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Abstract. Attrapadung (Eurocrypt 2014) proposed a generic framework called pair encoding to simplify the de-
sign and proof of security of CPA-secure predicate encryption (PE) instantiated in composite order groups.Later
Attrapadung (Asiacrypt 2016) extended this idea in prime order groups. Yamada et al. (PKC 2011, PKC 2012)
and Nandi et al. (ePrint Archive: 2015/457, AAECC 2017) proposed generic conversion frameworks to achieve
CCA-secure PE from CPA-secure PE provided the encryption schemes have properties like delegation or verifi-
ability. The delegation property is harder to achieve and verifiability based conversion degrades the decryption
performance due to a high number of additional pairing evaluations. Blömer et al. (CT-RSA 2016) proposed
a direct fully CCA-secure predicate encryption in composite order groups but it was less efficient as it needed
a large number of pairing evaluations to check ciphertext consistency. As an alternative, Nandi et al. (ePrint
Archive: 2015/955) proposed a direct conversion technique in composite order groups. We extend the direct con-
version technique of Nandi et al. in the prime order groups on the CPA-secure PE construction by Attrapadung
(Asiacrypt 2016) and prove our scheme to be CCA-secure in a quite different manner. Our conversion technique
incurs a cost of exactly three additional ciphertext components and only one additional unit pairing evaluation
during decryption. This is a significant improvement over the available conversion mechanisms in prime order
groups. We also have presented an alternative construction of direct CCA-secure predicate encryption scheme
which is more efficient in the ciphertext size (only one additional ciphertext component) at the cost of increase
in pairing evaluations (three additional unit precisely) required during decryption.

1 Introduction

The concept of Identity-Based Encryption (IBE) was proposed by Shamir [Sha85] as a replacement of traditional
public key encryption. In an IBE, a sender can encrypt a message for a receiver by knowing only the identity of the
receiver along with some system information. The notion of IBE thus gets rid of the burden of distributing correct
public key of each user completely.

The first-ever construction of IBE was due to Boneh and Franklin [BF01]. Informally, in an IBE system, a cipher-
text C created for a user of identity y can only be decrypted by that particular user (i.e. having identity y). One can
view IBE as a realization of equality predicate in the encrypted domain. Subsequently IBE was generalized to emu-
late access control predicate (Attribute-Based Encryption [GPSW06,BSW07,Wat11]), inner product predicate (Inner
Product Encryption [KSW08,OT09,SSW09]), vector containment predicate (Spatial Encryption [BH08]) or subspace
predicate (Doubly Spatial Encryption [Ham11]) etc. All the aforementioned schemes are behaviorally similar in the
sense they all emulate certain predicate function such that a receiver can decrypt a ciphertext if (s)he satisfies the
predicate function. Such schemes can be viewed as different cases of the class predicate encryption (PE). A predicate
encryption is defined by a predicate tuple (X ,Y, R) where X and Y are key-space and data-space respectively and
R : X × Y → {0, 1} is the predicate function. A user having a secret key (K) with respect to the key-index x can
decrypt a ciphertext (C) encrypted under a data-index y if R(x, y) = 1.

The dual system technique [Wat09,LW10] allows one to construct adaptively secure predicate encryption schemes.
Attrapadung [Att14] and Wee [Wee14] independently observed a similarity in the structure of the proofs of dual system
technique based adaptively secure predicate encryption schemes. The notions of pair encoding [Att14] and predicate
encoding [Wee14] were introduced as abstraction of complex key and ciphertext structure of available predicate
encryptions. Such encodings allowed them to construct adaptively CPA-secure predicate encryptions using dual
system technique. This new approach not only allowed them to improve the performance of several available predicate
encryption schemes but also to instantiate several completely new schemes. For example, pair encoding [Att14]



allowed the first-ever construction of PE for regular language, ABE with constant-size ciphertext etc. However, the
CPA-secure predicate encryption instantiation was performed in composite order groups.

Later Attrapadung [Att16] and Chen et al. [CGW15] constructed adaptive CPA-secure predicate encryption
schemes in the prime order groups using pair encoding and predicate encoding respectively. Even though both
the constructions were in prime order groups, [CGW15] was even more modular due to the use of dual system
group (DSG) [CW14]. Agrawal et al. [AC16,AC17] integrated pair encoding and dual system group and introduced
different security notions for pair encoding. The authors in [AC16,ABS16] noted that pair encoding is more general
than predicate encoding. However, all these schemes aimed at constructing CPA-secure predicate encryption.

Motivation. In various practical scenario, CCA-security is assumed to be mandatory. One can use available generic
techniques [YAHK11,YAS+12,NP15a,NP17] to convert CPA-secure predicate encryption into CCA-secure predicate
encryption. Informally these techniques add new components in the CPA-ciphertext that can be used later to check if
the ciphertext has been tampered in the line. Therefore they face problems of two-fold – (1) increased length of key-
indices and data-indices which result in a bigger secret key and ciphertext and (2) extra cost to perform verifiability or
delegation. For example, verifiability based solution makes the decryption lot costlier than the cost of decryption in the
CPA-secure scheme in terms of the number of pairings evaluated (See Appendix A). This degrades the performance
as the decryption algorithm has to perform additional all most twice of m1 × w1 × (d2 + d) × (m2 + 1) many
pairing evaluations. Blömer et al. [BL16] proposed a direct CCA-secure predicate encryption from pair encodings in
composite order groups. The verifiability based check, that they used, takes nearly the cost of CPA-decryption number
of pairing evaluations, thus degrades the performance of the decryption. Recently Nandi et al. [NP15b] suggested a
direct conversion to CCA-secure predicate encryptions from pair encodings. Even though that conversion is efficient
and generic, it is provided in the composite order group. Naturally one would like to construct a direct CCA-secure
predicate encryption in prime order groups from a CPA-secure predicate encryption without compromising the
performance.

Our Contribution. As pair encoding is more general than predicate encoding schemes, we use pair encoding
scheme based generic construction of CPA-secure predicate encryption [Att16] to construct a direct adaptive CCA-
secure predicate encryption in prime order groups that does not compromise the performance. The ciphertext in our
construction adds exactly three additional components to the ciphertext of [Att16] namely a (d + 1)-tuple made up

of source group elements (i.e. an element of G(d+1)
1 ), an OTS verification key and a signature. During decryption our

construction needs only one additional unit1 of pairing evaluation along with an OTS verification.

As an alternative, we have presented another direct CCA-secure predicate encryption construction (in Appendix
C) without using the primitive OTS. It adds only one additional component to the ciphertext of [Att16] at the cost
of three additional unit pairing evaluations during decryption.

Organization of the Paper. Section 2 contains necessary definitions and notations that is followed in this paper.
In Section 3, the definition of pair encoding scheme with its security is recalled. In Section 4 we describe our generic
conversion mechanism to achieve cca-security. Section 5 proves the security of our construction. Section 6 concludes
the paper. We describe standard CPA-to-CCA conversion in Appendix A to explain the cost of such conversion. The
games in the security argument that we mimic from [Att16] is presented in Appendix B. We present a (some-what)
less efficient direct CCA-secure predicate encryption construction in Appendix C.

2 Preliminaries

Notations. We denote [a, b] = {i ∈ N : a ≤ i ≤ b} and [n] = [1, n]. We assume vvv is a vector having components

v1, . . . , vn. By s
$← S we denote a uniformly random choice s from S. 1λ denotes the security parameter for λ ∈ N.

Any x ∈ Xt is a t-dimensional column vector whereas we use x ∈ X1×t and x ∈
(
X
)t

to denote t-dimensional row

vectors.

1 By one unit we mean (d+ 1) many pairing evaluation for a (d+ 1)-dimensional system.
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Predicate Family. The predicate family for an index family κ is R = {Rκ}κ∈κ , where Rκ : Xκ × Yκ → {0, 1} is a
predicate function and Xκ and Yκ are key-space and data-space respectively. We will often omit κ in the subscript
for the simplicity of representation.

2.1 Predicate Encryption

A predicate encryption (PE) scheme ΠR for predicate function R : X × Y → {0, 1} consists of following algorithms.

– Setup(1λ, κ) for the security parameter λ ∈ N generates master secret key msk and public key mpk.
– KeyGen(msk, x) generates secret key K of the given key-index x ∈ X .
– Enc(mpk, y,M) takes as input data-index y ∈ Y and a message M ∈M and generates ciphertext C.
– Dec(K,C) takes a key K corresponding to key-index x and a ciphertext C corresponding to data-index y and

outputs a message M or ⊥.

Correctness. A predicate encryption scheme is said to be correct if for all (mpk,msk) ← Setup(1λ, κ), all y ∈ Y,
all M ∈M, all C← Enc(mpk, y,M), all x ∈ X , all K← KeyGen(msk, x),

Dec(K,C) =

{
M if R(x, y) = 1

⊥ if R(x, y) = 0
.

Security. Chosen ciphertext security (IND-CCA) of a predicate encryption scheme ΠR can be modeled as a security
game between challenger C and adversary A.

– Setup: C gives out mpk and keeps msk as secret.
– Phase-I Query: Queries are performed to available oracles as follows.
• Key Query: Given a key-index x, keygen oracle OK returns K← KeyGen(msk, x).
• Dec Query: Given (x,C), decryption oracle OD returns Dec(K,C).

– Challenge: A provides challenge data-index y∗ (such that R(x, y∗) = 0 for all key query x) and two messages

(M0,M1) of equal length. C generates C∗ ← Enc(mpk, y∗,Mb) for b
$← {0, 1}.

– Phase-II Query: Queries are performed to available oracles as follows.
• Key Query: Given a key-index x such that R(x, y∗) = 0, keygen oracle OK returns K← KeyGen(msk, x).
• Dec Query: Given (x,C), decryption oracle OD returns Dec(K,C) if R(x, y∗) = 1 and C = C∗ does not

happen at the same time.
– Guess: A outputs its guess b′ ∈ {0, 1} and wins if b = b′.

For any adversary A the advantage is defined as follows.
AdvΠRA (λ) = |Pr[b = b′]− 1/2|.

A predicate encryption scheme is said to be IND-CCA secure if for any efficient adversary A, AdvΠRA (λ) ≤ neg(λ).

In this paper we use the advantage notation AdvΠRA (λ) to denote the advantage of any adversary A to break the
predicate encryption scheme ΠR. If the decryption oracle is not available to the adversary, we call such security
model as IND-CPA security model.

2.2 Matrix Diffie-Hellman Problem

We call Dd a matrix distribution if it outputs matrices in Z(d+1)×(d+1)
p of the form T =

(
M 0
c 1

)
such that M ∈ GLp,d.

We say that Dd-Matrix Diffie-Hellman Assumption holds in G if for any PPT adversary A, the advantage,

AdvDd-MatDH
A (λ) =

∣∣∣∣Pr
[
A(G, gT1 , g

T

(
yyy
0

)
1 ) = 1

]
− Pr

[
A(G, gT1 , g

T

(
yyy
ŷ

)
1 ) = 1

]∣∣∣∣ ≤ neg(λ)

where the probability is taken over (G1,G2,GT , e, p)
$← G(λ), (g1, g2)

$← G1 × G2, T
$← Dd, yyy

$← Zdp, ŷ
$← Zp and

the internal randomness of A such that G = (G1,G2,GT , e, p, g1, g2). It is to be noted that Matrix Diffie-Hellman
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Problem is random self reducible [Att16,EHK+17]. Therefore given an instance of the problem, one can construct

polynomial number of different instances of that problem without degrading the reduction i.e. given

gT1 , gT
(
yyy
ŷ

)
1


it is easy to construct

gT1 , gT
(

Y
ŷyy

)
1

 such that Y = (yyy1, . . . , yyym) is uniformly random in
(
Zdp
)m

, ŷyy = (ŷ1, . . . , ŷm)

is uniformly random in
(
Zp
)m

for m = poly(λ).

2.3 Parameter Hiding Lemma

The parameter-hiding lemma defined by [Att16, Lemma 2] is the following. Given g1, g2, B, Z, g
HiB

(
Id
0

)
1 ∈ G(d+1)×d

1

and g
H>i Z

(
Id
0

)
2 ∈ G(d+1)×d

2 , the (d+ 1, d+ 1)th entry of the matrix B−1HiB is information-theoretically hidden.

2.4 Strong One-Time Signature

Signature Scheme. A signature scheme consists of three PPTs,

– Gen outputs verification key vk and signing key sk.

– Sign computes a signature σ on the input message m.

– Verify on (m′, σ′) input it outputs 1 if σ′ is a valid signature on m′.

Security Definition. Strong One-Time Signature (OTS) model is defined by the game between challenger C and
adversary A as follows.

– Gen: C runs (vk, sk)← OTS.Gen(1λ). A is provided with vk.

– Query: A is given access to oracle OTS.Sign(sk, ·) for only one query. Let A queries with a message m and gets
back a signature σ.

– Forge: A outputs a pair (m∗, σ∗).

A wins this game if OTS.Verify(vk,m∗, σ∗) = 1 and (m,σ) 6= (m∗, σ∗). The advantage of adversary A is defined to
be the probability of its win and is denoted by AdvsUf-CMA

A,OTS (λ). We call a signature one-time secure if for any efficient

adversary A, AdvsUf-CMA
A,OTS (λ) ≤ neg(λ).

3 Pair Encoding Schemes

Attrapadung [Att14] introduced the notion of pair encoding scheme. Later he [Att16] refined the notion with regularity
of encoding. Here we recall the definition of pair encoding. We will describe the regularity properties of pair encoding
in Section 4.1 (precisely Properties P1,P2,P3,P4). It should be noted that all the available predicate encryption
schemes constructed on some encoding schemes [Att14,Wee14,CGW15,AC16,Att16,AC17] follow the regularity of
encoding property.

A Pair Encoding P for a predicate function Rκ : Xκ × Yκ → {0, 1} indexed by κ = (N ∈ N,par) consists of four
deterministic algorithms:

– Param(κ)→ n where n is the number of common variables h = (h1, . . . , hn) in EncK and EncC.
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– EncK(x,N)→ (k = (k1, . . . , km1
);m2) where each kι for ι ∈ [m1] is a polynomial of m2 own variables r =(r1, . . . ,

rm2
), common variables h and α. Each polynomial kι is

kι (α, r,h) = bια+
∑

j∈[m2]

bιjrj +
∑

j∈[m2]
k∈[n]

bιjkrjhk,

where bι, bιj , bιjk ∈ ZN for all ι ∈ [m1], all j ∈ [m2] and all k ∈ [n].
– EncC(y,N)→ (cy = (c1, . . . , cw1

);w2) where each cι̃ for ι̃ ∈ [w1] is a polynomial of (w2 + 1) own variables
s =(s0, . . . , sw2

) and common variables h. Each polynomial cι̃ is

cι̃ (s,h) =
∑

j∈[0,w2]

aι̃jsj +
∑

j∈[0,w2]
k∈[n]

aι̃jksjhk,

where aι̃j , aι̃jk ∈ ZN for all ι̃ ∈ [w1], all j ∈ [0, w2] and all k ∈ [n].

