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Abstract
Cryptographic reductions typically aim to be tight by transforming an adversary A into an

algorithm that uses essentially the same resources as A. In this work we initiate the study of memory
efficiency in reductions. We argue that the amount of working memory used (relative to the initial
adversary) is a relevant parameter in reductions, and that reductions that are inefficient with memory
will sometimes yield less meaningful security guarantees. We then point to several common techniques
in reductions that are memory-inefficient and give a toolbox for reducing memory usage. We review
common cryptographic assumptions and their sensitivity to memory usage. Finally, we prove an
impossibility result showing that reductions between some assumptions must unavoidably be either
memory- or time-inefficient. This last result follows from a connection to data streaming algorithms
for which unconditional memory lower bounds are known.
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1 Introduction
Cryptographic reductions support the security of a cryptographic scheme S by showing that any attack
against S can be transformed into an algorithm for solving a problem P. The tightness of a reduction
is in general some measure of how closely the reduction relates the resources of attacks against S to
the resources of the algorithm for P. A tighter reduction gives a better algorithm for P, ruling out a
larger class of attacks against S. Typically one considers resources like runtime, success probability, and
sometimes the number of queries (to oracles defined in P) of the resultant algorithm when evaluating the
tightness of a reduction.

This work revisits how we measure the resources of the algorithm produced by a reduction. We
observe that memory usage is an often important but overlooked metric in evaluating cryptographic
reductions. Consider typical “tight” reductions from the literature, which start with an attack against
a scheme S that uses (say) time tS to achieve success probability εS , and transform the attack into an
algorithm for problem P running in time tP ≈ tS and succeeding with probability εP ≈ εS . We observe
that reductions tight in this sense are sometimes highly memory-loose: If the attack against S used mS

bits of working memory, the reduction may produce an algorithm using mP � mS bits of memory to
solve P. Depending on P, this changes the conclusions we can draw about the security of the scheme.

In this paper we investigate memory-efficiency in cryptographic reductions in various settings. We
show that some standard decisions in security definitions have a bearing on memory efficiency of possible
reductions. We give several simple techniques for improving memory efficiency of certain classes of
reductions, and finally turn to a connection between streaming algorithms and memory/time-efficient
reductions.
Tightness, memory-tightness, and security. Reductions between a problem P and a cryptographic
scheme S that approximately preserve runtime and success probability are usually called tight (see [BR96,
Gal04, BR09]). Tight reductions are preferred because they provide stronger assurance for the security of S.
Specifically, let us call an algorithm running in time t and succeeding with probability ε a (t, ε)-algorithm



(for a given problem, or to attack a given scheme). Suppose that a reduction converts a (tS , εS)-adversary
against scheme S into a (tP , εP )-algorithm for P where (tP , εP ) are functions of the first two. If it is
believed that no (tP , εP )-algorithm should exist for P, then one concludes that no (tS , εS)-adversary can
exist against S.

If a reduction is not tight, then in order to conclude that scheme S is secure against (tS , εS)-adversaries
one must adjust the parameters of the instance of P on which S is built, leading to a less efficient
construction. In some extreme cases, obtaining a reasonable security level for a scheme with a non-tight
reduction leads to an impractical construction. Addressing this issue has become an active area of research
in the last two decades (e.g. [BR96, BBM00, BR09, CMS12, CKMS16, BJLS16, GHKW16]).

In this work we keep track of the amount of memory used in reductions. To see when memory
usage becomes relevant, let a (t,m, ε)-algorithm use t time steps, m units of memory, and succeed
with probability ε. A tight reduction from S to P transforms (tS ,mS , εS)-adversaries into (tP ,mP , εP )-
algorithms, where “tight” guarantees tS ≈ tP and εS ≈ εP , but permits mP � mS , up to the worst-case
mP ≈ tP .

Now, suppose concretely that we want S to be secure against (2256, 2128, O(1))-adversaries, based on
very conservative estimates of the resources available to a powerful government. Consider two possible
“tight” reductions: One that is additionally “memory-tight” and transforms a (2256, 2128, O(1))-adversary
A against S into a (2256, 2128, O(1))-algorithm Bmt for P, and one that is “memory-loose” and instead
only yields a (2256, 2256, O(1))-algorithm Bnmt for P.

The crucial point is that some problems P can be solved faster when larger amounts of memory are
used. In our example above, it may be that P is impossible to solve with 2256 time and 2128 memory for
some specific security parameter λ. But with both time and memory up to 2256, the best algorithm may
be able to solve instances of P with security parameter λ, and with even larger parameters up to some
λ′ > λ. The memory-looseness of the reduction now bites, because to achieve the original security goal
for S we must use the larger parameter λ′ for P, resulting in a slower instantiation of the scheme. Even
worse, when P is a problem involving a symmetric primitive where the “security parameter” cannot be
changed the issue is more difficult to address.

We now address two points in turn: If P is easier to solve when large memory is available, what does
this mean for memory-tight reductions? And when are reductions “memory-loose”?
Memory-sensitive problems and memory-tightness. Many, but not all, problems P relevant
to cryptography can be solved more quickly with large memory than with small. In the public-key
realm these include factoring, discrete-logarithm in prime fields, Learning Parities with Noise (LPN),
Learning With Errors (LWE), approximate Shortest Vector Problem, and Short Integer Solution (SIS).
In symmetric-key cryptography such problems include key-recovery against multiple-encryption, finding
multi-collisions in hash functions, and computation of memory-hard functions. We refer to problems like
these as memory-sensitive. (See Section 6 for more discussion.)

On the other hand, problems P exist where the best known algorithm also uses small memory:
Discrete-logarithm in elliptic curve groups over prime-fields [GG15], finding (single) collisions in hash
functions [Pol75], finding a preimage in hash functions (exhaustive search), and key recovery against
block-ciphers (also exhaustive search).

Let us consider some specific examples to illustrate the impact of a memory-loose reduction to a
non-memory-sensitive versus a memory-sensitive problem. Let CRk be the problem of finding a k-way
collision in a hash function H with λ output bits, that is, finding k distinct domain points x1, . . . , xk such
that H(x1) = H(x2) = · · · = H(xk) for some fixed k ≥ 2.

First suppose we reduce the security of a scheme S to CR2, which is standard collision-resistance. The
problem CR2 is not memory-sensitive, and the best known attack is a (2λ/2, O(1), O(1))-algorithm. In
the left plot of Figure 1 we visualize the “feasible” region for CR2 and λ = 256, where the shaded region
is unsolvable. Now we consider two possible reductions. One is a memory-tight reduction which maps
an adversary A (with some time and memory complexity and possibly much less memory than time) to
an algorithm Bmt for CR2 with the same time and memory. The other reduction is memory-loose (but
time-tight) and maps A to an adversary Bnmt that uses time and memory approximately equal to the time
of A. We plot the effect of these reductions in the left part of the figure. A tight reduction leaves the point
essentially unchanged, while a memory-loose reduction moves the point horizontally to the right. Both
reductions will produce adversaries Bmt and Bnmt in the region not known to be solvable, thus giving a
meaningful security statement about A that amounts to ruling out the shaded region of adversaries. We
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Figure 1: Time/memory trade-off plots for collision-resistance (CR2, left), triple collision-resistance (CR3,
middle) and LPN with dimension 1024 and error rate 1/4 (right). All plots are log-log.

do note that there is a possible quantitative difference in the guarantees of the reductions, since it is only
harder to produce an algorithm with smaller memory, but this benefit is difficult to measure.

Now suppose instead that we reduce the security of a scheme S to CR3. The best known attack against
CR3 is a (2(1−α)λ, 2αλ, O(1))-algorithm due to Joux and Lucks [JL09], for any parameter α ≤ 1/3. For
λ = 256, we visualize this time-memory trade-off in the middle plot of Figure 1, and again any adversary
with time and memory in the shaded region would be a cryptanalytic advance. We once more consider
a memory-tight versus a memory-loose reduction. The memory-tight reduction preserves the point for
the adversary A in the plot and thus rules out (tS ,mS , O(1)) adversaries for any tS ,mS in the shaded
region. A memory-loose (but time-tight) reduction mapping A to Bnmt for CR3 that blows up memory
usage up to time usage will move the point horizontally to the right. We can see that there are drastic
consequences when the original adversary A lies in the triangular region with time > 2λ/3 and memory
< λ/3, because the reduction produces an adversary Bnmt using resources for which CR3 is known to
be broken. In summary, the reduction only rules out adversaries A below the horizontal line with time
= 2λ/3.

Finally we consider an example instantiation of parameters for the learning parities with noise (LPN)
problem, which is memory-sensitive, where a memory-loose reduction would diminish security guarantees.
In Section 6 we recall this problem and the best attacks [EKM17], and in the right plot of Figure 1 the
shaded region represents the infeasible region for the problem in dimension 1024 and error rate 1/4. (For
simplicity, all hidden constants are ignored in the plot.) In this problem the effect of memory-looseness is
more stark. Despite using a large dimension, a memory-loose reduction can only rule out attacks running
in time < 285. A memory-tight reduction, however, gives a much stronger guarantee for adversaries with
memory less than 285.
Memory-loose reductions. Reductions are often memory-loose, and small decisions in definitions can
lead to memory usage being artificially high. We start with an illustrative example.

Suppose we have a tight security reduction (in the traditional sense) in the random oracle model [BR93]
between a problem P and some cryptographic scheme S. More concretely, suppose a reduction transforms
a (tS ,mS , εS)-adversary AS in the random-oracle model into a (tP ,mP , εP )-algorithm AP for P. A typical
reduction has AP simulate a security game for AS , including the random oracle, usually via a table that
stores responses to queries issued by AS . Naively removing the table from storage usually is not an option
for various reasons: For example, if AS queries the oracle on the same input twice, then it expects to see
the same output twice, or perhaps the reduction needs to “program” the random oracle with responses
that must be remembered.

Storing a table for the random oracle may dramatically increase memory usage of the algorithm AP .
If adversary AS makes qH queries to the random oracle, then AP will store Ω(qH) bits of memory, plus
the internal memory mS of AS during the simulation, which gives

mP = mS + Ω(qH) .

