
Quantum Collision-Finding in Non-Uniform Random
Functions

Marko Balogh1, Edward Eaton2, and Fang Song3

1Department of Physics, Portland State University marko_balogh@me.com
2Department of Combinatorics and Optimization, University of Waterloo

eeaton@uwaterloo.ca
3Department of Computer Science, Portland State University fang.song@pdx.edu

Abstract

We give a complete characterization of quantum attacks for finding a collision in a non-
uniform random function whose outputs are drawn according to a distribution of min-entropy
k. This can be viewed as showing generic security of hash functions under relaxed assumptions
in contrast to the standard heuristic of assuming uniformly random outputs. It also has ap-
plications in analyzing quantum security of the Fujisaki-Okamoto transformation [TU16]. In
particular, our results close a gap in the lower bound left open in [TTU16].

Specifically, let D be a min-entropy k distribution on a set Y of size N . Let f : X → Y be a
function whose output f(x) is drawn according to D for each x ∈ X independently. We show
that Ω(2k/3) quantum queries are necessary to find a collision in f , improving the previous
bound Ω(2k/9). In fact we show a stronger lower bound 2k/2 in some special case. For all cases,
we also describe explicit quantum algorithms that find a collision with a number of queries
matching the corresponding lower bounds.

1 Introduction

Hash functions are central and prominent in modern cryptography, and there have been many
ingenious designs of cryptographic hash functions [Riv92, NIS95, BDPA07, NIS14]. Despite being
deterministic functions that efficiently compute a short digest of long input strings, they exhibit
certain random behavior. In particular, a cryptographic hash function H is believed, backed with
intensive tests in practice, to be collision resistant. Namely, it should be computationally unfeasible
to find a collision, which is a pair of distinct input strings (x, x′) with H(x) = H(x′). Because of
these nice features, hash functions are being used in numerous cryptographic constructions and
applications, e.g., protecting passwords [PHC12], constructing message authentication codes and
digital signature schemes, as well as various crypto-currencies exemplified by BitCoin [Nak08].

Theoretical analysis of a hash function H often refers to generic security, where one ignores the
internal designs of H and views it as a black box. Moreover, the output of H is assumed to have
been drawn uniformly at random from some codomain of size N . The complexity of finding a
collision is then measured by the number of evaluations of H , i.e., queries to the black box. By the
well-known birthday bound, Θ(

√
N) queries are both sufficient and necessary to find a collision

in H . This principle is extended and formalized as the random oracle model, in which a hash
function is treated as a truly random function that is publicly available but only through oracle
queries [BR93]. This heuristic has been widely adopted to construct more efficient cryptosystems
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and facilitate security reduction proofs which are otherwise challenging or even impossible [BR94,
FO13].

However, in reality, there are attacks that perform significantly better than the plain birthday
attack. The recent explicit break of full SHA-1 by Google [SBK+17], where two PDF files can
be generated that collide on the same 160-bit digest, only takes ∼ 261 hash evaluations instead
of 280. Stronger attacks like these are possible because the internal structure of H may create
opportunities for more effective cryptanalysis. A natural reaction would be to open up the “black
box” and take into account the inner workings when analyzing a hash function. Clearly a case-by-
case study of every existing and new construction will require much more work. Alternatively,
can we prove generic security bounds, but under relaxed and/or more accurate assumptions?

The approaching era of quantum computing will make these challenges far more pressing.
The power of quantum computers, while promising in accelerating the resolution of fundamental
problems in many areas such as chemistry, biology, etc., represents a tremendous threat to cryptog-
raphy. Many public key cryptosystems will be broken due the Shor’s efficient quantum algorithm
for the factoring and discrete logarithm problems upon which they are based [Sho97]. In addition,
new features of quantum adversaries are difficult and subtle to deal with, especially in the setting
of cryptographic protocols. In fact a lot of classical security analyses become inapplicable or even
fail completely in the presence of quantum adversaries [CSST11, Wat09, HSS11].

Pertaining to hash functions, a quantum adversary naturally has the ability to implement the
hash function as a quantum circuit and hence evaluate it in quantum superposition. In other words,
if H is treated as a black box, it is reasonable to give a quantum adversary superposition-access
to H by querying H on any set of input strings in the form:

∑
x αx|x, 0〉 7→

∑
x αx|x,H(x)〉. Al-

though this does not allow the adversary to learn the entire set of hash values in one query, an
immediate difficulty one may notice is the failure of the “lazy sampling” trick, where one can sim-
ulate a random function by sampling random responses on-the-fly. In fact, a lot of effort has been
devoted to extending the results and useful techniques in the classical random oracle model to the
quantum setting (formalized as the quantum random oracle model) [BDF+11, Zha15b, ARU14].
Notably, Zhandry [Zha15a] shows that O(N1/3) quantum queries are enough to find a collision
in a uniformly random function. The same amount Ω(N1/3) is also proven to be necessary. This
establishes the generic security of hash functions when treated as truly random black-box func-
tions. But as classical attacks illustrated, the assumption of uniform randomness is sometimes
too optimistic and risky. Any non-uniformity may well be exploited in practice by quantum
adversaries. Such concerns are becoming more pressing due to recent breakthroughs in phys-
ical realizations of quantum computers1. Optimized architectures are also reducing the cost of
implementing quantum algorithms (see for example an estimation of Grover’s quantum search
algorithm [ADMG+16]).

This motivates the question we study in this work: what is the complexity of finding a collision in a
non-uniform random function, under quantum attacks in particular? Specifically we consider a distri-
bution Dk on set Y which has min-entropy k, i.e., the most likely element occurs with probability
at most 2−k. We want to find a collision in a function H : X → Y where for each x ∈ X , H(x) is
drawn independently according to Dk. We call it a rand-min-k function hereafter. Note that if Dk

is uniform over Y (hence |Y | = 2k), this becomes the standard uniformly random function. Given
H as a black-box, we are interested in the number of queries needed by a quantum algorithm to
find a collision in H . As a result, this will establish the generic security of hash functions under a
relaxed condition where the outputs of a hash function are drawn from a distribution of min-entropy

1See recent announcements of IBM Q 16-qubit chip and prototype 17-qubit commercial quantum chips [IBM17], as
well as Google’s testing of a 22-qubit chip and projection of 50-qubit chip [Mar17].
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k rather than uniformly random. This condition in some sense matches our intuition of a good
hash function more closely. Roughly speaking, a designer will only need to make sure that there
is no single value y ∈ Y that has a large set of preimages (i.e., f−1(y) := {x ∈ X : f(x) = y} with
|f−1(y)| ≤ 2k), which could be more realistic and easier to check. In contrast, modeling a hash
function as a uniformly random function would require certain regularity such that the preimage
set of every codomain element has the same size on average, which may be difficult to justify and
test in practice. We also note that a concrete application of collision finding in rand-min-k func-
tions appears in the famous Fujisaki-Okamoto transformation [FO13], whose quantum security
has been studied in [TU16].

Classically, it is not difficult to derive a variation of the birthday bounds, which gives Θ(2k/2)
as the query complexity in typical cases. In the quantum setting, Targhi et al. [TTU16] proves
that Ω(2k/9) queries are necessary for any quantum algorithm to find a collision with constant
probability. Notice that compared to the tight bound 2k/3 in the uniform case, the bound is unlikely
to be optimal and the gap seems significant. In addition, no quantum algorithms are described or
analyzed formally, although it is natural to conjecture that the 2k/3 upper bound for uniform case
should carry through. Overall, our understanding of finding a collision in non-uniform random
functions is far from satisfying as far as quantum attacks are concerned.

