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Abstract. Protocols for Private Set Intersection (PSI) are an impor-
tant cryptographic primitive to perform joint operations on datasets in
a privacy-preserving way. They allow two entities to compute the inter-
section of their private sets without revealing any additional informa-
tion beyond the intersection, which can be learned by only one of the
parties, as in one-way PSI protocols, or by both parties in mutual PSI
protocols. In addition, the PSI setting may be unbalanced when one set
is substantially smaller than the other or balanced when the sets have
approximately the same size. However, even with several PSI protocols
already proposed, applications keep using insecure naive approaches that
are more efficient in both run time and communication. To make mat-
ters worse, implementations in the literature do not use the best possible
implementation techniques, especially when implementing PSI protocols
instantiated with curve-based public-key cryptography. This paper pro-
poses an efficient one-way PSI protocol based on public-key cryptogra-
phy for the unbalanced scenario. Security is based on the hardness of the
One-More-Gap-Diffie-Hellman (OMGDH) problem against semi-honest
adversaries and includes forward secrecy on the client side. A Cuckoo
filter is also used to reduce the amount of data exchanged and stored by
the client. Our implementation employs the state-of-the-art Galbraith-
Lin-Scot (GLS-254) binary elliptic curve with point compression.

Keywords: Cuckoo filter, Private Set Intersection, unbalanced PSI, soft-
ware implementation

1 Introduction

Private Set Intersection (PSI) is a special case of secure multiparty computation
(MPC) where two parties perform joint operations on datasets while preserv-
ing privacy. They have been used in several applications such as relationship
path discovery in social networks [1], botnet detection [2], proximity testing [3],
cheater detection in online games [4], genetic testing of fully-sequenced human
genomes [5] and private contact discovery [6]. Although the PSI problem was for-
mally posed only in 2004 by Freedman et al. [7], who also presented a proposal
for solving it, the first related protocol can be found in 1986, when Meadows [8]
proposed a cryptographic matching protocol to authenticate two parties.

PSI protocols allow two parties storing a set of private data such as patients
list, criminal suspects or telephone contacts to compute the intersection of their
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sets without revealing any additional information beyond the intersection to one
or both entities. PSI protocols can be divided into one-way PSI, i.e., only one of
the parties learns the intersection; or mutual PSI (mPSI), in which both parties
learn the intersection. The focus of this work is one-way PSI protocols. For more
information about mPSI the reader is invited to read [9,10,11,12,13,14].

PSI protocols can also be classified based on behavior. In the literature, Chen
et al. [6] define the PSI setting as symmetric when the sets have approximately
the same size and asymmetric when one of the sets is substantially smaller than
the other. We propose a new terminology to prevent confusion with the type
of cryptographic primitive being used (symmetric or asymmetric): balanced for
sets with approximately the same size and unbalanced for the opposite scenario1.
Exact PSI protocols return the exact intersection of the datasets, while approx-
imate PSI protocols suit applications that tolerate a small probability for an
element not in the intersection to be returned by the protocol (error rate). This
is a builtin feature of the protocol (by construction), not accidentally caused by
hash function collisions, for example.

However, even with several PSI protocols already proposed, many applica-
tions have used naive solutions (as later discussed in Section 2.2), because they
are more efficient in both run time and communication. Protocols proposed and
implemented in several papers by Pinkas et al. [15,16,17] are efficient in terms of
computation (by using mostly symmetric operations), but need to transmit a lot
of data, while other works based on public-key cryptography [8,18,5,6] need to
transmit fewer data, but require less efficient operations. Thus, the choice of the
PSI protocol depends on the PSI setting (balanced or unbalanced), the network
bandwidth, storage space, security properties, among other factors.

This paper proposes a PSI protocol based on public-key cryptography that
is very efficient for unbalanced PSI, requires a small storage space (3MB for the
server with set size of 220 elements) and transmits a small amount of data during
each execution (less than 1MB when the client set has 11041 elements). Because
of this, the network bandwidth does not impact the protocol efficiency even in
constrained scenarios. Our proposal also ensures forward secrecy on the client
side (usually more vulnerable than the server), which guarantees that elements
exchanged in the past will remain confidential even if long-term secrets (keys)
are exposed. In addition, we adapted and implemented2 the most promising PSI
protocols in the literature using techniques that are considered to be the state
of the art in curve-based public-key cryptography.

Our contributions. The main contributions of this paper are:

– An efficient, practical and simple PSI protocol based on public-key cryptog-
raphy for unbalanced PSI that ensures forward secrecy on the client side.

1 Throughout this paper, the client set is always the smaller one.
2 Some implementations and library were obtained from Pinkas et al. [17], available
in https://github.com/encryptogroup/PSI. We will explain this in details in the
Section 5.2.
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– The application of a Cuckoo filter to reduce the amount of data to be
exchanged by the protocol or stored by the client. The Cuckoo filter re-
quires less storage space than others similar approaches, like Bloom filter
and Cuckoo hashing (for false positive rates less than 3%) [19], provides the
delete operation (important in some applications) and the lookup operation
is performed in O(b), where b is the number of entries per bucket (more
details in Section 4.2). The Cuckoo filter (or any similar approach) intro-
duces a false positive rate that can be adjusted according to the needs of the
application, resulting in an approximate protocol.

– Efficient software implementation of the protocols using the Galbraith-Lin-
Scot (GLS-254) binary elliptic curve with point compression. To the best of
our knowledge, this is the first time that a state-of-the-art implementation
is used to instantiate PSI protocols that rely on this type of operation.

