CONTROLLED-NOT FUNCTION CAN PROVOKE BIASED INTERPRETATION FROM BELL'S TEST EXPERIMENTS

ALEXANDRE DE CASTRO

Abstract

Recently, we showed that the controlled-NOT function is a permutation that cannot be inverted in subexponential time in the worst case [Quantum Information Processing. 16:149 (2017)]. Here, we show that such a condition can provoke biased interpretations from Bell's test experiments.

Let $C N O T$ be the canonical two-qubit entangling gate in quantum key distribution (QKD) cryptographic protocols, where $C N O T|a, x\rangle=|a, a+x\rangle$, so that the control parameter a and the target variable $x \in F_{2}=\{0,1\}$.

For $x=a, C N O T|a, x\rangle=\left|a, x^{2}+x\right\rangle$, since $x \wedge x=x=x^{2}$, and for $x \neq a$, $C N O T|a, x\rangle=\left|a, x^{2}+x+1\right\rangle$, since $\neg x=x+1=x \wedge x+1=x^{2}+1[1]$:
(i) The permutation $x^{2}+x=x \oplus x$ is a factorable polynomial (reducible) over a finite field of two elements, whose Hamming distance between its even inputs is equal to 0 (local model), and (ii) The permutation $x^{2}+x+1=x \oplus N O T(x)$ is a nonfactorable polynomial (irreducible) over a finite field of two elements, whose Hamming distance between its odd inputs is not equal to 0 (nonlocal model). However, these models are deducible from each other because $x^{2}+x(+1)=0(+1)=x^{2}+x+1$ and $x^{2}+x+1(+1)=1(+1)=x^{2}+x[1]$.

Consider the Hadamard basis $\{|+\rangle,|-\rangle\}$ of a one-qubit register given by:

$$
|x\rangle_{x=0,1} \xrightarrow{H} \frac{1}{\sqrt{2}}\left[(-1)^{x}|x\rangle+|1-x\rangle\right] .
$$

The circuit below takes computational basis $F_{2}=\{0,1\}$ to Bell states:

[^0]

Entangled states of two qubits known as the Bell states occur in conjugate pairs. Quantum states which are conjugates of each other have the same absolute value.

Hence,
$\left.\left|x^{2}+x\right|=\left|\frac{1}{\sqrt{2}}\right| 0\right\rangle \left.|0\rangle+\frac{1}{\sqrt{2}}|1\rangle|1\rangle \right\rvert\,=$
$\left.=\left|\frac{1}{\sqrt{2}}\right| 0\right\rangle|0\rangle-\frac{1}{\sqrt{2}}|1\rangle|1\rangle\left|=\left|x^{2}+x+1\right|\right.$ and
$\left.\left|x^{2}+x\right|=\left|\frac{1}{\sqrt{2}}\right| 0\right\rangle \left.|1\rangle-\frac{1}{\sqrt{2}}|1\rangle|0\rangle \right\rvert\,=$
$\left.=\left|\frac{1}{\sqrt{2}}\right| 0\right\rangle|1\rangle+\frac{1}{\sqrt{2}}|1\rangle|0\rangle\left|=\left|x^{2}+x+1\right|\right.$.
Therefore, $\left|x^{2}+x\right|=\left|x^{2}+x+1\right|$, since these models are deducible from each other. Notice that we can map the elements of the Hadamard basis to the computational basis using the group homomorphism $\{+1,-1, \times\} \mapsto\{0,1,+\}$ so that its inverse is also a group homomorphism.