1.1 Our contributions

In this work, we provide a complete characterization of the complexity of finding collisions in a
rand-min-k function when it is given as an oracle to a quantum algorithm. In all cases, we are able
to prove matching upper and lower bounds. The results are summarized in Table 1.

Dk M,N, k settings Upper bound Lower bound

All M = o(β1/2) (inj. by Lemma 2.11) ∞ ∞
All M = Ω(β1/2) β1/3 (Thm. 4.2) 2k/3 (Cor. 3.4)

flat-k M = Ω(2k/2) 2k/3 (Thm. 4.2) 2k/3 (Cor. 3.4)
δ-min-k M = Ω(N1/2), 2k ≤ N < 23k/2 N1/3 (Thm. 4.2) N1/3 (Cor. 3.11)

M = Ω(N1/2), 23k/2 ≤ N < 22k 2k/2 (Thm. 4.4) 2k/2 (Cor. 3.11)
M = Ω(2k), N ≥ 22k 2k/2 (Thm. 4.4) 2k/2 (Cor. 3.11, also Cor. B.3)

Table 1: Summary of quantum collision finding in rand-min-k functions. β := 1
Pr[x=y:x,y←D] is the

collision variable, which equals 2k for flat-distributions (i.e., uniform on a subset of size 2k), and
lies in [2k, 22k] for δ-min-k distributions (i.e., peak at one element, and uniform elsewhere), as well
as for general δ-min-k distributions.

To highlight a few, a simple special case is the flat distribution which is uniform on a subset of
size 2k. In this case, not surprisingly, the same bound 2k/3 for the uniform random function holds.
Another special case, which represents the hardest instances, concerns the δ-min-k distributions,
where there is a mode element with probability mass 2−k and the remaining probability mass is
distributedly uniformly throughout all of the codomain. Here we basically show that 2k/2 queries
are both sufficient and necessary. In general, the complexity is characterized by the collision variable
β(D) for a distribution D, which is the reciprocal of the probability that two independent samples
from D collide. We prove a generic upper bound β1/3, and a lower bound 2k/3 (corresponding
to the case of flat distributions). For comparison, one can show that classically Θ(β1/2) precisely
depicts the hardness of finding a collision, which we also derive for completeness by adapting the
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birthday bound to the min-k setting.
Technical overview. For the generic lower bound 2k/3, we follow the natural idea of reducing from
collision finding in uniform random functions (Theorem 3.3). We describe a sequence of reduc-
tions showing that finding a collision in uniform random functions of codomain size 2k reduces to
that in flat distributions, and then to general min-k distributions. Therefore the 2k/3 lower bound
follows. To illustrate our new approach, we review that in [TTU16], they extract close-to uniform
bits from the output of a rand-min-k function f by composing f with a universal hash function h.
Note that a collision in f is also a collision in h ◦ f . In addition, h ◦ f can be shown to be quantum
indistinguishable from a uniformly random function by a general theorem of Zhandry [Zha12],
which relates sample-distinguishability to oracle-distinguishability. Therefore any adversary for
rand-min-k can be turned into an adversary for h ◦ f , which is close to the uniform case. As a
result finding a collision must be hard in h ◦ f . However, the discrepancy between h ◦ f and uni-
form accumulates and gets amplified in the sample-to-oracle lifting step, and this may explain the
loss in their lower bound 2k/9. In contrast, our reductions employ a general randomized collision-
conversion procedure, which perfectly converts a function f drawn according to one distribution
D (e.g., uniform) to a function f ′ distributed according to another distribution D′ (e.g., general
Dk). Therefore an adversary for Dk can be turned into an adversary for the uniform case. The
only downgrade stems from the unfortunate fact a collision in f ′ does not always gives a colli-
sion in f , but we can show that this bad event only occurs bounded constant probability. This is
the main distinction that enables our improvement. Basically, our conversion introduces a condi-
tional probability distribution p(·|z) for each element z in the support of D, under the constraint
that

∑
z p(x|z) should agree with the probability of sampling x according to D′. Therefore given

a function f , whose output z is drawn according to D, we perform a sub-sampling according to
p(·|z) to define the output of f ′. Then f ′ will be the correct distribution according to D′. The
conversion may not be time efficient, but it preserves query complexity in the oracle model.

We note that along the same lines, it is possible to demonstrate that finding collision in δ-min-k
distributions is the hardest case. In fact, we are able to establish rigorously a strengthened lower
bound in this case (Theorem 3.10). Our proof proceeds by first proving a distinguishability result
between a random δ-min-k function on codomain of size N and a uniformly random function on
the same codomain, and then the lower bound in the uniform case will translate to a lower bound
for the δ-min-k case. The exact bounds vary a bit for different relative sizes between N and k.

Establishing upper bounds is relatively easy (Theorem 4.2). We adapt the quantum algorithm
of [Zha15a] in the uniform case. Basically we partition the domain of a rand-min-k function f into
subsets of proper size, so that when restricting f on every subset, it contains a collision with at least
constant probability. Next, we can invoke the collision finding algorithm by Ambainis [Amb07]
on each restricted function, and with a few iterations, a collision will be found.

Moreover, we give alternative proofs showing the lower bound for δ-min-k distributions (The-
orem B.1) and upper bound for all min-k distributions (Theorem 4.4). They are helpful to provide
more insights and explain the bounds intuitively. Specifically, we reduce an average-case search
problem, of which the hardness has been studied [HRS16], to finding collision in a δ-min-k ran-
dom function. On the other hand, when the mode element of a min-k distribution is known, we
show that applying Grover’s quantum search algorithm almost directly will find a collision within
O(2k/2) queries. This actually strengthens the upper bound above in some parameter settings.

1.2 Discussion

Collision finding is an important problem in quantum computing, and we mention a few more
in the literature. Brassard et al. [BHT97] give a quantum algorithm that finds a collision in any
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two-to-one function f : [M ] → [N ] with O(N1/3) quantum queries. Ambainis [Amb07] gives an
algorithm based on quantum random walks that finds a collision usingO(M2/3) queries whenever
there is at least on collision in the function. Aaronson and Shi [AS04] and Ambainis [Amb05]
give a Ω(N1/3) lower bound for a two-to-one function f with the same domain and co-domain
of size N . Yuen [Yue14] proves an Ω(N1/5/polylogN) lower bound for finding a collision in a
uniformly random function with codomain at least as large as the domain. This is later improved
by Zhandry [Zha15a] to Θ(N1/3) and for general domain and codomain as we mentioned earlier.

We stress that typically in quantum computing literature, the lower bounds are proven for
the worst-case scenario and with constant success probability. This in particular does not rule
out adversaries that succeed with inverse polynomial probability which is usually considered a
break of a scheme in cryptography. Hence a more appropriate bound in cryptography would
be showing the number of queries needed for achieving any (possibly low) success probability,
or equivalently upper bounding the success probability of any adversary with certain number of
queries. Our results, as in [Zha15a, TTU16], are proven in the strong sense that is more applicable
in cryptographic settings.

Our work leaves many interesting possible directions for future work. One immediate unsatis-
fying feature of our collision-conversion reductions is that they may take a long time to implement.
Can they be made time efficient? We have been mainly concerned with finding one collision; it
is interesting to investigate the complexity of finding multiple collisions in a non-uniform ran-
dom function. There are other important properties of hash functions such as preimage resistance
and second-preimage resistance, which are both weaker than and implied by collision resistance.
Hence, our lower bound results also demonstrate the hardness of finding a preimage and second
preimage. But they are not necessarily tight, and finding out the optimal quantum algorithms
for solving them is also crucial. Finally, we note that a stronger notion for hash functions called
collapsing has been proposed which is very useful in the quantum setting [Unr16]. Can we prove
that rand-min-k functions are collapsing? Note that a uniform random function is known be col-
lapsing, and more recently it has been shown that the sponge construction in SHA-3 is collapsing
(in the quantum random oracle model) [CBHS17, Unr17].