Private contact discovery. An interesting application for our protocol is pri-
vate contact discovery. In this problem, a user signs up to a social network such
as WhatsApp, Signal or Telegram, and would like to discover which contacts in
their address book are also registered without disclosing to the service operator
the entire contents of his/her address book. The user typically has a set with a
few hundred of contacts, while the social network can have from a few million
to a few billion users, characterizing the unbalanced setting.

Secure messaging applications such as TextSecure/Signal3 and Secret4, cur-
rently employ insecure approaches (see Section 2.2) to “solve” the private contact
discovery problem, due to their higher efficiency in both run time and commu-
nication when compared to secure protocols. In our proposal, both run time
and the amount of data transmitted are based only on the client set size. Since
this set is small, the protocol is computationally efficient and needs to exchange
small amounts of data regardless of the social network set size. This happens be-
cause, during the preprocessing phase, the social network information is inserted
into a Cuckoo filter and transmitted to the client to be used only at the end
of the protocol for a fast pertinence test. Notice that this application tolerates
approximate results and requires a delete operation when updating the contacts.

Organization. This paper is organized as follows. In Section 2, we show nota-
tion and terminology used during the development of this work, a classification
of the PSI protocols into categories and a brief overview of the main protocols in
each class. In Sections 3 and 4, our basic protocol is presented and the optimiza-
tions are proposed, respectively. In Section 5 we show the results and compare
them with the most promising protocols from the literature. Finally, in Section 6
we present the conclusions.

3 https://whispersystems.org/signal/privacy/
4 https://medium.com/@davidbyttow/demystifying-secret-12ab82fda29f\#.
5433o6e8h
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2 Related work for PSI protocols

We start by formalizing the notation used throughout the paper and other rele-
vant definitions.

2.1 Notation and terminology

– P1 and P2 are the participating parties of the protocols, where P1 is the
server and P2 the client, except when referring to server-aided (third party)
PSI protocols.

– X and Y are the respective input sets of P1 and P2, with size n1 = |X|
and n2 = |Y |. The set X is denoted by {x1, x2, ..., xn1

} and the set Y by
{y1, y2, ..., yn2

} where each element xi and yi has bit-length σ, for 1 ≤ i ≤ n1
and 1 ≤ j ≤ n2.

– For a set S, the notation x R← S indicates that x was sampled from S with
uniform probability.

– The operation a ?
= b denotes the comparison whether a is equal or not to b.

– κ = 128 is the symmetric security parameter.
– ρ = 40 is the statistical security parameter (hashing failure).
– ϕ = 256 is the size of the representation of a point in the Galbraith-Lin-Scot

(GLS-254) binary elliptic curve when using point compression (number of
bits to store one x-coordinate and two trace bits).

– η = 30 is the hash collision parameter, i.e., the probability of a hash collision
occurring is < 2−30.

– The output of the hash function in some cases is defined as l = ρ + log n1
+ log n2, as suggested by [17], instead of 2 · κ. This produces the collision
probability 2−η, which is suitable for most applications.

– For the Cuckoo filter, we also define v as the fingerprint length (in bits), w
as the load factor (0 ≤ w ≤ 1), b as the number of entries per buckets, m as
the number of buckets and ψ as the false positive rate.

2.2 Classification and related work of PSI protocols

Many one-way PSI protocols have been proposed in the open research litera-
ture [7,20,21,22,23,24,15,16,17,6]. They are constructed based on several prim-
itives such as Bloom filters [25], Cuckoo hashing [26], Oblivious Polynomial
Evaluation (OPE) [27], Oblivious Pseudorandom Function (OPRF) [28], Gar-
bled Circuits (GC) [29,30], Unpredictable Function [22], Homomorphic Encryp-
tion [31,32], Oblivious Transfer (OT) [33,34], among others.

Following Pinkas et al. [15,16,17], PSI protocols can be classified into: naive
hashing (or naive solution), server-aided PSI (or third party-based PSI), PSI
based on generic protocols (or circuit-based PSI), OT-based PSI and PSI based
on public-key cryptography.
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Naive hashing. Both P1 and P2 use a hash function H : {0, 1}∗ → {0, 1}l
to compute the hash of their elements. P1 then computes hi = H(xi) while P2

computes hj = H(yj), where 1 ≤ i ≤ n1 and 1 ≤ j ≤ n2. After computing the
hashes, P1 sends values hj to P2 which computes the intersection by checking if
hj

?
= hi for all values of i and j.
This approach is very efficient both in run time and communication. P1 must

compute n1 hash functions while P2 computes n2 hash functions. P2 does not
need to send any data to P1, while P1 sends only n1l bits to P2. In the end, P2

also needs to do comparisons to find the intersection, which can be done with
complexity O(1) in average when using a hash table.

However, if the hash function inputs were taken from a low-entropy domain
D, P2 can obtain all elements of P1 by performing a brute-force attack, i.e., for
every possible element z ∈ D, P2 verifies if H(z)

?
= hi. One solution could be

to choose D with high entropy when possible. This would prevent the problem,
but consecutive executions of the protocol would still leak repeated elements
and would not guarantee forward secrecy since P2 can verify if a specific element
z ∈ D was part of the P1 set, by just checking if H(z)

?
= hi. Nonetheless, the

insecure protocol is employed by messaging applications for the private contact
discovery problem, and social networks like Facebook5, Twitter6 and Snapchat7
to measure advertisement conversion rates.

