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Abstract—In this paper we tackle the practical challenges
of searching encrypted multimodal data (i.e. data containing
multiple media formats simultaneously), stored in public cloud
servers, with reduced information leakage. To this end we
propose MuSE, a Multimodal Searchable Encryption scheme
that, by combining only standard cryptographic primitives and
symmetric-key block ciphers, allows cloud-backed applications
to dynamically store, update, and search multimodal datasets
with privacy and efficiency guarantees. As searching encrypted
data requires a tradeoff between privacy and efficiency, we also
propose a variant of MuSE that resorts to partially homomorphic
encryption to further reduce information leakage, but at the
cost of additional computational overhead. Both schemes are
formally proven secure and experimentally evaluated regarding
performance and search precision. Experiments with realistic
datasets show that our contributions achieve interesting levels
of efficiency and privacy, making them suitable for practical
application scenarios.

I. INTRODUCTION

Applications nowadays manage increasingly larger data
collections [36], including data that simultaneously contains
different media formats (also known as multimodal data1) [2].
This dataset growth has led to the popularity of cloud services
for data and computation outsourcing [1]. In the referred cloud
services, applications outsource the storage and computations
of their data to third-party managed infrastructures, decreasing
operational costs with flexible charging models and leveraging
from highly available geo-replicated servers. Moreover, as
datasets increase in size, so does the importance of supporting
efficient search operations that can return relevant subsets of
data in response to multimodal queries [35].

Despite the clear advantages cloud services bring, they
also lead to new security and privacy challenges that must
be addressed, as outsourcing data and computations also
means outsourcing control over them [13]. Recent incidents
have shown that privacy is not preserved by cloud providers
when using their services [43]. Governmental agencies impose
increasing pressure on cloud companies to disclose users’
data and build insecure backdoors [14], [23]. Malicious or
simply careless cloud administrators have been responsible
for critical data disclosures [12], [20]. Last but not least,
internet hackers exploiting software vulnerabilities in cloud
infrastructures must also be considered, as they may gain
remote access to users data even if only for a limited time
window [33].

1An example of multimodal applications are those for medical center
management, where patient records can contain both text (written by the
medical doctor) and visual data (images obtained from medical equipment).

The conventional approach for addressing such privacy
issues is to have applications encrypt all data in transit and
at rest [6]. However this leads to expensive computation
and communication overheads, as large sets of multimodal
data have to be downloaded (and possibly re-uploaded) when
performing operations, especially in applications with frequent
search operations. Performing computations over encrypted
data directly in the cloud servers is possible, with recent
advances in Fully Homomorphic Encryption [22] and Obliv-
ious RAM [48]. However existing schemes still impose too
much computation, storage, and/or communication overheads
for enabling practical adoption [39].

Nonetheless more fine-grained cryptographic protocols,
specifically designed for supporting search over encrypted
data, can be used in practice with good privacy-efficiency
tradeoffs. These protocols are known as Searchable Symmetric
Encryption (SSE) schemes [7], [11], [15] and were originally
designed for text data [46], with a few recent schemes also
studying how to search encrypted visual data (i.e. images)
[19], [34], [50]. In this paper we study a more broad topic:
how to support applications dynamically storing and searching
encrypted multimodal data, i.e. data that combines different
media formats, including text, images, audio, and video2.

We call our proposal MuSE - Multimodal Searchable
Encryption, and base it solely on standard cryptographic
primitives, including Pseudorandom Functions (PRFs) and
Symmetric-Key Block Ciphers [29]. At its core MuSE relies
on inverted index structures [35] and algorithms that represent
different media formats through these structures. Multimodal
queries (i.e. queries also composed of different media formats)
can then be answered by searching in each format’s index and
combining results through an appropriate merging function.
Using these techniques, the research challenge that must
be addressed is how to securely protect indexing structures
while allowing their privacy-preserving and efficient operation
during both multimodal data updating and searching.

Since having both full security (i.e. leaking zero informa-
tion) and practical efficiency has been shown to be impossible
for SSE schemes [39], MuSE is required to reveal some mini-
mal information patterns when performing operations (namely
search, access, and frequency patterns [10]). This leakage
is common in SSE schemes [7] and results from a tradeoff
between security and efficiency that is required to achieve sub-

2A solution to this problem can also be fine-tuned to support only one
media format at a time, offering the same functionality as existing schemes.
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linear search performance. Nonetheless, further exploring this
tradeoff we propose a variant of MuSE, called PHom-MuSE,
that employs Partially Homomorphic Encryption [42] when
encrypting index entries. This second scheme exhibits further
reduced leakage by protecting frequency patterns, but at the
cost of additional computational overhead. We formally prove
the security properties of both schemes, implement them, and
experimentally evaluate their performance and scalability with
a real world multimodal dataset.

In summary, this work provides the following contributions:
• We start by revising the state of art on SSE, followed

by an empirical analysis of existing schemes and their
leakage. From this analysis we propose a new framework
that will aid both researchers and developers in the
characterization of SSE schemes through their leakage
(Section II);

• We propose MuSE, an efficient dynamic multimodal
searchable encryption scheme that allows cloud appli-
cations to securely store, update, and search multi-
modal datasets, by resorting only to standard and ef-
ficient cryptographic primitives. Compared to previous
SSE schemes, MuSE provides additional functionality
(multimodal ranked searching) while displaying similar
efficiency and security (Section IV);

• We propose PHom-MuSE, a variant of MuSE that further
reduces its leakage, namely the leakage of frequency
patterns, at the cost of additional computational overhead
by resorting to Partially Homomorphic Encryption (Sec-
tion IV-A);

• We formally prove the security properties of our schemes
and implement them. Our prototype implementations
focus on text and image media formats, nonetheless we
explain how to extend them to other medias. Using these
prototypes we experimentally evaluate the performance
and scalability of our schemes. Real world datasets and
publicly-available commercial clouds are used in these
experiments (Section VI).

II. RELATED WORK

With the increasing popularity of cloud services and its
associated security issues, the topic of searching encrypted
data has quickly become an important area of research in
recent years. In this field, Searchable Symmetric Encryption
(SSE) schemes strive for a practical balance between efficiency
and security.