2 Preliminaries

Here we introduce the reader to a few important notations and definitions. We also discuss some
basic results concerning the collision probability and birthday bound in min-k distributions.

We consider functions f : X → Y for some arbitrary X and Y and use Y X to denote the set
of all such functions. The notation f ← Y X indicates that f is a function sampled uniformly from
Y X . In general, we consider distributions on the co-domain Y . The notation f ← DX indicates
that f is a function from X to Y sampled from the distribution of functions induced by sampling
each image independently from a distribution D on Y .

Definition 2.1 (Min-Entropy). Let D be a distribution on some set Y . Let D(y) denote the prob-
ability mass corresponding to a y ∈ Y under distribution D. D is said to have min-entropy k if
k = −log2(maxx∈X{D(x)}). We refer to a distribution of min-entropy k as a min-k distribution or
simply a k-distribution.

Definition 2.2 (Flat-k-Distribution). We call a k-distribution D on set Y with support S a flat-k-
distribution, denoted Dk,[, if the cardinality of S is exactly 2k. It follows that ∀x ∈ S, D(x) = 2−k.

Definition 2.3 (δ-k-Distribution). We call a k-distribution D on set Y a δ-k-distribution if there is
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a unique m ∈ Y such that ∀y ∈ Y

D(y) =

{
2−k if y = m ;

1−2−k
|Y |−1 otherwise ,

and may denote such a distributionDk,δ. Notice thatm is the mode ofD, sinceD has min-entropy
k. The support of D is the entire set Y , and remaining probability mass 1 − 2−k is distributed
uniformly among all elements in Y other than the mode.

Definition 2.4 (Function of min-entropy k). Let D be a distribution with min-entropy k on some
set Y . Let f : X → Y be a (in general non-uniformly) random function such that the image of
each input under f is an independent random sample from set Y according to distribution D. We
denote sampling of a function in this way as f ← DX . We say that f is a function of min-entropy
k.

Definition 2.5 (Collision Problem). Let f : X → Y be a function of min-entropy k, whose images
are distributed according to D. A pair of elements x1 ∈ X and x2 ∈ X such that x1 6= x2 and
f(x1) = f(x2) is called a collision in f . We refer to the problem of producing such a pair as the
collision finding problem or collision finding problem inD. Suppose an algorithmA outputs a collision
in f . Then we say that A has solved collision finding in D.

Definition 2.6 (Quantum Oracle Access). SupposeO is an oracle for some function f . SupposeA is
a quantum algorithm which can submit queries toO in a quantum superposition (called a quantum
query) and receiveO’s responses in a quantum superposition. Specifically,A can implementO as a
unitary transformation

∑
αx,y,z|x, y, z〉 7→

∑
αx,y,z|x, y+f(x), z〉. Then we say thatA has quantum

oracle access to f and denote this as Af .

2.1 Collision probability and birthday bound

For a discrete probability distribution D on set Y , let D(y) be its probability mass function. The
support of D is Supp(D) = {y ∈ Y : D(y) > 0}.

Definition 2.7. The collision probability of a probability distribution D is defined to be the proba-
bility that two independent samples from D are equal. Namely

CP(D) := Pr
y1,y2←D

[y1 = y2] =
∑
y∈Y

D(y)2 .

Define β(D) := 1
CP(D) to be the reciprocal of the collision probability. It will be an important

variable determining the complexity of collision finding. We characterize β(D) for min-k distri-
butions.

Lemma 2.8. Let Dk be a min-k distribution on set Y with |Y | = N , k ≥ 1 and N ≥ 2k.

• If Dk is a flat-k distribution, β(D) = 2k.

• For δ-min-k distribution Dk,δ, β(Dk,δ) ≈
{

N if N < 22k ;
22k if N ≥ 22k .

• For a general min-k distribution Dk, β(Dk) ∈ [2k, 22k].
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Proof. For flat-k Dk, Dk(y) = 1
2k

for y ∈ Y ′ ⊆ Y with |Y ′| = 2k. Hence β(Dk) = 1∑
y∈Y ′ 2

−2k = 2k.

For Dk,δ distribution

β(Dk,δ) =
1

CP(Dk,δ)
=

1

2−2k + (1−2−k)2
N−1

=
22k(N − 1)

N − 2 · 2k + 22k
≈ 22k ·N

22k +N
.

By considering different range of N , we obtain the estimation for β(Dk,δ) in the lemma.
For generalDk, it is easy to observe that 2−2k ≤ CP(Dk) ≤ 2−k and hence β(Dk) ∈ [2k, 22k].

A few useful lemmas by Wiener [Wie05]. Let D be a discrete probability distribution. Let RD
be the random variable denoting the number of i.i.d. samples fromD when a collision appears for
the first time.

Lemma 2.9. ( [Wie05, Theorem 3]) Let q ≥ 1 be an integer and γq := q−1√
β(D)

Pr(RD > q) ≤ e−γq(1 + γq) .

An immediately corollary follows.

Corollary 2.10. There is a constant c > 2 such that if q ≥ c
√
β(D), and let y1, . . . , yq be i.i.d. samples

from D. Let COLq(D) be the event that yi = yj for some i, j ∈ [q]. Then Pr(COLq(D)) ≥ 2/3 .

Proof. Let E be the event that yi = yj for some i, j ∈ [q]. Then

Pr[E] ≥ 1− Pr[XD > q] ≥ 1− e−γq(1 + γq) ≥ 2/3 ,

when q ≥ c
√
β(D) because 1+γq

eγq < 0.3 whenever γq = q−1√
β(D)

> 2.

We can also derive an upper bound on Pr[COLq(D)] by standard approach.

Lemma 2.11. Pr[COLq(D)] ≤ q2

β(D) .

Proof. For any pair i ∈ [q] and j ∈ [q], Let COLij be the event that yi = yj . Then Pr[COLij ] =
CP(D). Therefore by union bound, we have

Pr[COLq(D)] = Pr[∪i,j∈[q]COLij ] ≤
(
q

2

)
· CP(D) ≤ q2

β(D)
.

As a result, when q = o(
√
β(D)), essentially no collision will occur. Namely q needs to be

Ω(
√
β(D)) to see a collision, which we have seen is also sufficient by Corollary 2.10. This is sum-

marized below as a birthday bound for general distributions.

Theorem 2.12. Θ(
√
β(D)) samples according toD are sufficient and necessary to produce a collision with

constant probability for any classical algorithms.
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3 Lower bounds: finding a collision is difficult

To prove our query complexity lower bounds, we make use of proof by reduction. First we recall
the hardness result for uniform distributions shown by Zhandry [Zha15a].

Lemma 3.1 ([Zha15a] Theorem 3.1). There is a universal constant C such that the following holds. Let
f : [M ] → [N ] be a uniformly random function. Then any algorithm making q quantum queries to f
outputs a collision in f with probability at most C(q + 1)3/N .