– Pair(x, y,N)→ E ∈ Zm1×w1

N .

Correctness. A pair encoding scheme is said to be correct if for all N ∈ N, for all y ∈ Yκ, c ← EncC(y,N), all
x ∈ Xκ, k← EncK(x,N) and E← Pair(x, y,N), kEc> = αs0 if R(x, y) = 1.

Properties of Pair Encoding Schemes. We define two natural properties of the pair encoding scheme as follows.

– Param-Vanishing: k(α,0,h) = k(α,0,0).
– Linearity:

k(α1, r1,h) + k(α2, r2,h) = k(α1 + α2, r1 + r2,h)
and

c(s1,h) + c(s2,h) = c(s1 + s2,h).

3.1 Security Definitions for Pair Encoding Schemes

Perfect Security. Pair Encoding P is said to be perfectly master-key hiding if the following holds. Suppose R(x, y) =
0. Let n← Param(κ), k← EncK(x,N) and c← EncC(y,N). Then the following distributions,

{c(s,h),k(0, r,h)} and {c(s,h),k(α, r,h)}

are identical where h
$← ZnN , α

$← ZN , r
$← Zm2

N and s
$← Z(w2+1)

N .

Computational Security. Two types of computational security notions CMH and SMH are defined in [Att16]
for a bilinear group generator G. We use these security notions to argue indistinguishability of type-1 and type-2
semi-functional keys. For the sake of completeness we note these notions of security down here.

Both the security notions (CMH and SMH) are defined as the security games as follows.

ExpG,G,d,α,t1,t2(λ) : (G1,G2,GT , e,N)← G(λ); (g1, g2)
$← G1 ×G2,

α
$← ZN , n← Param(κ),h

$← ZnN ;

st← AO
1
G,d,α,h(·)

1 (g1, g2); d′ ← AO
2
G,d,α,h(·)

2 (st)

where G ∈ {CMH,SMH} and each oracle O1,O2 can be queried at most t1, t2 times respectively.

– CMH:
• O1

CMH,d,α,h(x∗): Run (k;m2)← EncK(x∗); r
$← Zm2

N ;

return V←

{
g
k(0,r,h)
2 if d = 0

g
k(α,r,h)
2 if d = 1

.

• O2
CMH,d,α,h(y): If R(x∗, y) = 1, then return ⊥.

Else run (c;w2)← EncC(y); s
$← Z(w2+1)

N ;

return U← g
c(s,h)
1 .
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– SMH:

• O1
SMH,d,α,h(y∗): Run (c;w2)← EncC(y∗); s

$← Z(w2+1)
N ;

return U← g
c(s,h)
1 .

• O2
SMH,d,α,h(x): If R(x, y∗) = 1, then return ⊥.

Else run (k;m2)← EncK(x); r
$← Zm2

N ;

return V←

{
g
k(0,r,h)
2 if d = 0

g
k(α,r,h)
2 if d = 1

.

The advantage of adversary A against pair encoding P is defined as Advt1,t2,G,PA (λ) = |Pr[ExpP,G,G,0,α,t1,t2(λ) =

1] − Pr[ExpP,G,G,1,α,t1,t2(λ) = 1]|. Pair encoding P is (t1, t2)-CMH (resp. SMH) secure in G if Advt1,t2,G,PA (λ) is
negligible for G = CMH (resp. SMH).

Remark 1. Similar to [Att16], we will use security notions like (1, 1)-CMH and (1, poly)-SMH security to prove the
construction secure. In this paper, while proving security, we denote (1, 1)-CMH by CMH and (1, poly)-SMH by SMH
security.

4 CCA-secure Predicate Encryption from Pair Encoding

Here we present a direct construction of CCA-secure predicate encryption scheme in prime-order groups from pair
encoding scheme.

4.1 Regular Decryption Pair Encoding

We restrict underlying pair encoding to satisfy the property of regular decryption. These restrictions are amalgamation
of regular encoding properties [Att16, Definition 1] and the decryption sufficiency properties [NP15b, Conditions 3.1].
Note that, these restrictions are quite natural and are observed in all the available pair encoding based predicate
encryption construction.

The regular decryption properties of pair encoding is noted below:

(P1) : For ι̃ ∈ [w1], ι ∈ [m1], if ∃j′ ∈ [0, w2], k′ ∈ [n], j ∈ [m2], k ∈ [n] such that aι̃j′k′ 6= 0 and bιjk 6= 0, then Eιι̃ = 0.

(P2) : For ι ∈ [m1], if ∃j ∈ [m2], k ∈ [n] such that bιjk 6= 0 then ∃ι̂ ∈ [m1] such that kι̂ = rj .

(P3) : For ι̃ ∈ [w1], if ∃j′ ∈ [0, w2], k′ ∈ [n] such that aι̃j′k′ 6= 0 then ∃ˆ̃ι ∈ [w1] such that cˆ̃ι = sj .

(P4) : c1(s,h) = s0.

(P5) : For (x, y) ∈ X × Y, such that R(x, y) = 1, (k;m2) ← EncK(x,N) and E ← Pair(x, y,N) then k(α,0,0)E =
(∗, 0, . . . , 0) ∈ Zw1

N where ∗ is any non-zero entry.

Here we give some intuitive idea of regular decryption property of pair encoding. In Attrapadung’s prime-order
instantiation of pair encoding based predicate encryption schemes, a particular type of commutativity was impossible
to compute [Att16, Eq. (8)]. We use Property P1 to restrict such cases. This property has been used to prove the
correctness of the scheme. Property P2 and P3 ensure that if the key-encoding k (resp. c) contains hkrj (resp. hk′sj′)
then rj (resp. sj′) has to be be given explicitly. These two properties have been used in the security proof. We will see in
the coming section that we produce a commitment on the CPA-ciphertext and bind it to the randomness s0. Therefore

we fix the position of polynomial s0 in Property P4. Also to decrypt, given a secret key K ∈ (G(d+1)
2 )m1 and a pairing

matrix E ∈ Zm1×w1

N (see Section 3 for description), the decryptor will compute an altKey K̂ = (K̂0, K̂1, . . . , K̂w1
) ∈

(G(d+1)
2 )(w1+1). We restrict that α used in secret key (K) generation affects only K̂1 via Property P5. We will be

needing this property in the security argument.
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4.2 Construction

For a pair encoding scheme P for predicate function R, a predicate encryption ΠR for predicate function R is defined
as following.

– Setup(1λ, N): Runs (G1,G2,GT , e, p) ← G(λ) where G is an asymmetric prime-order bilinear group generator.

Picks (g1, g2)
$← G1 × G2. Runs n ← Param(κ). Defines H = (H1, . . . ,Hn+2) where Hi

$← Z(d+1)×(d+1)
p for

each i ∈ [n + 2]. Chooses (B, D̃,ααα)
$← GLp,d+1 × GLp,d × Z(d+1)

p . Defines D :=
(
D̃ 0
0 1

)
,Z := B−>D, chooses

collision resistant hash function H : {0, 1}∗ → Zp and chooses a one-time signature scheme OTS. Keeps msk =
(gααα2 ,B,Z,H) to be secret and computes,

mpk =

(
g
B
(
Id
0

)
1 , g

H1B
(
Id
0

)
1 , . . . , g

Hn+2B
(
Id
0

)
1 , g

Z
(
Id
0

)
2 , g

H>1 Z
(
Id
0

)
2 , . . . , g

H>n+2Z
(
Id
0

)
2 , e(g1, g2)

ααα>B
(
Id
0

)
,H,OTS

)
.

– KeyGen(msk, x): Runs (k = (k1, . . . , km1
);m2) ← EncK(x,N). Chooses r1, . . . , rm2

$← Zdp and defines R =((
r
1
0

)
, . . . ,

(
rm2
0

))
∈
(
Z(d+1)
p

)m2

. Outputs K = {gkι(ααα,R,H)
2 }ι∈[m1]

∈
(
G(d+1)

2

)m1
where for each ι ∈ [m1],

kι(ααα,R,H) = bιααα+
∑

j∈[m2]

bιjZ
(

rj
0

)
+

∑
j∈[m2]
k∈[n]

bιjkH
>
k Z
(

rj
0

)
.

– Enc(mpk, y,M): Runs (c = (c1, . . . , cw1
);w2) ← EncC(y,N). Chooses s0, . . . , sw2

$← Zdp and defines S =((
s0
0

)
, . . . ,

(
sw2
0

))
∈
(
Z(d+1)
p

)(w2+1)

. Computes C = (C1, . . . ,Cw1
,Cw1+1) where for each ι̃ ∈ [w1], Cι̃ =

g
cι̃(S,H)
1 ∈ G(d+1)

1 such that

cι̃(S,H) =
∑

j∈[0,w2]

aι̃jB
(

sj
0

)
+

∑
j∈[0,w2]
k∈[n]

aι̃jkHkB
(

sj
0

)
for ι̃ ∈ [w1]

and Cw1+1 = M · e(g1, g2)
ααα>B

(
s0
0

)
. Runs (vk, sk)← OTS.Gen(1λ). Then it computes ξ = H(C, vk) and outputs

C = (C0,C, vk, σ) where C0 = g
(ξHn+1+Hn+2)B

(
s0
0

)
1 and σ ← OTS.Sign(sk,C0).

– Dec(K,C): Given K and C corresponding to key-index x and data-index y respectively, if R(x, y) = 0, it aborts.
Also aborts if OTS.Verify(C0, vk, σ) evaluates to 0. Then runs E← Pair(x, y,N). Given K = (K1, . . . ,Km1

) and

ciphertext C it computes (K̃1, . . . , K̃w1
) where K̃ι̃ =

∏
ι∈[m1]

(Kι)
Eιι̃ for each ι̃ ∈ [w1]. Chooses rrr

$← Zdp. Defines

modified key K̂ = (K0, Φ · K̃1, K̃2, . . . , K̃w1
) where K0 = g

Z

(
rrr
0

)
2 and Φ = g

(ξH>n+1+H>n+2)Z

(
rrr
0

)
2 for ξ = H(C, vk).

Outputs M such that

M = Cw1+1 · e(C0,K0) ·

 ∏
ι̃∈[w1]

e(Cι̃, K̂ι̃)

−1 . (1)

4.3 Correctness

Here we compute e(C0,K0) ·

( ∏
ι̃∈[w1]

e(Cι̃, K̂ι̃)

)−1
to show the correctness of the construction.

e(C0,K0) = e

g(ξHn+1+Hn+2)B

(
s0
0

)
1 , g

Z

(
rrr
0

)
2

 = e

gB
(

s0
0

)
1 , g

(ξH>n+1+H>n+2)Z

(
rrr
0

)
2

.

Now,
∏

ι̃∈[w1]

e(Cι̃, K̂ι̃)
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= e(C1, K̂1) ·
∏

ι̃∈[2,w1]

e(Cι̃, K̂ι̃)

= e

gB
(

s0
0

)
1 , Φ · K̃1

 · ∏
ι̃∈[2,w1]

e(Cι̃, K̂ι̃) (due to Property P4 of regular decryption pair encoding)

= e

gB
(

s0
0

)
1 , Φ

 · e
gB

(
s0
0

)
1 , K̃1

 · ∏
ι̃∈[2,w1]

e(Cι̃, K̃ι̃)

= e

gB
(

s0
0

)
1 , g

(ξH>n+1+H>n+2)Z

(
rrr
0

)
2

 · e(C1, K̃1) ·
∏

ι̃∈[2,w1]

e(Cι̃, K̃ι̃)

= e

gB
(

s0
0

)
1 , g

(ξH>n+1+H>n+2)Z

(
rrr
0

)
2

 · ∏
ι̃∈[w1]

e(Cι̃, K̃ι̃)

Then e(C0,K0) ·

( ∏
ι̃∈[w1]

e(Cι̃, K̂ι̃)

)−1

= e

gB
(

s0
0

)
1 , g

(ξH>n+1+H>n+2)Z

(
rrr
0

)
2

 · e
gB

(
s0
0

)
1 , g

(ξH>n+1+H>n+2)Z

(
rrr
0

)
2

−1 ·( ∏
ι̃∈[w1]

e(Cι̃, K̃ι̃)

)−1

=

( ∏
ι̃∈[w1]

e(Cι̃,
∏

ι∈[m1]

(Kι)
Eιι̃

)−1

=

 ∏
ι∈[m1]
ι̃∈[w1]

e(Cι̃,Kι)
Eιι̃


−1

= e(g1, g2)
−ααα>B

(
s0
0

)
(due to correctness of [Att16])

Then Cw1+1 · e(C0,K0) ·

( ∏
ι̃∈[w1]

e(Cι̃, K̂ι̃)

)−1
= M .

Remark 2. Dec creates modified key K̂ for a given secret key K and the pairing matrix E. From now onwards, we will
use decryption key or altKey interchangeably to denote the modified key. One can simply view the Dec function as a
composition of AltKeyGen and AltDec where the former creates the altKey K̂ and the latter performs the decryption
of C using altKey K̂. Precisely AltKeyGen(C, x,msk) computes modified key K̂ and AltDec(C, K̂) computes RHS of
Eq. (1).