First proposed by Song et al. [46], searching encrypted
text documents initially required search time linear in the
dataset size. Curtmola et al. [15] used an inverted index to
achieve sub-linear search performance, while also providing
the first security definitions for SSE. While these works were
confined to static datasets, Kamara et al. [27], [28] proposed
the first dynamic SSE schemes, where documents could be
added, removed, or updated. Naveed et al. [40] designed a
dynamic SSE scheme that only required storage services from
the cloud, instead of storage and computation as in previous
schemes. Cash et al. [11] proposed the most efficient dynamic

SSE scheme to date. Stefanov et al. [47] presented the first
forward-private dynamic SSE scheme, where updates reveal
no information even when combined with previously issued
query tokens. Raphael Bost [7] revisited the topic, proposing
a more efficient scheme that achieved the same security notion.

The SSE schemes referred so far focused on exact-match
searching of text documents, where all documents containing
a keyword are returned when the keyword is searched. Ranked
searching, where documents are returned in a sorted order of
relevance to the query, was addressed by Wang et al. [49]
with single keyword queries and Cao et al. [9] with multi-
keyword (conjunctive) queries. However these works lacked
a formal security analysis. Baldimtsi and Ohrimenko [3]
proposed the first ranked SSE scheme with a formal security
analysis, however their scheme required a cryptographic co-
processor to be deployed in the cloud, under the client’s
control. Additionally, so far these ranked schemes have been
limited to static document collections, as they depend on pre-
computed and immutable ranking scores that would need to
be refreshed and re-encrypted with each document addition,
update, or removal.

Searching encrypted data has also been designed for other
media formats, including visual data (i.e. images). Lu et al.
[34] presented the first scheme for encrypted image search. Xia
et al. [50] presented a more recent approach to the problem.
However these works lack a formal security treatment and do
not support dynamic updates. Ferreira et al. [19] presented the
first dynamic SSE scheme for images with a formal security
analysis, however it leaked more information than previous
schemes for text data: it leaked frequency and update patterns
for all stored data, including the initial dataset (these patterns
will be fully detailed in the next Section). The problem of
encrypted multimodal searching was addressed for the first
time by Ferreira et al. [17]. Their work supported dynamic
updates and provided a formal security analysis, however it
also leaked update and frequency patterns for all stored data.
Hence in this work we present the first dynamic, efficient, and
provably-secure multimodal SSE schemes achieving similar
security and leakage guarantees as the state of art literature
on SSE for text data.
A. SSE Leakage Analysis

As an extension to the related work analysis performed so
far, we now present an empirical study of the leakage of SSE
schemes for different media formats. This study was initiated
by Cash et al. [10], who focused on the leakage of exact-match
queries on text data. In contrast, we also consider the leakage
when supporting ranked queries on text data and queries on
other media formats.

The efficiency guarantees provided by SSE schemes are
only possible by leaking some information patterns with the
execution of operations [39]. The most commonly leaked
patterns are search and access patterns [15], both leaked
by search operations. Search patterns reveal the history of a
query, i.e. how many times it has been performed so far. This
information is leaked by deterministic query tokens submit-
ted at search time. Access patterns reveal which documents
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Level Leakage Name Patterns Leaked E.g. Schemes
L2 Fully-Revealed Frequency Search, Access, Frequency & Update [17], [19]
L1 Fully-Revealed Occurrence Search, Access & Update [28], [30], [40]

L0=>L2 Query-Revealed Frequency Search, Access & Frequency MuSE, [9], [50]
L0=>L1 Query-Revealed Occurrence Search & Access PHom-MuSE, [3], [7]

L0 Blind (Leakage) – [21]

TABLE I: Characterization of SSE schemes according to their leakage.

are returned by a query, which is leaked by deterministic
identifiers of the documents accessed. These patterns have
been revealed by all SSE schemes to date [7], and have
been shown to be necessary leakage for achieving practical
efficiency [39]. The first dynamic SSE schemes [28], [40] addi-
tionally leaked update patterns with the update operation: they
resorted to deterministic update tokens, revealing if updates
shared contents with previous updates and queried documents.
Nonetheless, update leakage has been solved in more recent
dynamic schemes [7], [11], [27], [47], by making updates non-
deterministic. If additionally updates leak no information at
all, even when combined with previously issued queries, SSE
schemes are said to be forward-private [7], [47].

The leakage described so far is characteristic of the most
simple type of queries: exact-match searching. As we move
to more complex queries, including ranked search of text
documents, images, and multimodal data in general, there is
an additional data leakage that must be considered: frequency
patterns, i.e. how many times a keyword (or a similar concept
in other formats, e.g. a keypoint or a feature in images) appears
in a document. This is a basic metric required for supporting
most forms of ranked search [35], and may be leaked by update
or search operations. As such, it should also be modeled in
the formal treatment of ranked SSE schemes.

Given the previous patterns, Table I provides a new frame-
work that helps characterizing SSE schemes according to their
leakage. The framework is divided in different levels3, with the
top level being the least secure (i.e. leaks more data) and the
bottom the more secure (i.e. leaks less). L0 reveals nothing
except basic information like the dataset size; it represents
O-RAM based schemes. L0=>L1 represents typical exact-
match SSE schemes (on text data) as a transitory level: at
initialization nothing is revealed (as in L0), but with each
search some patterns are leaked (more precisely, search and
access patterns), eventually leading to the equivalent fully-
revealed level (L1). This level also represents the leakage of
our PHom-MuSE scheme (which additionally supports mul-
timodal ranked searching). L0=>L2 represents ranked SSE
schemes (as is the case of our MuSE scheme) that additionally
reveal frequency patterns with queries. L1 represents exact-
match schemes (on text data) that leak update patterns, fully
revealing the occurrence of keywords even if no queries are
performed (we assume databases can start empty, with all
data being added through updates, possibly in batches). L2
represents schemes that also reveal frequency patterns with
updates and queries.

3Comparing to [10] we omit the leakage of document’s structure for
simplicity, since (as far as we know) there are no known SSE schemes in
the literature that reveal it.
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Fig. 1: System model with the interactions between client and cloud server.