Server-aided PSI. Several works in the literature [24,35,14] have employed a
third party, in this case called as server, to achieve better performance in PSI
protocols. The server can be semi-honest (can not deviate from protocol, learns
only by observing communication between parties), covert (if it deviates from
protocol, it is detected with some probability by an honest party) or malicious
(can arbitrarily deviate from the protocol). However, such protocols are secure
only if the third party does not collude with any of the other parties, thus having
a different security model from conventional protocols.

In [35], Kamara et al. present a semi-honest server protocol that takes 580s
(∼= 10 minutes) with 12,394MB (12GB) of communication and 100 threads to
evaluate 2 sets of 1 billion elements each. In the protocol, P1 samplesK ∈ {0, 1}k
and sends to P2 (in this approach both P1 and P2 are considered clients). Both P1

and P2 calculate f1 = π1(FK(x1), ..., FK(xi)) and f2 = π2(FK(y1), ..., FK(yj)),
respectively, where F : {0, 1}k · D → {0, 1}≥k is a pseudorandom permutation,
π is a random permutation for 1 ≤ i, j ≤ 109, and then send f1 and f2 to the
semi-honest server. The server calculates the intersection I = f1 ∩ f2 and sends
I to P2 which obtains the intersection by computing F−1k (e) for each e ∈ I.

5 https://www.wired.com/2014/12/oracle-buys-data-collection-company-
datalogix/

6 https://support.twitter.com/articles/20170410
7 https://www.wsj.com/articles/snapchat-to-enable-ad-targeting-using-
third-party-data-1484823600
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PSI based on generic protocols. Generic secure computation uses Arith-
metic or Boolean circuits to securely evaluate functions, among them, the set in-
tersection. In [23], Huang et al. presented several of these protocols using Boolean
circuits, all of them constructed using Yao’s garbled circuits [29,30].

The simplest protocol described in [23] involves the comparison of each ele-
ment from P1 with each element from P2. This approach is known as Pairwise-
Comparison (PWC) and involves O(n2) comparisons, which does not scales
well for large sets. Another more efficient approach presented in [23], the Sort-
Compare-Shuffle (SCS) circuit, is more efficient, with complexity O(n log n). SCS
first sorts the union of the P1 and P2 elements, then compares if adjacent ele-
ments are the same, and finally shuffles the result to prevent information leakage.

The great advantage of this type of protocol is that they can be easily adapted
to any other features that PSI protocols may require, such as revealing only the
intersection size or whether the size is larger or smaller than an upper bound.
However, despite the improvements in recent years, generic protocols still have
a very high run time compared to other protocols.

OT-based PSI. This category of protocols is the most recent and, up to date,
the most promising, mainly because of the large performance improvements from
OT extensions. The first protocol was proposed in 2013 by Dong et al. [24],
combining Bloom filters and OT [36] in their construction.

In 2014, Pinkas et al. [15] presented improvements to [24] and also proposed
a new and more efficient protocol combining OT and hashing. In 2015, Pinkas et
al. [16] have shown that the proposal presented previously [15] could be improved
by using the permutation-based hash technique [37], since it reduces the size of
each element stored in the bins, which until then was the main overhead of the
protocol. In 2016, Pinkas et al. [17] presented improvements for their earlier
protocols, where the protocol complexity no longer depends on the size of each
element.

The protocol presented in [17] is the state of the art for balanced one-way
PSI protocols and, depending on the scenario (network bandwidth), also for
unbalanced PSI protocols, with security against semi-honest adversaries. By us-
ing only symmetric operations in almost all of its construction, the protocol is
extremely efficient8.

Public-key cryptography based PSI. Meadows [8] and Huberman et al. [18]
proposed one of the earliest PSI approaches based on public-key cryptography,
even before of the PSI problem was formally defined in [7]. Both protocols were
based on the Diffie-Hellman (DH) key exchange, taking advantage of its com-
mutative properties. DH-based PSI protocols use the Random Oracle Model
(ROM) to prove their security, while Freedman et al. [7,38] introduced PSI pro-
tocols based on the standard model, which are secure against both semi-honest
8 The protocol presented in [17] uses asymmetric operations [33] to generate the OT
bases. However, the cost of these operations is negligible when the number of elements
evaluated is substantially greater than the value of κ.
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and malicious adversaries and are based on the ElGamal cryptosystem. In [21],
Cristofaro and Tsudik presented a PSI protocol based on blind-RSA.

Later Jarecki et al. [22] presented a PSI protocol that is secure against mali-
cious adversaries based on a Parallel Oblivious Unpredictable Function (POUF).
In [5], Baldi et al. showed a “simpler” version of this protocol, with security only
against semi-honest adversaries. This protocol is used to obtain the results of this
paper. Another relevant public-key PSI protocol was presented by Chen et al. [6],
based on the protocol presented by Pinkas et al. [17], but instead of performing
OPRF (via OT) operations, it uses the Fan-Vercauteren (FV) leveled Fully Ho-
momorphic Encryption (FHE) scheme. This change considerably decreases the
amount of data to be transmitted in the unbalanced setting.Therefore, depending
on the unbalanced setting and the network bandwidth, the protocol presented by
Chen et al. [6] is faster than Pinkas et al. [17]. The good performance is however
restricted to 32-bit elements due to limitations in the parameters of the FHE
scheme.

