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Abstract. Recently, we showed that the controlled-NOT function is a per-
mutation that cannot be inverted in subexponential time in the worst case
[Quantum Information Processing. 16:149 (2017)]. Here, we show that such a
condition can provoke biased interpretations from Bell’s test experiments.

Let CNOT be the canonical two-qubit entangling gate in quantum key distribu-
tion (QKD) cryptographic protocols, where CNOT |a, x〉 = |a, a + x〉, so that the
control parameter a and the target variable x ∈ F2 = {0, 1}.

For x = a, CNOT |a, x〉 = |a, x2 + x〉, since x ∧ x = x = x2, and for x 6= a,
CNOT |a, x〉 = |a, x2 + x+ 1〉, since ¬x = x+ 1 = x ∧ x+ 1 = x2 + 1 [1]:

(i) The permutation x2+x = x⊕x is a factorable polynomial (reducible) over a fi-
nite field of two elements, whose Hamming distance between its even inputs is equal
to 0 (local model), and (ii) The permutation x2 + x+1 = x⊕NOT (x) is a nonfac-
torable polynomial (irreducible) over a finite field of two elements, whose Hamming
distance between its odd inputs is not equal to 0 (nonlocal model). However, these
models are deducible from each other because x2 + x (+1) = 0 (+1) = x2 + x + 1
and x2 + x+ 1 (+1) = 1 (+1) = x2 + x [1].

Consider the Hadamard basis {|+〉, |−〉} of a one-qubit register given by:

|x〉x=0,1
H−→ 1√

2
[(−1)x|x〉+ |1− x〉].

The circuit below takes computational basis F2 = {0, 1} to Bell states:
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Entangled states of two qubits known as the Bell states occur in conjugate pairs.
Quantum states which are conjugates of each other have the same absolute value.

Hence,
|x2 + x| = | 1√

2
|0〉|0〉+ 1√

2
|1〉|1〉| =

= | 1√
2
|0〉|0〉 − 1√

2
|1〉|1〉| = |x2 + x+ 1| and

|x2 + x| = | 1√
2
|0〉|1〉 − 1√

2
|1〉|0〉| =

= | 1√
2
|0〉|1〉+ 1√

2
|1〉|0〉| = |x2 + x+ 1|.

Therefore, |x2+x| = |x2+x+1|, since these models are deducible from each other.
Notice that we can map the elements of the Hadamard basis to the computational
basis using the group homomorphism {+1,−1,×} 7→ {0, 1,+} so that its inverse is
also a group homomorphism.

Then, the exclusive disjunction x2 + x + 1 over F2 can be rewritten as x +
NOT (x) := X ’∧¬X”, once the field’s multiplication operation corresponds to the
logical AND operation over the field of two elements. It is not difficult to see that
for X ’= X”= X”’, X ’∧¬X ’= (X ’∨X”∨X”’) ∧ (¬X ’∨¬X”∨¬X”’) can be written
as a conjunctive normal form, (X ’∨X”∨X”’)∧(X ’∨X”∨¬X”’)∧(X ’∨¬X”∨X”’)∧
(X ’∨¬X”∨¬X”’)∧(¬X ’∨X”∨X”’)∧(¬X ’∨X”∨¬X”’)∧(¬X ’∨¬X”∨X”’)∧(¬X ’∨
¬X”∨¬X”’) corresponding to the universal set {X ’, X”, X”’} as shown in the fol-
lowing framework.

Suppose that we take a particle in the state X and subjected to three tests with
two possible outcomes. (This is equivalent to three spin1/2 subsystems). We will
call a first test X ’, a second test X” and a third test X”’, and label the outcomes
pass and fail in accordance with Fig. 1 below.

test X ’
X

pass

fail

test X”
X

pass

fail

test X”’
X

pass

fail

Figure 1. This simple experiment can also be seen as a straight-
forward probability problem, where we are going to flip a coin three
times, so that 0 represents tail, and 1 represents head.

