19] CryptoManiac. Proof of stake. novacoin wiki. 2014. h�ps://github.com/novacoin-project/novacoin/

wiki/Proof-of-stake/.

[20] P. Daian, R. Pass, and E. Shi. Snow white: Robustly recon�gurable consensus and applications to

provably secure proofs of stake. In Cryptology ePrint Archive, Report 2016/919, April 2017. h�p:

//eprint.iacr.org/2016/919.

45

https://bitcointalk.org/index.php?topic=27787.0
https://github.com/ethereum/wiki/wiki/White-Paper
https://github.com/ethereum/wiki/wiki/White-Paper
https://blog.ethereum.org/2015/12/28/understanding-serenity-part-2-casper/
https://blog.ethereum.org/2015/12/28/understanding-serenity-part-2-casper/
http://eprint.iacr.org/2000/067
http://eprint.iacr.org/2003/239
http://arxiv.org/abs/1607.01341
https://eprint.iacr.org/2017/232
https://github.com/novacoin-project/novacoin/wiki/Proof-of-stake/
https://github.com/novacoin-project/novacoin/wiki/Proof-of-stake/
http://eprint.iacr.org/2016/919
http://eprint.iacr.org/2016/919

[21] B. David, P. Gazi, A. Kiayias, and A. Russelly. Ouroboros Praos: An adaptively-secure, semi-

synchronous proof-of-stake blockchain. In Cryptology ePrint Archive, Report 2017/573, Jun 2017.

h�p://eprint.iacr.org/2017/573.

[22] T. Duong, L. Fan, and H.-S. Zhou. 2-hop blockchain: Combining proof-of-work and proof-of-stake

securely. In Cryptology ePrint Archive, Report 2016/716, 2016. h�ps://eprint.iacr.org/2016/716.

[23] C. Dwork and M. Naor. Pricing via processing or comba�ing junk mail. In E. F. Brickell, editor,

CRYPTO’92, volume 740 of LNCS, pages 139–147. Springer, Heidelberg, Aug. 1993.

[24] I. Eyal. �e miner’s dilemma. In 2015 IEEE Symposium on Security and Privacy, pages 89–103. IEEE

Computer Society Press, May 2015.

[25] I. Eyal and E. G. Sirer. Majority is not enough: Bitcoin mining is vulnerable. In N. Christin and

R. Safavi-Naini, editors, FC 2014, volume 8437 of LNCS, pages 436–454. Springer, Heidelberg, Mar.

2014.

[26] L. Fan and H.-S. Zhou. iChing: A Scalable Proof-of-Stake Blockchain in the Open Se�ing (or, How to

Mimic Nakamoto’s Design via Proof-of-Stake). July 2017. h�ps://eprint.iacr.org/2017/656/20170705:

220223.

[27] J. A. Garay, A. Kiayias, and N. Leonardos. �e bitcoin backbone protocol: Analysis and applications.

In E. Oswald and M. Fischlin, editors, EUROCRYPT 2015, Part II, volume 9057 of LNCS, pages 281–310.

Springer, Heidelberg, Apr. 2015.

[28] J. A. Garay, A. Kiayias, and N. Leonardos. �e bitcoin backbone protocol with chains of variable

di�culty. In CRYPTO, 2017. h�ps://eprint.iacr.org/2016/1048.

[29] D. Ho�einz and J. Müller-�ade. Universally composable commitments using random oracles. In

M. Naor, editor, TCC 2004, volume 2951 of LNCS, pages 58–76. Springer, Heidelberg, Feb. 2004.

[30] Intel. Proof of Elapsed Time (PoET). 2016. h�ps://intelledger.github.io/introduction.html.

[31] A. Kiayias, E. Koutsoupias, M. Kyropoulou, and Y. Tselekounis. Blockchain mining games. In Pro-

ceedings of the 2016 ACM Conference on Economics and Computation (EC), pages 365–382, 2016.

[32] A. Kiayias and G. Panagiotakos. Speed-security tradeo�s in blockchain protocols. Cryptology ePrint

Archive, Report 2015/1019, 2015. h�p://eprint.iacr.org/2015/1019.