Then, the exclusive disjunction $x^{2}+x+1$ over F_{2} can be rewritten as $x+$ $\operatorname{NOT}(x):=X^{\prime} \wedge \neg X^{\prime \prime}$, once the field's multiplication operation corresponds to the logical $A N D$ operation over the field of two elements. It is not difficult to see that for $X^{\prime}=X^{\prime \prime}=X^{\prime \prime}, X^{\prime} \wedge \neg X^{\prime}=\left(X^{\prime} \vee X^{\prime \prime} \vee X^{\prime \prime}\right) \wedge\left(\neg X^{\prime} \vee \neg X^{\prime \prime} \vee \neg X^{\prime \prime}\right)$ can be written as a conjunctive normal form, $\left(X^{\prime} \vee X^{\prime \prime} \vee X^{\prime \prime}\right) \wedge\left(X^{\prime} \vee X^{\prime \prime} \vee \neg X^{\prime \prime \prime}\right) \wedge\left(X^{\prime} \vee \neg X^{\prime \prime} \vee X^{\prime \prime}\right) \wedge$ $\left(X^{\prime} \vee \neg X^{\prime \prime} \vee \neg X^{\prime \prime}\right) \wedge\left(\neg X^{\prime} \vee X^{\prime \prime} \vee X^{\prime \prime}\right) \wedge\left(\neg X^{\prime} \vee X^{\prime \prime} \vee \neg X^{\prime \prime}\right) \wedge\left(\neg X^{\prime} \vee \neg X^{\prime \prime} \vee X^{\prime \prime}\right) \wedge\left(\neg X^{\prime} \vee\right.$ $\left.\neg X^{\prime \prime} \vee \neg X^{\prime \prime}\right)$ corresponding to the universal set $\left\{X^{\prime}, X^{\prime \prime}, X^{\prime \prime}\right\}$ as shown in the following framework.

Suppose that we take a particle in the state X and subjected to three tests with two possible outcomes. (This is equivalent to three $\operatorname{spin}^{1} / 2$ subsystems). We will call a first test X^{\prime}, a second test $X^{\prime \prime}$ and a third test $X^{\prime \prime}$, and label the outcomes pass and fail in accordance with Fig. 1 below.

Figure 1. This simple experiment can also be seen as a straightforward probability problem, where we are going to flip a coin three times, so that 0 represents tail, and 1 represents head.

There are 8 possible outcomes of these three tests using 0 and 1 to represent fail and pass over a finite field of two elements.

Let Ω be the universal set $\left\{X^{\prime}, X^{\prime \prime}, X^{\prime \prime}\right\}$, then all 8 possible different outcomes are represented by its subsets:
$\{\emptyset\}=\{000\}$,
$\left\{X^{\prime}\right\}=\{100\}$,
$\left\{X^{\prime \prime}\right\}=\{010\}$,
$\left\{X^{\prime \prime},\right\}=\{001\}$,
$\left\{X^{\prime}, X^{\prime \prime}\right\}=\{110\}$,
$\left\{X^{\prime}, X^{\prime \prime}{ }^{\prime}\right\}=\{101\}$,
$\left\{X^{\prime \prime}, X^{\prime \prime}\right\}=\{011\}$,
$\left\{X^{\prime}, X^{\prime \prime}, X^{\prime \prime}\right\}=\{111\}$.
The following elements shown in Table 1 are equivalent representations of the same value over a finite field of two elements [2, p. 134]:

Table 1. Polynomial representation $\operatorname{Poly}(x)$ for all the mutually exclusive (8) possibilities of experiment. Set theory is isomorphic to Boolean Algebra.

Tests $X^{\prime}, \mathrm{X}^{\prime \prime}, X^{\prime \prime}$,	$\operatorname{Poly}(\mathrm{x})$	Probability
111	$x^{2}+x+1$	$\mathcal{P} r_{1}$
110	$x^{2}+x$	$\mathcal{P} r_{2}$
101	$x^{2}+1$	$\mathcal{P} r_{3}$
100	x^{2}	$\mathcal{P} r_{4}$
011	$x+1$	$\mathcal{P} r_{5}$
010	x	$\mathcal{P} r_{6}$
001	1	$\mathcal{P} r_{7}$
000	0	$\mathcal{P} r_{8}$

In third column of Table $1, \mathcal{P} r_{i}$, with $i=1, \ldots 8$, is the probability of a specific outcome occurring in the sample space including all possible outcomes.