In the worst case, AS could run in constant memory and make one random oracle query per time unit,
meaning that AP requires as much memory as its running time. Thus the reduction may be “tight” in
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the traditional sense with tP ≈ tS , εP ≈ εS , but also have

mP = mS + tS . (1)

Thus AP may use an enormous amount of memory mP even if AS satisfied mS = O(1).
This example is only the start. Memory-looseness is sometimes, but not always, easily fixed, and seems

to occur because it was not measured in reductions. Below we will furnish examples of other reductions
that are (sometimes implicitly) memory-loose. We will also discuss some decisions in definitions and
modeling that dramatically effect memory usage but are not usually stressed.

1.1 Our results
Even though there exists an extensive literature on tightness of cryptographic security reductions
(e.g. [BR96, BBM00, CMS12, GHKW16, CKMS16]), memory has, to the best of our knowledge, not been
considered in the context of security reductions. In this paper we first identify the problems related to
non-memory-tight security reductions. To overcome the problems, we initiate a systematic study on how
to make known security reductions memory-tight. Concretely, we provide several techniques to obtain
memory-efficient reductions and give examples where they can be applied. Our techniques can be used
to make many security reductions memory-tight, but not all of them. Furthermore, we show that this
is inherent, i.e., that there exist natural cryptographic problems that do not have a fully tight security
reduction. Finally, we examine various memory-sensitive problems such as the learning parity with noise
(LPN) problem, the factoring problem, and the discrete logarithm problem over finite fields.
The Random Oracle technique. Recall that a classical simulation of the random oracle using the
lazy sampling technique requires the reduction to store O(qH) values. The idea is to replace the responses
H(x) to a random oracle query x by PRF(k, x), where PRF is a pseudorandom function and k is its key.
The limitation of this technique is that it can only be applied to very restricted cases of a programmable
random oracle.
The Rewinding Technique. The idea of the rewinding technique is to use the adversary as a
“memory device.” Concretely, whenever the reduction would like to access values previously output by
the adversary that it did not store in its memory, it simply rewinds the adversary which is executed
with the same random coins and with the same input. This way the reduction’s running time doubles,
but (unlike previous applications of the rewinding technique in cryptography, e.g., [PS00]) the overall
success probability does not decrease. The rewinding technique can be applied multiple times providing a
trade-off between memory efficiency and running time of the reduction. To exemplify the techniques, we
show a memory-tight security reduction to the RSA full-domain hash signature scheme in Section 5.
A Lower Bound. Some reductions appear (to us at least) to inherently require increased memory. We
take a first step towards formalizing this intuition by proving a lower bound on the memory usage of a
class of black-box reductions in two scenarios.

First, we revisit a reduction implicitly used to justify the standard unforgeability notion for digital
signatures, which reduces a game with several chances to produce a valid forgery to the standard game
with only one chance. One can take this as a possible indication that signatures with memory-tight
reductions in the more permissive model may be preferred. Second, we prove a similar lower bound on
the memory usage of a class of reductions between a “multi-challenge” variant of collision resistance and
standard collision resistance.

Interestingly, our lower bound follows from a result on streaming algorithms, which are designed to
use small space while working with sequential access to a large stream of data.
Open problems. This work initiates the study of memory-tight reductions in cryptography. We give a
number of techniques to obtain such reductions, but many open problems remain. There are likely other
reductions in the literature that we have not covered, and to which our techniques do not apply. It is
even unclear how one should consider basic definitions, like unforgeability for signatures, since the generic
reductions from more complicated (but more realistic) definitions may be tight but not memory-tight.

One reduction we did consider, but could not improve, is the IND-CCA security proof for Hash
ElGamal in the random oracle model [ABR01] under the gap Diffie-Hellman assumption. This reduction
(and some others that use “gap” assumptions) use their random oracle table in a way that our techniques
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cannot address. We conjecture that a memory-tight reduction does not exist in this case, and leave it as
an open problem to (dis)prove our conjecture.

2 Complexity Measures
We denote random sampling from a finite set A according to the uniform distribution with a← A. By
Ber(α) we denote the Bernoulli distribution for parameter α, i.e., the distribution of a random variable
that takes value 1 with probability α and value 0 with probability 1− α; by P` the set of primes of bit
size ` and by log the logarithm with base 2.

2.1 Computational Model

Computational model. All algorithms in this paper are taken to be RAMs. These programs have
access to memory with words of size λ, along with a constant number of registers that each hold one word.
In this paper λ will always be the security parameter of a construction or a problem under consideration.

We define probabilistic algorithms to be RAMs with a special instruction that fills a distinguished
register with random bits (independent of other calls to the special instruction). We note that this
instruction does not allow for rewinding of the random bits, so if the algorithm wants to access previously
used random bits then it must store them. Running an algorithm A means executing a RAM machine
with input written in its memory (starting at address 0). If A is randomized, we write y ← A(I) to
denote the random variable y that is obtained by running A on input I (which may consist of a tuple
I = (I1, . . . , In)). If A is deterministic, we write ← instead of ←. We sometimes give an algorithm A
access to stateful oracles O1,O2, . . . ,On. Each Oi is defined by a RAM Mi. We also define an associated
string stO called the oracle state that is stored in a protected region of the memory of A that can only be
read by the oracles. Initially stO is defined to be empty. An algorithm A calls an oracle Oi via a special
instruction, which runs the corresponding RAM on input from a fixed region of memory of A along with
the oracle state stO. The RAM Mi uses its own protected working memory, and finally its output is
written into a fixed region of memory for A, the updated state is written to stO, and control is transferred
back to A.
Games. Most of our security definitions and proofs use code-based games [BR06]. A game G consists
of a RAM defining an Init oracle, zero or more stateful oracles O1, . . . ,On, and a Fin RAM oracle. An
adversary A is said to play game G if its first instruction calls Init (handing over its own input) and
its last instruction calls Fin, and in between these calls it only invokes O1, . . . ,On and performs local
computation. We further require that A outputs whatever Fin outputs.

Executing game G with A is formally just running A with input λ, the security parameter. Keeping
with convention, we denote the random variable induced by executing G with A as GA (where the sample
space is the randomness of A and the associated oracles). By GA ⇒ out we denote the event that G
executed with A outputs out. In our games we sometimes denote a “Stop” command that takes an
argument. When Stop is invoked, its argument is considered the output of the game (and the execution
of the adversary is halted). If a game description omits the Fin procedure, it means that when A calls Fin
on some input x, Fin simply invokes Stop with argument x. By default, integer variables are initialized
to 0, set variables to ∅, strings to the empty string and arrays to the empty array.

2.2 Complexity Measures
This work is concerned with measuring the resource consumption of an adversary in a way that allows for
meaningful conclusions about security. Success probabilities and time are widely used in the cryptographic
literature with general agreement on the details, which we recall first. Memory consumption of reductions
is however new, so we next discuss the possible options in measuring memory and the implications.
Success Probability. We define the success probability of A playing game G as Succ(GA) := Pr[GA ⇒ 1].
Runtime. Let A be an algorithm (RAM) with no oracles. The runtime of A, denoted Time(A), is the
worst-case number of computation steps of A over all inputs of bit-length λ and all possible random
choices. Now let G be a game and A be an adversary that plays game G. The runtime of executing G with
A is usually taken to be the number of computation steps of A plus the number of computation steps of
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each RAM used to respond to oracle queries: We denote this as TotalTime(GA) or TotalTime(A). One
may prefer not to include the time used by the oracles, and in this case we denote LocalTime(GA) or
LocalTime(A) to be the number of steps of A only.
Memory. We define the memory consumption of a RAM program A without oracles, denoted Mem(A),
to be the size (in words of length λ) of the code of A plus the worst-case number of registers used in
memory at any step in computation, over all inputs of bit-length λ and all random choices. Now let G
be a game and A be an adversary that plays game G. The memory required to execute game G with A
includes the memory needed to input and output to A, as well as input and output to each oracle, along
with the working memory and state of each oracle. We denote this as TotalMem(GA) or TotalMem(A).
Alternatively, one may measure only the code and memory consumed by A, but not its oracles. We denote
this measure by LocalMem(A).

One advantage of the LocalMem measure is that it can avoid small details of security definitions
drastically changing the meaning of memory-tightness in reductions.

Sometimes it will be convenient to measure the memory consumption in bits, in which case we use
Mem2(A), LocalMem2(A), and TotalMem2(A).

2.3 Case Study I: Unforgeability of Digital Signatures
Let (Gen,Sign,Ver) be a digital signature scheme (see Section 5 for the exact syntax of signatures, which
is standard). On the left side of Figure 2 we recall the game UFCMA that defines the standard notion of
(existential) unforgeability under chosen-message attacks. The advantage of an adversary A is defined by
Adv(UFCMAA) = Succ(UFCMAA), and a signature scheme where Adv(UFCMAA) is “small” for some
class of adversaries is usually defined to be “secure”. In order for the definition to be meaningful, the game
UFCMA checks that the signature σ∗ on m∗ is valid, and also that m∗ was not queried to the signing
oracle. In our version of the definition, the signing oracle maintains a set S of messages that were queried,
and the game uses S to check if m∗ was queried.

The UFCMA game is an example where we prefer LocalMem to TotalMem. Any adversary A
playing UFCMA will always have TotalMem(A) = Ω(qS), where qS is the number of signature queries it
issues, while it may have LocalMem(A) much smaller. Restricting the number of signing queries qS is
an option but weakens the definition.

An alternative style of definition for unforgeability is to limit the class of adversaries A considered to
those that are “well behaved” in that they never submit an m∗ that was previously queried. The game
no longer needs to track which messages were queried to the signing oracle in order to be meaningful.
This definition is equivalent up to a small increase in (local) running time, but it is not clear if the same
is true for memory. To convert any adversary to be well behaved, natural approaches mimic our version
of the game, storing a set S and checking the final forgery locally before submitting.