[33] A. Kiayias and G. Panagiotakos. On trees, chains and fast transactions in the blockchain. Cryptology

ePrint Archive, Report 2016/545, 2016. h�p://eprint.iacr.org/2016/545.

[34] A. Kiayias, A. Russell, B. David, and R. Oliynykov. Ouroboros: A provably secure proof-of-stake

blockchain protocol. In CRYPTO, 2017. h�p://eprint.iacr.org/2016/889.

[35] S. King and S. Nadal. PPCoin: Peer-to-peer crypto-currency with proof-of-stake. 2012. h�ps://

peercoin.net/assets/paper/peercoin-paper.pdf.

[36] J. Kwon. Tendermint: Consensus without mining. 2014. h�ps://tendermint.com/static/docs/

tendermint.pdf.

[37] A. Lysyanskaya. Unique signatures and veri�able random functions from the DH-DDH separation.

In M. Yung, editor, CRYPTO 2002, volume 2442 of LNCS, pages 597–612. Springer, Heidelberg, Aug.

2002.

46

http://eprint.iacr.org/2017/573
https://eprint.iacr.org/2016/716
https://eprint.iacr.org/2017/656/20170705:220223
https://eprint.iacr.org/2017/656/20170705:220223
https://eprint.iacr.org/2016/1048
https://intelledger.github.io/introduction.html
http://eprint.iacr.org/2015/1019
http://eprint.iacr.org/2016/545
http://eprint.iacr.org/2016/889
https://peercoin.net/assets/paper/peercoin-paper.pdf
https://peercoin.net/assets/paper/peercoin-paper.pdf
https://tendermint.com/static/docs/tendermint.pdf
https://tendermint.com/static/docs/tendermint.pdf

[38] A. Miller, A. Juels, E. Shi, B. Parno, and J. Katz. Permacoin: Repurposing bitcoin work for data

preservation. In 2014 IEEE Symposium on Security and Privacy, pages 475–490. IEEE Computer Society

Press, May 2014.

[39] T. Moran and I. Orlov. Proofs of space-time and rational proofs of storage. Cryptology ePrint Archive,

Report 2016/035, 2016. h�p://eprint.iacr.org/2016/035.

[40] S. Nakamoto. Bitcoin: A peer-to-peer electronic cash system. 2008. h�ps://bitcoin.org/bitcoin.pdf.

[41] A. Narayanan, J. Bonneau, , E. W. Felten, A. Miller, and S. Goldfeder. Bitcoin and cryptocurrency

technology. 2015. h�ps://www.coursera.org/learn/cryptocurrency.

[42] K. Nayak, S. Kumar, A. Miller, and E. Shi. Stubborn mining: Generalizing sel�sh mining and combin-

ing with an eclipse a�ack. Cryptology ePrint Archive, Report 2015/796, 2015. h�p://eprint.iacr.org/

2015/796.

[43] S. Park, K. Pietrzak, A. Kwon, J. Alwen, G. Fuchsbauer, and P. Gaži. Spacemint: A cryptocurrency

based on proofs of space. Cryptology ePrint Archive, Report 2015/528, 2015. h�p://eprint.iacr.org/

2015/528.

[44] R. Pass, L. Seeman, and A. Shelat. Analysis of the blockchain protocol in asynchronous networks. In

EUROCRYPT, 2017. h�ps://eprint.iacr.org/2016/454.

[45] R. Pass and E. Shi. FruitChains: A fair blockchain. Cryptology ePrint Archive, Report 2016/916, 2016.

h�p://eprint.iacr.org/2016/916.

[46] R. Pass and E. Shi. �e sleepy model of consensus. In Cryptology ePrint Archive, Report 2016/918, May

2017. h�p://eprint.iacr.org/2016/918.

[47] L. Reyzin, D. Meshkov, A. Chepurnoy, and S. Ivanov. Improving authenticated dynamic dictionaries,

with applications to cryptocurrencies. Cryptology ePrint Archive, Report 2016/994, 2016. h�p://

eprint.iacr.org/2016/994.

[48] A. Sapirshtein, Y. Sompolinsky, and A. Zohar. Optimal sel�sh mining strategies in bitcoin. In

J. Grossklags and B. Preneel, editors, FC 2016, volume 9603 of LNCS, pages 515–532. Springer, Heidel-

berg, Feb. 2016.

