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Abstract. We propose a novel cryptographic primitive that we call
conditional blind signatures. Our primitive allows a user to request blind
signatures on messages of her choice. The signer has a secret Boolean
input which determines if the supplied signature is valid or not. The user
should not be able to distinguish between valid and invalid signatures.
A designated verifier, however, can tell which signatures verify correctly,
and is in fact the only entity who can learn the secret input associated
with the signed message after the unblinding process. We instantiate
our primitive as an extension of the Okamoto-Schnorr blind signature
scheme. We analyze and prove the security properties of the new scheme
and explore potential applications.

Keywords: digital signatures, blind signatures, designated verifier sig-
natures

1 Introduction

Digital signatures, proposed in [1], are one of the most successful public key
cryptographic primitives. A user U submits a message to a signer S, who ap-
plies a function of his secret signing key sk and generates a signature that can
be verified by everybody that possesses the corresponding public verification key
vk. They allow message integrity, authenticity and non repudiation in a publicly
verifiable manner. A digital signature scheme is secure if no probabilistic adver-
sary A, running in polynomial time (PPT), can output a forgery of a signature,
a valid signature, that is, without the possession of the signing key. Instantia-
tions of digital signatures schemes base their security on well know cryptographic
problems such as the RSA problem [2] the Discrete Log problem ([3],[4]) with its
many variations and many more. Moreover, in [5] a method is given to construct
digital signatures from interactive proofs of knowledge.

Digital signatures, are also quite versatile, as attested by the plethora of
variations that have been proposed in the literature. Indeed many useful schemes
can arise, if one fiddles with the basic setting of a digital signature scheme. For
instance, blind signatures [6], hide the message to be signed from the signer, thus
allowing the user to maintain her privacy while keeping the signature publicly
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verifiable. The security of blind signatures has been studied in [7], [8] and [9].
The relevant security properties are blindness or unlinkability, which models the
fact that the signer cannot have access to the message, and resistance to one
more forgery, which states that the user cannot herself create more signatures
than the signer provided. Blind signatures have many important applications
such as electronic cash [6] and electronic voting [10].

Another variation of digital signatures is group signatures [11]. They aim
to provide signer anonymity within a group. This means that the signature is
validated as coming from the group as a whole, without giving evidence as to
which member of the group actually signed. Of course in the case of a dispute, the
traceability property allows the group manager to specify which group member
actually signed.

A less studied primitive related to signatures via zero knowledge proofs, are
designated verifier proofs, proposed in [12]. They sacrifice the public verifiability
of a proof and propose a scheme where its validity can only be verified by an
entity that has a specific piece of knowledge (e.g. a private key). This entity is
designated by the prover. Such a scheme might seem of no particular use, but this
is not the case, since in [12], the authors propose a very interesting application in
the context of receipt free and coercion resistant electronic voting. In particular,
they propose that a voting authority uses designated verifier proofs, in order to
convince a voter that her ballot was correctly counted. However this proof is
only verifiable by the voter herself and not by any third party. As a result it
cannot be presented voluntarily or involuntarily to a bidder or a coercer.

Motivation. In this paper we aim to create a primitive that can be used as a
building block for protocols that require strong guarantees for coercion resistance
and privacy. Such a primitive can be used, for example, in auction and payment
systems, but the primary application we have in mind is remote electronic voting,
where the lack of a controlled environment for vote casting, leaves the voters
vulnerable to coercion attacks. The most well known way to defeat such attacks
was proposed in the JCJ framework [13]. Its main idea, stems from the fact that
the coercer has no incentive to carry out his attack if he cannot tell whether it
has succeeded or not. This can be achieved, if we allow the voter to cast multiple
ballots, by attaching a different but indistinguishable anonymous credential to
each vote. One of these credentials is valid and it is used to cast the vote when
the coercer is not present - JCJ assumes that each voter has a moment of privacy.
Only the votes cast with valid credentials are included in the election tally. In
order to filter out the invalid credentials the authors of [13] propose a quadratic
number of checks in the number of votes cast. Such a complexity is not practical
for real large scale elections.