We contend that there is good reason to prefer our definition over the version that only quantifies over
well-behaved adversaries. In principle, it is possible that a signature construction is secure against a class
of well-behaved adversaries (say, running in a bounded amount of time and memory) but not against
general adversaries running with the same time/memory. Counter-intuitively, such a general adversary
might produce a forgery without knowing itself if the forgery is fresh and thus wins the game. Since we
cannot rule this out, we prefer our stronger definition.
Stronger unforgeability. Games in many crypto-definitions are chosen to be simple and compact
but also general. The game UFCMA only allows a single attempt at a forgery in order to shorten proofs,
but the definition also tightly implies (up to a small increase in runtime) a version of unforgeability where
the attacker gets many attempts, which more closely models usages where an attacker will have many
chances to produce a forgery.

It is less clear how UFCMA relates to more general definitions when memory tightness is taken into
account. To make this more concrete, consider the game mUFCMA (for “many UFCMA”) on the right
side of Figure 2. In this game the adversary has an additional verification oracle. If it ever submits a
fresh forgery to this oracle, it wins the game. It is easy to give a tight, but non-memory-tight, reduction
converting any (t,m, ε)-adversary playing mUFCMA into a (t′,m′, ε)-adversary playing UFCMA for t′ ≈ t
but m′ � m. Other trade-offs are also possible but achieving tightness in all three parameters seems
difficult.
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Game UFCMA

Procedure Init
00 S ← ∅
01 (pk, sk)← Gen
02 Return pk

Procedure ProcSign(m)
03 S ← S ∪ {m};σ ← Sign(sk,m)
04 Return σ

Procedure Fin(m∗, σ∗)
05 If Ver(pk,m∗, σ∗) = 1∧m∗ /∈ S
06 Stop with 1
07 Stop with 0

Game mUFCMA

Procedure Init
00 S ← ∅; win← 0
01 (pk, sk)← Gen
02 Return pk

Procedure ProcSign(m)
03 S ← S ∪ {m};σ ← Sign(sk,m)
04 Return σ

Procedure ProcVer(m∗, σ∗)
05 If Ver(pk,m∗, σ∗) = 1∧m∗ /∈ S
06 win← 1

Procedure Fin
07 Stop with win

Figure 2: Games UFCMA,mUFCMA.

For the reasons described in the introduction, a memory-tight reduction from winning mUFCMA to
winning UFCMA is desirable. In Section 4, we show that a certain class of black-box reductions for these
problems in fact cannot be simultaneously tight in runtime, memory, and success probability. We conclude
that signatures with dedicated memory-tight proofs against adversaries in the mUFCMA may provide
stronger security assurance, especially when security is reduced to a memory-sensitive problem like RSA.

We remark that the common reduction from multi-challenge to single-challenge IND-CPA/IND-CCA
security for public-key encryption is memory tight (but not tight in terms of the success probability).

2.4 Case Study II: Collision-Resistance Definitions
Collision-resistance, and multi-collision-resistance of hash functions, is used for security reductions in
many contexts. Let H be a keyed hash function (with κ-bit keys), with standard syntax. On the left
side of Figure 3 we recall the game CRt used to define t-collision resistance. The game provides no extra
oracles, and A wins if it can find t domain points that are mapped to the same point by H.

As we will see in later sections, it is sometimes feasible to fix typical memory-tight reductions to CRt.
We however now consider using collision-resistance (for t = 2) for domain extension of pseudorandom
functions. Let F : {0, 1}κ × {0, 1}δ → {0, 1}ρ be a keyed function with input-length δ which should have
random looking input/output behavior to some class of adversaries (see Section 3.1 for a formal definition
of PRFs). We can define a new keyed function F∗ that takes arbitrary-length inputs by

F∗ : {0, 1}2κ × {0, 1}∗ → {0, 1}ρ ,

F∗((k, kh), x) = F(k, H(kh, x)) .

The proof that F∗ is a PRF is an easy hybrid argument. One first bounds the probability that an adversary
submits two inputs that collide in H. Once this probability is known to be small, the memory-tight
reduction to the pseudorandomness of F is immediate.

Naive attempts at the reduction to collision-resistance are however not memory-tight. One can run
the adversary attacking F∗ and record its queries, checking for any collisions, but this increases memory
usage.

To model what such a proof is trying to do, we formulate a new game for t-collision resistance called
mCRt in the right side of Figure 3. In the game, the adversary has an oracle ProcInput that takes a
message and adds it to a set S. At the end of the game, the adversary wins if S contains any t inputs that
are mapped to the same point. The game implements this check using counters stored in a dictionary.

Returning to the proof for F∗, one can easily construct an adversary to play mCR2 using any PRF
adversary. The resulting reduction will be memory-tight. Thus it would be desirable to have a memory-
tight reduction from mCR2 to CR2 to complete the proof. This however seems difficult or even impossible,
and in Section 4 we show that a class of black-box reductions cannot be memory-tight. As discussed
in the introduction, t-collision-resistance is not memory sensitive for t = 2, and thus the meaning of
a memory-tight reduction is somewhat diminished (i.e. it does not justify more aggressive parameter
settings). For t > 2 the effect of memory-tightness is more significant.

7



Game CRt
Procedure Init
00 k ← {0, 1}κ
01 Return k

Procedure Fin(m1, . . . ,mt)
02 If |{m1, . . . ,mt}| < t
03 Stop with 0
04 If ∀i : H(k,m1) = H(k,mi)
05 Stop with 1
06 Stop with 0

Game mCRt
Procedure Init
00 k ← {0, 1}κ; S ← ∅
01 Return k

Procedure ProcInput(m)
02 S ← S ∪ {m}

Procedure Fin
03 Initialize dictionary D
04 For m ∈ S:
05 Increment D[H(k,m)]
06 If D[H(k,m)] ≥ t
07 Stop with 1
08 Stop with 0

Figure 3: Games CRt,mCRt (t ≥ 2).

Game Real

Procedure Init
00 k ← {0, 1}κ

Procedure OF(x)
01 Return F(k, x)

Game Random

Procedure Init

Procedure OF(x)
01 If R[x] undefined:
02 R[x]← {0, 1}ρ
03 Return R[x]

Game Randomα

Procedure Init

Procedure OF(x)
01 If R[x] undefined:
02 R[x]← Ber(α)
03 Return R[x]

Figure 4: Games defining PRF and α-PRF advantage.

3 Techniques to Obtain Memory Efficiency
In this section we describe four techniques to obtain memory-efficient reductions. In Section 5 we show
how to apply those techniques to memory-tightly prove the security of the RSA Full Domain Hash
signature scheme [BR93]. Using this example we also point to technical challenges that may arise when
applying multiple techniques in the same proof.

3.1 Pseudorandom Functions
First, we formally define pseudorandom functions. They are the main tool used in this section to make
reductions memory efficient.

Definition 3.1. Let κ, δ and ρ be integers. Further let F : {0, 1}κ × {0, 1}δ → {0, 1}ρ be a deterministic
algorithm and let A be an adversary that is given access to an oracle and outputs a single bit. The PRF
advantage of A is defined as Adv(PRFA) := |Succ(RealA)− Succ(RandomA)| , where Real and Random
are the games depicted in Figure 4.

If the range of F is just a single bit {0, 1}, we define the α-PRF advantage with bias 0 ≤ α ≤ 1 of A as
Adv(PRFA

α) := |Succ(RealA)− Succ(RandomA
α)| , where Real and Randomα are the games in Figure 4.

Note that a 2−ρ-PRF can be easily constructed from a standard PRF with range {0, 1}ρ by mapping
1ρ to 1 and all other values to 0. A 1/q-PRF for arbitrary q can be constructed in a similar way from a
standard PRF with sufficiently large image size ρ.

3.2 Generating (pseudo)random coins
Our first technique is the simplest, where we observe random coins used by adversaries can be replaced
with pseudorandom coins, and that this substitution will save memory in certain reductions.

Consider a security game G and an adversary A. Both are probabilistic processes and therefore require
randomness. When considering memory efficiency details on storing random coins could come to dominate
memory usage. Specifically, some reductions run an adversary multiple times with the same random tape,
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G0: Standard Coin Generation

Procedure Init
00 r ← ({0, 1}λ)L

Procedure Coins
01 i← i+ 1
02 Return ri

G1: Memory-Efficient Coin Generation

Procedure Init
00 k ← {0, 1}κ

Procedure Coins
01 i← i+ 1
02 Return F(k, i)

Figure 5: Generating (pseudo)random coins in a memory-efficient way. By ri we denote the ith block of λ
bits of the string r.

which must be stored in between runs. One possibility to do this is by sampling all randomness required
in game GA (including the randomness used by A) in advance. More formally let L ≤ 2λ be an upper
bound on the amount of executions of the instruction filling a register with random bits in GA. Then the
sampling of random coins can be replaced by filling and storing L registers (memory units) with random
bits at the beginning of Init and in the rest of the game replacing the ith call to the instruction with a
procedure Coins returning the contents of the ith register. This is formalized in game G0 of Figure 5.

The game can be simulated in a memory-efficient way by replacing the random bits used by G and A
with pseudorandom bits generated by a PRF F : {0, 1}κ × {0, 1}δ → {0, 1}λ, as described in Game G1 of
Figure 5. In this variant the game sets up the counter i in the usual way. Then a PRF key k is sampled
from a key space {0, 1}κ and calls to Coins are simulated by returning the pseudorandom bits F(k, i).
We now compare the two ways of executing the game in terms of success probability, running time, and
memory consumption.
Success Probability. By a simple reduction to the security of the PRF, there exists an adversary B
with LocalTime(B) = LocalTime(A), LocalMem(B) = LocalMem(A) + 1 such that∣∣Succ(GA

0 )]− Succ(GA
1 )
∣∣ ≤ Adv(PRFB)

(see Definition 3.1). Observe that B perfectly simulates the Coins oracle as follows. For A’s ith query to
Coins, it queries OF of the PRF games on i and relays its response back to A. To do this, it needs to store
a counter of logL bits. All other procedures are simulated as specified in G1.
Running Time. Game G1 needs to evaluate the PRF (via algorithm F) L times, hence we have
TotalTime(GA

1 ) ≤ TotalTime(GA
0 ) + L ·Time(F).