Remark 3. We have extended the CPA-secure predicate encryption construction of [Att16]. We follow the direct CCA
construction technique of [NP15b] to achieve an efficient CCA-secure predicate encryption construction in prime order
groups. Note that [NP15b] was instantiated in composite order groups. The common variables H, in our construction,
contains n+ 2 matrices whereas in [Att16] it contained n matrices. We use these extra two common variables Hn+1

and Hn+2 to compute a commitment of CPA-ciphertext C. This technique loosely relates to [BMW05]. We first

compute the hash of (C, vk) and bind it to the randomness B
(

s0
0

)
using common variables Hn+1 and Hn+2 where

vk is verification key for OTS. This results in an extra ciphertext component namely C0. We then use the one-time
signature OTS to compute a signature σ on C0 and output C = (C0,C, vk, σ). Notice that KeyGen algorithm is
exactly the same as [Att16]. The Dec is modified to perform cancellation of extra ciphertext component. To do that,

we define altKey K̂ to contain K0 and Φ. We use associativity [Att16, Section 4.1] to cancel the extra ciphertext
component C0 using K0 and Φ. Once such a cancellation is performed, the decryption happens exactly like [Att16].
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Remark 4. Even if our construction here is structurally quite similar to that of [NP15b], we use an OTS to ensure
integrity of C0. Use of OTS allows us to get rid of extra verification step (precisely Eq. (7) in Appendix C) that is
needed to check the structure of C0. We have presented the construction of direct CCA-secure predicate encryption
in prime order groups in Appendix C, that performs such a check and therefore follows the construction of [NP15b]
completely.

Efficiency. Our construction increases the ciphertext length by exactly three namely C0, vk and σ is returned along

with the CPA-ciphertext C where C0 ∈ G(d+1)
1 , vk is verification key of OTS and σ is the signature of C0 with respect

to the signing key sk corresponding to vk. As we mentioned earlier, we have reused KeyGen of [Att16], therefore
the secret key does not change. However Dec has to verify the signature σ and evaluate only one additional unit of
pairing (namely e(C0,K0)). As both C0 and K0 are group elements having (d + 1)-components, the decryption in
our construction incurs an additional cost of (d + 1) pairing evaluations only. This is really efficient as opposed to
traditional CPA to CCA conversions by [YAHK11,YAS+12,NP17] that needs almost two times m1 ×w1 × (d+ 1)×
(m2 + 1)× d many pairing evaluations. See Appendix A for the exact cost of such conversions.

5 Security of the Proposed Construction

To prove our predicate encryption construction fully CCA-secure, we extend the proof technique used by Attrapadung
in [Att16]. In case of dual system proof technique, one needs to add randomness to ciphertext, keys and altKeys
to construct semi-functional ciphertext, semi-functional key and semi-functional altKeys respectively. At the end,
one has to show that the randomness of semi-functional components of ciphertext and keys will blind the message
completely. We use the abbreviation ‘type’ to identify semi-functional type.

Intuitively, the collision resistance of H neither allows the adversary to come up with a different C nor allows
the adversary to change vk that results in the same commitment ξ. The adversary, after receiving challenge C

∗
=

(C
∗
0,C

∗, vk∗, σ∗), can however keep the same C∗ and construct some different C
′
0 and produce C = (C

′
0,C

∗, vk∗, σ∗)
as decryption query. Such a scenario allows the simulator to forge the underlying one-time signature. Therefore during
the security game, what the adversary can do is to come up with random ciphertext C for decryption. With all but
negligible probability, x used in decryption query (x,C) will not satisfy y which is implicit data-index of C. This
way we are ultimately stopping the adversary to gather any non-trivial information.

Theorem 1. Suppose a regular decryption pair encoding scheme P for predicate R is both SMH and CMH-secure2

in G, and the Dd-Matrix DH Assumption holds in G. Then the scheme ΠR (in Section 4.2) is fully CCA-secure
encryption scheme if H is collision resistant hash function and OTS is strong one-time signature. More precisely, for
any PPT adversary A that makes at most q1 key queries before challenge, at most q2 key queries after challenge and
at most q

D
decryption queries throughout the game, there exists PPT algorithms B1,B2,B3,B4,B5 such that for any

λ,

AdvPE
A (λ) ≤ (2q1+2q

D
+3) ·AdvDd-MatDH

B1
(λ)+q1 ·Adv

CMH
B2

(λ)+AdvSMH
B3

(λ)+q
D
·AdvCRH

B4
(λ)+q

D
·AdvsUf-CMA

B5,OTS (λ).

5.1 Security Argument

Here we give hybrid security argument to prove the security of predicate encryption scheme ΠR. Probabilistic
polynomial time adversary A is capable of making at most q1 key queries before challenge phase, at most q2 key
queries after challenge phase and at most q

D
decryption queries throughout the game. Let q = q1 + q2.

Game0 is the real security game and Game4 is the game where all secret keys are type-3 semi-functional keys, all
altKeys are type-3 semi-functional altKeys and the challenge ciphertext is semi-functional ciphertext of random
message (therefore is independent of the message that is to be encrypted). To prove the indistinguishability of Game0
and Game4, we define the sequence of games of Table 1. The idea is to change each game only by a small margin and
prove indistinguishability of two consecutive games. First we make the challenge ciphertext semi-functional. Then

2 Here SMH means (1, poly)-SMH and CMH means (1, 1)-CMH (See Section 3.1).
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Games Difference from Previous Proof Strategy

Game0 - [Att16]

Game1 challenge ciphertext is semi-functional [Att16]

Game2,i−1,3 all the (i− 1) secret keys are type-3 key (i ≤ q1) [Att16]

Game2,i,1 ith secret key is type-1 key (i ≤ q1) [Att16]

Game2,i,2 ith secret key is type-2 key (i ≤ q1) [Att16]

Game2,i,3 ith secret key is type-3 key (i ≤ q1) [Att16]

Game2,q1+1,1 all post-challenge secret keys are type-1 key [Att16]

Game2,q1+1,2 all post-challenge secret keys are type-2 key [Att16]

Game2,q1+1,3 all post-challenge secret keys are type-3 key [Att16]

Game3,i−1,3 all the (i− 1) altKeys are type-3 altKey (i ≤ qD ) this work

Game3,i,1 ith altKey is type-1 altKey (i ≤ qD ) this work

Game3,i,2 ith altKey is type-2 altKey (i ≤ qD ) this work

Game3,i,3 ith altKey is type-3 altKey (i ≤ qD ) this work

Game4 challenge ciphertext is semi-functional encryption this work
of a random message

Table 1. Outline of proof strategy

we modify each ith pre-challenge key to type-j semi-functional key in Game2,i,j for each i ∈ [q1] and j ∈ {1, 2, 3}.

Note that to answer ith pre-challenge key query, the simulator chooses fresh βi
$← Zp. Then we modify all the post-

challenge keys to type-j keys together in Game2,q1+1,j for each i ∈ [q1 + 1, q] and j ∈ {1, 2, 3}. Here however the

simulator uses same β
$← Zp to answer every post-challenge key query. Then we modify each (ith) altKey to type-j

semi-functional altKey in Game3,i,j for each i ∈ [q
D

] and j ∈ {1, 2, 3}. Note that the simulator uses same η
$← Zp

to compute all the altKeys. In the final game Game4, we show that the ciphertext is completely independent of the
message it is encrypting. Therefore the advantage of adversary A in Game4 is 0. Note that Game1 and Game2,q1+1,3

are also denoted by Game2,0,3 and Game3,0,3 respectively.

As mentioned in Table 1, we have used the proof technique of [Att16] to argue indistinguishability of several
games. However, the games that deal with changes in altKey and the final game are our contribution. We have put
the description of games that we have mimicked from [Att16] in Appendix B. Here we concentrate only in Game3,i,1,
Game3,i,2, Game3,i,3 for i ∈ [q

D
] and Game4.

Note that in Game2,q1+1,3, the challenge ciphertext is semi-functional and all the secret keys are type-3 semi-
functional. However, all the altKeys at this moment are normal. We then change the altKeys to type-3 semi-functional
altKey one by one. For every i ∈ [q

D
], this is done via changing normal altKey to type-1 altKey first in Game3,i,1.

Subsequently we change it into type-2 altKey in Game3,i,2 and to type-3 altKey in Game3,i,3. In Game3,i,2 we introduce
the randomness η that hides the master secret key in the final game. This effectively allows us to show that in the
final game, the simulator can simulate all the secret keys and the altKeys properly and the challenge ciphertext is
semi-functional ciphertext of random message.

5.2 Semi-functional Algorithms

Following semi-functional algorithms will be used in the security proof.

– SFSetup(1λ, κ): It runs (mpk,msk) ← Setup(1λ, κ). Additionally it outputs m̂pkbase, m̂pkb and m̂pkz where

m̂pkbase = g
Z( 0

1 )
2 , m̂pkb =

(
e(g1, g2)ααα

>B( 0
1 ), g

B( 0
1 )

1 , g
H1B( 0

1 )
1 , . . . , g

Hn+2B( 0
1 )

1

)
and m̂pkz =

(
g
H>1 Z( 0

1 )
2 , . . . ,

g
H>n+2Z( 0

1 )
2

)
.

– SFKeyGen(x,msk, m̂pkz, m̂pkbase, type, β): Runs (k;m2) ← EncK(x,N). Chooses r1, . . . , rm2

$← Zdp and r̂1, . . . ,

r̂m2

$← Zp. Then it defines R =
((

r1
0

)
, . . . ,

(
rm2
0

))
∈
(
Z(d+1)
p

)m2

and R̂ =
((

0
r̂1

)
, . . . ,

(
0
r̂m2

))
∈
(
Z(d+1)
p

)m2

.

Outputs the secret key
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K =


g
k(ααα,R,H)+k(0,R̂,H)
2 if type = 1

g
k(ααα,R,H)+k(Z

(
0
β

)
,R̂,H)

2 if type = 2

g
k(ααα,R,H)+k(Z

(
0
β

)
,0,H)

2 if type = 3

where k(ααα,R,H) + k(Z
(
0
β

)
, R̂,H) ={

bιααα+ bιZ
(
0
β

)
+

∑
j∈[m2]

bιjZ
(

rj
r̂j

)
+

∑
j∈[m2]
k∈[n]

bιjkH
>
k Z
(

rj
r̂j

)}
ι∈[m1]

.

– SFEnc(y,M,mpk, m̂pkb): It runs (c;w2) ← EncC(y,N). Chooses s0, . . . , sw2

$← Zdp and ŝ0, . . . , ŝw2

$← Zp. It

defines S =
((

s0
0

)
, . . . ,

(
sw2
0

))
∈
(
Z(d+1)
p

)(w2+1)

and Ŝ =
((

0
ŝ0

)
, . . . ,

(
0
ŝw2

))
∈
(
Z(d+1)
p

)(w2+1)

. It computes

the semi-functional ciphertext C = (C1, . . . ,Cw1
,Cw1+1) where

Cι̃ = g
cι̃(S,H)+cι̃(Ŝ,H)
1 = g

( ∑
j∈[0,w2]

aι̃jB

(
sj
ŝj

)
+

∑
j∈[0,w2]
k∈[n]

aι̃jkHkB

(
sj
ŝj

))
1

for ι̃ ∈ [w1] and Cw1+1 = M · e(g1, g2)
ααα>B

(
s0
ŝ0

)
. Runs (vk, sk)← OTS.Gen(1λ). Then it computes ξ = H(C, vk)

and outputs C = (C0,C, vk, σ) where C0 = g
(ξHn+1+Hn+2)B

(
s0
ŝ0

)
1 and σ ← OTS.Sign(sk,C0).

– SFAltKeyGen(C, x,msk, m̂pkz, m̂pkbase, type, η): Runs (k;m2) ← EncK(x,N) and E ← Pair(x, y,N). Chooses

r1, . . . , rm2
, rrr

$← Zdp and r̂
$← Zp. Then it defines R =

((
r1
0

)
, . . . ,

(
rm2
0

))
∈
(
Z(d+1)
p

)m2

.

Then the normal key is K =
{
g
kι(ααα,R,H)
2

}
ι∈[m1]

∈
(
G(d+1)

2

)m1
where

kι(ααα,R,H) = bιααα+
∑

j∈[m2]

bιjZ
(

rj
0

)
+

∑
j∈[m2]
k∈[n]

bιjkH
>
k Z
(

rj
0

)
for ι ∈ [m1].

Then it computes (K̃1, . . . , K̃w1
) where K̃ι̃ =

∏
ι∈[m1]

(Kι)
Eιι̃ for ι̃ ∈ [w1].

Defines modified key K̂ = (K0, Φ · K̃1, K̃2, . . . , K̃w1
) where

(K0, Φ) =



gZ
(
rrr
r̂

)
2 , g

(ξH>n+1+H>n+2)Z

(
rrr
r̂

)
2

 if type = 1gZ
(
rrr
r̂

)
2 , g

Z

(
0
ηu

)
+(ξH>n+1+H>n+2)Z

(
rrr
r̂

)
2

 if type = 2gZ
(

rrr
0

)
2 , g

Z

(
0
ηu

)
+(ξH>n+1+H>n+2)Z

(
rrr
0

)
2

 if type = 3

for u =
∑

ι∈[m1]

bιEι1 and ξ = H(C, vk) in case of given ciphertext C = (C0,C, vk, σ).

5.3 Normal to Type-1 altKey

Lemma 1 (Game3,i−1,3 to Game3,i,1). For i = 1, . . . , q
D

, for any efficient adversary A that makes at most q key

queries and at most q
D

decryption queries, there exists a PPT algorithm B such that |Adv3,i−1,3A (λ)− Adv3,i,1A (λ)| ≤
AdvDd-MatDH

B (λ).
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Proof. The algorithm B gets input (G, gT2 , g
T

(
yyy
ŷ

)
2 ) as Dd-MatDH problem instance where ŷ = 0 or ŷ

$← Zp and

T
$← Dd, yyy

$← Zdp.

Setup. B chooses B̃
$← GLp,d+1,J

$← GLp,d and sets B = B̃

(
Id M−>c>

0 −1

)
and D =

(
MJ 0
0 1

)
where T =(

M 0
c 1

)
due to Dd-MatDH assumption. Then Z = B−>D = B̃−>

(
Id 0

cM−1 −1

)(
MJ 0
0 1

)
= B̃−>T

(
J 0
0 −1

)
. Then

define Z̃ =

(
J 0
0 −1

)
so that Z = B̃−>TZ̃. B therefore can compute the public parameters as g

B

(
Id
0

)
1 = g

B̃

(
Id
0

)
1 and

gZ2 = gB̃
−>TZ̃

2 . Then B chooses ααα
$← Z(d+1)

p and H = (H1, . . . ,Hn+2)
$←
(
Z(d+1)×(d+1)
p

)(n+2)

and publishes public

key mpk. Note that B cannot compute m̂pkb but can compute m̂pkz as it can compute m̂pkbase. It chooses β, η
$← Zp

uniformly at random.

Key Queries. On jth secret key query x (j ≤ q1), outputs type-3 secret key K ← SFKeyGen(x,msk,−,
m̂pkbase, 3, βj) after choosing βj

$← Zp.