A more practical solution, would involve a signer that uses voter identification
information to efficiently retrieve the valid credential and check it against the
one that is provided during the voting process. If the credentials are different,
then the voter is under coercion and the vote should not be counted. This bit of
information has to be conveyed to the counter in a manner undetectable by the
coercer. Of course the signer should not have any access to the contents of the
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vote, in order to keep it anonymous. As a result the signatures have to be blind,
as well. A well known voting scheme built on blind signatures was given in [10],
but it is not coercion resistant. What is needed, is a primitive that can integrate
the coercion resistance property of [13] and the increased privacy guarantees of
[10].

Our contribution. Our approach is based on the observation that a combination
of a simple group signature scheme with a designated verifier proof can be used
to convey a piece of secret information from a signer to a specified verifier.
For instance if we imagine the group members, as possible responses to the
message to be signed, a designated group signature is equivalent to sending a
particular response to the verifier. As a result, we propose a new primitive,
called conditional blind signatures, that implements this functionality. We define
its security properties and provide an instantiation that is based on the well
known Okamoto-Schnorr blind signatures [4]. We use our definitions and the
particular instantiation to provide proofs for the security properties. Despite the
fact that the motivation behind our primitive is specific, we think that it can
stand on its own and be used in many applications apart from electronic voting.

Related work. On a conceptual level our scheme resembles Chaum’s and van
Antwerpen’s Designated Confirmer Signatures (DCS) [14]. Indeed, DCS were
also proposed as a combination of digital signatures and zero knowledge proofs,
to solve a problem of undeniable signatures [15]. In undeniable signatures, if
the signer becomes unavailable during the verification process, the signature
cannot be validated. To fix this, DCS adds a third party to the protocol, a
designated confirmer, that can also verify (confirm) the signature. In addition
he can produce normal digital signatures. Designated confirmer signatures have
been studied extensively since their introduction and many variations have been
proposed [16].

Our proposal, resembles DCS in the basic usage scenario, since in our case, as
well, the verifier can be a third party which is ‘designated’ during the signature
creation process. However, in our scheme the signer cannot himself verify the
signature. Moreover, the problem we wish to solve is the secure passing of a single
bit of information to the verifier through the signature and not the unavailability
of the signer. Finally, in our usage scenario the messages are blinded, so that
the signer cannot have access to their contents. To the best of our knowledge a
similar primitive has not been proposed in the literature so far.

2 Preliminaries

In this section we briefly review the necessary concepts for the construction and
security analysis of our proposal.

2.1 Security Assumptions

In section 5 we prove that our scheme is secure by showing that breaking it would
imply that the Computational Diffie Hellman (CDH) and the Decisional
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Diffie Hellman (DDH) assumptions are false. Informally, the CDH assump-
tion states that given a group G and a generator g, two group elements ga, gb the
group element gab cannot be efficiently computed. The DDH assumption states
that the triples of group elements (ga, gb, gab) and (ga, gb, gc) where a, b, c are
randomly selected from {1, · · · , |G|} cannot be efficiently distinguished.

More formally [17], let G be a group family and g a generator of a particular
member G of G. We denote the security parameter with λ.

Definition 1. Computational Diffie Hellman Assumption.
A CDH algorithm A is a probabilistic polynomial time algorithm satisfying:

Pr[A(g, ga, gb) = gab] >
1

λk

for some fixed k ∈ Z, where the probability is taken over the selection of G, a, b
and the random bits of A. The group family satisfies the CDH assumption if
there is no CDH algorithm for it.

Definition 2. Decisional Diffie Hellman Assumption.
A DDH algorithm A is a probabilistic polynomial time algorithm satisfying:

|Pr[A(g, ga, gb, gab) = 1]− Pr[A(g, ga, gb, gc) = 1]| > 1

λk

for some fixed k ∈ Z, where the probability is taken over the selection of G,
a, b, c and the random bits of A. The group family satisfies the DDH assumption
if there is no DDH algorithm for it.

There are many groups where the Decisional Diffie Hellman Assump-
tion is believed to hold [17].

2.2 Okamoto-Schnorr Blind Signatures

In section 4 we provide an instantiation of our scheme built on the Okamoto-
Schnorr blind signatures. For completeness, we repeat their definition here from
[4].