[49] O. Schrijvers, J. Bonneau, D. Boneh, and T. Roughgarden. Incentive compatibility of bitcoin mining

pool reward functions. In J. Grossklags and B. Preneel, editors, FC 2016, volume 9603 of LNCS, pages

477–498. Springer, Heidelberg, Feb. 2016.

[50] Y. Sompolinsky and A. Zohar. Secure high-rate transaction processing in bitcoin. In R. Böhme and

T. Okamoto, editors, FC 2015, volume 8975 of LNCS, pages 507–527. Springer, Heidelberg, Jan. 2015.

[51] P. Vasin. Blackcoin’s proof-of-stake protocol v2. 2014. h�p://blackcoin.co/

blackcoin-pos-protocol-v2-whitepaper.pdf.

[52] G. Wood. Ethereum: A secure decentralized transaction ledger. 2014. h�p://gavwood.com/paper.pdf.

[53] F. Zhang, I. Eyal, R. Escriva, A. Juels, and R. van Renesse. REM: Resource-E�cient Mining for

Blockchains. In USENIX Security, 2017. h�ps://eprint.iacr.org/2017/179.

47

http://eprint.iacr.org/2016/035
https://bitcoin.org/bitcoin.pdf
https://www.coursera.org/learn/cryptocurrency
http://eprint.iacr.org/2015/796
http://eprint.iacr.org/2015/796
http://eprint.iacr.org/2015/528
http://eprint.iacr.org/2015/528
https://eprint.iacr.org/2016/454
http://eprint.iacr.org/2016/916
http://eprint.iacr.org/2016/918
http://eprint.iacr.org/2016/994
http://eprint.iacr.org/2016/994
http://blackcoin.co/blackcoin-pos-protocol-v2-whitepaper.pdf
http://blackcoin.co/blackcoin-pos-protocol-v2-whitepaper.pdf
http://gavwood.com/paper.pdf
https://eprint.iacr.org/2017/179

A Supporting Materials

A.1 Implementing FrCERT in the {F̂CA, F̂uSIG,FRO}-hybrid model
We denote φrCERT as the ideal protocol for an ideal functionality FrCERT, and πrCERT as protocol

in the {F̂CA, F̂uSIG,FRO}-hybrid model. In the ideal protocol φrCERT, the dummy players only for-

ward the messages received from the environment to the functionality FrCERT, and then forward

the messages received from the functionality to the environment. Informally, each PoS-player

through his stake determines whether he is the elected leader in the current round or not; then

he is able to generate a valid signature, which can later be veri�ed by any other players. �e

protocol πrCERT is formally described in Figure 17.

Protocol πrCERT

�e protocol is parameterized by a PoS parameter p and a security parameter κ.

Each P ∈ P0, proceeds as follows.

Initially, pass (Keygen, sid, ssid) for some sid, ssid where ssid = (P, ssid′) for some ssid′ to the functional-

ity F̂uSIG. Upon receiving (Verification-Key, sid, ssid, pk) from F̂uSIG where pk ∈ {0, 1}poly(κ), record

pk. Next, send (Register, sid, ssid,P, pk) to the functionality F̂CA and receive (Registered, sid, ssid)

from the functionality F̂CA.

Stake Election: For each round, each registered party P sets φP,hprevz := 0, then proceeds as follows.

Upon receiving (Elect,P, 〈hprev, round〉) from the environment Z,

1. If φP,hprev = 0, send (Sign, sid, ssid,P, 〈hprev, round〉) to the functionality F̂uSIG.

Upon receiving (Signature, sid, ssid, (P, 〈hprev, round〉), σ) from F̂uSIG, send

(hprev, round, pk, σ) to the functionality FRO and receives h̃puzz
.

• If h̃puzz > T where T = p · 2κ, then set b := 0.

• Else, set b := 1.

Set φP,hprev := 1

Send (Elected,P, σ, b) to the environment.

2. Otherwise, ignore the message.

Block Veri�cation: Upon receiving (Core-Verify,P, 〈hprev, round〉, σ) from the environment Z, send

(Retrieve, sid, ssid) for some sid, ssid where ssid = (P, ssid′) for some ssid′ to the functionality F̂CA.

