# Post-Quantum Key Exchange on FPGAs 

Po-Chun Kuo ${ }^{1,2 a}$, Wen-Ding $\mathrm{Li}^{2 b}$, Yu-Wei Chen ${ }^{1 c}$, Yuan-Che $\mathrm{Hsu}^{1 c}$, Bo-Yuan Peng ${ }^{2 a}$, Chen-Mou Cheng ${ }^{1 a}$, and Bo-Yin Yang ${ }^{2 a}$<br>${ }^{1}$ Department of Electrical Engineering, National Taiwan University, Taipei, Taiwan<br>${ }^{2}$ Institute of Information Science, Acamedia Sinica, Taipei, Taiwan,<br>${ }^{a}\left\{\mathrm{kbj}\right.$, bypeng, doug, by\}@crypto.tw ${ }^{b}$ kvlxu3@gmail.com ${ }^{c}\{r 05921032$, r05921056\}@ntu.edu.tw


#### Abstract

The National Institute of Standards and Technology (NIST) announces the post-quantum crypto project, aiming to select cryptographic standard in the post-quantum era. The key establishment algorithm is one of the most important primitives. At Usenix Security 2016, Alkim, Ducas, Pöpplemann, and Schwabe proposed a post-quantum key exchange scheme called NewHope, based on the ring-learning-with-error (RLWE) problem [ADPS16]. In this work, we propose the first hardware implementation of NewHope. Our implementation requires 12,707 FFs, 19,781 LUTs, 13,025 slice registers, 32 DSPs and 13 BRAMs on Xilinx Zynq-7000 equipped with 28mm Artix-7 7020 FPGA. For NewHope key exchange, the three phase of key exchange costs $75.4,99.1$, and $24.6 \mu \mathrm{~s}$, respectively.


Keywords. Post-quantum cryptography, lattice-based cryptography, LWE, RLWE, key exchange, FPGA implementation.

## 1 Introduction

In the last decade, post-quantum cryptography has drawn widespread interest. Not only will postquantum cryptography potentially save us from the threat from large quantum computers, but also provide provable security in some cases. Lattice-based cryptography is a candidate for postquantum cryptography that provides strong theoretical security gaurantees such as worst-case to average-case reduction. It also provides the initial constructions of many new cryptographic functionalities, e.g., fully-homomorphic encryption [Gen09]. Furthermore, such cryptosystems are usually very efficient. For example, the computation of some public-key encryption based on (Ring-)LWE is faster than RSA/ECC, even though the key size is usually larger [GFS $\left.{ }^{+} 12, \mathrm{FY} 14\right]$.

Recently, National Institute of Standards and Technology (NIST) announces a post-quantum crypto project, aiming to select new standard cryptographic primitives for the post-quantum era [oSN16]. The key establishment algorithm is one of the most important primitives in this project. At Usenix 2016, Alkim, Ducas, Pöpplemann, and Schwabe proposed the NewHope postquantum key agreement scheme, based on the ring-learning-with-error (RLWE) problem [ADPS16]. Google conducted a set of experiments using NewHope on internet through the Google Chrome Canary Browser starting from July, 2016. The results show that NewHope is computationally inexpensive, with only a slight increase in latency for some slow internet connections.

Since the computation of NewHope is more complicated than ECDH/ECDHE, the server load will become heavier [ADPS16,Cho15]. A way to offset this load is to use hardware accelerators, where the computation is off-loaded from CPU. However, application-specific integrated circuits (ASICs) are very expensive, so a more cost-effective way to deploy hardware accelerators is to use Field-Programmable Gate Arrays (FPGAs).

As a result, FPGAs are one of the most popular ways today to deploy hardware accelerators. An FPGA contains an array of programmable logic components and a hierarchy of reconfigurable
interconnects. The popularity of FPGAs can be seen by the fact that soon it will be possible to rent FPGAs from Amazon Web Service (AWS), who has announced their EC2 F1 instance, a kind of computing instances with FPGAs. Therefore, many foresee the use of cloud services with on-demand FPGAs to increase computation resource when load is high.

Why Key Agreement? A key establishment protocol may be one of two types: key agreement or a key transport protocol. However, key agreement is a common way to implement forward secrecy since both side can influence a shared key. This is why public key encryption can not supplant key agreement protocol. Moreover, compare to the key agreement protocol whose shared key is decided by both parties, the shared key in key transport protocol is decided by a single party. This opens the door to problems in implementation. For example, if the randomness source is compromised (e.g. a backdoor is in the random number generator) in the key transport protocol, the key is directly stolen by the adversary. On the other hard, if the randomness of one party in NewHope is compromised, an adversary still has to solve an RLWE problem to get a shared key.

## 2 Background

Notation. Let $\chi$ be a probability distribution over a set $S$. We use $x \stackrel{\S}{\leftarrow} \chi(S)$ to denote $x$ sampled from $S$ according to $\chi$, and $x \stackrel{\$}{\leftarrow} S$ to denote $x$ uniformly sampled from $S$. We define ring $\mathcal{R}=\mathbb{Z}[X] /\left(X^{n}+1\right)$ as the ring of integer polynomials modulo $X^{n}+1$ and $\mathcal{R}_{q}=\mathcal{R} / q \mathcal{R}$ as the ring of $\mathcal{R}$, where each coefficient is reduced modulo $q$.