We show that collision finding in any min-k distribution is at least as difficult as collision
finding in a uniform distribution on a set of size 2k. We begin by demonstrating a reduction of
collision finding in a uniform distribution to collision finding in a flat-k distribution. Then we
show a reduction of collision finding in a flat-k distribution to collision finding in a general k-
distribution. These reductions show that any algorithm which is not able to solve collision finding
in a uniform distribution on a set of size 2k is also not able to solve collision finding in any k-
distribution. Namely we prove the following. Note that we write all of the constant factors in the
probabilities as C, even though they will not all take the same numerical value, in recognition that
they are not interesting for the study of asymptotic query complexity.

Theorem 3.2. Let fflat ← DX
k,[ be a random function whose outputs are chosen according to a flat-k-

distribution Dk,[. Then any algorithm making q queries to fflat outputs a collision with probability at most
C(q + 1)3/2k, for some constant C.

Theorem 3.3. Let fD ← DX be a random function whose outputs are chosen according to a distribution
D of min-entropy k. Then any algorithm making q queries to fD outputs a collision with probability at
most C(q + 1)3/2k, for some constant C.

Corollary 3.4. Any quantum algorithm needs at least Ω(2k/3) queries to find a collision with constant
probability in a random function fD ← DX whose outputs are chosen according to a distribution D of
min-entropy k.

Each of the reduction proofs describe an algorithm (which we may refer to as ’the reduction’)
attempting to find a collision in a random function f to which it has oracle access. The algorithm
will run as a subroutine another algorithm which is capable of finding a collision in another ran-
dom function g when given oracle access to g. Therefore, the proofs must account for how the
reduction algorithm satisfies two requirements:

a. it interacts with the subroutine algorithm in such a way that, from the perspective of the
subroutine, the subroutine is interacting with an oracle for the random function g; and

b. the collision in g returned by the subroutine can be converted into a collision in f with
sufficiently high probability.

The way the reduction satisfies requirement b by necessity depends on the way it satisfied re-
quirement a, since converting a collision in g into a collision in f necessarily depends on how the
values of g are generated from the values of f . Hence a single procedure should be used by the
reduction to satisfy both requirements. We will refer to such a procedure as a collision-conversion
procedure. Intuitively, a collision-conversion procedure is an algorithm that in some way processes
the responses of the an oracle f so that its output (perfectly) simulates an oracle for g, and then
inverts that process to convert a collision in g into a collision in f . A describes a conversion pro-
cedure (flat distribution to arbitrary min-k distribution) with visual aides. The formal definition
follows.
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Definition 3.5 (pD→D
′

collision-conversion procedure ). Let C be an algorithm that is given access
to an oracle f whose responses are distributed according some distribution D. For each unique
query submitted to it, C returns an independent random sample drawn according to some dis-
tribution D′. Furthermore, when given as input a pair (x1, x2), C returns either some collision in
f , (x′1, x

′
2), in which case we say C succeeds, or returns ⊥ otherwise. Then we call C a collision-

conversion procedure from D to D′. We say C succeeds with probability at least p if the conditional
probability that C succeeds, given that C’s responses to queries x1 and x2 were equal, is at least p,
regardless of the values x1 and x2.

We assume the following about the conversion procedure and hence the reductions:
• The reduction has a full description of the distribution in which the subroutine can solve

the collision problem, since it is possible that an adversary will have some or even all infor-
mation relating to the image distribution of the function it is attacking. Formally, suppose
the subroutine solves the collision problem in D, a distribution on Y . We assume that the
reduction has perfect knowledge of the probability mass function D(y) for all y ∈ Y . .

• The reduction has access to a “sufficiently large” amount of randomness. While we will be
more explicit about this later, the intuition is that the reduction will need to sample from
some distribution D. As we will not put any restriction on this distribution (other than hav-
ing min-entropy k), it is not clear how much randomness is needed to sample from it. How-
ever it is clear that a large but finite amount of randomness is sufficient to sample arbitrarily
close to this distribution.

• The reduction is not computationally limited. It is conceivable that an adversary with ad-
vance knowledge of the function it is attacking may perform an exponential amount of pre-
computation to speed up collision finding.

We give an simple example below that converts from uniform to a flat distribution.

Algorithm 1 Collision-conversion: uniform to flat
Input: Let f : X → Y , where |Y | = 2k, be a uniformly random function.

1: Upon initialization, prepare any injective mapping g : S → Y . This can be done by randomly
sampling from Y , without replacement, for each element in S.

2: For each query x, forward the query to the oracle f which C has access to, and respond with
g−1(f(x)).

3: When a pair (x1, x2) is received, output (x1, x2).

This is indeed a collision-conversion procedure from a flat-k-distribution to a uniform distri-
bution on a set of size 2k. Since g is a permutation, g−1 will map a uniform element of Y to a
uniform element of S. Since f(x) is, by the definition of a uniformly random function, a uniform
element of Y , g−1(f(x)) is a uniform element of S. This means that the distribution of g−1(f(x)) is
the flat-k-distribution on support S. Therefore, when queried, C returns an independent random
sample from the flat-k-distribution, as required. If the responses of C to the queries x1 and x2 are
equal, then g−1(f(x1)) = g−1(f(x2)). Since g is a permutation, this implies f(x1) = f(x2). Hence
the conditional probability that f(x1) = f(x2) given that the responses of C to the queries x1 and
x2 are equal is 1, so C is a collision-conversion procedure from a flat-k-distribution to a uniform
distribution on a set of size 2k which succeeds with probability 1.

We describe the procedures as fundamentally classical algorithms. This is especially visible
in the fact that individual queries are processed sequentially by oracles and the algorithms that
interact with them. The definition of a collision-conversion procedure above is also implicitly

9



classical in this way. Nonetheless, the reductions below can easily be generalized to the quantum
setting because nowhere do the reductions utilize knowledge of the characteristics of the set of
prior queries and responses. This is an important feature because quantum algorithms can query
an oracle on a superposition of inputs and receive the responses in a superposition. Hence any sort
of dynamic behavior in which an oracle’s response depends on some analysis of prior behavior
is not possible in the quantum setting. The fact that the reductions we present below can be
(with the exception of the final step) parallelized over the set of all possible queries indicates their
compatibility with quantum computing.

We begin by showing some reusable general results that will allow us to quickly construct
reductions and extend query complexity lower bounds by simply demonstrating the existence of
a satisfactory collision-conversion procedure for use in each reduction.

Lemma 3.6. Suppose there exists an algorithmA which solves collision finding in a particular distribution
DA with probability at least PA, using q queries to an oracle whose responses are distributed according to
DA. Suppose there exists a collision-conversion procedure fromDA to a distributionDR that succeeds with
probability at least p . Then there exists an algorithm which solves collision finding in DR with probability
at least p · PA using q queries to an oracle whose responses are distributed according to DR.

Proof. We describe such an algorithm, which we call R for reduction. Upon initialization, run A
and the collision-conversion procedure, which we call C, simultaneously. Let fR denote the oracle
whose responses are distributed according to distribution DR. Grant C access to the oracle fR
and access to all other resources available to the reduction. For each of A’s queries, forward the
query to C, and return C’s response back to A. When A outputs a collision candidate, forward the
collision candidate to C. Return the output of C.

That this algorithm works is clear. By the definition of a collision-conversion procedure, the
algorithm A interacts with an oracle (call it fA) whose responses are distributed according to DA.
Hence A runs as usual, producing a collision in fA with probability PA. Again, by the definition
of a collision-conversion procedure, C will return a collision in fR at least half of the time that it
is given collision in fA. It follows that, at a minimum, the probability that R outputs a collision
in fR is p · PA. Observe also that R uses exactly one query for every query used by A. Hence
lemma 3.6 follows.