The public parameters of the protocol are a group G with prime order q, two
generators g1, g2 and a hash function H. The signer S selects the private signing
key s1, s2 ∈ Zq and computes the public verification key v = g−s11 g−s22 . The user
U wants to sign the message m. The protocol is executed in the following phases:

1. In the commitment phase, S randomly selects r1, r2 ∈ Zq and commits to
the value x = gr11 g

r2
2 .

2. In the blinding phase, U selects the blinding factors u1, u2, d ∈ Zq and com-
putes the following values:
– x∗ = gu1

1 gu2
2 vdx

– e∗ = H(m,x∗)
– e = e∗ − d mod q
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Finally she sends the value of e to S.
3. In the signing phase S computes the values y1 = r1 + es1 mod q and y2 =
r2 + es2 mod q. The blind signature is (x, e, y1, y2).

4. In the unblinding phase U computes the values y∗1 = y1 + u1 mod q and
y∗2 = y2 + u2 mod q. The plain signature is (x∗, e∗, y∗1 , y

∗
2).

5. To verify the signature the following two relations are checked:
– e∗ =? H(m,x∗)

– x∗ =? g
y∗1
1 g

y∗2
2 ve

∗

3 Definitions for Conditional Blind Signatures

Our new primitive can be abstractly viewed as a protocol implementing the
following functionality f :

signature = f(b, sk, pk, c)

where:

– b is the secret information to be conveyed from the signer to the verifier. We
restrict the secret information to a single bit.

– sk is the signing key.
– pk is the corresponding public key.
– c is the blinded message to be signed.

The participants of the protocol are:

– The user U is the entity that requests blind signatures on messages of her
choice.

– The signer S is the entity that creates the signatures on the message provided
by the user. The signer wants to use the signature to convey the secret
information to the verifier.

– The verifier V is the entity that checks the validity of the signatures and
learns the secret information of S. The verifier can be the signer himself at
a future time.

The adversary A may be any entity apart from the designated verifier. This
means that, apart from external attackers, both the signer and the user may have
incentive to attack our scheme. For instance, the signer signs a blinded message,
so he might want to learn its contents. The user, or an agent acting on her behalf,
on the other hand, might want to retrieve the signer’s secret information.

The desired security properties of our scheme extend the security properties
of digital and blind signatures:

– The signatures given must be statistically blind.
– The scheme must be secure against one more forgery.
– No PPT adversary can check the validity of the produced signatures nor

can he extract the secret information, but with probability negligible to a
security parameter.
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Concretely, our primitive can be defined as follows:

Definition 3. A conditional blind signature scheme is a triple (Gen, Sign, Vrfy)
with the following properties:

– Gen is an algorithm that takes as input the security parameter 1λ and outputs
two pair of keys (skS , pkS) for signing and (skV , pkV) for verification, the
message space M and the signature space S. These sets are described by a
set of parameters (e.g. group generators) collectively denoted as params. We
also refer to the set of public keys as pk = (pkS , pkV).

– Sign(params, pk) = 〈S(skS , b),U(m)〉 is a protocol executed between the signer
and the user. The public input to the signing protocol consists of the param-
eters and the public keys. The secret input of the signer is the signing key
skS and the secret information bit b, while the secret input of the user is the
message m to be signed. The protocol outputs a signature sig of m to U .

– Vrfy is an algorithm which on input (skV ,m, sig) outputs 1 if and only if
sig is the output of the execution of the protocol Sign on message m and the
secret information bit of S is b = 1, except with negligible probability.

Conditional Blind Signatures inherit the Blindness and the security against
One More Forgery properties from the conventional blind signatures schemes
(with minor modifications). For the sake of completeness we repeat the defini-
tions of [9].

We first formally define the blindness property using the following game,
which states that a malicious signer cannot tell which of the two messages m0,m1

was signed first except with negligible probability:

Algorithm 1: BlindExpA,Π
Input : security parameter λ
Output: b ∈ {0, 1}

1 (pk,m0,m1, stfind)← A(find, 1λ)
2 c←R {0, 1}
3 stissue ← A〈·,U(pk,mb)〉,〈·,U(pk,m1−b)〉(issue, stfind)
4 if σ0 =⊥ ∨σ1 =⊥ then
5 (σ0, σ1) = (⊥,⊥)
6 else
7 c∗ ← A(guess, σ0, σ1, stissue)
8 end
9 if c = c∗ then

10 return 1
11 else
12 return 0
13 end
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Definition 4. A blind signature scheme Π is statistically blind if for every (un-
bounded) A: Pr[BlindExpA,Π(λ) = 1] ≤ 1

2 + negl(λ).