Dec Queries. On jth decryption query (x,C) where C is a ciphertext on data-index y, if the signature σ is not

verified or if R(x, y) 6= 1, aborts. Otherwise B computes altKey K̂ and returns AltDec(C, K̂) to A. We now describe
the altKey generation procedure.

– If j > i, it is normal altKey. As B knows msk, it computes the altKey K̂← AltKeyGen(C, x,msk).

– If j < i, it is type-3 semi-functional altKey. B computes type-3 altKey K̂← SFAltKeyGen(C, x,msk,−, m̂pkbase, 3, η).

– If j = i, it runs (k = (k1, . . . , km1
);m2) ← EncK(x,N) and E ← Pair(x, y,N). Chooses r1, . . . , rm2

$← Zdp
and defines R =

((
r1
0

)
, . . . ,

(
rm2
0

))
. It generates normal key K = (K1, . . . ,Km1

) where for each ι ∈ [m1],

Kι = g
kι(ααα,R,H)
2 = g

bιααα+ ∑
j∈[m2]

bιjZ

(
rj
0

)
+

∑
j∈[m2]
k∈[n]

bιjkH
>
k Z

(
rj
0

)
2 . It then computes (K̃1, . . . , K̃w1

) where K̃ι̃ =∏
ι∈[m1]

(Kι)
Eιι̃ for each ι̃ ∈ [w1].

Given C = (C0,C, vk, σ) it computes ξ = H(C, vk). To compute the altKey, it implicitly sets Z̃−1
(
yyy
ŷ

)
=
(

rrr
r̂

)
.

Therefore g
Z

(
rrr
r̂

)
2 = g

B̃−>T

(
yyy
ŷ

)
2 . Then the modified key is K̂ = (K0, Φ · K̃1, K̃2, . . . , K̃w1

) where K0 = g
Z

(
rrr
r̂

)
2 ,

Φ = g
(ξH>n+1+H>n+2)Z

(
rrr
r̂

)
2 and therefore is efficiently computable. It is evident from the description that if ŷ = 0,

the key is a normal altKey whereas if ŷ
$← Zp, the key is type-1 altKey.

Challenge. On receiving the challenge (y∗,M0,M1), B picks b
$← {0, 1}. It runs (c = (c1, . . . , cw1

);w2) ←
EncC(y∗, N). For each j ∈ [0, w2] it chooses

(
s′j
ŝ′j

)
$← Z(d+1)

p and implicitly sets
(

sj
ŝj

)
= B−1

(
s′j
ŝ′j

)
. Then B computes

C∗ as it knows ααα, H1, . . . ,Hn+2. Runs (vk∗, sk∗) ← OTS.Gen(1λ). Then it evaluates ξ∗ = H(C∗, vk∗) to compute

C
∗

= (C
∗
0, C∗, vk∗, σ∗) where C

∗
0 = g

(ξ∗Hn+1+Hn+2)

(
s′0
ŝ′0

)
1 and σ∗ ← OTS.Sign(sk∗,C0). It outputs C

∗
.

Key Queries. On secret key query x, outputs type-3 secret key K← SFKeyGen(x,msk,−, m̂pkbase, 3, β).

Dec Queries. Same as Phase-I decryption query.

Guess. A halts with output b′. B outputs 1 if b′ = b and 0 otherwise.
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5.4 Type-1 to Type-2 altKey

Lemma 2 (Game3,i,1 to Game3,i,2). For i = 1, . . . , q
D

, we have |Adv3,i,1A (λ)−Adv3,i,2A (λ)| ≤ AdvCRH
B (λ)+AdvsUf-CMA

B′,OTS (λ).

To prove the indistinguishability of the two games, we use the modified SFSetup namely SFSetup′ (See Appendix
B.3) that was used to prove indistinguishability of Lemma 7 and Lemma 10. Intuitively, to argue the indistinguisha-
bility, we introduce new randomness using SFSetup′. Note that this newly introduced randomness does not affect the
public key mpk. Then we show that introduction of such new randomness allows us to argue the indistinguishability.
Recall that the challenge ciphertext is semi-functional and is denoted by C

∗
, the secret keys K are all type-3 keys

and the altKey resulted from ith decryption query is denoted by K̂.

Here we prove that joint distribution of {K,C
∗
, K̂} if K̂ is type-1 altKey is identical to joint distribution of {K,C

∗
, K̂}

if K̂ is type-2 altKey. Note that C
∗

= (C
∗
0,C

∗, vk∗, σ∗) such that C
∗
0 = g

(ξ∗Hn+1+Hn+2)B

(
s0
ŝ0

)
+B

(
0

(ξ∗ĥn+1+ĥn+2)ŝ0

)
1

where ξ∗ = H(C∗, vk∗) and σ∗ ← OTS.Sign(sk∗,C
∗
0) for (vk∗, sk∗) ← OTS.Gen(1λ). Now we prove our claim that,

the joint distributions of {K,C
∗
, K̂} behaves identically for both type-1 and type-2 altKey K̂.

Claim. The joint distribution of {K,C
∗
, K̂} if K̂ is type-1 altKey is identical to joint distribution of {K,C

∗
, K̂} if

K̂ is type-2 altKey.

Proof. Note that K is type-3 key in both the distributions and can be computed by the simulator as it knows msk

and m̂pkbase. Due to linearity of pair encoding, the challenge ciphertext C
∗

and the altKey K̂ can be expressed as
product of normal component and semi-functional component. Since the simulator knows msk and can compute the
normal components, it suffices to show that the joint distributions are identical if the semi-functional components of
C
∗

and K̂ are jointly identically distributed.

Notice that due to the introduction of ĥ (See Appendix B.3), the semi-functional ciphertext component C
∗
0

′
and

the term Φ′ used in altKey, is affected. To prove our claim, it suffices to argue that the following two distributions

(C
∗
0

′
, Φ′) are identically distributed:{

g

(ξ∗Hn+1+Hn+2)B

(
0
ŝ0

)
+B

(
0

(ξ∗ĥn+1+ĥn+2)ŝ0

)
1 , g

Z

(
0

(ξĥn+1+ĥn+2)r̂

)
+(ξH>n+1+H>n+2)Z

(
0
r̂

)
2

}
{
g

(ξ∗Hn+1+Hn+2)B

(
0
ŝ0

)
+B

(
0

(ξ∗ĥn+1+ĥn+2)ŝ0

)
1 , g

Z

(
0
uη

)
+Z

(
0

(ξĥn+1+ĥn+2)r̂

)
+(ξH>n+1+H>n+2)Z

(
0
r̂

)
2

}

By natural restriction C
∗ 6= C where C

∗
is challenge ciphertext and C is ciphertext on which decryption query is

made. Therefore (C
∗
0,C

∗, vk∗, σ∗) 6= (C0,C, vk, σ).

Then any of the following two cases can happen,

1. If (C∗, vk∗) = (C, vk), then we have found a forgery of the OTS namely (C0, σ) 6= (C
∗
0, σ
∗).

2. If (C∗, vk∗) 6= (C, vk), then ξ∗ = H(C∗, vk∗) and ξ = H(C, vk) are unequal due to collision resistance of H.

Therefore ξ∗ĥn+1 + ĥn+2 and ξĥn+1 + ĥn+2 are pairwise independent as ĥn+1 and ĥn+2 are chosen uniformly at
random. It implies that the semi-functional components of the ciphertext and altKey in Game3,i,1 and Game3,i,2
are identically distributed.

5.5 Type-2 to Type-3 altKey

Lemma 3 (Game3,i,2 to Game3,i,3). For i = 1, . . . , q
D

, for any efficient adversary A that makes at most q key

queries and at most q
D

decryption queries, there exists a PPT algorithm B such that |Adv3,i−1,3A (λ)− Adv3,i,1A (λ)| ≤
AdvDd-MatDH

B (λ).
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Proof. The algorithm B gets input (G, gT2 , g
T

(
yyy
ŷ

)
2 ) as Dd-MatDH problem instance where ŷ = 0 or ŷ

$← Zp and

T
$← Dd, yyy

$← Zdp.

Setup. B chooses B̃
$← GLp,d+1,J

$← GLp,d and sets B = B̃

(
Id M−>c>

0 −1

)
and D =

(
MJ 0
0 1

)
for T =

(
M 0
c 1

)
due to Dd-MatDH assumption. Then Z = B−>D = B̃−>

(
Id 0

cM−1 −1

)(
MJ 0
0 1

)
= B̃−>T

(
J 0
0 −1

)
. Then defines

Z̃ =

(
J 0
0 −1

)
so that Z = B̃−>TZ̃. B therefore can compute the public parameters as g

B

(
Id
0

)
1 = g

B̃

(
Id
0

)
1 and

gZ2 = gB̃
−>TZ̃

2 . B then chooses ααα
$← Z(d+1)

p and H = (H1, . . . ,Hn+2)
$←
(
Z(d+1)×(d+1)
p

)(n+2)

and publishes public key

mpk. B cannot compute m̂pkb but can compute m̂pkz as it can compute m̂pkbase. It chooses β, η
$← Zp uniformly at

random.

Key Queries. On jth secret key query x, outputs type-3 secret key K ← SFKeyGen(x,msk,−, m̂pkbase, 3, βj)

after choosing βj
$← Zp.

Dec Queries. On jth decryption query (x,C) where C is a ciphertext on data-index y, if the signature σ is not

verified or if R(x, y) 6= 1, aborts. Otherwise B computes altKey K̂ and returns AltDec(C, K̂) to A. We now describe
the altKey generation procedure.

– If j > i, it is normal altKey. As B knows msk, it computes the altKey K̂← AltKeyGen(C, x,msk).

– If j < i, it is type-3 semi-functional altKey. B computes type-3 altKey K̂← SFAltKeyGen(C, x,msk,−, m̂pkbase, 3, η).

– If j = i, it runs (k = (k1, . . . , km1
);m2) ← EncK(x,N) and E ← Pair(x, y,N). Chooses r1, . . . , rm2

$← Zdp
and defines R =

((
r1
0

)
, . . . ,

(
rm2
0

))
. It generates normal key K = (K1, . . . ,Km1

) where for each ι ∈ [m1],

Kι = g
kι(ααα,R,H)
2 = g

bιααα+ ∑
j∈[m2]

bιjZ

(
rj
0

)
+

∑
j∈[m2]
k∈[n]

bιjkH
>
k Z

(
rj
0

)
2 . It then computes (K̃1, . . . , K̃w1

) where K̃ι̃ =∏
ι∈[m1]

(Kι)
Eιι̃ for each ι̃ ∈ [w1].

Given C = (C0,C, vk, σ) it computes ξ = H(C, vk). To compute the altKey, it implicitly sets Z̃−1
(
yyy
ŷ

)
=
(

rrr
r̂

)
.

Therefore g
Z

(
rrr
r̂

)
2 = g

B̃−>T

(
yyy
ŷ

)
2 . Then the modified key is K̂ = (K0, Φ · K̃1, K̃2, . . . , K̃w1

) where K0 = g
Z

(
rrr
r̂

)
2 ,

Φ = g
Z

(
0
ηu

)
+(ξH>n+1+H>n+2)Z

(
rrr
r̂

)
2 such that u =

∑
ι∈[m1]

bιEι1 and therefore is efficiently computable.

It is evident from the description that if ŷ = 0, the key is a type-3 altKey whereas if ŷ
$← Zp, the key is type-2

altKey.

Challenge. On receiving challenge (y∗,M0,M1), B picks b
$← {0, 1}. It runs (c = (c1, . . . , cw1

);w2)← EncC(y,N).

For each j ∈ [0, w2] it chooses
(

s′j
ŝ′j

)
$← Z(d+1)

p and implicitly sets
(

sj
ŝj

)
= B−1

(
s′j
ŝ′j

)
.

Then B computes C∗ as it knows ααα, H1, . . . ,Hn+2. Runs (vk∗, sk∗) ← OTS.Gen(1λ). Then it evaluates ξ∗ =

H(C∗, vk∗) to compute C
∗

= (C
∗
0, C∗, vk∗, σ∗) where C

∗
0 = g

(ξ∗Hn+1+Hn+2)

(
s′0
ŝ′0

)
1 and σ∗ ← OTS.Sign(sk∗,C0). It

outputs C
∗
.

Key Queries. On secret key query x, outputs type-3 secret key K← SFKeyGen(x,msk,−, m̂pkbase, 3, β).

Dec Queries. Same as Phase-I decryption query.

Guess. A halts with output b′. B outputs 1 if b′ = b and 0 otherwise.

14



5.6 Final Game

Lemma 4 (Game3,q
D
,3 to Game4). For any adversary A, |Adv3,qD ,3A (λ)− Adv4A(λ)| = 0.

Proof. As Z ∈ GLp,d+1, one can express ααα as a linear combination of column vectors of Z i.e. ααα = Z
(
δδδ
δ̂

)
for δδδ ∈ Zdp

and δ̂ ∈ Zp. In all the secret keys, δ̂ is hidden by uniformly random βi (in case of pre-challenge secret key queries)
and by uniformly random β (in case of post-challenge key queries). Note that in case of altKeys, the presence of ααα

is limited only to K̂1 due to regular decryption property of pair encoding (precisely Property P5) in the form of uααα

where u =
∑

ι∈[m1]

bιEι1. The term, uZ
(

0
η

)
, appears in the exponent of Φ of type-3 altKeys. Therefore in all altKeys,

δ̂ of ααα will be is hidden by uniformly random η.

Therefore we can replace δ̂ by δ̂ + t for t
$← Zp. Notice that such a change will affect the ciphertext in only one

component namely C∗w1+1. The resultant C∗w1+1 will be Mb · e(g1, g2)
ααα>B

(
s0
ŝ0

)
= Mb · e(g1, g2)

(δδδ> δ̂+t )Z
>B

(
s0
ŝ0

)
=

Mb · e(g1, g2)
ααα>B

(
s0
ŝ0

)
· e(g1, g2)

( 0 t )Z
>B

(
s0
ŝ0

)
= Mb · e(g1, g2)

ααα>B

(
s0
ŝ0

)
· e(g1, g2)tŝ0 . Therefore C∗w1+1 encrypts Mb ·

e(g1, g2)tŝ0 that is an uniformly random element of GT as t
$← Zp.