III. TECHNICAL OVERVIEW

This section initiates the technical description of our paper.
We start with some notations and concepts, following with
an overview presentation of our system and adversary mod-
els. We call multimodal object to a data object combining
multiple media formats. A multimodal dataset is a collection
of multimodal objects. Multimodal features are distinctive
characterizations of a data object in its different media formats:
e.g. a document’s keywords compose its text features, while
an image’s visual keypoints compose its visual features.

Multimodal searching is the operation used to search a
multimodal dataset with a query, where the query is itself
a multimodal object. Results of a multimodal search are
returned ordered by relevance (or similarity) to the query, and
are usually obtained for each media format in separate and
aggregated through a merging function [38].

Multimodal indexing consists in building dictionary-like
structures, one for each media format, that compactly describe
a dataset and where each entry represents a feature (keyword
or similar concept in other formats) and its frequency in a data
object. Indexing structures allow searching in time sub-linear
with the dataset size.

Multimodal training is an operation that is usually required
in rich, highly dimensional media formats, including images,
audio, and video. It consists in performing clustering op-
erations (e.g. k-means [24]) on the dataset, particularly on
the referred formats, reducing the data’s dimensionality and
allowing it to be more efficiently indexed. The result of
training is a codebook structure [41] that assists in this more
efficient indexing.
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A. System Model
Figure 1 represents the system model employed in this work.

We consider a client application and one cloud server, where
the client is outsourcing the storage (and some computations)
of his multimodal dataset to the server. We assume three main
operations between the client and the server: Setup, Update,
and Search. The cryptographic protocols subjacent to these
operations will be formally specified and detailed in the next
Section, while for now we focus on describing a high level
overview of the possible interactions between client and server.

The Setup operation initiates the system. The client starts
by generating the system’s cryptographic keys. Then, for each
rich media format where training is required (images, audio,
and video) the client trains an appropriate training dataset,
storing the resulting codebooks on his side. These will be
used in Update and Search operations to allow an efficient
indexing and retrieval of multimodal data, respectively. Finally,
the client tells the server to initialize the system’s indexing
structures, one for each media format supported.

As implied by our minimalistic Setup, the client’s dataset
is initially empty. This means that all data can be added
dynamically through the Update operation. When processing a
new multimodal object for storage (or an existing one for up-
date), the client starts by processing and extracting its relevant
features in each media format. In formats where training is
required, these features are additionally clustered through the
respective codebook. Then each feature is encrypted and sent
to the server through a batch Update request. When the server
receives an Update request, he stores the encrypted features in
the respective indexing structures.

The Search operation is performed in a similar fashion as the
Update. Given a multimodal object as query, the client extracts
its features in each media format, clustering them with the
respective training codebooks if required. Then each feature
is encrypted and the resulting query tokens are sent to the
server through a Search request. Query tokens are then used
by the server to accesses its indexing structures and calculate
search results, which are returned to the client as a single set
of object identifiers ordered by relevance to the query.

All communications between the client and the server must
be done through secure channels (e.g. TLS/SSL [29]), nonethe-
less we consider these details to be easily implementable and
orthogonal to the main scope of the paper.
B. Adversary Model

In this work we consider as main adversary the cloud server,
i.e. the cloud provider company and any system administrators
working for it that may have access to the client’s data and
computations. As in previous works [7], we assume the cloud
server to operate in an honest but curious fashion: it is expected
to fulfill its contract agreements and not destroy or temper with
data and computations, but may eavesdrop on their contents at
will without detection by the client. In more detail, the cloud
server keeps a log of all operations done and all information
leaked by them, and may resort to any other background
information available in order to learn the contents of both
the dataset stored and the performed queries.

A second important adversary that should also be considered
is the snapshot attacker, i.e. an adversary that does not have
continuous access to the server but may gain that access for
a limited time window and may perform a snapshot copy of
all stored data. This adversary represents the typical Internet
hacker. We informally argue that by addressing the cloud
server adversary, our approach is also implicitly addressing
this second adversary, since his capabilities are a subset of the
first. Hence, we focus our security analysis on the honest-but-
curious cloud adversary.

Data integrity, availability, and verifiability are also impor-
tant issues in cloud-based applications. However these issues
can be easily addressed by combining existing techniques in
the literature [8], [45], and hence we also find them to be
orthogonal to the main scope of the paper.

IV. DESIGNING A MULTIMODAL SSE SCHEME

In this section we detail MuSE, our efficient multimodal
SSE scheme, and analyse its security properties. We start by
defining what is a Dynamic Multimodal Searchable Encryption
scheme.

Definition 1 (Dynamic Multimodal Searchable Encryption).
A Dynamic Multimodal Searchable Encryption scheme
consists of three protocols SETUP, UPDATE, AND SEARCH
executed between a client and a server, such that:
• SETUP(SETUPC(1λ,m, {{wji , f

j
i }ni=0}mj=0)), SETUPS(m))

is the protocol used to initiate the scheme. The client takes
as input the security parameter λ, the number of modalities
m, and a training dataset {{wji , f

j
i }ni=0}mj=0 (where wji is

a feature and f ji is its frequency in the object). It trains
the modalities that require training and generates the
cryptographic keys of the scheme, outputting these keys and
the codebooks resulting from the training step. The server
also takes m as input and initializes the indexing structures
of each modality as empty, returning no outputs.
• UPDATE(UPDATEC({{wji , id

j
i , f

j
i }ni=0}mj=0),UPDATES(

{{utji}ni=0}mj=0)) is a protocol between the client with input a
group of n features wji , object identifiers idji , and frequencies
f ji in m different modalities, and the server with input n
update tokens utji in the same m modalities. The client builds
each utji as a function of wji , idji , and f ji , while the server
uses utji to update its indexing structures accordingly. This
protocol reflects a batch update of multiple features n in
different modalities m, where each sub-update can represent
the addition of a new feature w to a (also possibly new)
object id, an update to the frequency f of an existing w in
id, or the deletion of w from id (in which case f is zero).
• SEARCH(SEARCHC({{wji , f

j
i }ni=0}mj=0), SEARCHS(

{{stji}ni=0}mj=0)) is the protocol used to perform a multimodal
search. The client takes as input a query object, represented
as a collection of n features and their frequencies in m
different modalities ({{wji , f

j
i }ni=0}mj=0). The server receives

the respective search tokens {{stji}ni=0}mj=0 and returns a set
of object identifiers ordered by relevance to the query.
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We now detail the operations of MuSE. We begin by
designing a scheme that only supports exact-match searching
in text documents, expanding its usability by steps until we
achieve full multimodal ranked searching.