The most recent work was presented by Kiss et al. [39]. They noted that
in some PSI protocols the server can perform operations on its data only once
and send the result to the client, which will use them in the future executions
to compute the intersection. They independently proposed a Bloom filter (or
a counting Bloom filter) to decrease the amount of data to be transmitted or
stored by the client. These observations are very important in an unbalanced
setting, since all operations and communication are only performed considering
the smaller client set. In terms of security, there is an important limitation in
their approach: in the closest protocol to our proposal (DH-based PSI [8,18]), the
client and server reuse the same keys across all executions, which does not provide
forward secrecy. In terms of performance, during the preprocessing phase alone
(the setup phase, as in the paper), the server should send n1ϕ bits to the client
and the client computes n1 exponentiations. If n1 = 224, it will be necessary to
transmit 512MB and to perform 224 exponentiations on the client side.

3 The Basic Protocol

Jarecki and Lui [22] presented a PSI protocol secure against malicious adver-
saries based on the hardness of the One-More-Gap-Diffie-Hellman (OMGDH)
problem and a Zero-Knowledge Proof (ZKP). Latter, Baldi et al. [5] simplified
this protocol, by removing the ZKP, to be secure only against semi-honest ad-
versaries.

The simplified protocol is shown in Figure 1 and works as follows: for each
element xi of the set X, the server computes the hash H(xi), the exponentiation
H(xi)

α with the same exponent for all the elements, and again computes the
hash txi = H ′(H(xi)

α), sending values txi to the client. For each element yi of
the set Y , the client computes the hash H(yj), the exponentiation aj = H(yj)

βj

with ephemeral exponents βj and sends aj to the server. The server calculates
a′j = (aj)

α for each aj using the same α used previously and sends a′j to the client.
The client then calculates tyj = H ′((a′j)

1/βj ), by “removing” the exponents that
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were applied earlier. Finally, the client computes the intersection by comparing
if tyj ∈ {tx1, tx2, ..., txn1

}. The long-term secret is the server key α.

Fig. 1. Basic PSI protocol proposed in [5] as a simplification of [22] [5, Adapted].

4 Optimizations

We propose two improvements in the protocol presented in the Section 3: ex-
ecuting the offline phase just once, storing the informations in a database and
reducing the size of this database. A similar figure as Figure 1 with our optimiza-
tions applied can be found in Appendix B. Besides that, we implemented the
GLS-254 elliptic curve, which improves the performance of the protocols that
use Elliptic Curve Cryptography (ECC).

4.1 Generating the database

As it can be seen in the Figure 1, the protocol is divided into two parts: offline
and online. The offline part is executed without the need of any communication
from the server to the client, except for any negotiation to define the initial
parameters such as the group G and its order q. Thus, the server can mask all
elements using α and the hash functions H and H ′ (txi = H ′(H(xi)

α)) before
receiving connections.
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Because of this feature, the offline part can be performed only once between
server and client, where the server would calculate the mask of each element and
send it to the client, which would store them for use in each execution of the
protocol. Therefore, only the online part of the protocol needs to be used.

Informally, this setting does not affect the protocol security (against semi-
honest adversaries), since the client cannot recover α due to the hardness of
the OMGDH problem. In addition, because the preimage space for the hash
function is large (high entropy), the client cannot map all possible inputs and
check whether or not an element belongs to the server set without interacting
with the server, thereby preserving forward secrecy.

This setting is very efficient when it is used in unbalanced PSI protocols,
where the smallest set is the client. This happens because in the online part all
operations are performed only on the client elements (3n2 asymmetric crypto-
graphic operations and 2n2ϕ bits are transmitted).

4.2 Reducing the database size

The database size increases with the number of server elements. For example,
assuming each masked server element has l = ρ+log n1+log n2 bits and if ρ = 40,
as defined in Section 2.1, with n2 = 28 and n1 = 224, each masked element would
have l = 72 bits. Since the server has 224 elements, all server masked elements
will occupy 144MB. However, if the scale changes from a few million to a few
billion of elements, as is the case of a large social network with approximately
230 users, the server masked elements would need 9.75GB of space.

Downloading and storing this data on devices with low memory resources,
such as mobile devices, or with constrained network connection (low bandwidth
or/and high latency) can be prohibitive. To reduce the size of the data, tech-
niques like Bloom filters and their variants [25,40,41], Cuckoo hashing [26] and
Cuckoo filter [42] may be used.

We chose the Cuckoo filter instead of the Bloom filter or Cuckoo hashing since
it has the delete operation (which is fundamental in private contact discovery)
using less space than the Bloom filter variants and the Cuckoo hashing by storing
only the element’s fingerprint.

Cuckoo filter. A Cuckoo filter is a compact variant of a Cuckoo hashing pro-
posed by Fan et al. [42] that stores only the element’s fingerprint. A Cuckoo
filter consists of a set of buckets each with b entries. This type of filter allows
performing 3 types of operations/algorithms: insertion, lookup and deletion. In
the following, we briefly summarize how these operations work. For more details,
the reader is invited to read [42,43].

For an element x to be inserted, it is necessary to compute its fingerprint f
and its two possible candidate buckets b1(x) = h(x) and b2(x) = b1(x) ⊕ h(f),
where h is a hash function. If one of them has an empty entry, the fingerprint
f is inserted into that entry, completing the insertion process. However, if all
entries in the 2 buckets are filled, one of the two buckets (say b2) and an entry
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containing e are randomly selected, and then the fingerprint f is inserted in
place of e and a new bucket b3 = b2 ⊕ h(f) is calculated for e. This is repeated
until one empty entry is found or the maximum number of attempts is reached.
In a simple way, the insertion algorithm tries to relocate the elements between
its two possible buckets9.