6 Conclusion

We generically converted the adaptive CPA-secure predicate encryption of [Att16] to adaptive CCA-secure predicate
encryption. The ciphertext of our adaptive CCA-secure predicate encryption contains exactly three additional com-

ponents (a G(d+1)
1 element, an OTS verification key and a signature) than in case of adaptive CPA-secure predicate

encryption of [Att16]. To verify a ciphertext, one needs only (d+1) additional pairing evaluations in our construction
apart from the verification of the signature in the ciphertext. This is a significant improvement over the previous
generic conversion mechanisms which needed almost double of m1 × w1 × (d + 1) × (m2 + 1) × d many pairing
evaluations. A possible future work might be instantiation of our generic CPA-to-CCA conversion on the predicate
encryption resulted from integration of dual system groups with pair encoding schemes.

References

[ABS16] Miguel Ambrona, Gilles Barthe, and Benedikt Schmidt. Generic transformations of predicate encodings: Construc-
tions and applications. Cryptology ePrint Archive, Report 2016/1105, 2016. http://eprint.iacr.org/2016/1105.

[AC16] Shashank Agrawal and Melissa Chase. A Study of Pair Encodings: Predicate Encryption in Prime Order Groups,
pages 259–288. Springer Berlin Heidelberg, Berlin, Heidelberg, 2016.

[AC17] Shashank Agrawal and Melissa Chase. Simplifying design and analysis of complex predicate encryption schemes.
Technical report, IACR Cryptology ePrint Archive, 2017.

[Att14] Nuttapong Attrapadung. Dual System Encryption via Doubly Selective Security: Framework, Fully Secure Func-
tional Encryption for Regular Languages, and More, pages 557–577. Springer Berlin Heidelberg, Berlin, Heidelberg,
2014.

[Att16] Nuttapong Attrapadung. Dual System Encryption Framework in Prime-Order Groups via Computational Pair
Encodings, pages 591–623. Springer Berlin Heidelberg, Berlin, Heidelberg, 2016.

[BF01] Dan Boneh and Matt Franklin. Identity-based encryption from the weil pairing. In Joe Kilian, editor, Advances in
Cryptology CRYPTO 2001, volume 2139 of LNCS, pages 213–229. Springer Berlin Heidelberg, 2001.

[BH08] Dan Boneh and Michael Hamburg. Generalized identity based and broadcast encryption schemes. In Josef Pieprzyk,
editor, Advances in Cryptology - ASIACRYPT 2008, volume 5350 of Lecture Notes in Computer Science, pages
455–470. Springer Berlin Heidelberg, 2008.
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A Conventional approach to achieve CCA-secure Predicate encryption

The predicate encryption schemes presented in [Att16] are CPA-secure. We already have pointed out one can convert
these schemes to achieve CCA-security by incorporating the generic conversion framework of [YAHK11,YAS+12,NP17].
Here we show that pair encoding based predicate encryption schemes instantiated in prime-order groups [Att16] ful-
fills the notion of verifiability [YAHK11]. Intuitively, a predicate encryption scheme has verifiability if there exists
a procedure that confirms if a ciphertext decrypts to same message under two different keys. Here we define the
algorithm Verify as following for C being a ciphertext corresponding to data-index y and two different key-indices x
and x̃. Let k = (k1, . . . , km1

) and k̃ = (k̃1, . . . , k̃m̃1
) be the output of EncK on input x and x̃ respectively. We also

denote corresponding secret keys by K and K̃ respectively. Let E = Pair(x, y,N) and Ẽ = Pair(x̃, y,N).
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Verify(pk,C, x, x̃) =


⊥ if R(x, y) = 0 or R(x̃, y) = 0

1 if Event

0 otherwise.

Event =



∏
ι∈[m1]
ι̃∈[w1]

e
(
Cι̃,g

kι(0,Itj ,H)

2

)Eιι̃
=1 for all t∈[d], j∈[m2] (2)

∏
ι∈[m̃1]
ι̃∈[w1]

e

(
Cι̃,g

k̃ι(0,Itj ,H)

2

)Ẽιι̃
=1 for all t∈[d], j∈[m̃2] (3)

∏
ι∈[m1]
ι̃∈[w1]

e(Cι̃,gbι111t2 )
Eιι̃=

∏
ι∈[m̃1]
ι̃∈[w1]

e
(
Cι̃,g

b̃ι111t
2

)Ẽιι̃
=e(C1,g

111t
2 ) for all t∈[d]. (4)

where Itj is a sparse matrix whose (t, j)th entry alone is 1; 0 is a vector of length (d+ 1) with all entries being zero

and 1t is a sparse vector of length (d+ 1) whose tth entry alone is 1.

Completeness of Verifiability. Suppose the ciphertext C is correctly generated for data-index y. We need to
show that for x, x̃ such that R(x, y) = 1 and R(x̃, y) = 1, Verify(pk,C, x, x̃) = 1. Here due to correctness of the
predicate encryption of [Att16], all the equations

(
namely Eq. (2), (3), (4)

)
hold true. Note that the correctness of

predicate encryption construction of [Att16] required only Property P1 of regular decryption properties (Sec. 4.1)
of underlying pair encoding. However, to satisfy Eq. (4), a well-formed ciphertext will also require Property P4 of
regular decryption properties of underlying pair encoding.

Soundness of Verifiability. Assume for x, x̃ and y, R(x, y) = 1 and R(x̃, y) = 1. If Verify(pk,C, x, x̃) = 1, we show
that Decrypt(pk,C,K) and Decrypt(pk,C, K̃) outputs the same. Let ∆ := Decrypt(pk,C,K).

By the definition of pair encoding,

kι(ααα,O,H) = bιααα =
∑

t∈[d+1]

αt(bι111t), (5)

kι(0,R,H) =
∑
t∈[d]
j∈[m2]

rtjkι(0, Itj ,H). (6)

Then ∆ = Decrypt(pk,C,K) = Cw1+1/
∏

ι∈[m1]
ι̃∈[w1]

e
(
Cι̃, g

kι(ααα,R,H)
2

)Eιι̃
.

We define, � =
∏

ι∈[m1]
ι̃∈[w1]

e
(
Cι̃, g

kι(ααα,R,H)
2

)Eιι̃

=
∏

ι∈[m1]
ι̃∈[w1]

e
(
Cι̃, g

kι(ααα,O,H)+kι(0,R,H)
2

)Eιι̃
(by linearity)

=
∏

ι∈[m1]
ι̃∈[w1]

e
(
Cι̃, g

kι(ααα,O,H)
2

)Eιι̃
·
∏

ι∈[m1]
ι̃∈[w1]

e
(
Cι̃, g

kι(0,R,H)
2

)Eιι̃
= A ·B

where A =
∏

ι∈[m1]
ι̃∈[w1]

e
(
Cι̃, g

kι(ααα,O,H)
2

)Eιι̃
and B =

∏
ι∈[m1]
ι̃∈[w1]

e
(
Cι̃, g

kι(0,R,H)
2

)Eιι̃
.
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Now A =
∏

ι∈[m1]
ι̃∈[w1]

e
(
Cι̃, g

kι(ααα,O,H)
2

)Eιι̃

=
∏

ι∈[m1]
ι̃∈[w1]

e

(
Cι̃, g

∑
t∈[d+1]

αt(bι111t)

2

)Eιι̃

(by Eq. (5))

=
∏

t∈[d+1]

 ∏
ι∈[m1]
ι̃∈[w1]

e
(
Cι̃, g

αt(bι111t)
2

)Eιι̃

=
∏

t∈[d+1]

 ∏
ι∈[m1]
ι̃∈[w1]

e
(
Cι̃, g

bι111t
2

)Eιι̃
αt

=
∏

t∈[d+1]

(
e(C1, g

111t
2 )
)αt

(by Eq. (4))

= e(C1, g
ααα
2 ).

And B =
∏

ι∈[m1]
ι̃∈[w1]

e
(
Cι̃, g

kι(0,R,H)
2

)Eιι̃

=
∏

ι∈[m1]
ι̃∈[w1]

e

Cι̃, g

∑
t∈[d]
j∈[m2]

rtjkι(0,Itj ,H)

2


Eιι̃

(by Eq. (6))

=
∏
t∈[d]
j∈[m2]

 ∏
ι∈[m1]
ι̃∈[w1]

e
(
Cι̃, g

kι(0,Itj ,H)
2

)Eιι̃
rtj

=
∏
t∈[d]
j∈[m2]

(1)
rtj = 1. (by Eq. (2))

As � = A ·B = e(C1, g
ααα
2 ), ∆ = Cw1+1/� = Cw1+1/e(C1, g

ααα
2 ).

Since x is arbitrary, similarly we have Decrypt(pk, C, K̃) = Cw1+1/e(C1, g
ααα
2 ).

Hence we note that [Att16] schemes achieves verifiability and can be converted generically to achieve CCA-security
[YAHK11,YAS+12,NP17]. We also note that (m1×w1×(d+1)×(m2+1)×d)+(m̃1×w1×(d+1)×(m̃2+1)×d)+(d+1)×d
many additional pairing computations were needed to verify the well-formedness of the queried ciphertext.

Remark 5. This count actually is loose upper bound as the matrix E and Ẽ are usually sparse. The actual number of
additional pairing to be evaluated is

(
I × (m2 + 1) +Ĩ × (m̃2 + 1) + 1

)
×d× (d+ 1) where I and Ĩ are the numbers of

non-zero entries in E and Ẽ respectively. Note that this is still quite a large number as opposed to our achievement
of (d+ 1) (presented in Section 4.2) additional pairings only.
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B Security Proof Details

B.1 Normal to Semi-functional Ciphertext

Lemma 5 (Game0 to Game1). For any efficient adversary A that makes at most q1 pre-challenge key queries, at
most q2 post-challenge key queries and at most q

D
decryption queries, there exists a PPT algorithm B such that

|Adv0A(λ)− Adv1A(λ)| ≤ AdvDd-MatDH
B (λ).

Proof. The algorithm B gets input (G, gT1 , g
T

(
yyy
ŷ

)
1 ) as Dd-MatDH problem instance where ŷ = 0 or ŷ

$← Zp and

T
$← Dd, yyy

$← Zdp.

Setup. B chooses B̃
$← GLp,d+1,J

$← GLp,d and implicitly sets B = B̃T and Z = B̃−>
(

J −M−>c>

0 1

)
such that D = B>Z =

(
T> B̃>

)(
B̃−>

(
J −M−>c>

0 1

))
=

(
M> c>

0 1

)(
J −M−>c>

0 1

)
=

(
M>J 0

0 1

)
. B can

compute gB1 = gB̃T
1 and g

Z

(
Id
0

)
2 = g

B̃−>
(

J
0

)
2 . Therefore it can easily compute mpk, msk by choosing the parameters

ααα,H1, . . . ,Hn+2 itself.

Key Queries. On secret key query x, outputs secret key K← KeyGen(x,msk).

Dec Queries. On decryption query (x,C) where C is a ciphertext on data-index y, if the signature σ is not

verified or if R(x, y) 6= 1, aborts. Otherwise B computes normal altKey K̂ ← AltKeyGen(C, x,msk) and returns

AltDec(C, K̂) to A.

Challenge. On receiving the challenge (y∗,M0,M1), B picks b
$← {0, 1}. Let (c = (c1, . . . , cw1

);w2)← EncC(y∗, N).

It uses random self-reducibility of Matrix-DH assumption to obtain (G, gT1 , g
T

(
Y
ŷyy

)
1 ). The decision problem is now to

find if ŷyy = 0 or ŷyy
$←
(
Zp
)(w2+1)

where T
$← Dd and Y

$←
(
Zdp
)(w2+1)

. B implicitly sets
(

Y
ŷyy

)
= S+Ŝ =

(
s0 · · · sw2

ŝ0 · · · ŝw2

)
.

As B has g
T

(
Y
ŷyy

)
1 , it can compute g

B

(
sj
ŝj

)
1 = g

B̃T

(
sj
ŝj

)
1 = g

B̃T

(
yyyj
ŷj

)
1 for j ∈ [0, w2]. As B knows ααα, H1, . . . ,Hn+2, it

can compute all components of ciphertext.

Then B computes C∗ as it knows ααα, H1, . . . ,Hn+2. Runs (vk∗, sk∗) ← OTS.Gen(1λ). Then it evaluates ξ∗ =

H(C∗, vk∗) to compute C
∗

= (C
∗
0, C∗, vk∗, σ∗) where C

∗
0 = g

(ξ∗Hn+1+Hn+2)B

(
s0
ŝ0

)
1 and σ∗ ← OTS.Sign(sk∗,C0). It

outputs C
∗
.

Key Queries. Same as Phase-I secret key queries.

Dec Queries. Same as Phase-I decryption queries.

Guess. A halts with output b′. B outputs 1 if b′ = b and 0 otherwise.

B.2 Normal to Type-1 Key in Phase-I

Lemma 6 (Game2,i−1,3 to Game2,i,1). For i = 1, . . . , q1, for any efficient adversary A that makes at most q1 pre-
challenge key queries, at most q2 post-challenge key queries and at most q

D
decryption queries, there exists a PPT

algorithm B such that |Adv2,i−1,3A (λ)− Adv2,i,1A (λ)| ≤ AdvDd-MatDH
B (λ).

Proof. The algorithm B gets as input (G, gT2 , g
T

(
yyy
ŷ

)
2 ) as Dd-MatDH problem instance where ŷ = 0 or ŷ

$← Zp and

T
$← Dd, yyy

$← Zdp.
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Setup. B chooses B̃
$← GLp,d+1,J

$← GLp,d and sets B = B̃

(
Id M−>c>

0 −1

)
and D =

(
MJ 0
0 1

)
where T =(

M 0
c 1

)
due to Dd-MatDH assumption. Then Z = B−>D = B̃−>

(
Id 0

cM−1 −1

)(
MJ 0
0 1

)
= B̃−>T

(
J 0
0 −1

)
. Then

define Z̃ =

(
J 0
0 −1

)
so that Z = B̃−>TZ̃. B therefore can compute the public parameters as g

B

(
Id
0

)
1 = g

B̃

(
Id
0

)
1 and

gZ2 = gB̃
−>TZ̃

2 . Then B chooses ααα
$← Z(d+1)

p and H = (H1, . . . ,Hn+2)
$←
(
Z(d+1)×(d+1)
p

)(n+2)

and publishes public

key mpk. Note that B cannot compute m̂pkb but can compute m̂pkz as it can compute m̂pkbase.

Key Queries. On jth secret key query x (j ≤ q1), outputs secret key K as follows.