Corollary 3.7. Suppose there is some upper bound G(q) on the probability that any algorithm making q
queries to an oracle fR, whose responses are distributed according to a distribution DR, finds a collision
in fR. Suppose there exists a collision-conversion procedure from a distribution DA to DR that succeeds
with probability at least p. Then G(q)/p is an upper bound on the probability that any algorithm making q
queries to an oracle fA, whose responses are distributed according to DA, finds a collision in fA.

Proof. This follows directly from contraposition of lemma 3.6. The negation of the consequent
of lemma 3.6 is that the probability that any algorithm solves collision finding in DR using q
queries to an oracle whose responses are distributed according to DR must be less than p · PA.
The negation of the antecedent is that the probability any algorithm solves collision finding in DA
using q queries to an oracle whose responses are distributed according to DA must be less than
PA. Expressing this contrapositive withG(q)/p taking the role of PA gives the above corollary.

Proof of Theorem 3.2 & Theorem 3.3. Both are proven the same way by combining Corollary 3.7 with
Lemma 3.1. For Theorem 3.2, we replace N with 2k, and use the collision-conversion procedure C
described in Algorithm 1.

Likewise Theorem 3.3 follows by combining Corollary 3.7 and Theorem 3.2. All we need is
a conversion procedure C. We give the complete description (Algorithm 4) and explanation of
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why C qualifies as a collision-conversion procedure from a flat-k-distribution to an arbitrary k-
distribution in appendix A.

Finally we remark that it is possible to show a reduction of collision finding in an arbitrary
k-distribution to collision finding in a δ-k-distribution. This is interesting because it affirms that
the δ-k-distribution case is the most difficult out of all k-distributions. The proof is easy to find
by mimicking the proof of theorem 3.2 but replacing all references of 2−k as the probability of
sampling each element from the flat distribution with a general probability D(x), and replacing
the general distribution D with a δ-k-distribution Dδ. This works in the case that no elements in
the support of D are associated with a probability mass less than 1/N . One has to employ the idea
of computational indistinguishability to extend this result to the case that there are some elements
associated with smaller probability mass than 1/N .

3.1 Lower bound for δ-min-k distributions

As noted above, δ-min-k distributions represent the hardest instances for collision finding. In this
section we give further evidence and establish an even stronger bound for finding collision in the
δ-k-distribution case (Theorem 3.10). We first prove the following theorem.

Theorem 3.8. For any q-query algorithm A,∣∣∣∣∣ Pr
f←Dk,δX

(Af (·) = 1)− Pr
f←Y X

(Af (·) = 1)

∣∣∣∣∣ ≤ 8q2/2k + 1/N .

Lemma 3.9. [Zha12, Theorem 7.2] Fix q, and let Fλ be a family of distributions on Y X indexed by λ ∈
[0, 1]. Suppose there is an integer d such that for every 2q pairs (xi, yi) ∈ X × Y , the function pλ :=
Prf←Fλ(f(xi) = yi, ∀i ∈ {1, . . . , 2q}) is a polynomial of degree at most d in λ. Then any quantum
algorithm A making q queries can only distinguish Fλ from F0 with probability at most 2λd2.

Proof of Theorem 3.8. For every λ ∈ [0, 1], define Dλ on Y such that there is an element m ∈ Y with
Dλ(m) = λ and for any y 6= m Dλ(y) = 1−λ

|Y |−1 . Denote Ŷ := Y \{m} Then Define a family of
distributions Fλ on Y X where Fλ := Dλ

X , i.e., the output of each input is chosen independently
according to Dλ.

Consider any sequence {(xi, yi)}2qi=1 pλ := Prf←Fλ(f(xi) = yi, ∀i ∈ {1, . . . , 2q}) = λt( 1−λ
|Y |−1)2q−t ,

where t is the number of occurrences of m in {yi}2qi=1. Clearly pλ is a polynomial in λ with degree
at most 2q.

Notice that F2−k is exactly δ-min-k distribution Dk,δ, and F0 is uniformly random distribution
Y \{m}X . Therefore applying Lemma 3.9, we have that∣∣∣∣∣ Pr

f←Dk,δX
(Af (·) = 1)− Pr

f←Ŷ X
(Af (·) = 1)

∣∣∣∣∣ ≤ 2(2q)2 · 2−k = 8q2/2k .

Notice that the statistical distance between Y X and Ŷ X is 1
2

(
(N − 1)( 1

N−1 −
1
N ) + ( 1

N − 0)
)

=

1/N . Hence
∣∣∣Prf←Dk,δX (Af (·) = 1)− Prf←Y X (Af (·) = 1)

∣∣∣ ≤ 8q2/2k + 1/N .

This allows us to show stronger complexity for finding collision in a δ-min-k random function.
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Theorem 3.10. For any q-query algorithm A,

Pr
f←Dk,δX

[f(x) = f(x′) : (x, x′)← Af (·)] ≤ O
(

(q + 2)2

2k
+

(q + 2)3

N

)
.

Proof. This follows from a simple reduction. Suppose that there is an A with Pr
f←XDk,δ (f(x) =

f(x′) : (x, x′) ← Af (·)) = ε using q queries. Then construct A′ which on input oracle f , runs
A and receives (x, x′) from A. A′ then output 1 iff. f(x) = f(x′). By definition, we have
that Prf←Dk,δX (A′f (·) = 1) = ε. Meanwhile, note that A′ makes q + 2 queries. Therefore by
Zhandry’s lower bound on finding collision in uniform random function (Lemma 3.1), we know
that Prf←Y X (A′f (·) = 1) ≤ O( (q+3)3

N ). Then Theorem 3.8 implies that

ε ≤ O(
(q + 3)3

N
) + 8(q + 2)2/2k + 1/N = O(

(q + 2)2

2k
+

(q + 3)3

N
) .

Corollary 3.11. Any quantum algorithm needs min{2k/2, N1/3} queries to find a collision with constant
probability. Specifically we need Ω(N1/3) if 2k ≤ N < 2

3k
2 , and Ω(2k/2) when N ≥ 2

3k
2 .

We give an alternative proof in Section B based on a reduction from an average version of a
search problem which is hard to solve from the literature. This may serve as an intuitive explana-
tion of the hardness of non-uniform collision finding. It also connects to the quantum algorithm
we develop in Sect. 4.1 based on Grover’s search algorithm. We describe it in the case that the
domain X is much smaller than the codomain.

4 Upper bounds: (optimal) quantum algorithms

Lemma 4.1. ([Amb07, Theorem 3]) Let f : X ′ → Y be a function that has at least one collision. Then
there is a quantum algorithm ColF making O(|X ′|2/3) quantum queries to f that finds the collision with
constant bounded error.

We derive a generic upper bound for finding collision in any min-k random functions. We
adapt Ambainis’s algorithm and describe a quantum algorithm NU-ColF below.

Algorithm 2 Collision Finding in Non-uniform Function NU-ColF

Input: f ← Dk
X as an oracle. Let s, t be parameters to be specified later.

Output: Collision (x, x′) or ⊥.
1: Divide X in to subsets Xi of equal size (ignoring the boundary case) |Xi| = s.
2: Construct fi : Xi → Y as the restriction of f on Xi.
3: For i = 1, . . . , t, Run Ambainis’s algorithm ColF on fi, and get candidate collision xi and x′i. if
f(xi) = f(x′i), output (xi, x

′
i) and abort.

4: Output ⊥.