The probabilities $\mathcal{P} r_{i}$ are nonnegative, and therefore $\mathcal{P} r_{3}+\mathcal{P} r_{4} \leq \mathcal{P} r_{3}+\mathcal{P} r_{4}+$ $\mathcal{P} r_{2}+\mathcal{P} r_{7}$ within the framework conceived by Wigner [3, 4, 5], as described in detail in [6, p. 227-228]. (If we assume, with Wigner, the existence of these probabilities, his inequality must be true, because the existence of these probabilities corresponds in essence to Kolmogorov's consistency conditions).

Let an event E_{i} be a set of the outcomes of experiment, i.e, a subset of the sample space Ω. If each outcome in the sample space Ω is equally likely, then the probability that event E_{i} occurs is $\mathcal{P} r_{i}=\frac{\left|E_{i}\right|}{|\Omega|}$, where the bars $|\cdot|$ denote the cardinality of sets. As each bit string can be written as a polynomial over a finite field of two elements, then the cardinality of Ω, and for each E_{i}, is the modulus of a polynomial. Hence, $\left|x^{2}+1\right|+\left|x^{2}\right| \leq\left|x^{2}+1\right|+\left|x^{2}\right|+\left|x^{2}+x\right|+|1|$, because $|\Omega|=1$, since the universal set $x^{2}+x+1=1$ for $x=\{0,1\}$. Consequently, $\left|x^{2}+1+x^{2}\right| \leq\left|x^{2}+1+x^{2}+x^{2}+x+1\right|$, once the all polynomials are nonnegative.

Considering that field's multiplication corresponds to the logical $A N D$, then $x^{2}=x$, since $x \wedge x=x$. Hence, $\left|x^{2}+1+x\right| \leq\left|x+1+x+x^{2}+x+1\right|$.

Rearranging this inequality, we get $\left|x^{2}+x+1\right| \leq\left|x^{2}+x\right|$, because the field's addition operation $x+x=0$ corresponds to the logical $X O R$ operation. Notice that the polynomial $x^{2}+x=\operatorname{NOT}\left(x^{2}+x+1\right)$ for $x=\{0,1\}$. Therefore, $\left|x^{2}+x+1\right| \leq$ $\left|1-\left(x^{2}+x+1\right)\right|$ since, algebraically, the negation $\operatorname{NOT}\left(x^{2}+x+1\right)$ is replaced
with complement $1-\left(x^{2}+x+1\right)$. Hence, $\left|x^{2}+x+1\right| \leq 1-\left|x^{2}+x+1\right|$ because $0 \leq x^{2}+x+1 \leq 1$.

It is straightforward to see that $\left|x^{2}+x+1\right| \leq \frac{1}{\left|x^{2}+x+1\right|}$, consequently, $\frac{1}{\left|x^{2}+x+1\right|} \leq$ $1-\frac{1}{\left|x^{2}+x+1\right|}$, where $\frac{1}{\left|x^{2}+x+1\right|}=\left(\frac{1}{\left|x^{2}+x+1\right|}\right)^{2}$.

As a result,

$$
\begin{equation*}
\left(\frac{1}{\left|x^{2}+x+1\right|}\right)^{2} \leq 1-\frac{1}{\left|x^{2}+x+1\right|} \tag{1}
\end{equation*}
$$

The polynomial $x^{2}+x+1$ over a finite field with a characteristic 2 corresponds to the exclusive disjunction $x \oplus \operatorname{NOT}(x)$, where $\operatorname{NOT}(x)=x^{2} \oplus 1$ for $x=|0\rangle$ or $x=|1\rangle$.

