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Abstract
Suppose n parties have respective inputs x1, . . . , xn ∈ G, where G is a finite group. The

parties would like to privately compute x1x2 · · ·xn (where multiplication refers to the group
operation in G). There is a well-known secure protocol that works for any number of parties
n when G is abelian. In this note we consider private group-product protocols for non-abelian
groups. We show that such protocols are possible for if and only if n (the number of parties) is
less than 4.

1 Introduction

In a multi-party group product protocol, n parties have respective inputs x1, . . . , xn from some group
G (written multiplicatively), and interact to learn the group-product

∏
i xi, without revealing any

additional information about the inputs.
Benaloh [Ben87] introduced the notion of homomorphic secret sharing, which lends itself to

a natural secure protocol for multi-party group product. If the n parties have private inputs
x1, . . . , xn, then they can securely compute the product

∏
i xi as follows:

• Each party Pi chooses a random secret sharing {xi,j}j of their input xi, such that xi =
xi,1xi,2 · · ·xi,n. Party Pi then privately sends xi,j to party Pj .

• Each party Pi has now received a share xj,i from each party Pj . Party Pi broadcasts yi =
x1,ix2,i · · ·xn,i.

• From these broadcasts, all parties can compute the final output
∏
i yi.

When the underlying group is abelian, the protocol is correct because:∏
i

yi =
∏
i

∏
j

xj,i

 =
∏
j

(∏
i

xj,i

)
=
∏
j

xj

The fact that the shares-of-shares are homomorphic implies that the protocol is secure, and leaks
no more than the desired product.

However it is not clear how to adapt the approach for a non-abelian group. Yet non-abelian
groups (e.g., permutations or matrices) are common and fundamental in many applications. In this
work we show that secure multi-party group products in non-abelian groups are possible only with
3 or fewer parties.

∗Work done while first two authors were participants in an NSF REU Site program at Oregon State University
(#1359173)
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Other related work Frankel, Desmedt & Burmester [FDB93] find that homomorphic secret
sharing does not exist for non-abelian groups. This implies that a straight-forward adaptation
of Benaloh’s product protocol is impossible for non-abelian groups. But it does not rule out the
possibility of some other way of securely computing a multi-party group product.

2 Preliminaries

2.1 Semi-Honest Security for MPC

In this work we use the standard simulation-based definition of security in the presence of semi-
honest adversaries. We consider adversaries that corrupt any number of parties; i.e., we do not
restrict to the honest majority setting. Indeed, in the honest majority setting, it is well-known that
every function can be securely realized [BOGW88, CCD88].

Definition 1. Let π be an n-party protocol, and let S ⊆ {1, . . . , n} be a set of parties.
Then viewπ

S(1κ, x1, . . . , xn) denotes the random variable describing the (joint) view of parties
{Pi | i ∈ S} in an execution of π on inputs x1, . . . , xn. This view consists of (1) The inputs of these
parties: {xi | i ∈ S}, (2) the random tapes of these parties, (3) all protocol messages sent from Pi
to Pj for i 6∈ S and j ∈ S.

In the following definition, let ∆(A,B) denote the statistical distance between two distributions
A and B.

Definition 2. An n-party protocol π for function f is secure in the presence of semi-honest
adversaries if there exists a simulator Sim such that for all S ⊆ {1, . . . , n} and all inputs x1, . . . , xn,
the following quantity is negligible in κ.

∆
(
viewπ

S(1κ, x1, . . . , xn), Sim(1κ, S, {xi | i ∈ S}, f(x1, . . . , xn))
)

In other words, the view of (corrupt) parties S can be simulated given given only their inputs
and the output of f .

2.2 Characterization of 2-party MPC

In concurrent works [Bea89, Kus89], Beaver & Kushilevitz characterized the 2-party functions that
have secure protocols (in the presence of semi-honest adversaries). The characterization holds for
protocols with perfect security (i.e., the simulated views and real views are identically distributed).
The same characterization was later extended to the case of statistical security in [MPR09].

Definition 3. Let f : X × Y → Z be a 2-party function. Then f is decomposable if:

• f is constant function over X × Y

• Or, there is a partition X = X1 ∪X2 such that:

– For all x1 ∈ X1, x2 ∈ X2, y ∈ Y we have f(x1, y) 6= f(x2, y)

– The restrictions f1 : X1 × Y → Z and f2 : X2 × Y → Z are decomposable.

• Or, there is a partition Y = Y1 ∪ Y2 such that:

– For all x ∈ X, y1 ∈ Y1, y2 ∈ Y2 we have f(x, y1) 6= f(x, y2)
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– The restrictions f1 : X × Y1 → Z and f2 : X × Y2 → Z are decomposable.

Theorem 4 ([Bea89, Kus89, MPR09]). Let f be a 2-party function. There is a secure protocol
(against semi-honest adversaries) for f if and only if f is decomposable.

3 Three-party Non-abelian Group Products

Let G be an associative but not necessarily abelian group, which we write with multiplicative
notation. In Figure 1 we present an extremely simple protocol for 3-party group product (a, b, c) 7→
abc.

Parameters: multiplicative group G
Inputs: Parties P1, P2, P3 have inputs a, b, c ∈ G, respectively.

Protocol:
1. P1 chooses r ← G and sends s = ra to P2

2. P2 sends t = sb to P3

3. P3 sends u = tc to P1

4. P1 broadcasts v = r−1u to all parties
5. All parties output v

Figure 1: 3-party group-product protocol for non-abelian G

Lemma 5. The protocol in Figure 1 is secure against semi-honest adversaries.