Upon receiving (Retrieved, sid, ssid, pk) from the functionality.

• If pk 6=⊥, send (Verify, sid, ssid, (P, 〈hprev, round〉, σ, pk) to the functionality F̂uSIG. Upon re-

ceiving (Verified, sid, ssid, (P, 〈hprev, round〉), f) from the functionality F̂uSIG. If f = 1, send

(hprev, round, pk, σ) to the functionality FRO and receives h̃puzz
.

– If h̃puzz > T where T = p · 2κ, then set f := 0.

– Else, set f := 1.

send (Core-Verified, (P, 〈hprev, round〉), σ, f) to the environment.

• Else, if pk =⊥, set f = 0, send (Core-Verified, (P, 〈hprev, round〉), σ, f) to the environment.

Figure 17: Resource certi�cation protocol πrCERT.

48

Let S be the adversary against the ideal protocol φrCERT, and A be the adversary against

protocol πrCERT. Let EXEC
FrCERT
φrCERT,S,Z

be the random variable denoting the joint view of all parties

in the execution of φrCERT with the adversary S and an environment Z. Let EXECF̂CA,F̂uSIG,FRO
πrCERT,A,Z

be

the random variable denoting the joint view of all parties in the execution of πrCERT with the

adversary A and an environment Z.

Lemma A.1. Consider φrCERT described above and πrCERT in Figure 17. It holds that the two ensem-

bles EXEC
FrCERT
φrCERT,S,Z

and EXECF̂CA,F̂uSIG,FRO
πrCERT,A,Z

are perfectly indistinguishable.

Proof. We show that the two executions are perfectly indistinguishable by the following simula-

tion. Consider the adversary A for πrCERT, we now construct an adversary S on input 1κ and a

PoS parameter p for φrCERT as follows. S stores a table T

Initialization and Stake Election:

Simulating the execution with an uncorrupted party P as follows. When S receives in the ideal

process a message (Core-Verify,P, 〈hprev, round〉, σ) from FrCERT, where P is uncorrupted,

it proceeds as follows:

If this is the �rst time that P generates a signature, then simulate for A the process of

key generation . �at is, send to A (in the name of F̂uSIG) (Keygen, sid, ssid) to the ad-

versary, and receive (Verification-Key, sid, ssid, pk) from the adversary A, then send

(Register, sid, ssid, pk) to the adversary A; upon receiving (Registered, sid, ssid) from

the adversary, then record the pair (ssid, pk).

Simulate for A the process of signing 〈hprev, round〉, send (Sign, sid, ssid, 〈hprev, round〉)
(in the name of F̂uSIG) to A. Upon receiving (Signature, sid, ssid, 〈hprev, round〉, σ) from

the adversary, forward (Signature, sid, ssid, 〈hprev, round〉, σ) to FrCERT.

Simulating the execution with a corrupted party P with F̂CA and F̂uSIG as follows.

Upon receiving (Keygen, sid, ssid) from party P, send (in the name of F̂uSIG) (Keygen, sid, ssid)
to the adversary, and receive (Verification-Key, sid, ssid, pk) from the adversary A, then

send (Verification-Key, sid, ssid, pk) (in the name of F̂uSIG) to P and record (ssid,P, pk).

Upon receiving (Register, sid, ssid,P, pk) from party P, send (Register, sid, ssid, pk) to

the adversary A; upon receiving (Registered, sid, ssid) from the adversary, then record

the pair (ssid, pk) and (Registered, sid, ssid) to P. �en, instruct the corrupted party P
send the message (Elect,P, 〈hprev, round〉) to FrCERT.

Upon receiving (Sign, sid, ssid,P, 〈hprev, round〉) from P, check if (ssid, 〈hprev, round〉, ·, ·)
has been recorded. If yes, ignore the request. Otherwise, send (Sign, sid, ssid, 〈hprev, round〉)
to the adversary. Upon receiving (Signature, sid, ssid, 〈hprev, round〉, σ) from the ad-

versary, output (Signature, sid, ssid, 〈hprev, round〉, σ) to party P, and record the entry

(ssid, 〈hprev, round〉, σ, pk, 1).