Memory. Both games have to store a counter i of size logL ≤ λ bits, which equals one memory unit. But
while game G0 needs memory for storing L strings, the memory-efficient game G1 only needs additional
memory Mem(F). Note that the PRF key is included in the memory of F. So overall, we have

TotalMem(GA
0 ) = LocalMem(A) + 1 + L ,

TotalMem(GA
1 ) = LocalMem(A) + 1 + Mem(F) .

Note that when applying this (and the following) techniques in a larger environment, special care
has to be taken to keep the entire game consistent with the components changed by the technique. In
particular, all intermediate reductions in a sequence of games have to be memory efficient to yield an
overall memory-efficient reduction.

3.3 Random Oracles
Suppose a security game G is defined in the random oracle model, that is one of the game’s procedures
models a random oracle

H : {0, 1}δ → {0, 1}λ .

The standard way of implementing this is via a technique called lazy sampling [BR06], meaning that
when an adversary A queries H on some value x, the game has to check if H(x) is already defined, and if
not, it samples H(x) from some distribution and stores the value in a list, see G0 in Figure 6. This means
that in the worst case, it needs to store as many strings as the number of adversarial queries.
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However, there are several settings where the random oracle can be implemented by a PRF F : {0, 1}κ×
{0, 1}δ → {0, 1}λ as described in G1 of Figure 6, thus making G more memory-efficient. Among these
settings are the non-programmable random oracle model and certain random oracles, where only values
obtained or computed during the Init procedure are used to program them.

G0: Standard Random Oracle

Procedure Init

Procedure RO(xi)
01 If H[xi] undefined:
02 H[xi]← {0, 1}λ
03 Return H[xi]

G1: Memory-Efficient Random Oracle

Procedure Init
00 k ← {0, 1}κ

Procedure RO(xi)
01 Return F(k, xi)

Figure 6: The Random Oracle technique to simulate RO in a memory-efficient way. Here xi denotes the
ith query to RO. Note that the queries x1, . . . , xq are not necessarily distinct.

In the following paragraph we analyze how success probability, running time and memory consumption
change if we apply this technique.
Success Probability. There exists an adversary B with LocalTime(A) = LocalTime(B) and
LocalMem(A) = LocalMem(B) such that∣∣Succ(GA

0 )− Succ(GA
1 )
∣∣ ≤ Adv(PRFB) .

B perfectly simulates the RO by relaying all of A’s queries to OF of the PRF games and forwarding the
responses back to A. All other procedures are simulated as specified in G1. When B is run with respect
to game Random of Definition 3.1 it provides A with a perfect simulation of G0, if it is run with respect
to game Real with a perfect simulation of game G1.
Running Time. Let qH be the number of random oracle queries posed by the adversary. Then game G1
needs to evaluate the PRF qH times, hence we have TotalTime(GA

1 ) ≤ TotalTime(GA
0 ) + qH ·Time(F).

Memory. Game G0 needs to store an array H of size at least qH · λ bits (= qH memory units), while the
memory-efficient game only needs memory to execute the PRF via algorithm F. So overall, we have

TotalMem(GA
0 ) ≥ LocalMem(A) + qH ,

TotalMem(GA
1 ) = LocalMem(A) + Mem(F) .

3.4 Random Oracle Index Guessing Technique
This technique is used when random oracle queries are answered in two different ways, e.g. in a reduction
where challenge values, like a discrete logarithm challenge X = gx, are embedded in the programmable
random oracle. Usually this is done by guessing some index i∗ between 1 and qH in the beginning, where
qH is the number of random oracle queries posed by the adversary. During the simulation, the challenge
value is then embedded in the reduction’s response to the i∗th random oracle query.

To do this, the game needs to keep a list of all queries and responses. Independently of the way the
game answers all the other queries except for the i∗th one, simply keeping a counter is not sufficient,
since an adversary posing the same query all the time would then receive two different responses and
the random oracle thus wouldn’t be well defined anymore. An example of such a game using the index
guessing technique is game G0 of Figure 7, where two deterministic procedures P0 and P1 are used to
program H depending on i∗.

To make games of this kind memory-efficient, one can use a 1/qH -PRF (see Definition 3.1) F : {0, 1}κ×
{0, 1}δ → {0, 1}, associating to each value of the domain of the random oracle a bit 0 with probability
1− 1/qH or 1 with probability 1/qH and then programming the random oracle accordingly as described
in game G1 of Figure 7. This method of using a biased bit goes back to Coron [Cor00].

We now compare the two games in terms of success probability, running time and memory efficiency.
Success Probability. Let A be an adversary that is executed in G0. We define an intermediate game
G′0, as depicted in Figure 8, in which the index guessing is replaced by tossing a biased coin for each
query.
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G0: Standard Index Guessing

Procedure Init
00 i∗ ← {1, . . . , qH}

Procedure RO(xi)
01 If H[xi] undefined:
02 If i = i∗: H[xi]← P0(xi)
03 Else: H[xi]← P1(xi)
04 Return H[xi]

G1: Memory-Efficient Index Guessing

Procedure Init
00 k ← {0, 1}κ

Procedure RO(xi)
01 If F(k, xi) = 0: Return P0(xi)
02 Else: Return P1(xi)

Figure 7: The random oracle index guessing technique. By xi we denote the ith query to RO. F is a
1/qH -PRF. Note that the queries to RO are not necessarily distinct.

G′0
Procedure RO(xi)
01 If c[xi] undefined: c[xi]← Ber(1/qH)
02 If c[xi] = 0: Return P0(xi)
03 Else: Return P1(xi)

Figure 8: Intermediate game for the transition to memory-efficient index guessing.

These games are identical if c[xi∗ ] = 0 and c[xi] = 1 for all i 6= i∗. Hence,

Succ((G′0)A) ≥ (1− 1/qH)qH−1 · Succ(GA
0 ) ≥ e−1 · Succ(GA

0 ) .

Now it is easy to construct an adversary B against the security of F with LocalTime(B) =
LocalTime(A) and LocalMem(B) = LocalMem(A) that provides A with a perfect simulation of
G0′ when interacting with game Randomα of Figure 4 or respectively with a perfect simulation of G1
when interacting with Real. Hence

∣∣Succ((G′0)A)− Succ(GA
1 )
∣∣ ≤ Adv(PRFB

1/qH ). So overall, we have

Succ(GA
1 ) ≥ e−1 · Succ(GA

0 )−Adv(PRFB
1/qH ) .

Running Time. Game G1 needs to evaluate the 1/qH-PRF qH times, hence we have TotalTime(GA
1 ) =

TotalTime(GA
0 ) + qH ·Time(F).

Memory. The standard game needs to store an array of size at least qH · λ bits and the integer i∗, while
the memory-efficient game only needs additional memory Mem(F). So overall, we have

TotalMem(GA
0 ) ≥ LocalMem(A) + qH + 1 ,

TotalMem(GA
1 ) = LocalMem(A) + Mem(F) .

Note that for simplicity we ignored the memory consumption and running time for procedures P0 and P1.

3.5 Single Rewinding Technique
This technique can be used for games containing a procedure Query, which can be called by an adversary
A up to q times on inputs x1, . . . , xq. When A terminates, it queries Fin on a value x∗. Procedure Fin then
checks whether there exists i ∈ {1, . . . , q} such that R(xi, x∗) = 1, where R is an efficiently computable
relation specific to the game. If so, it invokes Stop with 1. If no such i exists it invokes Stop with 0. Note
that we do not specify how queries to Query are answered since it is not relevant here. To be able to
check whether there exists an i such that R(xi, x∗) = 1, the game usually stores the values x1, . . . , xq as
described in G0 in Figure 9.

However it is possible to make the game memory efficient as described in G1 of Figure 9. In this
variant the game no longer stores all the xi’s. Instead, it only stores the adversarial input x∗ to Fin and
then rewinds A to the start, i.e., it runs it a second time providing it with the exact same input and
random coins, and responding to queries to Query with the same values as in the first run. This means
that from the adversary’s view, the second run is an exact replication of the first one. Whenever A calls
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Query on a value xi, the game checks whether R(x∗, xi) = 1 and —if so— invokes Stop with 1. Note
that it is necessary to store the random coins given to A as well as random coins potentially used to
answer queries to Query to be able to rewind. This can be done memory-efficiently with the technique
of Section 3.2.

Standard Game GA
0

Procedure Query(xi)
00 Xi ← xi
01 . . .

Procedure Fin(x∗)
02 For i = 1 to q
03 If R(x∗, Xi) = 1: Stop with 1
04 Stop with 0

Memory-efficient Game GA
1

Procedure Query(xi)
00 During rewinding:
01 If R(X∗, xi) = 1: Stop with 1
02 . . .

Procedure Fin(x∗)
03 X∗ ← x∗

04 Rewind A to start
05 Stop with 0

Figure 9: The single rewinding technique.

Success Probability. Since after rewinding, G1 provides A with the exact same input as in the first
execution, all values xi are the same in both executions of A, so

Succ(GA
0 ) = Succ(GA

1 ) .

Running Time. G0 runs A once, while G1 runs A twice. Both games invoke the relation algorithm R a
total number of q times, so overall we obtain

TotalTime(GA
1 ) ≤ 2 ·TotalTime(GA

0 ) .

Memory. GA
0 stores all values x1, . . . , xq, x

∗ while GA
1 only stores x∗ and one of the xi, 1 ≤ i ≤ q at a

time. Assuming each of the values x1, . . . , xq, x
∗ takes one memory unit, we obtain

TotalMem(GA
0 ) = LocalMem(A) + Mem(R) + q + 1 ,

TotalMem(GA
1 ) = LocalMem(A) + Mem(R) + 2 .

We remark that the single rewinding technique can be extended to a multiple-rewinding technique,
in which the reduction runs the adversary m times (on the same random coins and with the same
input). For example, in Theorem 4.6 we consider a reduction between t-multi-collision-resistance and
t-collision-resistance that rewinds the adversary several times.

4 Streaming Algorithms and Memory-Efficiency
In this section we prove two lower bounds on the memory usage of black-box reductions between certain
problems. The first shows that any reduction from mUFCMA to UFCMA must either use more memory,
run the adversary many times, or obey some tradeoff between the two options. The second gives a
similar result for mCRt to CRt reductions. We start by recalling results from the data-stream model of
computation which will provide the principle tools for our lower bounds.