The lookup operation is simple. Given an element x′, compute its fingerprint
f ′, the two possible buckets b′1 and b′2 and, if f ′ is in b′1 or b′2 then the element
x′ has been inserted and the algorithm returns true, otherwise false. The delete
operation is as simple as the lookup. First, calculate the element fingerprint, the
two possible buckets, check if any of the entries correspond to fingerprint and if
so, a copy10 is removed. This operation is important to our approach because it
is not necessary to generate a new filter every time that an element (or a set of
elements) is deleted, which happens when using traditional Bloom filters.

4.3 Efficient software implementation of GLS-254 elliptic curve

Our implementation of ECC is based on the latest version of the GLS-254 soft-
ware [44] available in SUPERCOP11. The binary GLS curve is a particularly effi-
cient choice for our target platform due to its native support to binary field arith-
metic, the lambda coordinate system [45] and the GLS endomorphism for fast
scalar multiplications [46], achieving the current speed record for this operation.
The code is structured in three layers: an efficient vectorized implementation of
binary field arithmetic targeting Intel instruction sets; a regular window-based
method for variable-base scalar multiplication implemented in constant time; a
thin protocol layer implementing the DH key exchange. The exponentiations in
our protocol were heavily based on the two last layers, while hashing and point
compression were directly implemented over the field arithmetic.

The approach selected for hashing was a combination of the SHA256 hash
function with the binary Shallue-van de Woestijne well-bounded encoding algo-
rithm [47]. Elements are first hashed to a binary field element u ∈ F2m using
SHA256, and then the encoding outputs the lambda coordinates (x, λ) of a point
over the binary elliptic curve. This approach requires only a single inversion, a
quadratic equation solution and some cheaper field operations, and provides bet-
ter statistical properties than popular try-and-increment heuristics. Point com-
pression adapts a rather classical technique [48]. The λ coordinate defined over
a quadratic extension F22m [s]/(s2 + s+ 1) as (λ0 + λ1s) is compressed to a pair
of trace values (Tr(λ0), T r(λ1)), which can later be used to solve a quadratic
equation and disambiguate among the four possible solutions. In total, 256 bits
are used by combining the 254 bits of the x coordinate with the two trace bits.
Decompression again requires a field inversion, solving a quadratic equation and
some cheaper binary field operations. As a result, our entire code runs in constant
time for side-channel resistance, including the quadratic solver [47].
9 The operation ⊕ guarantees that b1 can be calculated through b2.

10 Two distinct elements can share the same bucket and the same fingerprint. This
implies that it is possible to have false positives.

11 https://bench.cr.yp.to
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5 Implementation and experimental evaluation

5.1 Benchmarking environment

We ran our experiments in a computer equipped with an Intel Haswell i7-4770K
quadcore CPU with 3.4 GHz and 16 GB of RAM with Turbo Boost turned
off. All tests were performed using only this machine, and network bandwidth
and latency were simulated using the Linux command tc (network simulation
code can be found in Appendix A). For the Local Area Network (LAN) setting,
the two parties (client and server) are connected via localhost with 10Gbps of
throughput and a 0.2ms Round-Trip Time (RTT). In addition to the LAN, we
also consider three Wide Area Network (WAN) settings with 100 Mbps, 10 Mbps
and 1 Mbps of bandwidth, each with an 80ms RTT. These settings follow what
was proposed by Chen et al. [6].

To evaluate the performance of the PSI protocols both balanced and unbal-
anced PSI settings were used. In the balanced scenario, n1 = n2 ∈
{28, 212, 216, 220, 224} as proposed by Pinkas et al. [16,17]. In the unbalanced
scenario n2 ∈ {5535, 11041} and n1 ∈ {216, 220, 224}, as proposed by Chen et
al. [6]. The size of each element was set to be 32 bits (σ = 32 bits), but this does
not impact the performance of our protocol due to hashing. The output of the
hash function used in the DH based on ECC [8,18] and in Baldi et al. [5] is l,
as defined in the Section 2.1. The run time of each protocol was measured from
the beginning of the execution until the client computes the intersection. Each
protocol was executed 10 times and the run times were computed as the average
of these executions, as done in [17,6].

5.2 Implementation

Implementations DH-ECC [8,18] and OT + Hashing [17] were obtained from
Pinkas et al. [17], available at https://github.com/encryptogroup/PSI. They
used OpenSSL (v.1.0.1e) for the symmetric cryptographic primitives, the im-
plementation of [49] for the OT extension, available at https://github.com/
encryptogroup/OTExtension, and the MIRACL library (v.5.6.1) for ECC. Ac-
cording to our benchmarking, a scalar multiplication within their code base takes
1.2 million cycles12 for an exponentiation, which indicates a misconfigured ver-
sion of MIRACL. Up to now, there is no implementation available for the Chen
et al. [6] protocol, but we try to reproduce the benchmarking scenarios as close
as possible to their work.

We implemented our proposal and the Baldi et al. protocol [5] using the
software provided by Pinkas et al. [17], but replacing the implementation of the
Koblitz K-283 elliptic curve available in MIRACL. Our implementation of the
GLS-254 curve takes around 50,000 cycles to compute an exponentiation, which
is 24x faster than [17]. We used the Cuckoo filter implementation of Fan et al. [42]
available at https://github.com/efficient/cuckoofilter.