Simulate the interaction of any party P with FRO as follows. For query (hprev, round, pk, σ)
from party P, (hprev, round, pk, σ), send (Core-Verify,P, 〈hprev, round〉, σ) to FrCERT and

receive (Core-Verified, (P, 〈hprev, round〉), σ, f). If f = 0, choose random h̃puzz ∈ {0, 1}κ
such that h̃puzz > T where T = p · 2κ. If f = 1, choose h̃puzz ∈ {0, 1}κ such that h̃puzz ≤ T.

�en store ((hprev, round, pk, σ), h̃puzz)) in the table T and send h̃puzz
to P.

Block Veri�cation:

49

Simulating the execution with an uncorrupted party P as follows. When noti�ed by FrCERT

that some uncorrupted party P made a veri�cation request, proceed as follows. Upon receiv-

ing message (Core-Verify,P, 〈hprev, round〉, σ) from FrCERT, then forward this message to

A (in the name of F̂uSIG). Forward A’s response back to FrCERT.

Simulating the execution with a corrupted party P with F̂CA and F̂uSIG as follows.

Upon receiving (Retrieve, sid, ssid) from a corrupted party P for some party P′, send

(Retrieve, sid, ssid,P) to the adversary A, upon receiving (Retrieved, sid, ssid,P) from

the adversary. �en, if there is a recorded pair (ssid, pk) output (Retrieved, sid, ssid, pk)
to P. Else output (Retrieved, sid, ssid,⊥) to P. �en, instruct the corrupted party P to

send the message (Core-Verify,P, 〈hprev, round〉, σ) to FrCERT.

Upon receiving (Verify, sid, ssid, (P, 〈hprev, round〉, σ, pk) from a corrupted party P, gen-

erate a response following the instructions of F̂uSIG.

Simulate the interaction of any party P with FRO as follows. For query (hprev, round, pk, σ)
from party P check if ((hprev, round, pk, σ), h̃puzz)) in the table T and send h̃puzz

to party P.

Otherwise, send (hprev, round, pk, σ), send (Core-Verify,P, 〈hprev, round〉, σ) to FrCERT and

receive (Core-Verified, (P, 〈hprev, round〉), σ, f). If f = 0, choose random h̃puzz ∈ {0, 1}κ
such that h̃puzz > T where T = p · 2κ. If f = 1, choose h̃puzz ∈ {0, 1}κ such that h̃puzz ≤ T.

�en store ((hprev, round, pk, σ), h̃puzz)) in the table T and send h̃puzz
to P.

We now show that the two ensembles EXEC
FrCERT
φrCERT,S,Z

and EXECF̂CA,F̂uSIG,FRO
πrCERT,A,Z

are perfectly close.

Notice that for each election query, the adversary S is noticed by the functionalityFrCERT whether

this query is successful or not, then it samples the output randomly from a set {0, 1}κ that satis�ed

inequality H(hprev, round, pk, σ) ≤ T if the query is successful. Pu�ing them together, the views

of players in the two executions are perfectly indistinguishable.

A.2 Multi-Session Certi�cate Authority Functionality F̂CA

We present the certi�cate authority functionality following the modeling of [14, 15].

Functionality F̂CA

�e functionality F̂CA interacts with a set P of parties, and an adversary.

1. Upon receiving message (Register, sid, ssid, v) from party P ∈ P , verify that ssid = (P, ssid′)
for some ssid′. If not, ignore the request. Otherwise, send (Register, sid, ssid, v) to the adversary;

upon receiving (Registered, sid, ssid) from the adversary, then record the pair (ssid, v).

2. Upon receiving message (Retrieve, sid, ssid) from party P′ ∈ P, send (Retrieve, sid, ssid,P′)
to the adversary, upon receiving (Retrieved, sid, ssid,P′) from the adversary. �en, if there is a

recorded pair (ssid, v) output (Retrieved, sid, ssid, v) to P′. Else output (Retrieved, sid, ssid,⊥)
to P′.

Figure 18: Multi-session certi�cate authority functionality F̂CA.