An Exact-Match Text Searching Scheme. Exact-match
searching in text documents has been extensively researched
in the literature [7], [11], [28]. From the previous works, we
found the methodology of Cash et al. [11] for dynamic SSE
to be one of the most efficient and promising for extension to
richer queries. In this approach the client stores D, a dictio-
nary of counters where each unique keyword in the dataset
is mapped to a counter initiated at 0. Each counter value
represents a new object where the keyword is being added
to, and counter values are used during updates/searches to
determine where to store/find keyword-document occurrences
in the server’s index. Index positions (i.e. the counters) are
encrypted with a Pseudo-Random Function (PRF) [29] and a
key derived from the respective keyword, while index values
(the documents’ ids) are encrypted with a RCPA block-cipher
encryption scheme (i.e. a block cipher scheme resistant to
Chosen-Plaintext Attacks [29]) and a second key derived from
the keyword. Encrypted index positions and values combined
form an update token.

When searching with a query keyword the client derives
its two keys, as in the update protocol, and sends them to
the server. By applying a PRF (with the first key) to an
incrementing counter value c, initiated at zero and stopping
when an empty index position is found, the server is able to
efficiently find all relevant index positions. These are then
decrypted with the second key and returned to the client.

From Exact-Match to Ranked Searching. In ranked text
searching we need to store not only keyword-document
occurrences, but also their frequencies. Frequency is the basis
for most ranked scoring functions, including the popular
TF-IDF [35] (which we will be using in MuSE). Since both
informations (occurrence and frequency) are closely related,
we design our extended scheme to concatenate frequencies
with document ids and store their RCPA encryption as index
values. For calculating ranking scores, other repository wide
metrics may still be required, including the dataset size (i.e.
number of objects) and keyword dataset size (i.e. number of
objects containing the keyword), nonetheless these are usually
general information that the server already has access to.

Dynamic Updates and Deletions. The scheme described
so far efficiently supports new additions of keywords to
documents. However supporting updates of existing keyword-
document occurrences, including frequency updates and dele-
tions, is still challenging. This is a side effect of the counters
approach, since when performing updates there is no way for
the client or server to know if the specified keyword already
exists in the object and where in the index is this information
stored. Searching for the keyword before updating the index
would solve this problem, however it would also lead to

additional unnecessary leakage.
We foresee two solutions to this problem. The first consists

in incrementing keyword counters with all updates. When
searching, only the most recent frequencies for each document
id (given by higher counter values) will be used. This solution
works better for applications with few updates, as it will
make index size grow significantly. Since we expect dynamic
SSE schemes to receive many update operations, we devise
a second solution that requires larger server storage at setup
time, but no additional storage will be required as updates are
performed.

Our solution consists in dividing index storage in two data
structures. In the first index, which we call IA, we map PRFs
on keyword counters to encrypted document ids. IA represents
our previous index and allows efficient searching through the
counters approach. In the second index, called IU , we map
PRFs on document ids to encrypted frequencies. IU allows
efficient updates to keyword frequencies, as well as keyword
deletions, without requiring knowledge of the respective index
positions in IA.

In more detail our update protocol will now give the server
two update tokens (per feature) as input, utA = (lA, dA) and
utU = (lU , dU ), where the first represents our old tokens and
is used on index IA, and the second represents our new tokens
(mapping ids to frequencies) and is used on IU . The server
starts by accessing IU with (lU , dU ). If there already exists
an entry for it (meaning that this is an update or deletion
of an existing frequency) then it stores the new encrypted
frequency (which will be 0 for deletions) and discards utA.
Otherwise, besides storing dU in IU [lU ], it also stores dA in
IA[lA]. Finally, the server outputs to the client a bit r, where
value 0 means that this operation was a new addition and value
1 means it was an update to an existing frequency. The client
now waits for this response before incrementing c, and only
updates it if r is 0.

The search protocol now also needs a second search token
for each feature, and accesses both indexing structures: first
the server accesses IA with the old query token and then,
after decrypting the document id fetched from IA, it accesses
IU with it and decrypts the corresponding frequency.

Supporting Multimodality. So far we have an index approach
that efficiently supports the storage, update, and ranked search-
ing of text data. If we can find similar index representations
in other media formats, extending our approach to multimodal
searching will be straightforward to achieve.

Image features of any kind, (e.g. from facial recognition to
keypoint detection [16]) can be clustered and represented as vi-
sual words [41], allowing their efficient indexing in dictionary
structures as performed for text features. Similar approaches
can be used for indexing audio [32] and video features [44]. In
these approaches, a training phase is usually required before
indexing is possible, which takes a training dataset as input and
builds a codebook cbj for each modality that requires training.
Hence we change the Setup operation to have the client
perform this training and storing cb = {cbj}mj=0. Moreover,
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Setup(1λ,m, {{wji , f
j
i }ni=0}mj=0)

Client:
1: for j = 0..m do
2: KA

j ,K
U
j

$←− {0, 1}λ
3: Dj ← Init()
cb← Train({{wji , f

j
i }ni=0}mj=0)

4: Send m to the server.
Server:

5: for j = 0..m do
6: IAj , I

U
j ← Init()

Update({{wji , id
j
i , f

j
i }ni=0}mj=0)

Client:
1: {{cwji , id

j
i , cf

j
i }ni=0}mj=0 ← Cluster(cb, {{wji , id

j
i , f

j
i }ni=0}mj=0)

2: ut← []
3: for j = 0..m do
4: utj ← []
5: for i = 0..n do
6: K1A ← F (KA

j , cw
j
i ||1); K2A ← F (KA

j , cw
j
i ||2)