The unforgeability property is captured using the notion of One More Forgery
[8], which states that, if l is an integer, polynomial in the security parameter λ, an
attacker produces l+1 valid signatures, after fewer than l successful interactions
with the signer. The Strong One More Forgery [8] is a variation of the above case,
where l is polylogarithmically bound to the security parameter. More formally:

Algorithm 2: OneMoreForgeA,Π
Input : security parameter λ
Output: b ∈ {0, 1}

1 (sk, pk)← Gen(1λ)

2 ((m1, σ1), . . . , (ml+1, σl+1))← A〈S(skS),·〉(pk)
/* k: number of successful interactions for the Sign protocol */

3 if (∀i, j with i 6= j ⇒ mi 6= mj) ∧ (∀i Vrfy(vk,mi, σi) = 1) ∧ k ≤ l then
4 return 1
5 else
6 return 0
7 end

Definition 5. A blind signature scheme Π is one more unforgeable if for every
PPT A there is a negligible function of λ where: Pr[OneMoreForgeA,Π(λ) = 1] ≤
negl(λ).

The above games can be easily extended to accommodate for the secret infor-
mation bit specified in the proposed primitive. In particular, since in BlindExp
the secret bit b can be used to distinguish between two messages, we restrict the
adversary in issuing the two signatures with the same secret bit. In OneMore-
Forge, invalid signatures might assist the aspiring forger, so we allow him to get
signatures with a b of his choice.

Additionally, for our primitive we define an extra property which is called
Conditional Verifiability, which is defined in the game CondVerExp presented in
algorithm 3.

In the particular game, the adversary A adaptively gets valid and invalid
signatures of his choice and creates a challenge message. He then gets a valid
or invalid signature on this message based on a coin flip and afterwards he tries
to determine the value of the coin flip. He may continue to get signatures of his
choice. The scheme is secure with respect to conditional verifiability if there is
no PPT adversary who can succeed in guessing the result of the coin flip with
non negligible advantage. More formally:

Definition 6. A conditional blind signature scheme Π has the Conditional Ver-
ifiability property if for each PPT adversary A there is a negligible function negl
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Algorithm 3: CondVerExpA,Π
Input : security parameter λ
Output: x ∈ {0, 1}

1 c←R {0, 1}
2 (sk, pk,params)← Gen(1λ)

3 {(mi, sigi)← Sign〈S(params, skS , bi),A(params, pk, {mj , sigj}i−1
j=1, bi)〉}

l1
i=1

4 mc ← A(pk, params, {(mi, sigi)}l1i=1,Challenge)
5 (ε, sigc)← Sign〈S(params, sk, b),A(params, pk,mc)〉

/* ε is the empty string */

6 {(mi, sigi)← Sign〈S(params, skS , bi),A(params, pk, {mj , sigj}i−1
j=1, bi)〉}

l2
i=l1+1

7 c′ = A({mi, sigi}l1+l2i=1 ,mc, sigc,Guess)
8 if c = c′ then
9 return 1

10 else
11 return 0
12 end

with regard to the security parameter λ such that Pr[CondVerExpA,Π = 1] ≤
1
2 + negl(λ).

Definition 7. A conditional blind signature scheme Π is secure if it has the
properties Statistical Blindness, One More Forgery and Conditional Verifiability.

We must note here that the user cannot validate the signature she receives,
since she does not have access to the secret bit b. Although this seems counter
intuitive with respect to traditional signatures, in our setting it is the exact
property we want to capture.

4 An instantiation based on Okamoto-Schnorr Blind
Signatures

In this section we propose an instantiation of our scheme based on the Okamoto-
Schnorr Blind Signatures [4]. The intuition behind our construction is that we
replace the elements (y1, y2) of the standard blind signature of [4] with a ‘lifted’
signature (ky1 , y2) where k is some element of the underlying group with loga-
rithm known only to the verifier.