50

A.3 Multi-Session Signature Functionality F̂uSIG

We present the multi-session version of the digital signature functionality in [14]. While the

digital signature functionality can be realized by a signature protocol which is based on ordinary

signature scheme, this functionality here can be realized by a signature protocol which is based on

unique signature scheme. �e underlying part highlights the di�erence be between ours and that

in [14]. We note that the de�nition of unique signature scheme can be found in next subsection.

Functionality F̂uSIG

�e functionality F̂SIG interacts with a set of signers {S1, . . . , Sk}, and a set of veri�ers {V1, . . . , Vn},
and an adversary S.

Key Gerneration: Upon receiving input (Keygen, sid, ssid) from a signer P ∈ {S1, . . . , Sk}, verify

that ssid = (P, ssid′) for some ssid′. If not, ignore the request. Otherwise, hand (Keygen, sid, ssid)
to the adversary. Upon receiving (Verification-Key, sid, ssid, pk) from the adversary, output

(Verification-Key, sid, ssid, pk) to the party P , and record (ssid,P, pk).

Signature Generation: Upon receiving input (Sign, sid, ssid,m) from a signer P ∈ {S1, . . . , Sk}, verify

that ssid = (P, ssid′) for some ssid′ and no (ssid,m, ·, ·) has been recorded. If not, ignore the request.

Otherwise, send (Sign, sid, ssid,m) to the adversary.

Upon receiving (Signature, sid, ssid,m, σ) from the adversary, verify that no entry (ssid,m, σ, pk, 0)
is recorded. If it is, then output an error message to P and halt. Otherwise, output

(Signature, sid, ssid,m, σ) to P , and record the entry (ssid,m, σ, pk, 1).

Signature Veri�cation: Upon receiving a message (Verify, sid, ssid,m, σ, pk′) from some party

P ∈ {V1, . . . , Vn}, hand (Verify, sid, ssid,m, σ, pk′) to the adversary. Upon receiving

(Verified, sid, ssid,m, φ) from the adversary, do:

1. If pk
′ = pk and the entry (ssid,m, σ, pk, 1) is recorded, then set f := 1.

2. Else, if pk
′ = pk, the signer of subsession ssid is not corrupted, and no entry (ssid,m, σ′, pk, 1)

for any σ′ is recorded, then set f := 0.

3. Else, if there is an entry (ssid,m, σ, pk′, f ′) recorded, then let f := f ′.

4. Else, let f := φ and record the entry (ssid,m, σ, pk′, φ).

Output (Verified, sid, ssid,m, f) to P .

Figure 19: Multi-session signature functionality F̂uSIG.

A.3.1 Unique signature scheme.

Unique signature scheme was introduced in [37], which consists of four algorithms, a random-

ized key generation algorithm uKeyGen, a deterministic key veri�cation algorithm uKeyVer, a

deterministic signing algorithm uSign, and a deterministic veri�cation algorithm uVerify. We ex-

pect for each veri�cation key there exists only one signing key. We also expect for each pair of

message and veri�cation key, there exists only one signature. We have the following de�nition.

De�nition A.2. We say (uKeyGen, uKeyVer, uSign, uVerify) is a strengthened unique signature

scheme, if it satis�es:

Correctness of key generation: Honestly generated key pair can always be veri�ed. More formally,

51

it holds that

Pr [(pk, sk)← uKeyGen(1κ) : uKeyVer(pk, sk) = 1] ≥ 1− negl(κ)

Uniqueness of signing key: �ere does not exist two di�erent valid signing keys for a veri�cation key.

More formally, for all ppt adversary A, it holds that

Pr

[
(pk, sk1, sk2)← A(1κ) :
uKeyVer(pk, sk1) = 1 ∧ uKeyVer(pk, sk2) = 1 ∧ sk1 6= sk2

]
≤ negl(κ)

Correctness of signature generation: For any message x, it holds that

Pr [(pk, sk)← uKeyGen(1κ);σ := uSign(sk, x) : uVerify(pk, x, σ) = 1] ≥ 1− negl(κ)

Uniqueness of signature generation: For any message x, it holds that

Pr

[
(pk, sk)← A(1κ) :
uVerify(pk, x, σ1) = 1 ∧ uVerify(pk, x, σ2) = 1 ∧ σ1 6= σ2

]
≤ negl(κ)

Unforgeability of signature generation: For all ppt adversary A,

Pr

[
(pk, sk)← uKeyGen(1κ); (x, σ)← AuSign(sk,·)(1κ) :
uVerify(pk, x, σ) = 1 ∧ (x, σ) 6∈ Q

]
≤ negl(κ)

where Q is the history of queries that the adversary A made to signing oracle uSign(sk, ·).