7: K1U ← F (KU
j , cw

j
i ||1); K2U ← F (KU

j , cw
j
i ||2)

8: c← Dj [cw
j
i ]

9: if c = ⊥ then c← 0
10: lA ← F (K1A, c); dA ← Enc(K2A, idji )
11: lU ← F (K1U , idji ); d

U ← Enc(K2U , cf ji )
12: utj ← {lA, dA, lU , dU} : utj
13: ut← utj : ut

14: Send ut to the server.
Server:

15: R← []
16: for all utj ∈ ut do
17: Rj ← []
18: for all {lA, dA, lU , dU} ∈ utj do
19: if IUj [lU ] = ⊥ then
20: IAj [l

A]← dA; r ← 0
21: else
22: r ← 1
23: IUj [l

U ]← dU ; Rj ← r : Rj

24: R← Rj : R

25: Send (R) to the client.
Client:

26: for all Rj ∈ R do
27: for all r ∈ Rj do
28: if r = 0 then Dj [w]← Dj [w] + 1

Search({{wji , f
j
i }ni=0}mj=0)

Client:
1: {{cwji , cf

j
i }ni=0}mj=0 ← Cluster(cb, {{wji , f

j
i }ni=0}mj=0)

2: st← []
3: for j = 0..m do
4: stj ← []
5: for i = 0..n do
6: K1A ← F (KA

j , cw
j
i ||1)

7: K2A ← F (KA
j , cw

j
i ||2)

8: K1U ← F (KU
j , cw

j
i ||1)

9: K2U ← F (KU
j , cw

j
i ||2)

10: stj ← {cf ji ,K1A,K2A,K1U ,K2U} : stj
11: st← stj : st

12: Send st,N to the server . N is the current dataset size
Server:

13: R← []
14: for all stj ∈ st do
15: Rj ← Init()
16: for all {fq,K1A,K2A,K1U ,K2U} ∈ stj do
17: L← []
18: c← 0
19: lA ← F (K1A, c)
20: dA ← IAj [l

A]
21: while dA 6= ⊥ do
22: id← Dec(K2A, dA)
23: lU ← F (K1U , id)
24: dU ← IUj [l

U ]
25: f ← Dec(K2U , dU )
26: L← {id, f} : L
27: c← c+ 1
28: lA ← F (K1A, c)
29: dA ← IA[lA]

30: idf ← log( N|L| )

31: for all {id, f} ∈ L do
32: tf-idf ← f × idf × fq
33: if Rj [id] = ⊥ then Rj [id]← 0

34: Rj [id]← Rj [id] + tf-idf

35: Rj ← Sort(Rj)
36: R← Rj : R

37: S ← ISR(R)
38: Send S to the client

Fig. 2: The MuSE scheme, based on PRF F and RCPA scheme (Enc,Dec).

in the Update and Search operations the client now starts by
using cb to cluster the inputed features (in medias requiring
this step) before indexing/searching them.

Finally, multimodal searching (i.e. search in multiple
formats simultaneously) can be achieved by searching in each
format in separate and merging results with a multimodal
merging function, such as logarithmic Inverse Square Rank
(ISR) rank-fusion [37]. Figure 2 presents MuSE, our final
efficient dynamic multimodal scheme.

Security and Leakage Analysis. We now sketch a proof
of security for MuSE. A full proof of security can be
found in the Appendix Section of this paper. Our security

analysis follows the real/ideal simulation paradigm that is
standard in secure multi-party computations [29]. We define
L=(LStp,LUpd,LSrch) as a leakage function that captures all
information MuSE is ideally allowed to leak. Intuitively L
outputs the following:

• The setup protocol leaks m, the number of distinct
modalities supported in an instantiation of MuSE (i.e.
LStp = m).

• An update leaks the type of each of its sub-updates
(new addition or a frequency update, with deletions
indistinguishable from other updates). Additionally, if
the added/updated features have already been searched
for, it also leaks the corresponding object identifiers and
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frequencies (i.e. LUpd = {opi ∈ {add, upd}, {idi, fi} :
idi ∈ LSrch}ni=0).

• Search protocols leak the size N of the dataset and,
for all features w contained in a query object, they
also leak search, access, and frequency patterns. Search
patterns, i.e. if queries are being repeated, are due to the
deterministic nature of the search tokens used. Access
patterns correspond to the set of object ids that contain
each feature queried for. Frequency patterns means that
access patterns not only include occurrences, but also
frequencies (i.e. LSrch = N, IDw, {idi, fi}|R|i=0).

These leakage components, particularly search and access
patterns, are unavoidable in efficient SSE and considered min-
imal leakage [39]. Frequency patterns are additional leakage
characteristic of ranked SSE schemes [19], nonetheless we
will address them next in our PHom-MuSE scheme at the
cost of additional cryptographic overhead. Forward privacy
(i.e. preventing updates from revealing if they match contents
with previous queries) can be orthogonally addressed, as in
[7], by introducing a public-key scheme in the encryption of
keyword counters (we leave this as future work).

Non-adaptive security [15] follows if we can prove that
MuSE leaks nothing beyond what is specified in L. This proof
relies on F being a secure PRF and (Enc,Dec) being a RCPA-
secure encryption scheme. Additionally if F is modeled as a
random oracle [5], adaptive security can also be proven and
we can state that:

Theorem 1. MuSE is correct and L-secure against adaptive
attacks.

The proof of this theorem can be found in the Appendix
Section of this paper.

A. Multimodal SSE without Frequency Leakage
An issue with MuSE, that was not present in previous

exact-match SSE schemes, is the leakage of frequency patterns
with search operations. To solve this problem we propose a
variant of MuSE that addresses this leakage, at the cost of
increased cryptographic overhead. Our proposal, called PHom-
MuSE, is based on Partially Homomorphic cryptography, more
concretely on an additively homomorphic scheme such as the
Paillier cryptosystem [42].

We design PHom-MuSE through simple modifications to
MuSE. In the Setup operation the client now additionally
generates a private/public key pair for the Paillier scheme.
Then, in update operations, we replace the RCPA encryption
of keyword frequencies (dU ← Enc(K2U , f), line 11 in
the update protocol, Figure 2) with their public-key Paillier
encryption. Only the client, who has the private key, can
decrypt these values.