Firstly we define the key generation algorithm for the 3 participating entities,
namely the user, the signer and the verifier presented in algorithm 4.

For the signing protocol we assume a hash function H : {0, 1}∗ → Zq, which
is modelled as a random oracle. The algorithm begins as in the Okamoto-Schnorr
blind signatures [4]. The signer commits to a random value. The user selects the
blinding factors and blinds the commitment and the hash to be signed. Our
variation actually begins when the signer is ready to sign the blinded values. We
consider 2 cases:
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Algorithm 4: Key Generation Algorithm

Input : security parameter λ
Output: (skS , vkS), (skV , vkV ), params

/* We select a group G with prime order q with q > 2λ where the DDH

problem is hard */

1 (q,G)← GroupGen(1λ)
/* Select the appropriate generators */

2 (g1, g2)←R G
3 params← (q,G, g1, g2)

/* Select the secret skS and public signing keys vkS for S */

4 s1, s2 ←R Zq
5 v ← g−s11 g−s22

6 (skS , vkS)← ((s1, s2), v)
/* Select secret skV and public verification keys vkV for V */

7 s←R Zq
8 k ← gs1
9 (skV , pkV )← (s, k)

– If the hidden bit of S is 1, instead of generating the standard Okamoto-
Schnorr tuple, the signer raises the public key of the verifier to the first part
of the signature.

– If the hidden bit of S is 0, then the signature is invalidated merely by selecting
a random element from the underlying group.

In both cases, the second part of the tuple is calculated in the standard way.
The details are given in Figure 1. Note that the unblinding of the first part of
the signature, occurs on the exponent.

For the verification algorithm, the verifier checks the verification equation
using the hash of the message and the commitment. If the secret signer bit is 1,
then the signature will be valid, otherwise the verification equation will not hold.
Thus the verifier will learn the secret bit of the signer. Details are presented in
algorithm 5.

Note that in this specific instantiation of conditional blind signatures, the
verifier can issue valid signatures by choosing a random bsig2 and calculating
the corresponding bsig1 by the verification equation. So, in the specific scheme,
it is natural to assume that the signer and the verifier are the same entity,
but we intentionally distinguish them to comply with the broader definition of
conditional blind signatures.

In the case of b = 1 the signatures are valid and can be verified by the
designated verifier. The correctness property follows easily from the verification
equation:



10

Sign

Signer Recipient

input:(params, skS , vkS , b) input:(params, vkS ,m)

r1, r2 ←R Zq
x = gr11 g

r2
2

x

Select Blinding Factors

u1, u2, d←R Zq
Blind

x∗ = xgu1
1 gu2

2 vd

e∗ = H(m,x∗)

e = e∗ − d

e

y1 = r1 + es1

y2 = r2 + es2

if b = 1 then

(bsig1, bsig2) = (ky1 , y2)

else

bsig1 ←R G
bsig2 ← y2

The blind signature is

(x, e, bsig1, bsig2)

(bsig1, bsig2)

Unblind

sig1 = bsig1 · ku1

sig2 = bsig2 + u2

output (m,x∗, e∗, sig1, sig2)

Fig. 1. Signing algorithm for Conditional Blind Signatures
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Algorithm 5: Signature Verification