In this section we also deal with bit-memory (Mem2) which measures the number of bits used, rather
than Mem which measures the number of λ-bit words used.

4.1 The Data Stream Model
The data stream model is typically used to reason about algorithmic challenges where a very large input
can only be accessed in discrete pieces in a given order, possibly over multiple passes. For instance,
data from a high-rate network connection may often be too large to store and thus only be accessed in
sequence.
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Streaming formalization. We adopt the following notation for a streaming problem: An input is a
vector y ∈ Un of dimension n over some finite universe U . We say that the number of elements in the
stream is n. An algorithm B accesses y via a stateful oracle Oy that works as follows: On the first call it
saves an initial state i← 0 and returns y[0]. On future calls, Oy sets i← (i+ 1 mod n), and returns
y[i]. The oracle models accessing a stream of data, one entry at a time. When the counter i is set to 0
(either at the start or by wrapping modulo n), the algorithm B is said to be initiating a pass on the data.
The number of passes during a computation BOy is thus defined as p = dq/ne, where q is the number of
queries issued by B to its oracle.
A streaming lower bound. Below we will use a well-known result lower bounding the trade-off
between the number of passes and memory required to determining the most frequent element in a stream.
We will also use a lower bound on a related problem that can be proven by the same techniques.

For a vector y ∈ Un, define F∞(y) as

F∞(y) = max
s∈U
|{i : y[i] = s}| .

That is, F∞(y) is the number of appearances of the most frequent value in y. Our results will use the
following modified version of F∞, denoted F∞,t that only checks if the most frequent value appears t
times or not:

F∞,t(y) =
{

1 if F∞(y) ≥ t
0 otherwise

.

We also define the function G(y) as follows. It divides its input into two equal-length halves y = y1‖y2,
each in Un/2. We let

G(y1‖y2) =
{

1 if ∃j ∀i : y2[j] 6= y1[i]
0 otherwise

.

In words, G outputs 1 whenever y2 contains an entry that is not in y1.

Theorem 4.1 (Corollary of [KS92, Raz92]). Let t be a constant and B be a randomized algorithm such
that for all sufficiently large n, and all sufficiently large finite universes U , and all y ∈ Un,

Pr[BOy = F∞,t(y))] ≥ c ,

where 1/2 < c ≤ 1 is a constant. Then LocalMem2(B) = Ω(min{n/p, |U |/p}), where p is the number of
passes B makes in the worst case.

The same statement holds if F∞,t is replaced with G.

This theorem is actually a simple corollary of a celebrated result on the communication complexity
of the disjointness problem, which has several other applications. See also the lecture notes by Rough-
garden [Rou15] that give an accessible theorem statement and discussion after Theorem 4.11 of that
document.

The standard version of this theorem only states that computing F∞ requires the stated space, but
this version is easily obtained via the same techniques, and we give a proof in Appendix A. The proof for
F∞ works by showing that any p-pass streaming algorithm with local memory m can be used to construct
a pm-communication two-party protocol to compute whether sets x1,x2 held by the parties are disjoint.
One then proves a communication lower bound on any protocol to test for disjointness.

A simple modification of this argument shows that computing G also gives such a protocol: It easily
allows two parties to compute if x1 \ x2 is empty, which is equivalent to computing if x1 and x2 are
disjoint. Thus one can reduce disjointness to this problem by having the first party take the compliment
of its set.

The modification for F∞,t is also easy. The essential idea is that one party can copy its set t− 1 times
when feeding it to the streaming algorithm. Then if the parties’ sets are not disjoint, we will have F∞,t
equal to 1 and 0 otherwise. Since t is a constant this affects the lower bound by only a constant factor.

4.2 mUFCMA-to-UFCMA Lower Bound

Black-box reductions for mUFCMA to UFCMA. Let R be an algorithm playing the UFCMA game.
Recall that R receives input pk and has access to an oracle ProcSign, and stops the game by querying
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Fin(m∗, σ∗). Below for an adversary A playing mUFCMA, we write RA to mean that R has additionally
“oracle access to A”, which means an oracle NxtQA that returns the “next query” of A after accepting a
response to the previous query from R. When A halts (i.e. NxtQA returns a query to Fin), the oracle
resets itself to start again with the same random tape and input pk.

Definition 4.2. A restricted black-box reduction from mUFCMA to UFCMA for signature scheme
(Gen,Sign,Ver) is an oracle algorithm R, playing UFCMA, that respects the following restrictions for
any A:

1. RA starts by forwarding its initial input (consisting of the security parameter and public key)
to NxtQA.

2. When the oracle NxtQA emits a query for ProcSign(m), R forwards m to its own signing oracle
ProcSign and returns the result to NxtQA, possibly after some computation.

3. When NxtQA emits a query for ProcVer(m∗, σ∗), R performs some computation then returns an
empty response to NxtQA.

4. When R queries Fin(m∗, σ∗), the value (m∗, σ∗) will be amongst the values that NxtQA returned as
a query to ProcVer.

Finally we say that R is advantage-preserving if there exists an absolute constant 1/2 < c ≤ 1 such that
for all adversaries A and all random tapes r for A,

Succ(UFCMARA
| r) ≥ c · Succ(mUFCMAA | r) , (2)

where Succ(· | r) is exactly Succ(·) conditioned on the tape of A being fixed to r.

These restrictions force R to behave in a combinatorial manner that is amenable to a connection to
streaming lower bounds. The final condition, requiring R to preserve the advantage of A for all random
tapes, is especially restrictive. At the end of the section we discuss directions for considering more
general R.

Theorem 4.3. Let (Gen,Sign,Ver) be any signature scheme with message length δ = λ. Let R be a
restricted black-box reduction from mUFCMA to UFCMA that is advantage-preserving, and let p be the
number of times R runs A. Then there exits a family of adversaries A∗ = A∗q, each making q = q(λ)
signing queries, and using memory LocalMem2(A∗) = O(LocalMem2(Ver)), such that

LocalMem2(RA∗) = Ω(min{ q

p+ 1 ,
2λ

p+ 1})−O(log q)−max{LocalMem2(Gen),LocalMem2(Ver)} .

Proof. Let R be a restricted black-box reduction for (Gen,Sign,Ver) that is advantage-preserving for some
c ≥ 1/2. We proceed fixing an adversary A∗ and using RA∗ to construct a streaming algorithm B, making
p+ 1 passes on its stream, such that

Pr[BOy(2δ, n) = G(y)] ≥ c (3)

for all n and all y ∈ ({0, 1}λ)n. We will apply the streaming lower bound on computing G (Theorem 4.1)
to B, and then relate the memory used by B to that of RA∗ to obtain the theorem.

We start by fixing the adversary A∗. It takes as input the security parameter λ and public key pk.
Then A∗ selects q random messages m1, . . . ,mq, queries them to ProcSign, and ignores the outputs. Next
A∗ selects q more random messages m′1, . . . ,m′q, and for each m′j it forges a signature σ′j by brute force
and queries (m′j , σ′j) to ProcVer. After the verification queries, it halts.

We record two facts about A∗. Let y ∈ ({0, 1}λ)2q the vector consisting of all of its queried messages, in
order (the first q to ProcSign, and the second q to ProcVer along with signatures). First, if G(y) = 0, then
Succ(mUFCMAA∗ | y) = 0 because A∗ will not issue any queries with a fresh forgery. If however G(y) = 1,
then Succ(mUFCMAA∗ | y) = 1 because A∗ will issue at least one fresh forgery to the verification oracle.

Algorithm BOy will run RA∗ , which expects input pk, oracles for ProcSign, Fin (for the UFCMA game)
and oracle NxtQA∗ for an adversary. BOy works as follows, on input (2λ, n := 2q):
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• B starts by initializing a logn-bit counter i ← 0, running (pk, sk) ← Gen(λ), and running R on
input pk.

• B responds the oracle query ProcSign(m) from R by returning Sign(sk,m).

• When R queries NxtQA∗ , B ignores the input and responds as follows:

– If i < n/2, then B queries Oy, which returns y1[i], and has NxtQA∗ return ProcSign(y1[i]) as
the next query.

– If i ≥ n/2, it queries Oy to get y2[j] (where j = i− n/2). Then B computes a valid signature
σj by brute force, and increments i modulo n. It then has NxtQA∗ return ProcVer(y2[j], σ) as
the next query.

• When R queries Fin(m∗, σ∗), B performs another pass on its stream and checks if m∗ appears
anywhere in y1. If it does, then it outputs 0 and otherwise it outputs 1.

We now verify (3). If G(y) = 0 then BOy will output 0 with probability 1. This is because of our
restrictions on R, which restrict it to outputting a value m∗ that was queried by A∗ to ProcVer. On the
other hand, if G(y) = 1 then BOy will output 1 with probability at least c. The reason is that A∗ will
have success probability 1 when such a y is fixed, so by (2) RA∗ has success probability at least c, and B
outputs 1 whenever R succeeds in the simulated mUFCMA game.

It is clear that B makes p + 1 passes on its stream, where p is the number of times RA∗ runs A∗.
Applying Theorem 4.1 to B we have

LocalMem2(B) = Ω(min{n/(p+ 1), 2λ/(p+ 1)}) .

On the other hand, by the construction of B we have that

LocalMem2(B) = O(LocalMem2(RA∗)) + max{LocalMem2(Gen),LocalMem2(Ver)} .

Combining the two bounds on LocalMem2(B), and noting that q = Θ(n), gives the theorem.

4.3 mCRt-to-CRt Lower Bound

Black-box reductions for mCRt to CRt. Similar to the case with signatures, we formalize a class of
reductions from mCRt to CRt for a hash function H. Let R be an oracle algorithm RA that plays the CRt
game (with the only oracle being Fin), and additionally has access to an oracle NxtQA that returns the
next query of some adversary playing the game mCRt. The only oracles in mCRt are ProcInput and Fin,
so NxtQA either returns a domain point m or halts A. As before, the oracle resets itself after the last
query by A, with the same input and random tape.