Given the use of homomorphic encryption, when responding
to search operations the server can calculate search scores
through encrypted frequency additions (and multiplications
with public parameters, which can be seen as a series of
homomorphic additions). The result is the protection of both
frequency values and final search scores. In more detail, in

the TF-IDF function frequencies f will be encrypted and
multiplied by public parameters idf and fq (line 32 in the
Search protocol) and the resulting scores for the same object
id will be homomorphically added (line 34). However it must
now be the client to sort search results and perform multi-
modal merging, since order is not preserved by homomorphic
encryption (line 35). The client performs this after receiving
encrypted results from the server and decrypting them with
the Paillier private key.

We now define LPHom , the leakage that PHom-MuSE is
ideally allowed to reveal, as an iteration of our previous
leakage function L for MuSE. In more detail, the only dif-
ference between LPHom and L is that frequency patterns are
not revealed when performing search operations, nor when
adding/updating a feature that has already been searched.
Furthermore, we can prove that:

Theorem 2. PHom-MuSE is correct and LPHom -secure
against adaptive attacks.

The proof for this theorem is straightforward to sketch by
extending the proof of Theorem 1. The Paillier cryptosys-
tem is used as a black-box component, and PHom-MuSE
involves no additional security protocols. Hence, a simulator
S can simulate all the interactions in the protocol using the
information it obtains from LPHom . Correctness and security
against adaptive attacks follows in the random oracle model
and assuming Paillier is a correct and RCPA Additively-
Homomorphic scheme. Details are straightforward and thus
omitted.

V. IMPLEMENTATION

We implemented prototype versions of our MuSE and
PHom-MuSE schemes. These prototypes will be used for
experimental evaluation in the next section, while for now
we focus on describing their implementation. We focused our
prototypes on supporting multimodal data with text and image
media formats. All code was developed in C++, with little
over 2000 lines of original code. Cryptographic computations
were implemented using the OpenSSL 1.0.2 library4. PRFs
were implemented with an HMAC function, using SHA1 as
the underlying cryptographic hash function. The (Enc,Dec)
RCPA encryption scheme was implemented with AES in CTR
mode, using a 256-bit key. For the Paillier scheme, we used
the LIBPAILLIER library from the ACSC project5.

Algorithms for processing and indexing text data were
implemented by us. Text feature extraction was performed first
by keyword stemming (Porter Stemming algorithm) and stop-
words removal [35]. Indexing was done through the Single-
Pass in Memory Indexing (SPIMI) algorithm and as indexing
structures we used the inverted list index approach [35]. For
processing and indexing images we used the OpenCV 2.4.10
library6. For feature extraction, we used the SURF keypoint
detection [4] and Dense Pyramid descriptor extraction [31]
algorithms. As a rich media format, images need to be trained

4https://www.openssl.org/
5http://acsc.cs.utexas.edu/libpaillier/
6http://opencv.org/

7



0

500

1000

1500

2000

2500

3000

3500

4000

0 5000 10000 15000 20000 25000

Ti
m
e	
(s
)

Dataset	Size	(Nr	of	Objects)

Encryption Networking Indexing Total

Fig. 3: Performance of MuSE in the Update operation.

before they can be efficiently indexed. We used hierarchical
k-means and the Bag of Visual Words model for this [41]. For
this model we trained a codebook tree with height three and
leaf width ten, resulting in 10.000 clusters.

Ranking of search results in each media format was done
using the TF-IDF function, as described in Figure 2. Ranked
results were then merged into the final multimodal search
results through rank fusion, more concretely the logarithmic
Inverse Square Rank (ISR) rank-fusion algorithm [37]. Finally,
we remark that our MuSE and PHom-Muse schemes display
a high flexibility of deployment and configuration, meaning
that the implementation described is just one possibility and
our schemes can easily be implemented using other algorithms
from the state of art in cryptography and information retrieval.

VI. EXPERIMENTAL EVALUATION

In this section we perform an experimental evaluation of the
performance and search precision of our MuSE and PHom-
MuSE schemes, comparing them with the stare of art on en-
crypted multimodal search [17]. We conducted experiments as
follows: client implementations were executed in a Macbook
Pro with Mac OS X 10.13.1, 16GB of RAM, 500GB SSD disk,
and 2.3Ghz quad-core Core i7 CPU; server implementations
were deployed in the Amazon AWS cloud, using an EC2
m5.large instance. Communications were performed on a
5MB/s connection, with 49.932ms round-trip time. We used
the MIR-Flickr dataset [25] as a multimodal dataset with
25000 objects composed of both image (users’ photos) and
text (photo tags) media formats.

A. Update Performance
In our first experiment we measured the performance of

MuSE and PHom-MuSE when executing the Update opera-
tion. To this end, we performed batch updates with increas-
ing numbers of objects, ranging from 1 to 25000 objects,
and measured the performance cost of each sub-operation
involved: Encryption (i.e. cryptographic computations), Net-
working (communication between the client and server), and
Indexing (feature extraction, data-structure accesses, and other
indexing related computations). For convenience, Total results
for each scheme are also exhibited. Figure 3 shows the
results for MuSE and Figure 4 for PHom-MuSE. Table II
further compares the two schemes with MIE [17], a similar
approach from the literature. Results represent an average of
five independent executions.
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Fig. 4: Performance of PHom-MuSE in the Update operation.
Scheme Encryption Networking Indexing Total

MIE [17] 16.38 292.18 349.71 658.27
MuSE 80.86 295.36 347.83 724.05

Phom-MuSE 25596.22 2076.69 344.66 28017.57

TABLE II: Update performance comparison between MuSE, PHom-MuSE,
and MIE [17], for a batch update of 5000 objects.