– If j > i, B generates normal key KeyGen(x,msk).

– If j < i, B generates type-3 key SFKeyGen(x,msk,−, m̂pkbase, 3, βj) for βj
$← Zp.

– If j = i, B runs (k = (k1, . . . , km1
);m2)← EncK(x,N). It uses random self-reducibility of Matrix-DH assumption

to obtain (G, gT2 , g
T

(
Y
ŷyy

)
2 ). The decision problem is now to find if ŷyy = 0 or ŷyy

$←
(
Zp
)m2

where T
$← Dd and

Y
$←
(
Zdp
)m2

. B implicitly sets Z̃−1
(

Y
ŷyy

)
= R+ R̂ =

(
r1 · · · rm2

r̂1 · · · r̂m2

)
. Therefore g

Z

(
rj
r̂j

)
2 = g

(
B̃−>TZ̃

)(
Z̃−1

(
yyyj
ŷj

))
2 .

As B has g
T

(
Y
ŷyy

)
2 , ααα, B̃, H1, . . . ,Hn+2, it can compute all components of secret key. It is evident from the

description that if ŷyy = 0, the key is a normal key whereas if ŷyy
$←
(
Zp
)m2

, the key is type-1 key.

Dec Queries. On decryption query (x,C) where C is a ciphertext on data-index y, if the signature σ is not

verified or if R(x, y) 6= 1, aborts. Otherwise B computes normal altKey K̂ ← AltKeyGen(C, x,msk) and returns

AltDec(C, K̂) to A.

Challenge. On receiving the challenge (y∗,M0,M1), B picks b
$← {0, 1}. It runs (c = (c1, . . . , cw1

);w2) ←
EncC(y∗, N) and for j ∈ [0, w2] chooses

(
s′j
ŝ′j

)
$← Z(d+1)

p and implicitly sets
(

sj
ŝj

)
= B−1

(
s′j
ŝ′j

)
.

Then B computes C∗ as it knows ααα, H1, . . . ,Hn+2. Runs (vk∗, sk∗) ← OTS.Gen(1λ). Then it evaluates ξ∗ =

H(C∗, vk∗) to compute C
∗

= (C
∗
0, C∗, vk∗, σ∗) where C

∗
0 = g

(ξ∗Hn+1+Hn+2)

(
s′0
ŝ′0

)
1 and σ∗ ← OTS.Sign(sk∗,C0). It

outputs C
∗
.

Key Queries. On jth secret key query x (j ∈ [q1 + 1, q]), B generates normal key KeyGen(x,msk).

Dec Queries. Same as Phase-I decryption queries.

Guess. A halts with output b′. B outputs 1 if b′ = b and 0 otherwise.

B.3 Randomizing via Parameter Hiding

Here we modify SFSetup to define setup algorithm SFSetup′ to introduce some extra randomness in the semi-functional

components of m̂pkb and m̂pkz. We also describe the consequence of such newly introduced randomness in the outputs
of SFEnc, SFKeyGen and SFAltKeyGen.

– SFSetup′(1λ, κ): It outputsmpk,msk, m̂pkbase in exactly the same way. It additionally chooses ĥ = (ĥ1, . . . , ĥn+2)
$←

Zn+2
p and computes m̂pkb =

e(g1, g2)
ααα>B

(
0
1

)
, g

B

(
0
1

)
1 , g

H1B

(
0
1

)
+B

(
0
ĥ1

)
1 , . . . , g

Hn+2B

(
0
1

)
+B

(
0

ĥn+2

)
1
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and m̂pkz =

gH>1 Z

(
0
1

)
+Z

(
0
ĥ1

)
2 , . . . , g

H>n+2Z

(
0
1

)
+Z

(
0

ĥn+2

)
2

.

– SFKeyGen(x,msk, m̂pkz, m̂pkbase, type, β): Runs (k;m2)← EncK(x,N). Chooses r1, . . . , rm2

$← Zdp and r̂1, . . . , r̂m2

$←

Zp. Then it defines R =
((

r1
0

)
, . . . ,

(
rm2
0

))
∈
(
Z(d+1)
p

)m2

and R̂ =
((

0
r̂1

)
, . . . ,

(
0
r̂m2

))
∈
(
Z(d+1)
p

)m2

.

Outputs the secret key

K =


g
k(ααα,R,H)+k(0,R̂,H,ĥ)
2 if type = 1

g
k(ααα,R,H)+k

(
Z

(
0
β

)
,R̂,H,ĥ

)
2 if type = 2

where k(ααα,R,H) + k(Z
(
0
β

)
, R̂,H, ĥ) =bιααα+ bιZ

(
0
β

)
+

∑
j∈[m2]

bιjZ
(

rj
r̂j

)
+

∑
j∈[m2]
k∈[n]

bιjk

(
H>k Z

(
rj
r̂j

)
+ Z

(
0

ĥk r̂j

))
ι∈[m1]

.

– SFEnc(y,M,mpk, m̂pkb): It runs (c;w2)← EncC(y,N). Chooses s0, . . . , sw2

$← Zdp and ŝ0, . . . , ŝw2

$← Zp. It defines

S =
((

s0
0

)
, . . . ,

(
sw2
0

))
∈
(
Z(d+1)
p

)(w2+1)

and Ŝ =
((

0
ŝ0

)
, . . . ,

(
0
ŝw2

))
∈
(
Z(d+1)
p

)(w2+1)

. The semi-functional

ciphertext it computes is C = (C1, . . . ,Cw1
,Cw1+1) where

Cι̃ = g
cι̃(S,H)+cι̃(Ŝ,H,ĥ)
1 = g

 ∑
j∈[0,w2]

aι̃jB

(
sj
ŝj

)
+

∑
j∈[0,w2]
k∈[n]

aι̃jk

(
HkB

(
sj
ŝj

)
+B

(
0

ĥk ŝj

))
1

for ι̃ ∈ [w1] and Cw1+1 = M · e(g1, g2)
ααα>B

(
s0
ŝ0

)
.

It outputs C = (C0,C, vk, σ) where C0 = g
(ξHn+1+Hn+2)B

(
s0
ŝ0

)
+B

(
0

(ξĥn+1+ĥn+2)ŝ0

)
1 such that ξ = H(C, vk) and

σ = OTS.Sign(sk,C0) for (vk, sk)← OTS.Gen(1λ).

– SFAltKeyGen(C, x,msk, m̂pkz, m̂pkbase, type, η): Runs (k;m2)← EncK(x,N) and E← Pair(x, y). Chooses r1, . . . ,

rm2
, rrr

$← Zdp and r̂
$← Zp. Then it defines R =

((
r1
0

)
, . . . ,

(
rm2
0

))
∈
(
Z(d+1)
p

)(m2+1)

.

Then the normal key K =
{
g
kι(ααα,R,H)
2

}
ι∈[m1]

∈
(
G(d+1)

2

)m1 where each

kι(ααα,R,H) = bιααα+
∑

j∈[m2]

bιjZ
(

rj
0

)
+

∑
j∈[m2]
k∈[n]

bιjkH
>
k Z
(

rj
0

)
for ι ∈ [m1]

Then it computes (K̃1, . . . , K̃w1
) where K̃ι̃ =

∏
ι∈[m1]

(Kι)
Eιι̃ for each ι̃ ∈ [w1].

Defines modified key K̂ = (K0, Φ · K̃1, K̃2, . . . , K̃w1
) where

(K0, Φ) =



gZ
(
rrr
r̂

)
2 , g

(ξH>n+1+H>n+2)Z

(
rrr
r̂

)
+Z

(
0

(ξĥn+1+ĥn+2)r̂

)
2


if type = 1gZ

(
rrr
r̂

)
2 , g

Z

(
0
ηu

)
+(ξH>n+1+H>n+2)Z

(
rrr
r̂

)
+Z

(
0

(ξĥn+1+ĥn+2)r̂

)
2


if type = 2,

u =
∑

ι∈[m1]

bιEι1and ξ = H(C, vk) for the given C = (C0,C, vk, σ).
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We here show that outputs of SFSetup and SFSetup′ are identically distributed. This allows us to replace SFSetup by
SFSetup′ and run SFKeyGen, SFEnc and SFAltKeyGen to generate the secret keys, the challenge ciphertext and the
altKeys containing the randomness newly introduced via ĥ. This result will be used in arguing indistinguishibility of
type-1 and type-2 keys of both secret keys and altKeys (Lemma 2, Lemma 7 and Lemma 10).

Claim. The outputs of SFSetup and SFSetup′ are identically distributed.

Proof. Due to parameter-hiding lemma in Section 2.3, Hi
$← Z(d+1)×(d+1)

p , B
$← GLp,d+1 and ĥi

$← Zp, both RHi,ĥi

and Hi are identically distributed where RHi,ĥi
= Hi + B

(
0 0

0 ĥi

)
B−1 for i ∈ [n + 2]. It can easily be verified that

for each i ∈ [n+ 2], RHi,ĥi
B
(

Id
0

)
= HiB

(
Id
0

)
, R>

Hi,ĥi
Z
(

Id
0

)
= H>i Z

(
Id
0

)
, RHi,ĥi

B
(

0
1

)
= HiB

(
0
1

)
+ B

(
0
ĥi

)
and

R>
Hi,ĥi

Z
(

0
1

)
= H>i Z

(
0
1

)
+Z

(
0
ĥi

)
. Note that this replacement doesn’t change mpk and is therefore oblivious to any

adversary. Only the description of m̂pkb and m̂pkz of SFSetup′ gets modified. It is evident that this change does not
affect neither the normal nor the type-3 semi-functional forms of secret keys and altKeys.

B.4 Type-1 to Type-2 Key in Phase-I

Lemma 7 (Game2,i,1 to Game2,i,2). For i = 1, . . . , q1, for any efficient adversary A that makes at most q1 pre-
challenge key queries, at most q2 post-challenge key queries and at most q

D
decryption queries, there exists a PPT

algorithm B such that |Adv2,i,1A (λ)− Adv2,i,2A (λ)| ≤ AdvCMH
B (λ).

Proof. In this co-selective security game of pair encoding scheme, the algorithm B gets as input the group description
G1, G2, GT , g1 ∈ G1 and g2 ∈ G2.

Setup. B chooses ααα
$← Z(d+1)

p , H = (H1, . . . ,Hn+2)
$←
(
Z(d+1)×(d+1)
p

)(n+2)

, B
$← Z(d+1)×(d+1)

p , D̃
$← GLp,d

and defines D =

(
D̃ 0
0 1

)
and Z = B−>D. It computes mpk, m̂pkbase and msk. We note that these elements are

distributed as if they are output of SFSetup′.

Key Queries. On jth secret key query x (j ≤ q1), outputs secret key K as follows.

– If j > i, B generates normal key KeyGen(x,msk).

– If j < i, B generates type-3 key SFKeyGen(x,msk,−, m̂pkbase, 3, βj) after choosing βj
$← Zp.

– If j = i, B forwards x as the challenge query to the challenger to receive V = g
k(β,r̂,ĥ)
2 where (k = (k1, . . . , km1

);m2)

← EncK(x,N). B has to decide if β = 0 or β
$← Zp. It is to be noted that r̂ and ĥ are chosen by the challenger of

CMH-security game, unknown to B. Now B computes the normal part of the key by computing
{
g
kι(ααα,R,H)
2

}
ι∈[m1]

for R =
((

r
1
0

)
, . . . ,

(
rm2
0

))
such that r1, . . . , rm2

$← Zdp. To compute the semi-functional part, that contains

ĥ which is unknown to B, it implicitly sets R̂ =
((

0
r̂
1

)
, . . . ,

(
0
r̂m2

))
where r̂ = (r̂1, . . . , r̂m2

). Then the semi-

functional component of the key is

g
k′(βi,R̂,H,ĥ)
2 =

g
Z

(
0

kι(β,r̂,ĥ)

)
2

∏
j∈[m2]
k∈[n]

g
bιjkH

>
k Z

(
0
r̂j

)
2


ι∈[m1]

.

Notice that B implicitly sets βi to be β that is actually set by the challenger of CMH-security game and unknown
to B. Since B already have received V = (V1, . . . , Vm1

) from the challenger of CMH-security game, it uses Vι

to compute the first component of the right hand side of the above equation i.e. g
Z

(
0

kι(β,r̂,ĥ)

)
2 = V

Z

(
0
1

)
ι for

ι ∈ [m1].
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However to compute the second component

 ∏
j∈[m2]
k∈[n]

g
bιjkH

>
k Z

(
0
r̂j

)
2

 of the semi-functional part of the secret key,

B needs to know r̂ = (r̂1, . . . , r̂m2
). For each of j ∈ [m2], two cases can happen.

• Either there is ι′ ∈ [m1] such that kι′(β, r̂, ĥ) = r̂j , that lets B to know r̂j .

• Or there is no such ι′ ∈ [m1] for which kι′(β, r̂, ĥ) = r̂j . Then due to regular decryption properties of pair
encoding (precisely Property P2), bι′′jk = 0 for all ι′′ ∈ [m1], k ∈ [n].

B uses the normal part of the key and the semi-functional part of the key to generate the secret key and hands
it over to A.

Dec Queries. On decryption query (x,C) where C is a ciphertext on data-index y, if the signature σ is not

verified or if R(x, y) 6= 1, aborts. Otherwise B computes normal altKey K̂ ← AltKeyGen(C, x,msk) and returns

AltDec(C, K̂) to A.

Challenge. On receiving the challenge (y∗,M0,M1), B picks b
$← {0, 1}. It makes the ciphertext query on y∗

to the challenger of CMH-security game. It is possible to make such a challenge query as R(x, y∗) = 0 for all key

queries. B receives U← g
c(ŝ,ĥ)
1 .

B first computes the normal part of the ciphertext by computing g
cι̃(S,H)
1 for S =

((
s
0
0

)
, . . . ,

(
sw2
0

))
such that

s0, . . . , sw2

$← Zdp.

To compute the semi-functional part, that contains ĥ which is unknown to B, it implicitly sets Ŝ =
((

0
ŝ0

)
, . . . ,

(
0
ŝw2

))
where ŝ = (ŝ0, . . . , ŝw2

). Then it computes the semi-functional component of the ciphertext as

g
c′(Ŝ,H,ĥ)
1 =

g
B

(
0

cι̃(ŝ,ĥ)

)
1

∏
j∈[0,w2]
k∈[n]

g
aι̃jkHkB

(
0
ŝj

)
1


ι̃∈[w1]

.