Input : ske, pke, params,H,m, sig = (x∗, e∗, sig1, sig2)
Output: b ∈ {0, 1}

1 if m 6= m′ then
2 return 0
3 end
4 e∗ ← H(m,x∗)
5 y1

′ = sig1
6 y2

′ = sig2

7 if x∗s = y1
′g2

y2
′·sve

∗·s then
8 return 1
9 else

10 return 0
11 end

x∗s = y1
′g2

y2
′·sve

∗·s ⇔ (xgu1
1 gu2

2 vd)s = ky1+u1g2
(y2+u2)·sv(e+d)·s

⇔ xsku1gs·u2
2 vs·d = ky1ku1g2

sy2gsu2
2 vsevsd

⇔ xs = ky1g2
sy2vse

⇔ xs = g1
sy1g2

sy2vse

⇔ x = g1
y1g2

y2ve

⇔ gr11 g
r2
2 = gr1+es1

1 gr2+es2
2 (g−s11 g−s22 )e

⇔ gr11 g
r2
2 = gr11 g

es1
1 gr22 g

es2
2 g−es11 g2

−es2

⇔ gr11 g
r2
2 = gr11 g

r2
2

5 Security Analysis

5.1 Blindness

For the blindness property we can apply the arguments of the original Okamoto-
Schnorr scheme [4]. More specifically, the commitment is blinded in exactly the
same way in both schemes and the second parts of the signatures are identical in
both cases. In addition, the message hash is hidden using the value d exactly as
in [4]. The first part of the signature is ‘lifted’ in our case, but the mapping from
y1 to ky1 is one to one and onto. As a result in the blindness game in section 3,
the probability that an unbounded adversary succeeds in linking two protocol
executions to the corresponding messages and signature pairs is exactly 1/2.

5.2 Strong One More Forgery

Our system is also secure against the strong version of the one more forgery
assumption [8]. We note here that an adversary can create invalid signatures
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by randomly choosing y2 ∈ Zq and a random element of G. As a result, in the
security proof, an interaction with the signer for an invalid signature does not
provide any advantage, so we may assume that the adversary only interacts with
the signer to obtain valid signatures.

The following theorem demonstrates that the system is secure under the
(strong) one more forgery definition.

Theorem 1. Suppose there exists a PPT adversary A that wins the OneMore-
Forge experiment, for l polylogarithmic in the security parameter λ, with non
negligible probability. Then there exists a PPT algorithm B that solves Compu-
tational Diffie Hellman problem with non negligible probability.

Proof. Let A be such an adversary. If A receives two signatures (m,x, e, ky1 , y2),
(m,x, ē, kȳ1 , ȳ2) for the same message with the same initial commitment and
y2 − s2e 6= ȳ2 − s2ē then we can efficiently solve the CDH problem, that is
calculate gab by using g, ga, gb.

In order to obtain these signatures we apply a Replay Attack as in ([18],
[8]). More specifically we run the algorithm with a random oracle H1 and then
we repeat the same process with a random oracle H2 such that H2 yields the
same answers to the first i − 1 questions. We expect that with non negligible
probability, we will achieve the collision in the i-th query.

This follows because there is an one to one and onto correspondence between
y1 and ky1 and so the probabilistic analysis presented in ([18],[8]) also holds for
our scheme.

In more detail the reduction is as follows:

– Our input is g, ga, gb and we want to compute gab

– We set g = g1, g2 = ga, k = gs1 = gs = gb. We select s1, s2 and compute the
public key v

– We supply the public values g1, g2, k, v to A.
– We execute the forgery game with A and random oracle H1.
– We repeat the attack substituting H1 with H2.
– If we receive the required signatures since they are valid: xs = ky1g2

y2sves

and xs = kȳ1g2
ȳ2svēs

– This means that:

ky1 = xsg2
−y2sv−es

kȳ1 = xsg2
−ȳ2sv−ēs

– In turn we have:

ky1k−ȳ1 = g2
(−y2+ȳ2)sv(−e+ē)s

– We know:

• t = ky1k−ȳ1

• y = (−y2 + ȳ2)
• c = (−e+ ē)
• the values s1, s2 from the secret key that was generated by A
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Now we can calculate gab from the above known values and g1, g2, k:

t = gys2 vcs ⇒ t = (ga)ys(g−s1g−s22 )cs

⇒ t = gays(g−s1g−s2a)cs

⇒ t = gaysg−s1csg−s2acs

⇒ tgs1cs = gas(y−s2c)

⇒ gas = (t · (gs)s1c)(y−s2c)−1

⇒ gab = (t · (gb)s1c)(y−s2c)−1

By using the same techniques as in ([18], [8]) it follows that the probability
that this attack succeeds is non-negligible. ut

5.3 Conditional Verifiability

Finally, we show that the system is conditionally verifiable by a reduction from
the DDH problem:

Theorem 2. Suppose there exist a PPT adversary A that wins the CondVerExp
with non negligible probability. Then there exists a PPT algorithm B that solves
Decisional Diffie Hellman problem with non negligible probability.

Proof. We will construct B.

– B gets as input g, ga, gs, gc. She tries to find whether c = as or c is uniformly
distributed in G.