Remark A.3 (Instantiations for the unique signature scheme). E�cient instantiations can be

found in literature. For example, the well-known BLS signature [8] can be a good candidate.

A.4 Additional Functionalities
We here describe some functionalities which can be useful for our protocols in the body. We also

discuss some of their implementations.

A.4.1 Network communication FNET

�e underlying communication for blockchain protocols are formulated via a functionality FNET

which captures the atomic unauthenticated “send-to-all” broadcast in a semi-synchronous com-

munication se�ing. �e functionality is parameterized by an upper bound ∆ on the network

latency, and interacts with players under the direction of the adversary. More concretely, the

functionality proceeds as follows. Whenever it receives a message from a player, it would con-

tact the adversary to ask the adversary to specify the delivery time for the message. Note that,

if the speci�ed delivery time exceeds the delay upper bound ∆, the functionality would not fol-

low the adversary’s instruction, and only delay the message to a maximum number of ∆ rounds.

�at said, no messages are delayed more than ∆ rounds. In addition, the adversary could read

all messages sent by all honest players before deciding his strategy; the adversary may “spoof”

the source of a message they transmit and impersonate the (honest) sender of the message. �e

functionality FNET is formally described in Figure 20.

52

Functionality FNET

�e functionality is parametrized by ∆, and interacts with a set P of PoS-players, and the adversary.

• Upon receiving (Broadcast,m) from a party P at round r where P ∈ P, send (Broadcast,m)
to S and record (P,m, b, r) where b = 0.

• Upon receiving (Delay,m,P′, t) from Swhere P′ ∈ P (here, the adversary can “spoof” the source

of the message), then

– If there is a record (P,m, b, r) such that b = 0 and t ≤ ∆, then send (Message,P′,m) to

all other PoS-players at round r + t and reset b := 1.

– Else, if t > ∆, send (Message,P′,m) to all other PoS-players at round r + ∆ and reset

b := 1.

– Else, ignore the message.

Figure 20: Network functionality FNET.

A.4.2 Random Oracle Functionality FRO

�e random oracle model (e.g., [4]) captures an idealization of a hash function. We here present

the random oracle functionality FRO that has been de�ned in [29].

Functionality FRO

�e functionality FRO is parameterized by a security parameter κ, and interacts with a set P of parties,

and an adversary. �e functionality keeps a list L (which is initially empty) of pairs of bitstrings.

1. Upon receiving a value (m) (with m ∈ {0, 1}∗) from some party P ∈ P or from the adversary,

proceed as follows.

• If there is a pair (m, h̃) for some h̃ ∈ {0, 1}κ in the list L,set h := h̃.

• if there is no such pair, choose uniformly h ∈ {0, 1}κ and store the pair (m,h) in L.

Once h is set, reply to the requesting party with (h).

Figure 21: Random oracle functionality FRO.

53

	Introduction
	Chain soundness
	Our construction
	Related work
	Organization.

	Model
	Blockchain protocol executions
	Security properties

	Proof-of-stake core-chain, the basic design and analysis
	Setup functionality FrCERT
	Our core-chain protocol
	Security analysis for core-chain

	Securing the core-chain against a greedy adversary
	Greedy strategies
	The modified core-chain protocol core
	Security analysis

	Securing the core-chain against an adaptive adversary
	Setup functionality FrCERT
	The modified core-chain protocol core
	Security analysis

	From core-chain to blockchain
	Setup functionality rCERT
	Main blockchain protocol
	Analysis of blockchain protocol

	Extensions and Discussions
	Supporting Materials
	Implementing FrCERT in the {CA, uSIG,FRO }-hybrid model
	Multi-Session Certificate Authority Functionality CA
	Multi-Session Signature Functionality uSIG
	Additional Functionalities