Since B already have received U = (U1, . . . , Uw1
) from the challenger of CMH-security game, it uses Uι̃ to compute

the first component of the right hand side of the above equation i.e. g
B

(
0

cι̃(ŝ,ĥ)

)
1 = U

B

(
0
1

)
ι̃ .

However to compute the second component

 ∏
j∈[0,w2]
k∈[n]

g
aι̃jkHkB

(
0
ŝj

)
1

 of the semi-functional part of the ciphertext,

B needs to know ŝ = (ŝ0, . . . , ŝw2
). For each of j ∈ [0, w2], two cases can happen.

– Either there is ι̃′ ∈ [w1] such that cι̃′(ŝ, ĥ) = ŝj , that lets B to know ŝj .

– Or there is no such ι̃′ ∈ [w1] for which cι̃′(ŝ, ĥ) = ŝj . Then due to regular decryption properties of pair encoding
(precisely Property P3), aι̃′′jk = 0 for all ι̃′′ ∈ [w1], k ∈ [n].

Due to regular decryption properties of pair encoding (precisely Property P4), B also can compute the semi-

functional component of the blinding factor e(g
ααα>B

(
0
ŝ0

)
1 , g2) as gŝ01 is available in U.

B uses the normal part of the ciphertext and the semi-functional part of the ciphertext to generate the C∗. Runs
(vk∗, sk∗) ← OTS.Gen(1λ). Then it evaluates ξ∗ = H(C∗, vk∗) to compute C

∗
0 and defines C

∗
= (C

∗
0, C∗, vk∗, σ∗)

for σ∗ ← OTS.Sign(sk∗,C0). It outputs C
∗
.

Key Queries. On jth secret key query x (j ∈ [q1 + 1, q]), B generates secret key K← KeyGen(x,msk).

Dec Queries. Same as Phase-I decryption queries.

Guess. A halts with output b′. B outputs 1 if b′ = b and 0 otherwise.
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B.5 Type-2 to Type-3 Key in Phase-I

Lemma 8 (Game2,i,2 to Game2,i,3). For i = 1, . . . , q1, for any efficient adversary A that makes at most q1 pre-
challenge key queries, at most q2 post-challenge key queries and at most q

D
decryption queries, there exists a PPT

algorithm B such that |Adv2,i,2A (λ)− Adv2,i,3A (λ)| ≤ AdvDd-MatDH
B (λ).

Proof. The algorithm B gets as input (G, gT2 , g
T

(
yyy
ŷ

)
2 ) as Dd-MatDH problem instance where ŷ = 0 or ŷ

$← Zp and

T
$← Dd, yyy

$← Zdp.

The simulator description is same as Lemma 6 except while answering ith query. For ι ∈ [m2], each ιth component

of secret key of ith key query is now multiplied by g
kι(Z

(
0
βi

)
,0,H)

2 ∈ G(d+1)
2 . As B knows m̂pkbase, it chooses βi

$← Zp
to perform the simulation. In the similar light of Lemma 6, we see that if ŷyy = 0, the key is a type-3 key whereas if

ŷyy
$←
(
Zp
)m2

, the key is type-2 key.

B.6 Normal to Type-1 Key in Phase-II

Lemma 9 (Game2,q1,3 to Game2,q1+1,1). For any efficient adversary A that makes at most q1 pre-challenge key
queries, at most q2 post-challenge key queries and at most q

D
decryption queries, there exists a PPT algorithm B

such that |Adv2,q1,3A (λ)− Adv2,q1+1,1
A (λ)| ≤ AdvDd-MatDH

B (λ).

Proof. The algorithm B gets as input (G, gT2 , g
T

(
yyy
ŷ

)
2 ) as Dd-MatDH problem instance where ŷ = 0 or ŷ

$← Zp and

T
$← Dd, yyy

$← Zdp.
The simulator description is same as Lemma 6 except the simulator has to generate all post-challenge keys at

once. Here the simulator again uses random self-reducibility property of Matrix-DH problem to create q2m2 many
instance of the given problem. It uses first m2 instances to answer (q1 + 1)th key query, next m2 instances to answer
(q1 + 2)th key query, and so on. Similar to the proof of Lemma 6, we see that if ŷyy = 0, the key is a normal key

whereas if ŷyy
$←
(
Zp
)m2

, the key is type-1 key.

B.7 Type-1 to Type-2 Key in Phase-II

Lemma 10 (Game2,q1+1,1 to Game2,q1+1,2). For any efficient adversary A that makes at most q1 pre-challenge key
queries, at most q2 post-challenge key queries and at most q

D
decryption queries, there exists a PPT algorithm B

such that |Adv2,q1+1,1
A (λ)− Adv2,q1+1,2

A (λ)| ≤ AdvSMH
B (λ).

Proof. In this selective security game of pair encoding scheme, the algorithm B gets as input the group description
G1, G2, GT , g1 ∈ G1 and g2 ∈ G2.

Setup. B chooses ααα
$← Z(d+1)

p and H = (H1, . . . ,Hn+2)
$←
(
Z(d+1)×(d+1)
p

)(n+2)

, B
$← Z(d+1)×(d+1)

p , D̃
$← GLp,d

and defines D =

(
D̃ 0
0 1

)
and Z = B−>D. It computes mpk and msk and gives mpk to A.

Key Queries. On jth secret key query x (j ≤ q1), B generates type-3 secret key K ← SFKeyGen(x,msk,

−, m̂pkbase, 3, βj) after choosing βj
$← Zp.

Dec Queries. On decryption query (x,C) where C is a ciphertext on data-index y, if the signature σ is not

verified or if R(x, y) 6= 1, aborts. Otherwise B computes normal altKey K̂ ← AltKeyGen(C, x,msk) and returns

AltDec(C, K̂) to A.
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Challenge. On receiving the challenge (y∗,M0,M1), B picks b
$← {0, 1}. It makes the challenge query on y∗ to

the challenger of SMH-security game. It is possible to make such a challenge query as R(x, y∗) = 0 for all key queries.

B receives U← g
c(ŝ,ĥ)
1 .

B first computes the normal part of the ciphertext by computing g
cι̃(S,H)
1 for S =

((
s0
0

)
, . . . ,

(
sw2
0

))
such that

s0, . . . , sw2

$← Zdp.

To compute the semi-functional part, that contains ĥ which is unknown to B, it implicitly sets Ŝ =
((

0
ŝ0

)
, . . . ,

(
0
ŝw2

))
where ŝ = (ŝ0, . . . , ŝw2

). Then it computes the semi-functional component of the ciphertext as

g
c′(Ŝ,H,ĥ)
1 =

g
B

(
0

cι̃(ŝ,ĥ)

)
1

∏
j∈[0,w2]
k∈[n]

g
aι̃jkHkB

(
0
ŝj

)
1


ι̃∈[w1]

.

Since B already has received U = (U1, . . . , Uw1
) from the challenger of SMH-security game, it uses Uι̃ to compute

the first component of the right hand side of the above equation i.e. g
B

(
0

cι̃(ŝ,ĥ)

)
1 = U

B

(
0
1

)
ι̃ .

However to compute the second component

 ∏
j∈[0,w2]
k∈[n]

g
aι̃jkHkB

(
0
ŝj

)
1

 of the semi-functional part of the challenge

ciphertext, B needs to know ŝ = (ŝ0, . . . , ŝw2
). For each of j ∈ [0, w2], two cases can happen.

– Either there is ι̃′ ∈ [w1] such that cι̃′(ŝ, ĥ) = ŝj , that lets B to know such an ŝj .

– Or there is no such ι̃′ ∈ [w1] for which cι̃′(ŝ, ĥ) = ŝj . Then due to regular decryption properties of pair encoding
(precisely Property P3), aι̃′′jk = 0 for all ι̃′′ ∈ [w1], k ∈ [n].

Due to regular decryption properties of pair encoding (precisely Property P4), B also can compute the semi-

functional component of the blinding factor e(g
ααα>B

(
0
ŝ0

)
1 , g2) as gŝ01 is available in U.

B uses the normal part of the ciphertext and the semi-functional part of the ciphertext to generate the C∗. Runs
(vk∗, sk∗) ← OTS.Gen(1λ). Then it evaluates ξ∗ = H(C∗, vk∗) to compute C

∗
0 and defines C

∗
= (C

∗
0, C∗, vk∗, σ∗)

where σ∗ ← OTS.Sign(sk∗,C0). It outputs C
∗
.

Key Queries. On jth secret key query xj (j ∈ [q1 + 1, q]) B forwards xj as a key-query to the challenger to

receive V = g
k(β,r̂,ĥ)
2 where (k = (k1, . . . , km1

);m2) ← EncK(xj , N). B has to decide if β = 0 or β
$← Zp. It is

to be noted that r̂ and ĥ are chosen by the challenger of SMH-security game, unknown to B. So B computes the

normal part of the key by computing g
kι(ααα,R,H)
2 for R =

((
r1
0

)
, . . . ,

(
rm2
0

))
such that r1, . . . , rm2

$← Zdp. To compute

the semi-functional part, that contains ĥ which is unknown to B, it implicitly sets R̂ =
((

0
r̂1

)
, . . . ,

(
0
r̂m2

))
where

r̂ = (r̂1, . . . , r̂m2
). Then it computes the semi-functional component of the key as following.

g
k′(β,R̂,H,ĥ)
2 =

g
Z

(
0

kι(β,r̂,ĥ)

)
2

∏
j∈[m2]
k∈[n]

g
bιjkH

>
k Z

(
0
r̂j

)
2


ι∈[m1]

.

Since B already has received V = (V1, . . . , Vm1
) from the challenger of SMH-security game, it uses Vι to compute

the first component of the right hand side of the above equation i.e. g
Z

(
0

kι(β,r̂,ĥ)

)
2 = V

Z

(
0
1

)
ι .

However to compute the second component

 ∏
j∈[m2]
k∈[n]

g
bιjkH

>
k Z

(
0
r̂j

)
2

 of the semi-functional part of the secret key,

B needs to know r̂ = (r̂1, . . . , r̂m2
). For each of j ∈ [m2], two cases can happen.
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– Either there is ι′ ∈ [m1] such that kι′(β, r̂, ĥ) = r̂j , that lets B to know r̂j .

– Or there is no such ι′ ∈ [m1] for which kι′(β, r̂, ĥ) = r̂j . Then due to regular decryption properties of pair
encoding (precisely Property P2), bι′′jk = 0 for all ι′′ ∈ [m1], k ∈ [n].

B uses the normal part of the key and the semi-functional part of the key to generate the secret key and hands
it over to A.

Dec Queries. Same as Phase-I decryption queries.

Guess. A halts with output b′. B outputs 1 if b′ = b and 0 otherwise.

B.8 Type-2 to Type-3 Key in Phase-II

Lemma 11 (Game2,q1+1,2 to Game2,q1+1,3). For any efficient adversary A that makes at most q1 pre-challenge key
queries, at most q2 post-challenge key queries and at most q

D
decryption queries, there exists a PPT algorithm B

such that |Adv2,q1+1,2
A (λ)− Adv2,q1+1,3

A (λ)| ≤ AdvDd-MatDH
B (λ).

Proof. The algorithm B gets as input (G, gT2 , g
T

(
yyy
ŷ

)
2 ) as Dd-MatDH problem instance where ŷ = 0 or ŷ

$← Zp and

T
$← Dd, yyy

$← Zdp.
The simulator description is same as Lemma 8 except the simulator has to generate all post-challenge keys at

once. Here the simulator again uses random self-reducibility property of Matrix-DH problem to create q2m2 many
instance of the given problem. It uses first m2 instances to answer (q1 + 1)th key query, next m2 instances to answer
(q1 + 2)th key query, and so on. For ι ∈ [m2], each ιth component of secret key of ith key query is now multiplied by

g
kι(Z

(
0
β

)
,0,H)

2 ∈ G(d+1)
2 . As B knows m̂pkbase, it chooses only one β

$← Zp to perform the simulation. Similar to the

proof of Lemma 6, we see that if ŷyy = 0, the key is a type-3 key whereas if ŷyy
$←
(
Zp
)m2

, the key is type-2 key.

C An Alternative Construction

For a pair encoding scheme P for predicate function R, a predicate encryption Π ′R for predicate function R is defined
as following.

– Setup(1λ, N): mpk and msk is same as Section 4.2. Only difference is we no longer require OTS.

– KeyGen(msk, x): Same as KeyGen in Section 4.2.
– Enc(mpk, y,M): Same as Enc in Section 4.2. Only difference being the ciphertext it outputs is C = (C0,C) where

C is computed exactly the same as presented in Enc in Section 4.2. However, in this construction, ξ = H(C) and

C0 = g
(ξHn+1+Hn+2)B

(
s0
0

)
1 .

– Dec(K,C): It differs from the Dec in Section 4.2. Given K and C corresponding to key-index x and data-index
y respectively, if R(x, y) = 0, it aborts. It then computes ξ = H(C). It aborts if Eq. (7) is not satisfied.

e(C0, g
Z

(
Id
0

)
2 ) = e(C1, g

(ξH>n+1+H>n+2)Z

(
Id
0

)
2 ). (7)

Then runs E ← Pair(x, y,N). Given K = (K1, . . . ,Km1
) and ciphertext C it computes (K̃1, . . . , K̃w1

) where

K̃ι̃ =
∏

ι∈[m1]

(Kι)
Eιι̃ for each ι̃ ∈ [w1]. Chooses rrr

$← Zdp. Defines modified key K̂ = (K0, Φ · K̃1, K̃2, . . . , K̃w1
) where

K0 = g
Z

(
rrr
0

)
2 and Φ = g

(ξH>n+1+H>n+2)Z

(
rrr
0

)
2 for ξ = H(C).
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Outputs M such that

M = Cw1+1 · e(C0,K0) ·

 ∏
ι̃∈[w1]

e(Cι̃, K̂ι̃)

−1 . (8)

Correctness. This construction is correct due to the proof of correctness in Section 4.3 and associativity property
of [Att16, Section 4.1] for the check performed in Eq. (7).

Efficiency. We introduce an extra check in Eq. (7) to ensure C0 to have a particular structure. The check in Eq. (7)
incurs additional 2 × (d + 1) pairing evaluations. Therefore this CPA-to-CCA conversion incurs 3 × (d + 1) pairing
evaluations during decryption in addition to pairing evaluation involved in CPA-ciphertext decryption [Att16]3.