Starting with MuSE, Figure 3 shows that its Update op-
eration can be very efficient. An update for a single object
exhibits a total performance cost of around 0.18 seconds, while
a batch update for 25000 objects can be performed in under
3700 seconds (a linear increase). Analysing the sub-operations
involved, we can observe that MuSE’s cryptographic compu-
tations (Encryption in Figure 3) are very efficient. Moreover,
Indexing computations are the biggest bottleneck in MuSE’s
update, followed by Networking. Networking overheads can
further be improved with a faster network connection. Re-
garding indexing computations, these include typical feature
extraction and data-structure accesses that are also required in
plaintext multimodal retrieval systems with no security guar-
antees. This means that MuSE’s security properties actually
add very little overhead to overall system performance.

Analysing Figure 4, however, we can conclude that PHom-
MuSE has a much higher cryptographic overhead. For a batch
update of 25000 objects, PHom-MuSE has a cryptographic
performance cost of around 128000 seconds (35.5 hours), an
increase of around 277 times in comparison with MuSE’s
cryptographic cost of 461 seconds. This is due to the use of
partially homomorphic encryption to prevent the leakage of
frequency patterns, namely the Paillier scheme. Furthermore,
networking in PHom-MuSE also exhibits an increased per-
formance cost in comparison with MuSE, due to the higher
ciphertext expansion of the Paillier scheme. For an update of
250000 objects MuSE has a networking cost of around 1500
seconds, while PHom-MuSE exhibits a cost of 10383 seconds.

Table II also shows us that MuSE exhibits similar perfor-
mance as the state of art on encrypted multimodal retrieval [17]
(MIE in Table II). The major difference between MuSE and the
competing solution MIE lies in the encryption overhead, which
can be explained by the better security guarantees offered by
MuSE (see Table I in Section II-A, where MuSE has leakage
level L0=>L2 and MIE has level L2).

B. Search Performance
In our second experiment we measured the performance of

MuSE and PHom-MuSE when executing Search operations,
while also comparing with the competing alternative MIE
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Fig. 5: Performance of MuSE in the Search operation.
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Fig. 6: Performance of PHom-MuSE in the Search operation.

[17]. To achieve this goal, we performed queries with a
sample query object (chosen at random from the dataset) and
measured the performance of both schemes as we scaled the
dataset size, from 1 to 25000 objects. Again we show total
performance costs for each scheme, as well as for each sub-
operation (Encryption, Networking, and Indexing). Figure 5
shows the results for MuSE, Figure 6 for PHom-MuSE, and
Table III compares the two with MIE. Results represent an
average of 50 independent executions.

Comparing Total results from the two Figures, we can
observe that MuSE is once again more efficient than PHom-
MuSE (notice the difference in y-axis scale). For a dataset size
of 25000 objects, MuSE exhibits a total search performance
cost of around 28 seconds while PHom-MuSE requires around
147 seconds to complete the same operation. This is mostly
due to the higher Encryption and Networking overheads of
PHom-MuSE, and is observable at all dataset sizes.

Analysing sub-operations in detail, we can observe that in
both schemes Encryption overhead has the highest impact
on total performance cost. Moreover, this cost increases as
we scale the dataset size. This is a natural observation, as
increasing the dataset size means that increasingly more entries
have to be accessed to resolve the same query. Indexing
computations, in contrast, exhibit constant performance as we
increase the dataset size in both schemes, since most overhead
here comes from processing the query. The same effect can be
observed for Networking performance in MuSE, however in
PHom-MuSE this performance cost increases with the dataset
size. This can be explained by the fact that while in MuSE
the server has access to the decrypted relevance scores of the
query and is able to sort them and return only the top k (in our
experiments, we set k to 20), in PHom-MuSE the server only
sees homomorphically encrypted scores. Since homomorphic

Scheme Encryption Networking Indexing Total
MIE [17] 0.008 0.072 0.6 0.68

MuSE 4.64 0.001 0.55 5.191
Phom-MuSE 16.38 11.63 1.56 29.57

TABLE III: Search performance comparison between MuSE, PHom-MuSE,
and MIE [17]), for a query on a repository with 5000 objects.

Plaintext MIE MuSE PHom-MuSE
mAP (%) 57.938 57.562 57.965 57.881

TABLE IV: Mean Average Precision (mAP) for the Holidays dataset.

encryption does not preserve order, the server can not sort
these encrypted scores and has to return all to the client.

Comparing with the competing alternative MIE [17] (Ta-
ble III), we can observe that MuSE (and Phom-MuSE as well)
has a higher total performance cost. As in the update operation,
this is mostly due to Encryption overheads, and is the tradeoff
for achieving better security guarantees. Nonetheless, since
most of this overhead comes from server side computations
and our prototype implementation is single-threaded, we be-
lieve it can be further reduced through parallelization of
cryptographic tasks.

C. Search Precision
The final experiment we conducted assessed the search

precision of our schemes, comparing it with a plaintext sys-
tem without any security guarantees and with the competing
alternative MIE from the literature [17]. Since the MIR-Flickr
dataset, although a good choice for performance evaluation,
did not contain a group of queries with relevance set that
would allow us to assess precision, we used the Inria Holidays
dataset [26] for this experiment. The Holidays dataset contains
an online evaluation package, consisting of 500 pre-chosen
queries and their expected results, allowing a transparent and
independent evaluation of precision results. This is an image
only dataset, showing that our schemes do not affect query
precision for this media format. Nonetheless, similar results
are expected for other formats and multimodal searching.

Table IV shows the results obtained, with an average of 50
independent executions. Results for the four approaches are
very similar, which can be explained by the fact that both our
schemes, as well as the competing alternative MIE, preserve
the search precision of the indexing and searching algorithms
used. Furthermore, these results fundamentally represent the
precision of the indexing and searching algorithms used in our
prototype implementations, meaning that they can possibly be
further improved by exploring other algorithms from the state
of art in information retrieval, without impacting the security
guarantees of our schemes.