Definition 4.4. A restricted black-box reduction from mCRt to CRt for a hash function H is an oracle
algorithm R, playing CRt, that respects the following restrictions for any A:

1. RA starts by forwarding its initial input (consisting of the security parameter and hashing key)
to NxtQA.

2. When R queries Fin(m1, . . . ,mt), the values m1, . . . ,mt will be amongst the values that NxtQA
returned as a query to ProcInput.

Finally we say that R is advantage-preserving if there exists an absolute constant 1/2 < c ≤ 1 such that
for all adversaries A and all random tapes r for A,

Succ(mCRRA

t | r) ≥ c · Succ(CRA
t | r) , (4)

where Succ(· | r) is exactly Succ(·) conditioned on the tape of A being fixed to r.

Theorem 4.5. Let H be the function (with empty hash key) that truncates the last λ bits of its input.
Let R be a restricted black-box reduction from mCRt to CRt that is advantage-preserving and let p be the
number of times R runs A. Then there exits a family of adversaries A∗ = A∗q , each making q = q(λ) oracle
queries, and using memory LocalMem2(A∗) = O(λ), such that

LocalMem2(RA∗) =Ω(min{q/p, 2λ/p}) .
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Proof. We proceed similarly to the proof of Theorem 4.3, but we now construct a streaming algorithm
BOy for F∞,t instead of G. Let R be a restricted black-box reduction for H that is advantage-preserving
for some c ≥ 1/2. We will fix an adversary A∗ and use RA∗ to construct a streaming algorithm B, making
p passes on its stream, such that

Pr[BOy(2δ, n) = F∞,t(y)] ≥ c (5)

for all n and all y ∈ ({0, 1}λ)n.
The adversary A∗ works as follows: On input λ (and empty hash key), it chooses q random messages

m1, . . . ,mq and queries mi‖i to its ProcInput oracle, where i is encoded in λ bits. It then queries Fin and
halts.

Let y ∈ ({0, 1}λ)q be the vector consisting of all messages queried to ProcInput. If F∞,t(y) = 0, then
Succ(mCRA∗

t |y) = 0 because there will be no t-collision in the queries of A∗. If however F∞,t(y) = 1,
then Succ(mUFCMAA∗ |y) = 1 because there will be a t-collision, as the hash function H is defined to
truncate the final λ bits of its inputs, which consist of the counter value.

The streaming algorithm BOy(2λ, q) works as follows. It initializes a counter i to 0 and runs R. When
R requests an input from NxtQA∗ , BOy queries its oracle for y[i] and returns y[i]‖i to R. When R halts
by calling Fin(m1, . . . ,mt), BOy simply checks if the messages are all of the form y‖i for a fixed y and
different values of i. If so, it outputs 1 and otherwise it outputs 0.

It is easy to verify that B satisfies (5) and that it makes p passes on its input stream. Therefore by
Theorem 4.1 we have

LocalMem2(B) = Ω(min{q/p, 2λ/p}) .

By construction we also have

LocalMem2(B) = O(LocalMem2(RA∗)) .

Combining these inequalities gives the theorem.

Sharpness of the bounds. We observe that when one is not concerned with memory-tightness then
it is trivial to reduce t-multi-collision-resistance to t-collision-resistance, by simply storing all inputs to
ProcInput and checking for collisions. This will however be non-tight if the mCRt adversary uses small
memory but produces a large number of domain points (i.e. q is large). Memory tightness can be achieved
via rewinding O(q) times, but this increases the runtime of the reduction.

Theorem 4.6. Let H : {0, 1}κ × {0, 1}λ → {0, 1}λ be a hash function and let t be a fixed natural number.
Then for all adversaries A in the mCRt game with parameter λ making q queries to ProcInput and for all
natural numbers 1 ≤ c, p,m ≤ q < 2λ such that c · p ·m = q there exists an adversary B in the CRt game
such that

Succ(CRB
t ) ≥ 1

2c · Succ(mCRA
t ) ,

LocalTime(B) ≤ (2p+ 1) · LocalTime(A) + (mp(q + 1) + q) ·Time(H) ,

LocalMem(B) = LocalMem(A) + Mem(H) + 3m+ t+ 3 .

If we choose c = 1 and m = q/p, this theorem proves that the lower bound from Theorem 4.5 is sharp.

Proof. By assumption m = q/cp. Let A be an adversary in the mCRt game. For simplicity we assume
that A is deterministic, otherwise we can apply the PRF coin fixing technique from Section 3.2.

Consider adversary B as defined in Figure 10. First, B stores the hash values of m out of the q inputs
of A to ProcInput. Note that A only needs to be run once to perform these operations in line 05, as the
indices i1 to im can be sorted. Then it rewinds A to the start and checks for collisions of the stored hash
values with all of the hash values of A’s inputs to ProcInput. Assume that at least t of A’s inputs have
the same hash value. Then in each execution of the loop starting in line 01 B succeeds in finding the
colliding messages if it stored the corresponding hash value. The probability of this event is bounded
from below by m/q = 1/cp. The loop is repeated p times with freshly sampled i1, . . . , im. Thus

Pr[CRB
t ⇒ 1 | mCRA

t ⇒ 1] ≥ 1− (1− 1/cp)p ≥ 1− e−1/c ≥ 1/2c .
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Adversary B
00 k ← InitCRt
01 FOR ` = 1 to p:
02 sample distinct i1, . . . , im from {1, . . . , q}
03 run A on input k
04 FOR j = 1 to m:
05 xj ← H(k,A(ij))
06 run A on input k
07 FOR i = 1 to q:
08 FOR j = 1 to m:
09 IF xj = H(k,A(i)) ∧ ij 6= i:
10 cj ← cj + 1
11 IF cj = t:
12 run A on input k
13 store all of A’s t outputs y1 . . . yt such that H(yα) = xj
14 Stop with y1 . . . yt

Figure 10: Adversary B in the CRt game. By A(j) we denote the j-th out of q inputs of A to ProcInput.

This implies Succ(CRBt ) ≥ 1/2c · Succ(mCRAt ). When B finds a collision, it rewinds A one last time to
obtain the preimages of the t colliding values.

So overall, B runs A at most 2p+ 1 times and the hash algorithm H at most p(m+mn) + q times. It
needs to store 2m + 3 counters of size log q ≤ λ (i.e. 2m + 3 memory units), m values from H’s range
{0, 1}ρ (i.e. m memory units) and the t elements from {0, 1}δ that collide under H (i.e. t memory units)
and provide memory for A and H.

Limitations, extensions, and open problems. Our notion of black-box reductions assumes that the
reduction will only run the adversary A from beginning to end, each time with the same random tape. It
would be interesting to generalize the reduction to allow for partial rewinding of A, and also for saving
“snapshots” of the state of A that allow for rewinding.

Our restrictions on black-box reductions confine them to essentially work like combinatorial streaming
algorithms. It seems likely that these restrictions can be greatly relaxed by using a different notion of
black-box reduction and using pathological (unbounded) signature schemes and hash functions to enforce
the combinatorial behavior of the reduction with high probability. We pursued our version of the results
for simplicity.

5 Memory-tight reduction for RSA-FDH Signatures
This section gives an example of a memory-tight reduction obtained via the techniques of Section 3. We
first recall the syntax of signature schemes and the RSA assumption. Then we show how the RSA Full
Domain Hash (RSA-FDH) signature scheme can be proven secure in the random oracle model using coin
replacement (3.2), random oracle replacement (3.3), the random oracle index guessing technique (3.4)
and single rewinding (3.5). For subtle reasons we implement all techniques using a single PRF to obtain
a memory tight reduction.
Signature schemes. A signature scheme consists of algorithms Gen,Sign,Ver such that: algorithm
Gen generates a verification key pk and a signing key sk; on input of a signing key sk and a message m
algorithm Sign generates a signature σ or the failure indicator ⊥; on input of a verification key pk, a
message m, and a candidate signature σ, deterministic algorithm Ver outputs 0 or 1 to indicate rejection
and acceptance, respectively. A signature scheme is correct if for all correctly generated sk, pk and all
m, if Sign(sk,m) outputs a signature then Ver accepts it. Recall that the standard security notion of
existential unforgeability against chosen message attacks is defined in Section 2.3 via the game of Figure 2.
RSA assumption. Let GenRSAλ be an algorithm that returns (N = pq, e, d), where p and q are distinct
primes of bit size λ/2 and e, d are such that e = d−1 mod Φ(N).

Definition 5.1 (RSA Assumption). Game RSAλ defining the hardness of RSA relative to GenRSAλ is
depicted in Figure 11.
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Game RSAλ
Procedure Init
00 (N, e, d)← GenRSAλ
01 x← ZN
02 y ← xe mod N
03 Return (N, e, y)

Procedure Fin(x∗)
04 If x = x∗:
05 Stop with 1
06 Stop with 0

Figure 11: The RSAλ game relative to algorithm GenRSAλ.

Gen
00 (N, e, d)← GenRSAλ
01 pk ← (N, e), sk ← (N, d)
02 Pick RO H : {0, 1}λ → ZN
03 Return (pk, sk)

Sign(sk,m)
04 (N, d)← sk
05 σ ← H(m)d mod N
06 Return σ

Ver(pk,m, σ)
07 (N, e)← pk
08 If σe = H(m) mod N :
09 Return 1
10 Return 0

Figure 12: The RSA-FDH signature scheme for parameter λ.

RSA-FDH. The RSA Full Domain Hash (RSA-FDH) signature scheme [BR93] is defined in Figure 12.
Its security can be reduced to the RSA assumption in the random oracle model (see [BR96, Cor00]). In
the usual proof the reduction interacting with an adversary against RSA-FDH’s existential unforgeability
making up to qH hash queries and up to qs signing queries simulates the random oracle using lazy sampling
and therefore has to store up to (qH + qs) messages making the reduction highly non-memory-tight.
However, the proof can be made memory-efficient by using the coin replacement technique of Section 3.2,
the random oracle technique of Section 3.3, the random oracle index guessing technique of Section 3.4,
and the single rewinding technique of Section 3.5.