Analysis. Let C = (C0,C) be a ciphertext. We emphasize that if C1 = gc1
1 where c1 ∈ Z(d+1)

p and C0 =

g
(ξHn+1+Hn+2)c1

1 , then such a ciphertext C will satisfy Eq. (7). However, this is not the only case that satisfies

Eq. (7). Due to the relation ( Id 0 ) Z>B
(

0
1

)
= 0, any C

′
= (C

′
0,C) where C

′
0 = g

(ξHn+1+Hn+2)c1+B

(
0
τ

)
1 for any

τ ∈ Zp will also satisfy the Eq. (7). We discuss this in details below:

The RHS of Eq. (7) evaluates to e(g1, g2)( Id 0 )Z>(ξHn+1+Hn+2)c1 . A satisfied verification requires the LHS to
evaluate the same. The exponent of the GT element computed in Eq. (7) can be expressed as a system of linear
equations Ax = V where A = ( Id 0 ) Z> ∈ Zd×(d+1)

p , x ∈ Z(d+1)
p and V = ( Id 0 ) Z>(ξHn+1 + Hn+2)c1 ∈ Zdp. We

can write V = Ax′ where x′ = (ξHn+1 + Hn+2)c1, it simply implies that x′ is a solution of the system Ax = V.

Suppose there exists a system of linear equations Ax = V where A ∈ Zm×np , x ∈ Znp and V ∈ Zmp such that
Rank(A) = r ∈ N. We define the solution set of such linear system to be S = {x : Ax = V} and the solution
of corresponding homogeneous equations is S0 = {x : Ax = 0}. Naturally, if a solution x′ ∈ S is available, then
S = {x′ + x : x ∈ S0}. Due to rank-nullity theorem, n = Rank(A) + dim(S0). Therefore dim(S0) = n− r.

Here, in case of Eq. (7), we see that r = Rank(A) = d as A = ( Id 0 ) Z> where Z ∈ Z(d+1)×(d+1)
p is invert-

ible and n = (d + 1). Therefore dim(S0) = 1. That means there exists non-trivial x0 ∈ S0 and it spans the

space S0 alone. Now due to our construction, ( Id 0 ) Z>B
(

0
1

)
= 0. Therefore x0 = B

(
0
1

)
is a solution of ho-

mogeneous equation. As dim(S0) = 1, clearly {x0} is the basis of S0. Thus S0 =
{

B
(

0
τ

)
: τ ∈ Zp

}
. Therefore

S =
{

(ξHn+1 + Hn+2)c1 + B
(

0
τ

)
: τ ∈ Zp

}
.

Intuitively, the collision resistance of H does not allow the adversary to come up with a different C that results
in the same commitment ξ. The adversary, after receiving challenge C

∗
= (C

∗
0,C

∗), can however keep the same C∗

and construct C
′
0 = C0 · g

B

(
0
τ

)
1 (for some τ ∈ Zp) and produce C = (C

′
0,C

∗) as decryption query. Such a scenario
allows the simulator to solve the Dd-MatDH problem. Therefore during the security game, what the adversary can
do is to come up with random ciphertext C for decryption. With all but negligible probability, x used in decryption
query (x,C) will not satisfy y which is implicit data-index of C. This way we are ultimately stopping the adversary
to gather any non-trivial information.

C.1 Security Argument

Here we give hybrid security argument to prove the security of predicate encryption scheme Π ′R. We follow the same
sequence of games described in Section 5. We note that the games are quite similar to the game descriptions in Section
5 where only difference is here we no longer require one-time signature and the ciphertext now is C = (C0,C). Here
we present Game3,i,1, Game3,i,2, Game3,i,3 for 1 ≤ i ≤ q

D
of Table 1 as rest of the games will be similar to Appendix

B. As described in Section 5, in Game3,i,j , the ith altKey is type-j semi-functional where i ∈ [q
D

] and j ∈ {1, 2, 3}.

3 The construction in Section 4.2 needs only (d+ 1) additional pairing evaluations and a signature verification.
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Note that in all of these above mentioned games, the decryption query can only be made on ciphertext C where

C0 = g
(ξHn+1+Hn+2)c1

1 and C1 = gc1
1 . The reason is discussed in Footnote 4 in Lemma 12.

Theorem 2. Suppose a regular decryption pair encoding scheme P for predicate R is both SMH and CMH-secure
in G, and the Dd-Matrix DH Assumption holds in G. Then the scheme Π ′R (in Appendix C) is fully CCA-secure
encryption scheme if H is collision resistant hash function. More precisely, for any PPT adversary A that makes
at most q1 key queries before challenge, at most q2 key queries after challenge and at most q

D
decryption queries

throughout the game, there exists PPT algorithms B1,B2,B3,B4 such that for any λ,

AdvPE
A (λ) ≤ (2q1 + 2q

D
+ 3) · AdvDd-MatDH

B1
(λ) + q1 · Adv

CMH
B2

(λ) + AdvSMH
B3

(λ) + q
D
· AdvCRH

B4
(λ).

C.2 Normal to Type-1 altKey

Lemma 12 (Game3,i−1,3 to Game3,i,1). For i = 1, . . . , q
D

, for any efficient adversary A that makes at most q key

queries and at most q
D

decryption queries, there exists a PPT algorithm B such that |Adv3,i−1,3A (λ)− Adv3,i,1A (λ)| ≤
AdvDd-MatDH

B (λ).

Proof. The algorithm B gets input (G, gT2 , g
T

(
yyy
ŷ

)
2 ) as Dd-MatDH problem instance where ŷ = 0 or ŷ

$← Zp and

T
$← Dd, yyy

$← Zdp.
Setup. Same as Lemma 1. Only difference is we do not use any OTS.

Key Queries. Same as Lemma 1.

Dec Queries. On jth decryption query (x,C) where C is a ciphertext on data-index y, if R(x, y) 6= 1, aborts.

Otherwise B computes altKey K̂ and returns AltDec(C, K̂) to A. We now describe the altKey generation procedure.

– If j > i, it is normal altKey. As B knows msk, it computes the altKey K̂← AltKeyGen(C, x,msk).

– If j < i, it is type-3 semi-functional altKey. B computes type-3 altKey K̂← SFAltKeyGen(C, x,msk,−, m̂pkbase, 3, η).

– If j = i, it runs (k = (k1, . . . , km1
);m2) ← EncK(x,N) and E ← Pair(x, y,N). Chooses r1, . . . , rm2

$← Zdp
and defines R =

((
r1
0

)
, . . . ,

(
rm2
0

))
. It generates normal key K = (K1, . . . ,Km1

) where for each ι ∈ [m1],

Kι = g
kι(ααα,R,H)
2 = g

bιααα+ ∑
j∈[m2]

bιjZ

(
rj
0

)
+

∑
j∈[m2]
k∈[n]

bιjkH
>
k Z

(
rj
0

)
2 . It then computes (K̃1, . . . , K̃w1

) where K̃ι̃ =∏
ι∈[m1]

(Kι)
Eιι̃ for each ι̃ ∈ [w1].

Here we note that the decryption queries need to follow a certain structure given in the footnote4.

Given C = (C0,C), B computes ξ = H(C). To compute the altKey, it implicitly sets Z̃−1
(
yyy
ŷ

)
=
(

rrr
r̂

)
. Therefore

g
Z

(
rrr
r̂

)
2 = g

B̃−>T

(
yyy
ŷ

)
2 . The simulator then computes modified key K̂ = (K0, Φ · K̃1, K̃2, . . . , K̃w1

) where K0 =

g
Z

(
rrr
r̂

)
2 , Φ = g

(ξH>n+1+H>n+2)Z

(
rrr
r̂

)
2 and therefore is efficiently computable. It is evident from the description that

if ŷ = 0, the key is a normal altKey whereas if ŷ
$← Zp, the key is type-1 altKey.

4 Suppose the queried ciphertext is C = (C0,C) where C0 = g1
(ξHn+1+Hn+2)c1+B

(
0
τ

)
for some τ ∈ Zp and C1 = gc11 .

Note that it satisfies the verification in Eq. (7). However, as the simulator knows Hn+1 and Hn+2, it can compute Q =

g1
(ξHn+1+Hn+2)c1 . Therefore it gets hold of g

B

(
0
τ

)
1 by computing C0/Q. Since, B and Z are simulated exactly as Lemma 1

(see the Setup of Lemma 1), and B implicitly sets Z̃−1
(
yyy
ŷ

)
=
(

rrr
r̂

)
to compute ith altKey, e

gB
(

0
τ

)
1 , g

Z

(
rrr
r̂

)
2

 evaluation

will allow the simulator to decide the Dd-MatDH problem instance. Thus, under Dd-MatDH assumption, the adversary can’t
make such decryption query. Therefore any decryption query A makes, to satisfy Eq. (7), the queried ciphertext C must
follow the relation that C0 = g1

(ξHn+1+Hn+2)c1 and C1 = gc11 where ξ = H(C).
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Challenge. Same as Lemma 1. Since we do not use any OTS, ξ∗ now is H(C∗) and C
∗

= (C
∗
0,C

∗) where

C
∗
0 = g

(ξ∗Hn+1+Hn+2)B

(
s0
ŝ0

)
1 .

Key Queries. Same as Phase-I key queries.

Dec Queries. Same as Phase-I dec queries.

Guess. A halts with output b′. B outputs 1 if b′ = b and 0 otherwise.

C.3 Type-1 to Type-2 altKey

Lemma 13 (Game3,i,1 to Game3,i,2). For i = 1, . . . , d, we have |Adv3,i,1(λ) − Adv3,i,2(λ)| = 0 if H is Collision
Resistant Hash Function.

To prove the indistinguishability of the two games, we use the modified SFSetup namely SFSetup′ (See Appendix
B.3) that was used to prove indistinguishability of Lemma 7 and Lemma 10. Intuitively, to argue the indistinguisha-
bility, we introduce new randomness using SFSetup′. Note that this newly introduced randomness does not affect the
public key mpk. Then we show that introduction of such new randomness allows us to argue the indistinguishability.
Recall that the challenge ciphertext is semi-functional and is denoted by C

∗
, the secret keys K are all type-3 keys

and the altKey, computed to answer ith decryption query, is denoted by K̂.

Here we prove that joint distribution of {K,C
∗
, K̂} if K̂ is type-1 altKey is identical to joint distribution of {K,C

∗
, K̂}

if K̂ is type-2 altKey. Note that C
∗

= (C
∗
0,C

∗) such that C
∗
0 = g

(ξ∗Hn+1+Hn+2)B

(
s0
ŝ0

)
+B

(
0

(ξ∗ĥn+1+ĥn+2)ŝ0

)
1 where

ξ∗ = H(C∗). Now we prove our claim that, the joint distributions of {K,C
∗
, K̂} behaves identically for both type-1

and type-2 altKey K̂.

Claim. The joint distribution of {K,C
∗
, K̂} if K̂ is type-1 altKey is identical to joint distribution of {K,C

∗
, K̂} if

K̂ is type-2 altKey.

Proof. Note that K is type-3 key in both the distributions and can be computed by the simulator as it knows msk and

m̂pkbase. Due to linearity of pair encoding, the challenge ciphertext C
∗

and the altKey K̂ can be expressed as product
of normal component and semi-functional component. Since the simulator knows msk and can compute the normal
components, it suffices to show that the joint distributions are identical if the joint distribution of semi-functional
components of C

∗
and K̂ are identically distributed.

Notice that due to the introduction of ĥ (See Appendix B.3), the semi-functional ciphertext component C
∗
0

′
and

the term Φ′ used in altKey, is affected. To prove our claim, it suffices to argue that the following two distributions

(C
∗
0

′
, Φ′) are identically distributed:{

g

(ξ∗Hn+1+Hn+2)B

(
0
ŝ0

)
+B

(
0

(ξ∗ĥn+1+ĥn+2)ŝ0

)
1 , g

Z

(
0

(ξĥn+1+ĥn+2)r̂

)
+(ξH>n+1+H>n+2)Z

(
0
r̂

)
2

}
.{

g

(ξ∗Hn+1+Hn+2)B

(
0
ŝ0

)
+B

(
0

(ξ∗ĥn+1+ĥn+2)ŝ0

)
1 , g

Z

(
0
uη

)
+Z

(
0

(ξĥn+1+ĥn+2)r̂

)
+(ξH>n+1+H>n+2)Z

(
0
r̂

)
2

}
.

By natural restriction C
∗ 6= C where C

∗
is challenge ciphertext and C is ciphertext provided for decryption. Therefore

(C
∗
0,C

∗) 6= (C0,C).

Then any of the following two cases can happen,

1. C
∗
0 6= C0 and C∗ = C: we show that such a case can’t happen. Since C∗ = C, ξ∗ = ξ and C1 = C∗1 = g

c∗1
1

naturally. This implies C0 = g
(ξ∗Hn+1+Hn+2)c

∗
1

1 = C
∗
0 which is a contradiction.

2. C∗ 6= C: the inequality C∗ 6= C implies ξ∗ 6= ξ (due to collision resistance of H). Therefore ξ∗ĥn+1 + ĥn+2 and

ξĥn+1 + ĥn+2 are pairwise independent as ĥn+1 and ĥn+2 are chosen uniformly at random. It implies that the
semi-functional components of the ciphertext and altKey in Game3,i,1 and Game3,i,2 are identically distributed.
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C.4 Type-2 to Type-3 altKey

Lemma 14 (Game3,i,2 to Game3,i,3). For i = 1, . . . , q
D

, for any efficient adversary A that makes at most q key

queries and at most q
D

decryption queries, there exists a PPT algorithm B such that |Adv3,i−1,3A (λ)− Adv3,i,1A (λ)| ≤
AdvDd-MatDH

B (λ).

Proof. The algorithm B gets input (G, gT2 , g
T

(
yyy
ŷ

)
2 ) as Dd-MatDH problem instance where ŷ = 0 or ŷ

$← Zp and

T
$← Dd, yyy

$← Zdp.

The simulator description is same as Lemma 6 except while answering ith decryption query. Here the altKey

component K̂1 = Φ · K̃1 where Φ is now multiplied by g
Z

(
0
ηu

)
2 ∈ G2 where u =

∑
ι∈[m1]

bιEι1. As B knows m̂pkbase, it

chooses η
$← Zp to perform the simulation. In the similar light of Lemma 12, we see that if ŷ = 0, the altKey is a

type-3 altKey whereas if ŷ
$← Zp, it is type-2 altKey.
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