12 Average of 220 exponentiations performed on our Haswell machine.
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All protocols were implemented using C and C++ programming languages
and executed using the same hardware. The same libraries were used to perform
the cryptographic operations, except for the OTs in OT + Hashing [17] which
still use the Koblitz curve. This does not impact the run time of the protocol,
since the cost of this operation is negligible when the number of elements is large.

5.3 Preprocessing

To improve performance, some PSI protocols can be divided into 2 phases (online
and offline) without impact in security. The offline part of the protocol can be
executed only once and reused in future executions. In the protocol proposed by
Chen et al. [6], the server precomputes some values to facilitate the underlying
FHE multiplications. In this case, only the server will use the precomputed data
and no transfer to the client is required.

Unlike the Chen et al. protocol [6], in our basic protocol [5] presented in
Section 3, the server can preprocess the encryption/masking of all elements and
send them to the client. The client must store and reuse this data in all sub-
sequent executions of the protocol to calculate the intersection, as presented in
Section 4.1. Beyond using the precomputing allowed in the basic protocol, our
approach also inserts each encrypted element into a Cuckoo filter (according to
Section 4.2) in order to reduce the data that must be transmitted to the client
and that should be stored.

Table 1 presents the preprocessing and data transmission time using the net-
work settings defined in Section 5.1. The run times of Chen et al. were obtained
from [6], and since some parameters of the FHE can generate more efficient pro-
cessing depending on the configuration, the preprocessing column may have two
different values (we separate them with the symbol *) that will be used in the
next section. It is interesting to note that the preprocessing run times of our
proposal and our implementation of Baldi et al. [5] are practically the same,
since we perform the same operations, however by employing a Cuckoo filter to
reduce the amount of data to be transmitted, our approach is up to 3.3x faster
than Baldi et al. [5].

5.4 Comparison to others PSI protocols

The performance evaluation of the protocols will be divided into two scenarios:
unbalanced and balanced setting. As the code of the protocol presented by Chen
et al. [6] was not available, we compared our protocol with theirs only in the
unbalanced case, with results obtained from [6]. However, according to Chen et
al. [6], the protocol can be easily extended to the balanced PSI scenario.

As shown in Section 2.2, PSI protocols can be classified into 5 categories.
Because the naive hashing and server-aided approaches have different security
notions from the other protocols, they will not be analyzed. PSI based on generic
protocols are out of scope, because they have limitations in run time and memory.
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LAN WAN
Protocol n1 n2 Preprocessing Comm. 10 Gbps 100 Mbps 10 Mbps 1 Mbps

Chen et al. [6]

224
11041 70.9, 76.8∗ - - - - -
5535 64.1, 71.2∗ - - - - -

220
11041 6.4 - - - - -
5535 4.3 - - - - -

216
11041 1.0 - - - - -
5535 0.7 - - - - -

Baldi et al. [5]

224
11041

334.17 160.00 0.13 15.73 136.32 1,345.55
5535

220
11041

20.91 10.00 0.01 1.10 8.38 84.40
5535

216
11041

1.31 0.56 0.01 0.19 0.53 5.09
5535

Our protocol

224
11041

333.62 48.00 0.06 4.82 40.71 403.68
5535

220
11041

20.78 3.00 0.00 0.60 2.55 25.63
5535

216
11041

1.30 0.19 0.00 0.01 0.19 1.56
5535

Table 1. Preprocessing and transmission time for PSI protocols. The WAN setting
has 80ms RTT and the LAN 0.02ms RTT. For the filter in our proposal we have 16-bit
fingerprints (v = 16), 3 entries per buckets (b = 3), load factor of 66.6% (w = 0.66) and
m buckets. The communication is given in MB and the time in seconds. Zero values
refer to numbers smaller than 5 · 10−3. Best values marked in bold.

Among the two remaining categories, OT-based PSI and PSI based on public-
key cryptography, we will analyze the best protocol in each category comparing
the results with our proposal.

Unbalanced PSI protocols. In many applications where it is necessary to
compute the private set intersection, the sets have unequal sizes. In the clien-
t/server approach, the server usually has a set from millions to billions of el-
ements while the client has only a few hundred, such as in the case of pri-
vate contact discovery. We followed what was proposed by Chen et al. [6] with
n2 ∈ {5535, 11041} and n1 ∈ {216, 220, 224}.

Table 2 shows the run time (in seconds) and the communication (in MBs) of
the unbalanced scenario considering both the LAN and WAN settings. We have
analyzed the best protocol for the OT-based PSI, the two best protocols for PSI
based on public-key cryptography and we compare them with our proposal.

Amongst the public-key protocols, our proposal and the Baldi et al. proto-
col [5] have the same communication cost (2n2 bits) and, regarding run time, our
approach is slightly better by employing the Cuckoo filter in the server database,
what makes the final computation of the intersection more efficient, since the
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filter is already constructed and the lookup is done in O(b) (b = 3, in this case).
Because of this, we omitted the figures related to Baldi et al. protocol [5] in
the table. In addition, comparing with the Chen13 et al. protocol [6], our ap-
proach transmits up to 59x less data and is up to 76x faster with 10 Gbps, for
n2 = 5535 and n1 = 224. Comparing our protocol with OT + Hashing [17], our
approach transmits up to 1,413x less data and is up to 74x faster with 10 Gbps
of bandwidth and 946x faster with 1 Mbps, for n2 = 5535 and n1 = 224.