Since f is generated according to the min-k distribution, when restricting to any subset Xi, we
can think of drawing each function value independently from Dk. Namely fi ∼ Dk

Xi holds for
all i. Therefore, by Lemma 2.10, we have that when s ≥ c

√
β(D) for some c > 2, fi contains a

collision with constant probability. If that is the case, Ambainis’s algorithm will find a collision
with constant probability using O(|Xi|2/3) = O(β(D)1/3). We only need to repeat t = O(k) times
to succeed except with error negligible in k.
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Theorem 4.2. Assume Let β := β(Dk). Let X be a set with |X| = M = Ω(
√
β). There is a quantum

algorithm NU-ColF that finds a collision in f ← XDk within O(β1/3) queries with constant probability.
Moreover with O(kβ1/3) queries the algorithm succeeds except with probability negligible in k.

More specifically, by our characterization of β(Dk) in Lemma 2.8,
• flat-k: O(β1/3) = O(2k/3) and it is tight (when M = Ω(2k/2)).

• δ-min-k: O(β1/3) =

{
O(N1/3) 2k ≤ N < 22k, tight when N ≤ 23k/2

O(2
2k
3 ) N ≥ 22k

Note that our algorithm NU-ColF is generic, and needs no additional information about Dk.

4.1 Quantum algorithm for min-k distribution with a mode known

We state a version of Grover’s algorithm [Gro96, BBHT96] in a universe of multiple marked items.

Lemma 4.3. Let f : X → {0, 1} be an oracle function and let Zf = |{x ∈ X : f(x) = 1}|. Then there
is a quantum algorithm QSEARCH using q queries that finds an x ∈ X such that f(x) = 1 with success
probability Ω(q2

Zf
|X|).

Algorithm 3 Collision Finding in Non-uniform Function with a mode known NU-ColF-Mode

Input: f ← Dk
X as an oracle. A mode element m of Dk.

Output: Collision (x, x′) or ⊥.
1: Run Grover’s algorithm QSEARCH on f to find x with f(x) = m.
2: Run Grover’s algorithm QSEARCH on f to find x′ with f(x) = m and x′ 6= x.
3: Output ⊥ if any invocations of the Grover’s algorithm fails. Otherwise output (x, x′).

Theorem 4.4. NU-ColF-Mode finds a collision using O(2k/2) queries with constant probability.

Proof. Let Zf := |f−1(m)|. Let pf be the probability that f is chosen, when drawn from Dk
X .

Since we invoke QSEARCH twice, we find (x, x′) with probability Ω
(

(
q2Zf
|X| )2

)
. Then the success

probability of the algorithm NU-ColF-Mode is

∑
f

pfΩ

(
q4

M2
Z2
f

)
= Ω

 q4

M2

∑
f

pfZ
2
f

 = Ω(
q4

M2
E[Z2

f ]) .

To compute E[Z2
f ], we define for every x ∈ X an indicator variable Zx =

{
1 if f(x) = m;
0 otherwise.

,

where f ← Dk
X , and clearly Zf =

∑
x∈X Zx. Since each output of x is drawn independently

according to Dk,δ, E[Zx] = ε := 2−k for all x, it follows that E[Zx] = E[Z2
x] = ε, and E[Zx · Zx′ ] =

E[Ex] · E[Ex′ ] = ε2 for any x 6= x′ by independence. Therefore

E[Z2
f ] =

∑
x

E[Z2
x] +

∑
x 6=x′

E[ZxZx′ ] = Ω(M2ε2) .

Hence the algorithm succeeds with probability Ω(q4ε2) = Ω(( q
2

2k
)2). As a result, with q = O(2k/2)

many queries, we find a collision with constant probability.

Remark 1. Note that we still need M = Ω(
√
β(D)) to ensure existence of collisions. When N ≥

23k/2, Theorem 4.4 gives a better bound (2k/2) than Theorem 4.2 (N1/3 when 23k/2 ≤ N < 22k and
22k/3 when N ≥ 22k).
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A Collision conversion procedure from a flat-k-distribution to an arbi-
trary k-distribution

Algorithm 4 Collision-conversion: flat to arbitrary min-k
Input: Let D be an arbitrary k-distribution on support S. Let Dflat be a flat-k-distribution on

support Sflat. Let C denote the collision-conversion procedure. Upon initialization, C does the
following:

1: Prepare to store a lookup table for a function c : S × Sflat → [0, 1]
2: Sort and label the elements yi of S in order of decreasing probability mass under distribution
D, so that D(y1) = 2−k (by the definition of min-entropy, there must be one or more yi ∈ S
with D(yi) = 2−k)

3: Arbitrarily label the elements zj of Sflat with index j = 1, 2, . . . , 2k.
4: Iterate the following over i = 1, 2, . . . , |S|:

• If D(yi) = 2−k, set c(yi, zi) = 1. Set c(yi, zj) = 0 for all j 6= i. Continue to the i.

• If D(yi) < 2−k, compute
∑i−1

j=1D(yj) (here j is a dummy-index for the sum and is unre-
lated to the labeling of the elements of Sflat) and save the result as the image of i under
a function g : [|S|]→ [0, 1]. Check if g(i) is a multiple of 2−k.

– If so, set c(yi, z((g(i)/2−k)+1)) = 2kD(yi) and c(yi, zj) = 0 for all j 6= (g(i)/2−k) + 1.

– If not, set c(yi, zdg(i)/2−ke) = 2kmin(dg(i)/2−ke−g(i), D(yi)), set c(yi, zdg(i)/2−ke+1) =

2k(D(yi) − min(dg(i)/2−ke − g(i), D(yi))), and set c(yi, zj) = 0 for all remaining
zj ∈ Sflat

5: For each zj ∈ Sflat, construct the set Wj containing all yi ∈ S for which c(yi, zj) 6= 0. Store the
set Wj as the image of zj in a function b : Sflat → P(S).

6: Now C enters the query-response phase. Recall that C has access to an oracle whose responses
are distributed according to Dflat; denote this oracle fflat. Suppose that C is queried on some
x ∈ S. C responds via the following:
• Query fflat on x. Fix some mapping from an index t to each element in b(fflat(x)).

Compute mx(yt) = c(yt, fflat(x)) for each yt ∈ b(fflat(x)). Sample r ← [0, 1]. Note: In
practice, sampling such an r would of course take an infinite amount of randomness. If
we only use a finite amount of randomness, then for some distributions we may intro-
duce some small amount of error. However by increasing this amount of randomness,
we can make this error arbitrarily small such that any q query adversary A cannot de-
tect the error. As we do not care about the efficiency of the reduction C, only the query
complexity, the actual amount of randomness needed for this is not relevant.

• Iterate through i = 1, . . . , |b(fflat(x))| until i has a value such that the following condition

holds:
i∑
t=1

mx(yt) ≥ r. Return yi.

7: Finally, when C receives a pair (x1, x2), it outputs the same pair (x1, x2).

To facilitate intuitive understanding of how C fulfills the requirements of a collision-conversion
procedure, we visualize a distribution D as a rectangle divided into disjoint regions, each region
representing one element of the support S. The total area of the rectangle is 1, representing the
total probability mass in D. For simplicity, consider momentarily a distribution of min-entropy 2
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on a set of size 5, whose elements we label with the first 5 positive integers. In the distribution
represented below, the 1 element has 25% of the probability mass, while the others share the
remaining 75%. Thus 1 is the mode element and its probability mass determines the min-entropy
of the distribution.

1 2 3 4 5 D

Denote the oracle simulated by the query-response phase of C as fD. Before it terminates, C
receives a pair (x1, x2), which it attempts to convert into a collision in fflat. In order to convert
a collision in fD into a collision in fflat, C must map the elements of S into the elements of Sflat.
Additionally, this mapping must be consistent with C’s responses to queries, so that a collision
another algorithm discovers from C’s responses is likely to correspond to a collision in the oracle
fflat.