Theorem 5.2. Let F : {0, 1}λ × {0, 1}λ → {0, 1}2λ+1 be a PRF. Then for every adversary A in the
UFCMA game for RSA-FDH with parameter λ that poses qH queries to the Hash and qs queries to the
ProcSign oracle, and samples at most L ≤ 2λ memory units of randomness, in the random oracle model
there exist an adversary B1 in the RSAλ game and an adversary B2 in the PRF game such that

Succ(UFCMAA) ≤ e · qs · Succ(RSAB2
λ ) + e · qs ·Adv(PRFB1) .

Further it holds that

LocalMem(B1) = LocalMem(A) + Mem(GenRSAλ) + 6 ,

LocalMem(B2) = LocalMem(A) + Mem(F) + 6 ,

LocalTime(B1) ≈ 2 · LocalTime(A) + Time(RSAλ) ,

LocalTime(B2) ≈ LocalTime(A) + (qH + qs + L) ·Time(F) .

Note that in the proof of Theorem 5.2 it is necessary to apply the random coins technique and the
random oracle technique in the same step. Otherwise one obtains an intermediate reduction that is not
memory-tight: the reduction either has to simulate the random oracle by lazy sampling (in case the
random coins technique is applied first) or, since rewinding is impossible, it has to store the messages
asked to the signing oracle (if the random oracle technique is applied first).

Proof. Consider the sequence of games of Figure 13. For computations in ZN we omit writing modN if
it is clear from the context. We assume without loss of generality that any message procedures ProcSign
or Fin are queried on was queried to Hash first.

Game G0 is the standard UFCMA game as in Figure 2 instantiated with the RSA-FDH algorithms
and with the randomness for adversary A provided via procedure Coins, so

Succ(UFCMAA) = Succ(GA
0 ) . (6)

In G1, instead of returning H(m), the Hash procedure returns H(m)e and the ProcSign procedure
computes signatures as (H(m)e)d = H(m) accordingly. This doesn’t change the distribution of the hash
values and the signatures, so

Succ(GA
0 ) = Succ(GA

1 ) . (7)
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G0 / G1

Procedure Init
00 (N, e, d)← GenRSAλ
01
02
03 r ← ({0, 1}λ)L
04 Return (N, e)

Procedure Hash(mi)
05 If H[mi] undefined:
06 H[mi]← ZN
07
08
09 Return H[mi] (G0)
10 Return H[mi]e (G1)

Procedure ProcSign(mi)
11 M ←M ∪ {mi}
12
13 Return Hash(mi)d (G0)
14 Return Hash(mi) (G1)

Procedure Coins
15 j ← j + 1
16 Return rj
Procedure Fin(m∗, σ∗)
17
18
19 If m∗ ∈M :
20 Stop with 0
21 If (σ∗)e = Hash(m∗):
22 Stop with 1
23 Stop with 0

G2

Procedure Init
00 (N, e, d)← GenRSAλ
01 x← ZN
02 y ← xe

03 r ← ({0, 1}λ)L
04 Return (N, e)

Procedure Hash(mi)
05 If H[mi] undefined:
06 H[mi]← ZN
07 B[mi]← Ber(1/qs)
08 If B[mi] = 1:
09 Return H[mi]ey
10 Else: Return H[mi]e

Procedure ProcSign(mi)
11 M ←M ∪ {mi}
12 If B[mi] = 1:
13 Abort
14 Return Hash(mi)

Procedure Coins
15 j ← j + 1
16 Return rj
Procedure Fin(m∗, σ∗)
17 If B[m∗] = 0:
18 Stop with 0
19 If m∗ ∈M :
20 Stop with 0
21 If (σ∗)e = Hash(m∗):
22 Stop with 1
23 Stop with 0

G3

Procedure Init
00 (N, e, d)← GenRSAλ
01 x← ZN
02 y ← xe

03 k ← {0, 1}λ
04 Return (N, e)

Procedure Hash(mi)
05
06
07
08 If F2(k,mi) = 1:
09 Return F1(k,mi)ey
10 Return F1(k,mi)e

Procedure ProcSign(mi)
11 M ←M ∪ {mi}
12 If F2(k,mi) = 1:
13 Abort
14 Return Hash(mi)

Procedure Coins
15 j ← j + 1
16 Return F0(k, j)

Procedure Fin(m∗, σ∗)
17 If F2(k,mi) = 0:
18 Stop with 0
19 If m∗ ∈M :
20 Stop with 0
21 If (σ∗)e = Hash(m∗):
22 Stop with 1
23 Stop with 0

Figure 13: Games G0 to G3.

Game G2 introduces a couple of aborting conditions. With probability 1/qs abort condition B[m∗] = 0 of
line 17 does not occur. Furthermore, for each message mi the probability that abort condition B[mi] = 1
of line 12 does not occur is given by 1− 1/qs. Adversary A makes at most qs queries to ProcSign. Hence,

Succ(GA
2 ) ≥ 1/qs(1− 1/qs)qs · Succ(GA

1 ) ≥ 1/(eqs) · Succ(GA
1 ) . (8)

In Game G3 we introduce PRF F, whose range we split into F(k, x) = F0(k, x)||F1(k, x)||F2(k, x) ∈
{0, 1}λ × {0, 1}λ × {0, 1} for all k, x ∈ {0, 1}λ (i.e., F0 is the projection of F onto the first λ bits of its
range and so on). Sampling of random coins is replaced by evaluating F0 on counter j, sampling the
values H[mi] and B[mi] is replaced by evaluating F1 and F2 on mi, respectively. For simplicity we assume
that F1 is a pseudorandom function that outputs elements in ZN = {0, 1}λ and that F2 is an α-biased
pseudorandom function with α := 1/qs. (These two formally incorrect assumptions are made in order not
to distract from the main points of our proof. They can easily be waifed with a more careful analysis.)
We proceed by constructing an adversary B1 for the PRF game such that

Adv(PRFB1) ≥ |Succ(GA
2 )− Succ(GA

3 )| , (9)
LocalTime(B1) ≈ 2 · LocalTime(A) + Time(RSAλ) , (10)
LocalMem(B1) = LocalMem(A) + Mem(GenRSAλ) + 6 . (11)

The definition of B1 is in Figure 14. Adversary B1 sets up the values (N, e, d) using GenRSAλ, samples
x← ZN , sets y ← xe and runs A on input (N, e). It simulates the procedures Hash, ProcSign and Coins by
invoking its PRF oracle OF. When A calls Fin on message-signature pair (m∗, σ∗) adversary B1 invokes A
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B1

Procedure Init
00 (N, e, d)← GenRSAλ (1)
01 x← ZN (1)
02 y ← xe (1)
03 Invoke A on (N, e)

Procedure Coins
04 j ← j + 1
05 Return OF0(j)

Procedure Hash(mi)
06 If OF2(mi) = 1:
07 Return (OF1(mi))e ·y
08 Return (OF1(mi))e

Procedure ProcSign(mi)
09 If mi = m∗: (2)
10 coll← 1 (2)
11 If OF2(mi) = 1:
12 Abort
13 Return Hash(mi)

Procedure Fin(m∗, σ∗)
14 Store m∗, rewind A (1)
15 If OF2(mi) = 0: (2)
16 Stop with 0 (2)
17 If coll = 1: (2)
18 Stop with 0 (2)
19 If (σ∗)e = Hash(m∗): (2)
20 Stop with 1 (2)
21 Stop with 0 (2)

Figure 14: Adversary B1 in the PRF game. B1 rewinds A once on the same inputs. Lines marked with (i)
are only executed during the i-th invocation.

B2

Procedure Init
00 (N, e, y)← InitRSA
01 k ← {0, 1}λ
02 Invoke A on (N, e)

Procedure Coins
03 j ← j + 1
04 Return F1(k, j)

Procedure Hash(mi)
05 If F2(k,mi) = 1:
06 Return F1(k,mi)ey
07 Return F1(k,mi)e

Procedure ProcSign(mi)
08 If F2(k,mi) = 1:
09 Abort
10 Return Hash(mi)

Procedure Fin(m∗, σ∗)
11 If F2(k,m∗) = 0:
12 Abort
13 If (σ∗)e = Hash(m∗):
14 x∗ ← σ∗/F1(k,m∗)
15 Call FinRSA(x∗)

Figure 15: Adversary B2 in the RSAλ game with procedures InitRSA and FinRSA.

for a second time with input (N, e) (line 03), answering all of its queries in the exact same way as during
the first invocation. Note that this is possible, since all replies to queries on Hash, ProcSign and Coins
are derived using OF. During the rewinding B1 raises a flag coll if A queries procedure ProcSign on m∗.
Hence the event {coll = 1} is equivalent to condition m∗ ∈M of line 19 of games G2 and G3. When A
calls Fin a second time on (m∗, σ∗), adversary B1 stops with 0 or 1 as specified in Fin. If B1 interacts
with PRF-game Random it provides A with a perfect simulation of game G2, if it interacts with Real with
a perfect simulation of game G3. Hence Equation (9) follows.

We now analyze B1’s running time and memory consumption. B1 runs GenRSAλ once and A twice and
performs some minor bookkeeping. It furthermore has to store the code of A and GenRSAλ as well as up
to 6λ bits (the integers N, e, y and up to two messages of length λ each and a counter of size log2(L) ≤ λ)
which equals 6 memory units.

To conclude the proof we construct an adversary B2 for the RSAλ game such that

Succ(RSAB2
λ ) ≥ Succ(GA

3 ) , (12)
LocalTime(B2) ≈ LocalTime(A) + (qH + qs + L) ·Time(F) , (13)
LocalMem(B2) = LocalMem(A) + Mem(GenRSAλ) + 6 . (14)

Then the claim of the theorem follows from Equations 7, 8, 9 and 12. The definition of B2 is in Figure 15.
It queries InitRSA to receive an RSA challenge (N, e, y) and samples a PRF key k. Then it invokes A on
input (N, e) providing it with a perfect simulation of the procedures Hash, ProcSign and Coins. When A
invokes procedure Fin on message-signature pair (m∗, σ∗), adversary B2 checks whether F2(k,m∗) = 0
and —if so— aborts. Note that by definition of procedure Hash adversary B2 not aborting implies that
Hash(m∗) = (F1(k,m∗))ey. Hence if B2 does not abort and if the signature is valid, i.e. (σ∗)e = Hash(m∗)
holds, then B2’s answer x∗ = σ/F1(k,m∗) to the RSA challenge is valid. Since A succeeding in game G3
implies both aforementioned conditions, Equation 12 holds.