Parameters Comm LAN WAN
Type Protocol n1 n2 Size (MB) 10 Gbps 100 Mbps 10 Mbps 1 Mbps

OT OT+Hashing [17]

224
11041 480.9 40.5 88.0 449.5 4,084.8
5535 480.4 40.1 87.9 449.2 4,080.6

220
11041 30.9 3.3 7.0 29.8 263.7
5535 30.4 3.1 6.8 29.0 260.0

216
11041 2.6 0.7 1.5 3.3 21.6
5535 2.1 0.7 1.4 2.9 19.8

Public
key

Chen et al. [6]

224
11041 23.2, 21.1∗ 44.5 46.9 63.5 214.0∗

5535 20.1, 12.5∗ 41.1 43.1 49.1∗ 139.9∗

220
11041 11.5 6.4 7.6 15.8 99.0
5535 5.6 8.6 9.2 13.3 53.6

216
11041 4.1 2.0 2.4 5.4 35.0
5535 2.6 1.1 1.3 3.2 21.8

Our protocol

224
11041 0.67 0.87 1.52 1.86 7.81
5535 0.34 0.54 1.04 1.21 4.31

220
11041 0.67 0.67 1.31 1.65 7.59
5535 0.34 0.34 0.83 1.00 3.97

216
11041 0.67 0.66 1.29 1.64 7.57
5535 0.34 0.33 0.82 0.99 3.93

Table 2. Run time in seconds and communication in MBs for unbalanced PSI pro-
tocols. Times are taken at the client because it finishes last. In the communication
column, the protocol of Chen et al. [6] may have 2 values due to different parameters
used in the FHE system. For more information, see [6]. Best values marked in bold.

Our approach performs well for unbalanced scenario because our operations
depend only on the client set, with 2n2 bits transmitted and 3n2 exponenti-
ations. Although exponentiations are considered an expensive operation when
performed a small number of times and with a good elliptic curve implementa-
tion, a curve-based protocol becomes competitive with the others.

13 In the communication column of Table 2, the protocol [6] can have 2 different values,
because according to the network setting it is better that the operations take more
time and generate less data than to the operations take less time but produce more
data. This trade-off can be raised in the FHE by adjusting the system parameters.
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Balanced PSI protocols. Table 3 presents the run time (in seconds) and
the communication (in MBs) of the balanced scenario considering both a LAN
and a WAN setting. The results show, as expected, that the OT + Hashing
protocol [17] has the best run time, being 9.5x faster than DH-ECC [8,18] and
14.5x faster than our approach with 10 Gbps. This is due to the fact that OT
+ Hashing [17] uses practically only symmetric operations, that are faster than
asymmetric used by public-key protocols.

Furthermore, by analyzing only public-key based protocols, the DH-ECC
protocol [8,18] is approximately 35% faster than the proposed approach with 10
Gbps. This happens because in DH-ECC [8,18] it is possible to perform client and
server operations in parallel, while in our proposal it is not possible (as shown
in Figure 1). However, the DH-ECC [8,18] and our protocol exchange 32% and
42% less data, respectively, than OT + Hashing [17]. For the WAN setting with
1Mbps of bandwidth, both approaches are faster than OT + Hashing [17] by
transmitting less data.

Parameters Comm LAN WAN
Type Protocol n1 = n2 Size (MB) 10 Gbps 100 Mbps 10 Mbps 1 Mbps

OT

224 1,756.83 67.86 218.62 1,518.18 14,800.33
OT 220 106.83 4.70 14.79 93.54 902.31
+ 216 6.52 0.66 2.13 6.74 57.11

Hashing [17] 212 0.43 0.36 0.93 1.09 3.88
28 0.05 0.34 0.66 0.68 0.87

Public
key

DH-ECC [8,18]

224 1,200.00 641.09 741.44 1,647.09 10,716.27
220 74.00 39.91 46.56 102.37 662.58
216 4.56 2.49 3.40 6.61 41.88
212 0.28 0.18 0.59 0.67 2.80
28 0.02 0.01 0.25 0.25 0.32

Our protocol

224 1,024.00 991.83 1,090.96 1,863.41 9,599.94
220 64.00 62.00 68.77 116.41 600.66
216 4.00 3.87 5.24 7.81 38.68
212 0.25 0.24 0.72 0.80 2.51
28 0.02 0.02 0.25 0.25 0.26

Table 3. Run time in seconds and communication in MB for balanced PSI protocols
where n1 = n2. Times are the client because they are the biggest one. Best values
marked in bold.

Comparison with Kiss et al. [39]. In a very recent paper, Kiss et al. [39]
present several PSI protocols, where the closest to our proposal is ECC-DH-
PSI [8,18]. In the preprocessing stage, the server needs to compute n1 exponen-
tiations like in our protocol, but the client also needs to compute n1 exponen-
tiations. In some applications, such as private contact discovery, this amount
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of exponentiations in the client side could be prohibitive, because typically the
client has a smartphone. Considering n1 = 220 and according to [39], the prepro-
cessing takes 1,325.400s while our proposal takes 21s (using a 1Gbps network),
that is 63x faster. Moreover, the server sends n1ϕ (ϕ = 284 in their case), that
adds up to 35.5MB for n1 = 220, while our proposal just sends a 2.25MB filter
(with ψ = 0.07%). This is 15.7x less data to be transmitted.

In the online phase the amount of data to be transmitted is asymptotically
the same, 2n2ϕ, but concretely Kiss et al. [39] use ϕ = 284 for the K-283 curve
with compression and we have ϕ = 256 for the GLS-254 curve. Considering
the number of exponentiations, their approach needs to compute 2n2 operations
while our protocol computes 3n2. This advantage happens because the ECC-
DH-PSI from [39] does not provide forward secrecy on the client side and reuse
the same key across all protocol executions.