Therefore:
so that $|0\rangle=\binom{1}{0}$ and $|1\rangle=\binom{0}{1}$, where the normalizing constant $\frac{1}{\sqrt{2}}$ was omitted. This logical operation can also be regarded as the Fourier transform [7, p. 50] on the Galois field of two elements $H_{2}|x\rangle_{x=\{0,1\}}=| \pm\rangle$, where $H_{2}=\frac{1}{\sqrt{2}}\left(\begin{array}{rr}1 & 1 \\ 1 & -1\end{array}\right)$ is the Hadamard matrix of order 2.

Fig. 2 depics the Hadamard basis $\{|+\rangle,|-\rangle\}$ of a one-qubit register on the Hilbert space. Notice that the ratio $\frac{1}{\left|x^{2}+x+1\right|}$ in Ineq. 1 corresponds to $\sin 45^{\circ}$ over \mathbb{R}^{2}, since the vectors with coordinates $(+1, \pm 1)$ have the same direction as the unit vectors $\frac{1}{\sqrt{2}}|0\rangle \pm \frac{1}{\sqrt{2}}|1\rangle$ that make half a right angle with the axes in the plane. Hence, Ineq. 1 stays $(\sin \theta)^{2} \leq 1-\sin \theta$ for $\theta=45^{\circ}$.

Figure 2. The Hadamard gate operates as a reflection around $=\frac{\pi}{8}$ that maps the x-axis to the 45° line, and the $N O T(x)$-axis to the -45° line.

Consider the trigonometric identity $\left|\sin \left(\frac{\theta}{2}\right)\right|=\left(\frac{1-\cos (\theta)}{2}\right)^{1 / 2}$. Then, the equality $1-\sin \theta=2\left(\sin \frac{\theta}{2}\right)^{2}$ holds, since $\cos \theta=\sin \theta$ for $\theta=45^{\circ}$. Consequently, $\left(\sin 45^{\circ}\right)^{2} \leq$ $2\left(\sin 22.5^{\circ}\right)^{2}$.

Rearranging this last inequality, we get:

$$
\begin{equation*}
\frac{1}{2}\left(\sin 45^{\circ}\right)^{2} \leq \frac{1}{2}\left(\sin 22.5^{\circ}\right)^{2}+\frac{1}{2}\left(\sin 22.5^{\circ}\right)^{2} \tag{2}
\end{equation*}
$$

that is the inequality obtained by Bell is his paper [6, p. 230][8], where 45° and 22.5° are Bell test angles, these being the ones for which the quantum theory gives the greatest violation of the inequality, i.e., $0.2500 \leq 0.1464$ (i).

Remember that $\left\{X^{\prime}, X^{\prime \prime}\right\}$ is a subset of the universal set $\left\{X^{\prime}, X^{"}, X^{\prime \prime}\right.$ ' $\}$, hence, the cardinality of subset $\left\{X^{\prime}, X^{\prime \prime}\right\}$ is less than or equal to the cardinality of set $\left\{X^{\prime}, X^{\prime \prime}, X^{\prime \prime}{ }^{\prime}\right\}$. Then, obviously, the inequality $\left|x^{2}+x\right| \leq\left|x^{2}+x+1\right|$ holds. (If we trust standard set theory, this axiomatic inequality has to be true).

So, Ineq. 1 is reversed:

$$
\begin{equation*}
\frac{1}{2}\left(\sin 45^{\circ}\right)^{2} \geq \frac{1}{2}\left(\sin 22.5^{\circ}\right)^{2}+\frac{1}{2}\left(\sin 22.5^{\circ}\right)^{2} \tag{3}
\end{equation*}
$$