Finally we analyze B2’s running time and memory consumption. B2 runs A once and F up to
(qH + qs + L) times and performs some minor bookkeeping. Further it has to store the code of A and F
as well as at any point in time 6λ bits (a PRF key, a message and three integers of length λ each and a
counter of size log2(L) ≤ λ) which equals 6 additional memory units.
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Figure 16: Time/memory graphs of CRk for k = 2 (left) and k = 3 (right). Both Time and Mem are in
log scale.

6 Memory-Sensitive Problems
In this section we discuss the memory sensitivity of several important cryptographic problems, namely
multi-collision-resistance, learning parities with noise, the shortest vector problem, discrete logarithms in
prime fields, and factoring.

To visualize the memory sensitivity of a problem P we plot time/memory trade-offs as in Figure 1 of
the Introduction. The horizontal axis is memory consumption and the vertical axis is running time, both
on a log scale. A point (x, y) is either labeled with “solvable” or “unsolvable”, where solvable means that
there exists an algorithm with memory consumption at most 2x and running time at most 2y that solves
the problem. We refer to the boundary between the solvable and unsolvable regions as the transition
function.

A time/memory trade-off plot of a non-memory-sensitive problem typically has transition function
which is (approximately) a horizontal line. As discussed in Section 1, in this case a non-memory-
tight reduction has less negative impact. The steeper the slope of the transition function, the more
memory-sensitive the problem is. We refer to the introduction for examples with concrete numbers.
k-Way Collision Resistance. The k-way collision problem CRk is to find a k-collision in a hash
function with λ output bits, see Section 2.4 for a formal definition. The following table provides an
overview over known algorithms to solve CRk with constant success probability for k ∈ {2, 3}.

Algorithm A LocalMem2(CRA
t ) LocalTime(CRA

t )

Birthday (k = 2) O(1) 2λ/2

Joux-Lucks [JL09] (k = 3) 2λα 2λ(1−α) (α ≤ 1/3)

From the table we derive the time/memory graph of CRk in Figure 16. CR3 is memory sensitive, whereas
CR2 is not (as its transition function is a horizontal line).
Learning Parity with Noise. Another example of a memory sensitive problem is the well-known
Learning Parity with Noise (LPN) problem. Let λ ∈ N be the dimension and τ ∈ [0, 1/2) be a constant that
defines the error probability. The problem LPNλ,τ is to compute a random secret s← Fλ2 , given “noisy”
random inner products with s, i.e. samples (ai, νi) where ai ← Fλ2 , and νi = 〈ai, s〉+ ei for ei ← Ber(τ).

Memory usage and running time of the best known algorithms for LPNλ,τ with constant success
probability are given in the following table.

Algorithm A LocalMem2(LPNA
λ,τ ) LocalTime(LPNA

λ,τ )

BKW [BKW03] 2λ/log(λ/τ) 2λ/log(λ/τ)

Gauss [EKM17] O(1) 2λ log(1/1−τ)

Furthermore, [EKM17] consider a hybrid algorithm between Gauss and BKW with different trade-offs
between running time and memory. Figure 17 (left) provides the corresponding time/memory graph:
the lower horizontal line of the transition function stems from BKW, the upper (short) horizontal line
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Figure 17: Time/memory graphs of LPNλ,τ for λ = 1024 and τ = 1/4 (left) and SVP for lattice
dimension λ (right). Both Time and Mem are in log scale.

stems from Gauss, and the line connecting the two takes the hybrid algorithms into account. (As there is
no closed formula for the complexity of the hybrid algorithm, the connecting line was generated using
concrete data points for λ = 1024 and τ = 1/4, kindly provided by the authors of [EKM17].)

We note that the situation for the Learning with Errors problem (LWE) and the Shortest Integer
Solution problem (SIS) is similar to that of the LPN problem [CN11, APS15, HKM17].
Shortest Vector Problem. A third example is the Shortest Vector Problem (SVP). Given a lattice
basis of dimension λ, the problem SVPλ is to find a shortest non-zero vector (w.r.t. the Euclidean norm)
in the lattice. The following table gives memory usage and running time of the best known algorithms for
SVPλ with constant success probability.

Algorithm A LocalMem2(SVPA
λ) LocalTime(SVPA

λ)
[BDGL16] 20.208·λ 20.292·λ

[HK17] 20.079·λ 20.817·λ

Figure 17 (right) gives the corresponding time/memory graph of SVPλ, also taking recent optimized
algorithms of [HK17] into account. Again, as there is no closed formula for the running times of [HK17],
the concrete data points for the transition graph were provided by the authors of [HK17].
Discrete Logarithms in Prime Fields. The discrete logarithm problem DLOGλ with respect to
security parameter λ ∈ N is, given a randomly chosen prime p of bit size λ, a generator g of Z∗p and a
group element X = gx for a randomly chosen exponent x ∈ Zp−1, to compute x. Memory usage and
running time in L-notation of the best known algorithms for DLOGλ with constant success probability
are given in the following table.

Algorithm A LocalMem2(DLOGA
λ) LocalTime(DLOGA

λ)

NFS [LLJMP93] L2λ [1/3, (8/9)1/3] L2λ [1/3, (64/9)1/3]
PollardRho [Pol75] O(1) 2λ/2

From the table we derive the time/memory graph of DLOGλ in Figure 18. For simplicity, all constants
were ignored.
Factoring. Let λ ∈ N be a security parameter. The problem FACTλ is to factor an RSA modulus
N = pq, where p and q are distinct primes of bit size λ/2.

Memory usage and running time in L-notation of the best known algorithms for DLOGλ with constant
success probability are given in the following table.

Algorithm A LocalMem2(FACTA
λ) LocalTime(FACTA

λ)

NFS [LLJMP93] L2λ [1/3, (8/9)1/3] L2λ [1/3, (64/9)1/3]
ECM [LJ87] O(1) L2λ−1 [1/2,

√
2]

From the table we derive the time/memory graph of FACTλ in Figure 18.
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A Proof of Theorem 4.1
Our proof is a minor modification of prior work that reduces a streaming algorithms for frequency
moments to a communication complexity problem. Thus we start by recalling the randomized two-party
communication model and the disjointness problem. Two parties P1, P2 are given inputs x1,x2 ∈ {0, 1}n
respectively. The protocol execution starts by selecting a random string r (from some finite domain) and
giving r to both parties. Then the parties, starting with P1, proceed by alternately performing some
arbitrary computation and sending a message to the other party. At some point, P2 halts with some
output. We write P1(x1) ↔ P2(x2) for the random variable representing the output of P2 in such an
execution. The communication of the protocol is the number of bits exchanged in the worst case over
x1,x2, and r.

Theorem A.1 ([KS92, Raz92]). Let DISJ(x1,x2) be defined by

DISJ(x1,x2) =
{

1 if ∃i : x1[i] = x2[i] = 1
0 otherwise

.

Then any two-party protocol (P1, P2) such that

Pr[P1(x1)↔ P2(x2) = DISJ(x1,x2)] > c (15)

for some constant c > 1/2 and every x1,x2 ∈ {0, 1}n must have communication Ω(n).

Proof (of Theorem 4.1). We start with G. Suppose for that B is a streaming algorithm making p passes
such that for all sufficiently large n,U and all y1‖y2 ∈ Un/2,

Pr[BOy1‖y2 = G(y1‖y2))] ≥ c .

We use B to construct a two party protocol as follows. Before exchanging messages, the parties locally
use their inputs x1,x2 to compute vectors y1,y2 respectively. Party P1 takes input x1 ∈ {0, 1}n, and
constructs y1 ∈ Un−w1 , where U = {1, . . . , n} and w1 is the Hamming weight of x1. It lets y1[i] be
the index of the i-th “1” in x̄1, the bit-complement of x1. Party P2 constructs y2 ∈ Uw2 , where w2 is
Hamming weight of x2, by setting y2[i] to the index of the i-th “1” in x2.

The protocol executes starting with Party P1, which runs BOy1 (using its own randomness as the
randomness for B), simulating oracle calls using y1, until B has issued n/2 calls. At this point, P1 sends
the local memory state of B to P2. Party P2 runs BOy2 starting from state s, again simulating oracle
calls using y2. After n/2 oracle calls, P2 sends the state s of B to P1, which continues to simulate B.
The parties iterate in this way until B halts with some output, which P2 uses as its output (possibly
forwarded from P1 if necessary).

We verify that our protocol is correct, in that it satisfies (15). If DISJ(x1,x2) = 1, then there is a
position i such that x̄1[i] = 0 and x2[i] = 1. Thus the element i will be a member of y2 but not y1, so
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G(y1‖y2) = 1. On the other hand, if DISJ(x1,x2) = 0, then x2[i] = 1 implies that x̄1[i] = 1, and thus
whenever i is in y2 it will also be in y1, i.e. G(y1‖y2) = 0. Since our protocol perfectly simulates the
oracle Oy1‖y2 for B, we get that it computes DISJ with probability at least c.

The communication of our protocol is O(p · LocalMem2(B)) as the parties exchange the state of B
twice per pass, and the state of B consists of its memory plus constant storage in its registers. Applying
Theorem A.1, we get LocalMem2(B) = Ω(n/p). Since the length of the stream is n and |U | = n, this
implies that LocalMem2(B) = Ω(min{n/p, |U |/p}), completing the proof of the Theorem for G.

The proof for F∞,t follows the same template and we only describe the differences. Party P1 translates
x1 into a vector y1 ∈ U (t−1)w1 , where U and w1 are the same as before. It computes y1 by appending
(t − 1) copies of i for each i ∈ U such that x1[i] = 1. Party P2 computes y2 exactly as before. By
construction it is easy to check that DISJ(x1,x2) = 1 iff F∞,t(y1,y2) = 1, and the same argument then
applies.
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