In order to reduce the amount of data to be stored by the client, Kiss et
al. [39] use a Bloom filter, while our approach employs a Cuckoo filter. The
Cuckoo filter allows deletions while the Bloom filter does not (counting Bloom
filter allows deletions using 3-4x more space) and use 30% less space than the
Bloom filter for the same false positive rate [43].

In summary, our protocol provides an efficient preprocessing phase, forward
secrecy on the client side and a filter that needs less storage space. The ECC-
DH-PSI protocol from [39] has an asymptotically faster online phase, but the
performance improvement is small in the unbalanced setting when n2 is small.
Moreover, their protocol does not provide any forward secrecy to clients and the
preprocessing phase is expensive and can be prohibitive on mobile devices.

6 Conclusions

Private set intersection is an important cryptographic primitive allowing two
parties to perform joint operations on their private sets without revealing any
additional information beyond the intersection. Despite many protocols available
in the literature, few of them provide solutions that are efficient in both run time
and data transmission. Usually, in most approaches, the computational cost is
based in both the server and in the client set sizes, giving no advantages in the
unbalanced setting.

We proposed an efficient, practical and simple PSI protocol that is based on
public-key cryptography for unbalanced sets that ensures forward secrecy on the
client side. Additionally, we implemented the protocol using the GLS-254 binary
elliptic curve with point compression using techniques considered state of the
art, that allows a better comparison with the other proposed approaches.

Our protocol with this implementation provides an interesting trade-off be-
tween preprocessing and the online phase of the protocol, where for n241 the
preprocessing takes less than 6 minutes (remembering that this phase needs to
be done only once) and the online phase for n2 = 11041 takes less than 8 seconds
even with 1Mbps bandwidth. The client needs to store only 48MB of information
for this configuration.
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Appendix A - Network simulation

The simulation code was obtained from [50] and a few changes were made.
#!/ bin/bash
#
# tc uses the f o l l ow ing uni t s when passed as a parameter .
# kbps : Ki lobytes per second
# mbps : Megabytes per second
# kb i t : K i l o b i t s per second
# mbit : Megabits per second
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# bps : Bytes per second
# Amounts of data can be s p e c i f i e d in :
# kb or k : Ki loby tes
# mb or m: Megabytes
# mbit : Megabits
# k b i t : K i l o b i t s
# To get the byte f i gu r e from b i t s , d i v ide the number by 8 b i t

# Name of the t r a f f i c contro l command.
TC=/sbin / tc

IF=lo # The network in t e r f a c e
IP=127 .0 .0 .1 # IP address of the machine we are con t r o l l i n g

DNLD=100mbit # Download l im i t ( in Megabits )
UPLD=100mbit # Upload l im i t ( in Megabits )
RTT=40ms # RTT ( in mega b i t s )

# F i l t e r opt ions for l im i t i n g the intended in t e r f a c e .
U32="$TC␣ f i l t e r ␣add␣dev␣$IF␣ pro toco l ␣ ip ␣ parent ␣ 1 :0 ␣ pr i o ␣1␣u32"

s t a r t ( ) {
# We’ l l use Hierarch ica l Token Bucket (HTB) to shape bandwidth .
# For de t a i l e d conf igurat ion options , p lease consu l t Linux man page .

$TC qd i s c add dev $IF root handle 1 : htb de f au l t 30
$TC c l a s s add dev $IF parent 1 : c l a s s i d 1 :1 htb ra t e $DNLD c e i l $DNLD
$TC c l a s s add dev $IF parent 1 : c l a s s i d 1 :2 htb ra t e $UPLD c e i l $UPLD
$U32 match ip dst $IP/32 f l ow id 1 :1
$U32 match ip s r c $IP/32 f l ow id 1 :2

$TC qd i s c add dev $IF parent 1 :1 netem delay $RTT
$TC qd i s c add dev $IF parent 1 :2 netem delay $RTT
}

stop ( ) {
# Stop the bandwidth shaping .
$TC qd i s c de l dev $IF root
}

r e s t a r t ( ) {
# Sel f−explanatory .
stop
s l e ep 1
s t a r t
}

show ( ) {
# Display s ta tu s of t r a f f i c contro l s t a tu s .
$TC −s qd i s c l s dev $IF
}

case "$1" in

s t a r t )
echo −n " Sta r t i ng ␣bandwidth␣ shaping : ␣"
s t a r t
echo "done"
; ;

stop )
echo −n "Stopping ␣bandwidth␣ shaping : ␣"
stop
echo "done"
; ;

r e s t a r t )
echo −n "Res ta r t ing ␣bandwidth␣ shaping : ␣"
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r e s t a r t
echo "done"
; ;

show )
echo "Bandwidth␣ shaping ␣ s t a tu s ␣ f o r ␣$IF : "
show
echo ""
; ;

∗)
pwd=$(pwd)
echo "Usage : ␣ tc . bash␣{ s t a r t | stop | r e s t a r t | show}"
; ;

esac
exit 0

Appendix B - Our protocol

Fig. 2. Our protocol combining the PSI protocol of Baldi et al. [5] with Cuckoo fil-
ter [42]. CF is a Cuckoo filter, CF.Insert is the insertion operation and CF.Check is
the lookup operation, presented in Section 4.2.