as opposed to Ineq. 2. Consequently, $0.2500 \geq 0.1464$ (ii).
The inequalities (i) and (ii) exist at once for Bell test angles, which shows that there is an ambiguity in axiomatic set theory on which Wigner [3] relied to derive a general form of Bell's inequalities. As a consequence, we have that $\left|x^{2}+x\right| \leq$ $\left|x^{2}+x+1\right|$ and $\left|x^{2}+x+1\right| \leq\left|x^{2}+x\right|$, where $2\left|x^{2}+x+1\right|_{x=\{0,1\}}=\frac{1}{\sqrt{2}}(| | 01\rangle+$ $|10\rangle|+| | 00\rangle-|11\rangle \mid)$, so that:

$$
\begin{aligned}
& \left.\left|[x \oplus \operatorname{NOT}(x)]_{x=0}\right| \mapsto \frac{1}{\sqrt{2}}||0\rangle| 1\right\rangle+|1\rangle|0\rangle \mid \\
& \left.\left|[x \oplus \operatorname{NOT}(x)]_{x=1}\right| \mapsto \frac{1}{\sqrt{2}}||0\rangle| 0\right\rangle-|1\rangle|1\rangle \mid
\end{aligned}
$$

As the set $x^{2}+x+1$ is a subset of itself, hence, $\left|x^{2}+x+1\right| \leq\left|x^{2}+x+1\right|$. It follows that the conditions $\left|x^{2}+x+1\right| \leq 1$ and $\left|x^{2}+x+1\right|>1$ hold. Consequently, $\left.\left.\frac{1}{2 \sqrt{2}}(||01\rangle+| 10\rangle|+| | 00\rangle-|11\rangle \right\rvert\,\right) \leq 1$ and $\left.\left.\frac{1}{2 \sqrt{2}}(||01\rangle+| 10\rangle|+| | 00\rangle-|11\rangle \right\rvert\,\right)>1$.

Defining $\left.\left.\frac{1}{\sqrt{2}}(||01\rangle+| 10\rangle|+| | 00\rangle-|11\rangle \right\rvert\,\right)$ as a sum of correlations S, we have $S \leq 2$ and $S>2$ at once, which shows that the number 2 cannot be used as separability criterion. As a result of this logical hole, the problem to determine whether a given state is entangled or classically correlated is undecidable via CHSH inequality $[9,10]$, i.e, $2<| | 00\rangle+|01\rangle+|10\rangle-|11\rangle \mid \leq 2$, which can provoke interpretation bias in Bell's test experiments for quantum key distribution (QKD) cryptographic protocols.

References

[1] de Castro, A. Quantum one-way permutation over the finite field of two elements. Quantum Information Processing. 16:149 (2017).
[2] Stalling, W. Cryptography and Networks Security. Principles and Practice. Prentice Hall, NY (2011).
[3] Wigner, E.P. Am J. Phys., vol. 38: 1005-1015 (1970).
[4] Castelletto, S., Degiovanni, I.P., Rastello, M.L. A Modified Wigners Inequality for Secure Quantum Key Distribution. Phys. Rev. A 67, 044303 (2003).
[5] Home, D. Saha, D., Das, S. Multipartite Bell-type inequality by generalizing Wigner's argument. Phys. Rev. A 91, 012102 (2015).
[6] Sakurai, J.J. Modern Quantum Mechanics. AddisonWesley, USA (1994).
[7] Amoroso, R.L. Universal Quantum Computing. World Scientific Publishing, USA (2017).
[8] Bell, J.S. Speakable and Unspeakable in Quantum Mechanics. Cambridge University Press, UK (1987).
[9] Clauser, F., Horne, M.A., Shimony, A. Holt, R.A. Proposed experiment to test local hiddenvariable theories, Phys. Rev. Lett., 23 (15): 8804 (1969).
[10] Nielsen, M.A., Chuang, I.L. Quantum Computation and Quantum Information (Cambridge University Press, 2010).

[^0]: Grupo de Computação Científica, Centro Nacional de Pesquisa Tecnológica em Informática para a Agricultura, Empresa Brasileira de Pesquisa Agropecuária, CampinasSP Brazil 13083-886.

 E-mail address: alexandre.castro@embrapa.br.