VII. CONCLUSION

In this paper we addressed the problem of multimodal
searchable encryption, allowing client applications to store,
update, and search their multimodal data in remote cloud
servers with privacy guarantees. We started by providing a new
framework, based on an empirical analysis of the literature
on searchable encryption and its common leakage, that re-
searchers and developers can use to characterize their schemes
and better understand their security properties. Then we for-
mally defined dynamic multimodal searchable encryption and
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designed two schemes supporting its functionality: an efficient
scheme, called MuSE, that exhibits similar performance as
previous exact-match schemes for text data, but that leaks
a new type of patterns which we call frequency patterns;
and a less efficient scheme (although still practical) based
on partially homomorphic encryption, called PHom-MuSE,
that prevents the leakage of frequency patterns and provides
the same security properties as previous text exact-match
schemes, although greatly improving usability. We formally
evaluated the security of our schemes and implemented them.
Using our prototype implementations we conducted a thorough
experimental evaluation of performance and search precision.
Results showed that both MuSE and PHom-MuSE exhibit
practical performance for real world deployments, making
different tradeoffs between security and performance, and
preserving the search precision of the multimodal retrieval
algorithms used.
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APPENDIX - PROOF OF MUSE SECURITY

In this appendix we formally prove Theorem 1. Formally,
L=(LStp, LUpd, LSrch) is a stateful party in an ideal security
game, defined as follows:

Definition 2. Let
∏

=(Setup,Update,Search) be a dynamic
multimodal SSE scheme and L a leakage function. For
algorithms A and S, define the following games:

Real
∏
A (λ): The game runs K ← Setup() and gives A(1λ) a

timestamp t. Then A repeatedly invokes Update and Search
protocols, picking client inputs in. The game responds by
running Search or Update protocols with client input (K,in)
and server input EDB (the encrypted dataset), giving the
transcript to A (the server is deterministic so this constitutes
its entire view). Eventually A returns a bit used as the game’s
output.

Ideal
∏
A,S(λ): The game runs S(L()) and gives A(1λ) a

timestamp t. Then A repeatedly invokes Update and Search
protocols, picking client inputs in. The game responds by
giving the output of L(in) to S, which outputs a simulated
transcript that is given to A. Eventually A returns a bit used
by the game.∏

is L-secure against adaptive attacks if for all adversaries
A there is a simulator S such that:

Pr [Real
∏
A (λ) = 1] - Pr [Ideal

∏
A,S(λ) = 1] ≤ negl(λ)

Amongst its state L keeps: a set ID initialized to contain
all object identifiers in the dataset; and a list Q describing
all operations issued so far, where an entry takes the form
(i,op,. . . ), meaning an operation counter, an operation type,
and then one or more inputs to the operation.

We define sp(w,Q), the search pattern of feature w with
respect to Q, to be the indices of operations that searched for
w: sp(w,Q) = {j : (j, srch, w) ∈ Q}.

For object id, feature w, and frequency f, the add pattern
of id, w, f with respect to Q corresponds to the indices that
added/updated (w,f ) to id:
ap(w,id,f,Q) = {j : (j, add, w, id, f ) ∈ Q, w ∈Wid} ∪ {j : (j,
updt, w, id, f )∈Q, w∈Wid}.

Finally, the add pattern of w with respect to Q and ID is
the set of all ids to which w was ever added, along with the
respective frequencies and indices showing when it was added:
AP(w,Q,ID) = {(id, f, ap(w,id,f,Q)) : id∈ID, ap(w,id,f,Q) 6= ∅}.

Intuitively, sp captures what we previously called search
leakage, while AP captures what we called access and fre-
quency leakage. Given a set of setup, update, and search
operations, L produces outputs as follows:
• On initial setup, L initiates its state with i← 0, empty list

Q and empty set ID, outputting the number of modalities
m.

• For a search operation on w, L appends (i,srch,w) to Q
and increments i, outputting sp(w,Q), AP(w,Q,ID), and
the current size of the dataset N.

• For an addition/update operation (w,id,f ), L appends
(i,add/updt,w,id,f ) to Q, adds id to ID, and increments
i. It outputs sp(w,Q) and, if this is non-empty, it also
outputs id and f.

We are now ready to prove Theorem 1.

Proof. We begin by proving correctness and security against
non-adaptive attacks. Correctness follows as collisions be-
tween the outputs of PRF F will only happen with negligible
probability. Additionally when we model F as a random oracle
H (for proving adaptive security), simulator S can program
H so that its outputs are truly random and hence without
collisions.

Proving non-adaptive security implies showing that S, given
only the leakage output of L, can produce the view of the
server and the two are indistinguishable except for a negligible
probability in λ. Setup operations are easy to simulate. Since
when Setup is performed L only outputs a timestamp of
execution and the number of modalities m, S can be trivially
shown to have the same view as the server.

To simulate search operations, S iterates over the log of
queries choosing keys K1Ai ,K2Ai ,K1Ui ,K2Ui

$←− {0, 1}λ for
the i-th query. Then, for each id ∈ DB(wi), S computes lA,
dA, lU , and dU as specified in the real experiment (but using
the keys it chose instead), adding each group of labels to a
list L. Additionally it creates a dataset γ with N entries, filling
it with simulated objects picked uniformly at random (if γ
already existed, S adjusts its size with the new N).

To simulate update operations, S iterates over the log
of adds/updates and decides for each group of labels
(lA,dA,lU ,dU ) sent if it is supposed to be random (and
meaningless) or if the pair should be computed with one of the
keys used for search operations. It does this by using both the
add pattern leakage AP from the search queries and the leakage
from update operations, which includes id and f if the keyword
was previously searched. Finally S adds the computed labels to
L and, after processing all operations, it outputs the simulated
dataset EDB = Create(γ,L).

A simple hybrid argument shows that the simulator’s output
is indistinguishable from the real server view. The first hybrid
shows that selecting each K1Ai ,K2Ai ,K1Ui ,K2Ui at random
is indistinguishable from deriving them from KA,KU , by
the PRF security of F. The next hybrid shows that the
labels lA, lU and ciphertexts dA, dU for un-queried features
are pseudorandom, by the RCPA security of (Enc,Dec). This
proves non-adaptive security.

Finally, security against adaptive attacks can be proven by
having S program a random oracle H to model the behavior of
PRF F, outputting truly random labels in response to adaptive
queries. The only defects in this new simulation occur when
an adversary manages to query the random oracle with a key
before it is revealed, which can be shown to happen with
negligible probability in λ.
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