Proof. Correctness of the protocol follows from the associativity of the group. All parties output:

v = r−1u = r−1(tc) = r−1(sb)c = r−1(ra)bc = abc.

Note that given abc and any two of {a, b, c}, it is possible to solve for the missing input. (This
argument does not require the group to be abelian.) Hence, security in the presence of two corrupt
parties is trivial, since they are allowed to learn the honest party’s input.

We therefore focus on the case of a single corrupt party. The protocol is asymmetric with
respect of the parties’ roles, so the analysis proceeds in 3 distinct cases:

• P1’s view consists of its input a, its randomness r ∈ G, and a protocol message u = rabc.
This joint distribution can be perfectly simulated given just the ideal view (a, v = abc) by
sampling random r and setting u = rv.

• P2’s view consists of its input b and messages s = ra and v = abc from P1. This joint
distribution can be perfectly simulated in the ideal world by sampling s uniformly. The
distributions are identical because in any group the distribution over ra for uniform r and
any fixed a is uniform.

• P3’s view consists of its input c and messages t = rab from P2 and v = abc from P1. This
joint distribution can be perfectly simulated in the ideal world by sampling t uniformly.
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Related work. Another way to derive a secure protocol for 3-party product in a non-abelian
group is as follows: First, observe that for every 3-party function, there is a secure protocol that
tolerates a single corrupt party [BOGW88, CCD88]. But in the case of 3-party group product, such
a protocol will also be secure in the presence of 2 corrupt parties. This follows from the argument
used in the above proof, that 3-party group product has no privacy requirement in the case of 2
corrupt parties.

Of particular interest are protocols from the line of work on MPC over black-box groups [DPSW07,
DPS+12, CDI+13]. In these works, the parties securely evaluate an arithmetic circuit expressed
in terms of operations in a (possibly non-abelian) group. Clearly group product can be expressed
in such a way. Importantly, these results would yield a protocol that treats the group itself as a
black-box; i.e., the protocol is in some sense “the same” for any group.

4 Impossibility of Non-abelian Group Product for n ≥ 4

We now show that secure n-party group products are not possible for n ≥ 4, unless the group is
abelian. We leverage the characterization of 2-party secure MPC from Section 2.2 and use the
following simple observation:

Proposition 6. Let f be an n-party function. If there is a secure protocol for f then for any
S ⊆ {1, . . . , n} there is a secure protocol for the 2-party function

fS

(
{xi | i ∈ S}, {xi | i 6∈ S}

)
= f(x1, . . . , xn)

Theorem 7. If there is a protocol for 4-party G-product, secure in the presence of semi-honest
adversaries, then G is abelian.

Proof. By partitioning the parties into two sets, we obtain a secure 2-party protocol for the function

f
(

(a, c), (b, d)
)

= abcd where a, b, c, d ∈ G. The function f is therefore decomposable.

Each step in the decomposition is associated with a restriction of f to domain X × Y , where
X,Y ⊆ G2. We claim that for each such step in the decomposition, the following properties hold:

∀a ∈ G : there is an element of the form (a, ·) ∈ X
∀b ∈ G : there is an element of the form (b, ·) ∈ Y

(a, c) ∈ X =⇒ (c, a) ∈ X
(b, d) ∈ Y =⇒ (d, b) ∈ Y

The claim is true for the top-most step of the decomposition because in that case X = Y = G2.
Now we proceed by induction and consider a decomposition step, in which f : X × Y → G

is decomposed (without loss of generality) as X = X1 ∪ X2. We will show that the inductive
hypothesis holds with respect to X1 — a symmetric argument holds with respect to X2 (and for
the case where the decomposition is on Y instead of X). Start by taking an arbitrary (a, c) ∈ X1.

• Take an arbitary r ∈ G, and (by the inductive hypothesis on Y ) any element of the form
(1, d) ∈ Y (where 1 refers to the identity in G). Observe that

f
(

(a, c), (1, d)
)

= acd = a(rr−1)cd = (ar)1(r−1c)d = f
(

(ar, r−1c), (1, d)
)

This implies that (a, c) and (ar, r−1c) must be in the same part X1 of the decomposition.
Hence X1 contains an element of the form (ar, ·) for all r ∈ G.
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• By the inductive hypothesis on Y , take any element of the form (a−1, d) ∈ Y . Observe that:

f
(

(a, c), (a−1, d)
)

= aa−1cd = cd = ca−1ad = f
(

(c, a), (a−1, d)
)

This implies that (a, c) and (c, a) must be in the same part X1 of the decomposition. That
is, (c, a) ∈ X1 as well.

We now claim that G must be abelian. Take an arbitrary s, t ∈ G. By the decomposability of
f , there is a restriction X × Y ⊆ G2 × G2 where (s, t) ∈ X and (1, 1) ∈ Y and f is constant over
X × Y . By the property we just proved, we also have (t, s) ∈ X. Since f is constant over X × Y ,

we must have f
(

(t, s), (1, 1)
)

= ts = st = f
(

(s, t), (1, 1)
)

. Since this argument holds for arbitrary

s, t ∈ G, the group is abelian.

Corollary 8. If there is a protocol for n-party G-product, secure in the presence of semi-honest
adversaries, and n ≥ 4, then G is abelian.

Proof. Suppose there is such a protocol π for n ≥ 4 parties. Consider the following 4-party protocol
π′: Each party simply runs π on its input, except for P4 who plays the role of parties P4, . . . , Pn
in π, and runs the parties P5, . . . , Pn each with input 1 ∈ G. The resulting protocol π′ is a secure
4-party G-product protocol, so G is abelian.
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