– B sets g1 = g, g2 = ga and k = gs1. She randomly chooses s1, s2 and sets
v = g−s11 g−s22 . She gives g1, g2, k, v to A.

– Using the secret key (s1, s2) B can answer A’s valid signature requests.
– When B gets a challenge request from A she does the following:
• She randomly chooses r1, r2 and sends x = gr11 g

r2
2 to A.

• A responds with e.
• B chooses a random y2 and sets

ky1 = (gs)r1(gc)r2(gc)−y2(gs)s1e(gc)s2e

• B sends the signature pair (bsig1, bsig2)← (ky1 , y2)
– As before B responds to A’s signing requests using the secret key (s1, s2).
– B outputs 1 (the input is a DDH tuple) iff A outputs 1 (valid signature).

The validity of the signature is fully defined by the message (bsig1, bsig2) sent
by the signer. The signature is valid iff ky1 = xsg2

−y2sv−es. Now we have:

ky1 = xsg−y2s2 v−es ⇔ (gs)r1(gc)r2(gc)−y2(gs)s1e(gc)s2e = xsg−y2s2 v−es

⇔ gsr1gcr2g−cy2gss1egcs2e = gsr1gsr22 g−sy22 gss1egss2e2

⇔ (gc)(r2−y2+s2e) = (gas)(r2−y2+s2e)
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This means that if r2−y2 +s2e 6= 0 then the signature is valid iff gc = gas which
means that the input is a DDH tuple. Since y2 is chosen randomly r2−y2+s2e = 0
only with negligible probability which yields the result. ut

The theorems above prove that the system is secure. We must note however
that security for one more forgery depends on the fact that the number of valid
signatures is poly logarithmic to the security parameter, which is not strong
enough. We leave it as future work to strengthen our scheme to attacks that
require a polynomial number of signatures.

6 Conclusion, Applications and Future Work

In this paper, we proposed a new digital signature primitive called Conditional
Blind Signatures. We defined and proved its security properties based on a par-
ticular instantiation.

Our scheme is general and as such, it can be used in every case where the
act of signing a message, must convey some additional piece of information to a
designated verifier. As we noted in the introduction, one major such application
can be found in the case of coercion resistant electronic voting, where a voter
must defeat a strong adversary that wishes to dictate the vote and threatens
with countermeasures if the voter does not comply. The possibility of coercion
is the most important obstacle to the large scale application of internet voting.

Our primitive can be used to design an efficient protocol that utilizes the
JCJ coercion resistance framework [13], where the voter can cast many ballots
authenticated using indistinguishable anonymous credentials. Before the election
one such credential is registered as authentic with the registration authority. A
vote should be counted only if it is accompanied by this specific credential. As a
result, when the voter is under coercion she can provide a different one, in effect
cancelling this ballot. When she gets her moment of privacy, as required by the
JCJ framework, she can cast a vote with the registered credential. Of course the
coercer should not be able to distinguish the two cases. This does not apply to
the tallier, who must be able to tell which votes should be counted and which
should not.

A protocol that utilizes our primitive to implement the above scenario in-
volves a registration authority that compares the credentials supplied during
voting with the one that is registered before. The secret bit of the signer is the
result of this comparison and indicates whether the credential is valid or not.
The comparison can be easily carried out by the registrar, since he has access to
the voter identity. By applying our primitive, he can convey this bit of informa-
tion, about the validity of the vote to the tallier, who will act as the designated
verifier. Thus, she will learn if the votes are under coercion or not and proceed
to count them in the former case. We leave it as future work to fully design a
complete electronic voting protocol based on our primitive and reason about its
properties.

Future work will also aim to design protocols that utilize the security prop-
erties of our primitive in other scenarios such as electronic auctions. Finally, we
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plan to investigate different instantiations of the primitive and improve it. One
thing that must be done in this regard, is to efficiently allow the signer to ex-
tend the secret information to more than 1 bits. The most important weakness
that we must overcome, however, is the fact that our scheme is proved secure
against forgeries, only if the adversary is restricted to a polylogarithmic number
of issued signatures. We must design protocols that are secure against stronger
adversaries that can request a polynomial number of signatures in their forgery
attempt.
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