Clearly, an oracle fD with responses distributed according to D generally cannot be perfectly
simulated by a deterministic mapping of the responses of the oracle fflat. Additional randomness
generally must be added by C because the distribution D may have higher Shannon entropy than
the distribution Dflat, as |S| ≥ |Sflat|. However, the oracle fD can be simulated by treating the
elements of Sflat as ’bins’, each associated with one or more elements of S. In order to generate a
sample from S, a sample from Sflat first selects a ’bin’, and then one of the elements of S associated
with that bin is chosen randomly according a conditional probability distribution such that the
marginal probability of sampling that element is equal to probability associated with that element
under distribution D. This process can be visualized intuitively by vertically aligning rectangular
representations of the distributions Dflat and D. The conditional probability of sampling each
element in S given a bin in Sflat can be illustrated by projecting the dividers between elements in
the rectangle representingD into the space between the two rectangles. We show a trivial example
below, using distributions of min-entropy 1.

1 2 3 D

1 2 Dflat

c(1, 1) = 1 c(2, 2) = 0.5 c(2, 3) = 0.5

The diagram above also illustrates the role played by the function c : S × Sflat → [0, 1]. This
function specifies the conditional probability that C returns a sample of a certain element of S given
that the oracle fflat responded with a certain element from Sflat. Formally, c(y, z) = Pr[fD(x) =
y|fflat(x) = z], where x is a query and fD(x) is C’s response. All that remains of the collision-
conversion procedure then is sampling from the chosen bin according to the conditional probabil-
ities that c(y, z) specifies. The values encoded into the function c therefore make up the non-trivial
part of the protocol.

In the example above, the elements 2 and 3 have a total probability mass of 0.5 in D, so they
can be ’binned’ into element 2 in Dflat. Supposing that element 2 is returned by the oracle fflat, a
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single uniformly random bit would determine whether C will return 2 or 3 as the response of fD,
since each are equally likely under D. If element 1 is returned by fflat, no additional randomness
is needed, as c(1, 1) = 1. This is always the case for the mode element, because its probability
mass underD must exactly equal the probability mass of any of the elements ofDflat, sinceD and
Dflat have equal min-entropy.

This procedure will perfectly simulate responses from an oracle fD whose responses are dis-
tributed according to D, since the marginal probability of sampling each element in this fashion
exactly replicates the associated probability in D. In this simple case, any collision found in fD
will necessarily be a collision in fflat. However, this is not true in general. If the elements of S
cannot be grouped into bins each with total probability mass under D equal to 2−k, then some
elements of S must have their probability mass split among multiple bins. An example of such a
case is shown below.

1 2 3 4 5 D

1 2 3 4 Dflat

In cases like these, it is possible that a pair of identical responses from C, constituting an appar-
ent collision in fD, do not actually originate from identical responses from fflat, and therefore do
not constitute an actual collision in fflat. Luckily, it is possible to construct the function c such that
the probability that a collision in fD corresponds to a collision in fflat is bounded below by one
half, so that C qualifies as a collision-conversion procedure and theorem 3.3 follows. The initial-
ization stage of C contains a general method for constructing such a function, which we explain
now.

The first step is to sort the elements of S in order of decreasing probability under distribution
D. The utility of this is that it guarantees that any elements of S which can be trivially associated
with an element in Sflat, because they have a probability mass equal to 2−k, are mapped to a single
element in Sflat with probability 1.

Next, C iterates over the elements yi of S, setting the value of c(yi, zj) for all elements zj of
Sflat for each. This may be visualized as moving across the rectangular representations of D and
Dflat from left to right, determining the values of the collision conversion function along the way.
If the probability mass of yi under D is 2−k, then all of its probability mass is associated with the
element in Sflat with the same index, so c(yi, zi) = 1 (and of course zero for all other zj). If the
probability mass corresponding to yi in D is less than 2−k, then the probability mass from yi will
not ’occupy’ an entire bin in Dflat, so it must share a bin with other elements of S. But if the
current bin is already partially occupied, it may be the case that the probability mass of yi has to
be split between the current bin and the next bin, where the ’current bin’ and ’next bin’ refer to the
elements of Sflat which, at this point in execution of C, have the highest index out of the elements
for which c has already been assigned and the lowest index out of the elements for which c has
not already been assigned, respectively.

To check whether this is the case, C computes the total probability mass in S that has already
been assigned, which it saves as g(i), and checks whether this value is a multiple of 2−k. If it is,
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then the current bin must be completely occupied, and the probability mass corresponding to yi
will fit completely inside the next bin. The next bin will in this case be indexed by (g(i)/2−k) + 1.
If g(i) is not a multiple of 2−k, then the probability mass from element yi may need to be split be-
tween the current bin and the next bin. In this case, the index of the current bin will be dg(i)/2−ke,
because for example if g(i)/2−k = 2.1 then the first two bins are completely occupied, and one
tenth of the third bin is completely occupied, making the index of the current bin 3. The index
of the next bin will thus be the index of the current bin plus one. The value of c(yi, zdg(i)/2−ke),
representing the conditional probability of sampling yi given the current bin has been sampled
from Dflat, is set to 2kmin(dg(i)/2−ke − g(i), P (yi)). The minimum function guarantees that if it
is possible to fit all the probability mass from yi into the current bin then this is done, and if not,
whatever probability mass can fit into the current bin is assigned to the current bin. Naturally,
whatever probability mass is not assigned to the current bin must be assigned to the next bin, to
conserve marginal probability. The factors of 2k come from the denominator of 2−k in the condi-
tional probability. Continuing like this, the entire collision-conversion function is constructed. It
should be clear that the procedure just described would lead to a c function like the one illustrated
below, for the example distribution D which we introduced earlier. In general, the c function that
results from this procedure can be visualized by projecting the dividers between elements in both
rectangles into the space between the two rectangles.

1 2 3 4 5 D

1 2 3 4 Dflat

c(1, 1) = 1

c(2, 2) = 0.75

c(3, 2) = 0.25

c(3, 3) = 0.5

c(4, 3) = 0.5

c(4, 4) = 0.25

c(5, 4) = 0.75

At the end of the initialization stage, for each element in Sflat, C saves the set of all elements in
S which are associated with it via the c function. These sets are saved in a function b and will be
used to ’invert’ (using the term loosely) the c function for the purpose of simulating the responses
of an oracle fD whose responses are distributed according to D.

Now we explain the query-response phase ofC. Suppose x is one of the queries submitted to C.
The query is forwarded to the oracle fflat, and then retrieves the set b(fflat(x)) and the associated
conditional probabilities from values of the c function. Next, all C has to do is sample from the
conditional distribution specified by c. It is simple to verify that the next few steps properly do so
via inverse transform sampling.
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Finally, C outputs whatever pair of elements is given to it. In order to qualify as a collision-
conversion procedure, the probability that C’s output is a collision in fflat conditioned on the fact
that it is given a pair that is a collision in fD must be greater than 1/2. We now show that this is
indeed the case.

Suppose C is given a pair (x1, x2). Let y denote fD(x1), C’s response to query x1, and likewise
let y′ denote fD(x2). Let z denote fflat(x1) and z′ denote fflat(x2). Then the probability that C
succeeds in the sense defined in definition 3.5 can be expressed as Pr[z = z′|y = y′]. In case of any
confusion, we stress that the probability here is taken over the random choice of fflat ← Dk,[

X

and the randomness of C. We derive a property about C, which holds regardless of how it is used
in a reduction with any adversaries under consideration.