There are 8 possible outcomes of these three tests using 0 and 1 to represent fail
and pass over a finite field of two elements.
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Let Ω be the universal set {X ’, X”, X”’}, then all 8 possible different outcomes
are represented by its subsets:

{∅} = {000},
{X ’} = {100},
{X”} = {010},
{X”’} = {001},
{X ’, X”} = {110},
{X ’, X”’} = {101},
{X”, X”’} = {011},
{X ’, X”, X”’} = {111}.
The following elements shown in Table 1 are equivalent representations of the

same value over a finite field of two elements [2, p. 134]:

Table 1. Polynomial representation Poly(x) for all the mutually
exclusive (8) possibilities of experiment. Set theory is isomorphic
to Boolean Algebra.

Tests Probability
X’,X′′ , X”’ Poly(x)

111 x2 + x+ 1 Pr1
110 x2 + x Pr2
101 x2 + 1 Pr3
100 x2 Pr4
011 x+ 1 Pr5
010 x Pr6
001 1 Pr7
000 0 Pr8

In third column of Table 1, Pri, with i = 1, ...8, is the probability of a specific
outcome occurring in the sample space including all possible outcomes.

The probabilities Pri are nonnegative, and therefore Pr3 + Pr4 ≤ Pr3 + Pr4 +
Pr2+Pr7 within the framework conceived by Wigner [3, 4, 5], as described in detail
in [6, p. 227-228]. (If we assume, with Wigner, the existence of these probabilities,
his inequality must be true, because the existence of these probabilities corresponds
in essence to Kolmogorov’s consistency conditions).

Let an event Ei be a set of the outcomes of experiment, i.e, a subset of the
sample space Ω. If each outcome in the sample space Ω is equally likely, then

the probability that event Ei occurs is Pri =
|Ei|
|Ω| , where the bars | · | denote the

cardinality of sets. As each bit string can be written as a polynomial over a finite
field of two elements, then the cardinality of Ω, and for each Ei, is the modulus
of a polynomial. Hence, |x2 + 1| + |x2| ≤ |x2 + 1| + |x2| + |x2 + x| + |1|, because
|Ω| = 1, since the universal set x2 + x + 1 = 1 for x = {0, 1}. Consequently,
|x2 +1+ x2| ≤ |x2 +1+ x2 +x2 + x+1|, once the all polynomials are nonnegative.

Considering that field’s multiplication corresponds to the logical AND, then
x2 = x, since x ∧ x = x. Hence, |x2 + 1 + x| ≤ |x+ 1 + x+ x2 + x+ 1|.

Rearranging this inequality, we get |x2 + x + 1| ≤ |x2 + x|, because the field’s
addition operation x+x = 0 corresponds to the logicalXOR operation. Notice that
the polynomial x2 +x = NOT (x2 + x+1) for x = {0, 1}. Therefore, |x2 +x+1| ≤
|1 − (x2 + x + 1)| since, algebraically, the negation NOT (x2 + x + 1) is replaced
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with complement 1− (x2 + x + 1). Hence, |x2 + x+ 1| ≤ 1− |x2 + x+ 1| because
0 ≤ x2 + x+ 1 ≤ 1.

It is straightforward to see that |x2+x+1| ≤ 1
|x2+x+1| , consequently,

1
|x2+x+1| ≤

1− 1
|x2+x+1| , where

1
|x2+x+1| =

(

1
|x2+x+1|

)2

.

As a result,

(1)

(

1

|x2 + x+ 1|

)2

≤ 1− 1

|x2 + x+ 1|

The polynomial x2 + x + 1 over a finite field with a characteristic 2 corresponds
to the exclusive disjunction x ⊕ NOT (x), where NOT (x) = x2 ⊕ 1 for x = |0〉 or
x = |1〉.

Therefore:

|+〉 =
(

1
0

)

+

(

0
1

)

=

(

+1
+1

)

|−〉 =
(

1
0

)

−
(

0
1

)

=

(

+1
−1

)

,

so that |0〉 =
(

1
0

)

and |1〉 =
(

0
1

)

, where the normalizing constant 1√
2
was omitted.