Lemma A.1. For any (x1, x2), and the induced (y, y′) and (z, z′) as defined above, Pr[z = z′|y = y′] ≥ 1
2 .

Namely C has success probability at least 1/2, and hence gives a 1
2

Dk,[→Dk conversion procedure.

Proof. By Bayes’ theorem,

Pr[z = z′|y = y′] =
Pr[z = z′]

Pr[y = y′]
Pr[y = y′|z = z′] . (1)

Applying the law of total probability, we may write

Pr[z = z′] =
2k∑
j=1

Pr[z′ = zj |z = zj ] · Pr[z = zj ]

=
2k∑
j=1

Pr[z′ = zj ] · Pr[z = zj ] (z & z′ independent)

=
2k∑
j=1

(2−k)2 = 2−k (definition of a flat-k-distribution) .

Following the same reasoning just used other than the final step, we may also write Pr[y =

y′] =
∑|S|

i=1(D(yi))
2.

Then equation (1) can be rewritten as

Pr[z = z′|y = y′] =
2−k∑|S|

i=1(D(yi))2
Pr[y = y′|z = z′]. (2)

Now we turn our attention to the conditional probability on the right. Applying the law of total
conditional probability, we decompose the conditional probability into a sum over all possible
values of the random variable z, so

Pr[y = y′|z = z′] =
2k∑
j=1

Pr[y = y′|z = z′ ∧ z = zj ] · Pr[z = zj |z = z′].

Applying Bayes’ Theorem again, this time to the conditional expression on the far right, inside the
summand, we get

Pr[y = y′|z = z′] =

2k∑
j=1

Pr[y = y′|z = z′ ∧ z = zj ] ·
Pr[z = zj ]

Pr[z = z′]
· Pr[z = z′|z = zj ].
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Using our prior result for Pr[z = z′], and the fact that all samples according to Dflat have proba-
bility 2−k, we can see that the ration in the above equation must be exactly one. Hence we get

Pr[y = y′|z = z′] =

2k∑
j=1

Pr[y = y′|z = z′ = zj ] · Pr[z′ = zj ] =

2k∑
j=1

Pr[y = y′|z = z′ = zj ] · 2−k.

Once again applying the law of total conditional probability, this time decomposing the condi-
tional probability in the summand into a sum over all possible values of the random variable y,
we get

Pr[y = y′|z = z′] = 2−k
2k∑
j=1

|S|∑
i=1

Pr[y = y′|z = z′ = zj ∧ y = yi] · Pr[y = yi|z = z′ = zj ]

= 2−k
2k∑
j=1

|S|∑
i=1

Pr[y′ = yi|z′ = zj ] · Pr[y = yi|z = zj ].

This step is only possible because y′ and z are independent, so the presence of z′ in the conditional
involving y′ can be ignored. The same goes for y and z′ in the second conditional. Now, recall that
the function c is defined by c(y, z) = Pr[fD(x) = y|fflat(x) = z]. It follows, by the definitions of y,
y′, z, and z′, that each of the factors in the summand are equal to c(yi, zj). Hence we may write

Pr[y = y′|z = z′] = 2−k
|S|∑
i=1

2k∑
j=1

(c(yi, zj))
2,

in which we have reversed the order of summation. From the details of how the values of c are
assigned when C is initialized, the number of j values for which c(yi, zj) is non-zero is either one
(if all of yi’s probability mass is associated with a single bin), or two (if the probability mass is split
over two bins). If, for a given i only one value of j corresponds to a non-zero c(yi, zj), then c(yi, zj)
must be 2kD(yi). But we are interested in the worst case, in order to establish a lower bound. If,
for a given i, two values of j correspond to a non-zero c(yi, zj), then we know that the two values
of c must sum to 2kD(yi). In this case, the sum of the squares of these values will be less than
2kD(yi). We can express this sum as c21 + c22 = c21 + (2kD(yi) − c1)2. The minimum value for this
parabola is 22k−1D(yi)

2, when c = 2k−1D(yi). Therefore we may write,

Pr[y = y′|z = z′] ≥ 2−k
|S|∑
i=1

22k−1(D(yi))
2 = 2k−1

|S|∑
i=1

(D(yi))
2.

Substituting this expression into equation (2), we get

Pr[z = z′|y = y′] ≥ 2−k∑|S|
i=1(D(yi))2

· 2k−1
|S|∑
i=1

(D(yi))
2 =

1

2
.

Therefore we conclude that Pr[C succeeds] ≥ 1
2 .

Hence C satisfies the definition of a collision-conversion procedure from a flat-k-distribution
to an arbitrary k-distribution.
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B Alternative proof of lower bound

Theorem B.1. Suppose |X| = M = o(
√
N). Any q-query quantum algorithm finds a collision in f ←

XDk,δ with probability O(q2/2k).

We prove this by reducing a variant of Grover’s search problem in [HRS16] to finding a col-
lision here. Define the following distribution Eλ on F : X → {0, 1}: if F ← Eλ, then for any
x ∈ X

F (x) =

{
1 with prob. λ ;
0 with prob. 1− λ .

It has been shown in [HRS16] that searching for a preimage of q in a function drawn according
to Fλ is difficult. More precisely, for any quantum algorithm A making q queries, we define its
success probability as

SuccλA,q := Pr
F←Eλ

[F (x) = 1 : x← AF (·)] .

Lemma B.2. ([HRS16, Theorem 1]) SuccλA,q ≤ 8λ(q+ 1)2 holds for any quantum algorithm A making at
most q queries

Proof of Theorem B.1. Let A be any quantum algorithm that makes at most q queries to f ← Dk,δ
X

and finds a collision in f with probability ε. We show how to construct B that solves the above
search problem for λ = 1/2k making 2q queries with probability ε′ = ε − γ and Lemma B.2 then
implies that ε ≤ O(q2/2k).
B is given quantum access to F ← Fλ, and the mode m of Dk,δ. Let h : X → Y \{m} be a

random function 2 It simulates f̂ : X → Y which answers the queries from A:

f̂(x) =

{
m if F (x) = 1 ;
h(x) o.w. .

After A has made q queries to f̂ , A outputs x and x′. B outputs one of them, e.g., x.
Note that B can implement each evaluation of f̂ by two queries to F . Therefore B makes

2q queries to F at most. Next observe that f̂ is distributed identically as f ← XDk,δ , because
Pr[f̂(x) = m] = PrF←Fλ [F (x) = 1] = 1/2k and the rest of f̂(x) is uniform over Y \{m}. Therefore
we know that f̂(x) = f̂(x′) with probability ε. Finally notice that when M = o(

√
N), h will be

injective except with probability negligible in k. Therefore the collision only occurs at the mode,
which implies taht F (x) = 1 and B successfully finds a marked element in F .

Corollary B.3. Any quantum algorithm needs Ω(2k/2) queries to find a collision in XDk,δ with constant
probability even if the mode m of D is known, when M = o(

√
N).

Remark 2. To see that this result is basically subsumed by Theorem 3.10. Note that when N <
22k, β(D) = N . Therefore M = o(

√
N) = o(

√
β(D)), and the function drawn is almost always

injective. Hence the lower bound trivially holds. When N ≥ 22k, Corollary 3.11 gives the same
lower bound 2k/2.

The same proof strategy also works for general M , but then the probability that the collision
occurs elsewhere other than the mode will introduce error, and it will match the bound we obtain
from Theorem 3.10.

2This can be efficiently simulated by a 2q-wise independent hash function as justified by [Zha15a, Theorem 6.1]
and [JKMR09, Lemma 2].
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