This logical operation can also be regarded as the Fourier transform [7, p. 50] on

the Galois field of two elements H2|x〉x={0,1} = |±〉, where H2 = 1√
2

(

1 1
1 −1

)

is

the Hadamard matrix of order 2.
Fig. 2 depics the Hadamard basis {|+〉, |−〉} of a one-qubit register on the Hilbert

space. Notice that the ratio 1
|x2+x+1| in Ineq. 1 corresponds to sin 45◦ over R2, since

the vectors with coordinates (+1,±1) have the same direction as the unit vectors
1√
2
|0〉± 1√

2
|1〉 that make half a right angle with the axes in the plane. Hence, Ineq.

1 stays (sin θ)2 ≤ 1− sin θ for θ = 45◦.

NOT (x)

0

−|1〉

+|1〉

(

1− 1√
2

)1/2

1√
2
|0〉 − 1√

2
|1〉

1√
2
|0〉 + 1√

2
|1〉

x−
N
O
T
(x)

|0〉

|0〉
x

x
+
N
O
T
(x
)

22.5◦

Figure 2. The Hadamard gate operates as a reflection around
= π

8 that maps the x-axis to the 45◦ line, and the NOT (x)-axis to
the −45◦ line.
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Consider the trigonometric identity | sin
(

θ
2

)

| =
(

1−cos(θ)
2

)1/2

. Then, the equality

1−sin θ = 2(sin θ
2 )

2 holds, since cos θ = sin θ for θ = 45◦. Consequently, (sin 45◦)2 ≤
2(sin 22.5◦)2.

Rearranging this last inequality, we get:

(2)
1

2
(sin 45◦)2 ≤ 1

2
(sin 22.5◦)2 +

1

2
(sin 22.5◦)2,

that is the inequality obtained by Bell is his paper [6, p. 230][8], where 45◦ and
22.5◦ are Bell test angles, these being the ones for which the quantum theory gives
the greatest violation of the inequality, i.e., 0.2500 ≤ 0.1464(i).

Remember that {X ’, X”} is a subset of the universal set {X ’, X”, X”’}, hence,
the cardinality of subset {X ’, X”} is less than or equal to the cardinality of set
{X ’, X”, X”’}. Then, obviously, the inequality |x2 + x| ≤ |x2 + x+1| holds. (If we
trust standard set theory, this axiomatic inequality has to be true).

So, Ineq. 1 is reversed:

(3)
1

2
(sin 45◦)2 ≥ 1

2
(sin 22.5◦)2 +

1

2
(sin 22.5◦)2,

as opposed to Ineq. 2. Consequently, 0.2500 ≥ 0.1464(ii).
The inequalities (i) and (ii) exist at once for Bell test angles, which shows that

there is an ambiguity in axiomatic set theory on which Wigner [3] relied to derive
a general form of Bell’s inequalities. As a consequence, we have that |x2 + x| ≤
|x2 + x + 1| and |x2 + x + 1| ≤ |x2 + x|, where 2|x2 + x+ 1|x={0,1} = 1√

2
(||01〉 +

|10〉|+ ||00〉 − |11〉|), so that:

|[x⊕NOT (x)]x=0| 7→ 1√
2
||0〉|1〉+ |1〉|0〉|

|[x⊕NOT (x)]x=1| 7→ 1√
2
||0〉|0〉 − |1〉|1〉|

As the set x2 + x + 1 is a subset of itself, hence, |x2 + x + 1| ≤ |x2 + x + 1|. It
follows that the conditions |x2+x+1| ≤ 1 and |x2+x+1| > 1 hold. Consequently,
1

2
√
2
(||01〉+ |10〉|+ ||00〉 − |11〉|) ≤ 1 and 1

2
√
2
(||01〉+ |10〉|+ ||00〉 − |11〉|) > 1.

Defining 1√
2
(||01〉+ |10〉|+ ||00〉−|11〉|) as a sum of correlations S, we have S ≤ 2

and S > 2 at once, which shows that the number 2 cannot be used as separability
criterion. As a result of this logical hole, the problem to determine whether a
given state is entangled or classically correlated is undecidable via CHSH inequality
[9, 10], i.e, 2 < ||00〉 + |01〉 + |10〉 − |11〉| ≤ 2, which can provoke interpretation
bias in Bell’s test experiments for quantum key distribution (QKD) cryptographic
protocols.
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