LWE and RLWE. The LWE problem is first introduced by Regev [Reg09] and can be quantumreduced to certain worst-case lattice problems. Moreover, Peikert [Pei09] and Brakerski et al. [BLP ${ }^{+}$13] further improve the situation by providing classical reductions to lattice problems. LWE based public key cryptosystem is proposed in various variant schemes [ABB10b,ABB10a,Pei09,BV11b,BV11a,LP11]. One important variant of LWE is Ring-LWE, which introdues ring structure into play [LPR10]. The RLWE problem is defined as following: let $s \in \mathcal{R}_{q}$ be the secret, generate $a \stackrel{\$}{\leftarrow} \mathcal{R}_{q}$ and $e \stackrel{\$}{\leftarrow} \chi\left(\mathcal{R}_{q}\right)$, compute $b=a * s+e$, and the search version of RLWE is to find $s$ given a list of $(a, b)$. For the setting of most cryptosystems, only one pair of $(a, b)$ is given.

Post-Quantum Key Exchange. To the best of our knowledge, there are two ways to construct a post-quantum key exchange: lattice-based and isogeny-based. Supersingular isogeny DiffieHellman key exchange is the key exchange scheme based on isogeny [CLN16]. At this point, it is far from being practical, as the running time is typically 100 times larger than similar schemes based on (R-)LWE. Thus, RLWE may be the most practical post-quantum key exchange scheme so far.

The first LWE-based key exchange is proposed by Ding [Din12], subsequently modified by Peikert [Pei14]. At 2015, Bos et al. implemented Peikert's version of RLWE key exchange with a parameter set of their choice [BCNS15]. They also integrated their implementation into the TLS protocol into OpenSSL.

NewHope is the key exchange scheme proposed by Alkim et al. [ADPS16], which further improves the performance from [BCNS15] by choosing a different set of parameters. Their analysis shows that the new scheme still remains secure while using a smaller modulus, efficient noise sampling, and fast reconciliation. The details of NewHope will be introduced in next section.

Frodo is the key exchange scheme based on LWE problem instead of RLWE problem, proposed by Bos et al. after NewHope [ $\left.\mathrm{BCD}^{+} 16\right]$. Without the additional assumption of ring-structure, they selected the parameter with a smaller security margin. Because it based on LWE rather than RLWE, Frodo is still less efficient than NewHope. More precisely, the computation cost of Frodo is around ten times larger, and the communication size is around six times larger than NewHope. However, Frodo is an alternative choice for post-quantum key exchange since RLWEbased cryptosystem might be potentially insecure [ELOS15,CIV16] due to the ring structure.

### 2.1 NewHope Protocol

As mentioned earlier, NewHope is a variant of Ding's and Peikert's protocols [Din12,Pei14]. The protocol is described in Protocol 1. All the variables except for $r \in \mathbb{R}^{4}$ are in the ring $R_{q}=\mathbb{Z}[X] /\left(X^{n}+1\right)$, where $n=1024$ and $q=12289$. This parameter setting is suitable for a number-theoretic transform (NTT) since $q \equiv 1 \bmod 2 n$.

The key idea of the protocol is: Use the property of $\boldsymbol{a s} s^{\prime}+e s^{\prime}=\boldsymbol{b} s^{\prime} \approx u s=a s s^{\prime}+e^{\prime} \boldsymbol{s}$, where Alice can compute the left-hand side part and Bob can compute the right-hand side part. A problem arises in this situation: The codeword is decided by ass', so the rounding technique usually used in a LWE-based cryptosystem does not work. More precisely, the value of ass may be near the boundary between where a point rounds to 0 and where it rounds to 1 . Then Alice and Bob will add different noise vectors, which may lead to different rounding results. The technique to solve this problem is called reconciliation. The main idea is that one party (in NewHope, Bob) sends a hint to the other party (in NewHope, Alice), and the two parties can use the hint to decode the message into the same shared secret. The algorithm to generate hint is shown in Algorithm 1, and the reconciliation algorithm is shown in Algorithm 2.

Finally, to transmit a 256 -bits key with 1024 coefficients, NewHope encodes 1 bit of codeword into 4 coefficients in order to increase the error resilience and (hopefully) better security.

Protocol 1: NewHope Key Exchange Scheme

$$
\begin{aligned}
& \text { Parameters: } q=12289<2^{14}, n=1024 \\
& \text { Error Distribution: } \psi_{16} \\
& \text { Alice (server) Bob (client) } \\
& \text { seed } \stackrel{\$}{\leftarrow}\{0,1\}^{256} \\
& \boldsymbol{a} \leftarrow \operatorname{Parse}(\text { SHAKE-128 }(\text { seed })) \\
& \boldsymbol{s}, \boldsymbol{e} \stackrel{\$}{\leftarrow} \psi_{16} \quad \boldsymbol{s}^{\prime}, \boldsymbol{e}^{\prime}, \boldsymbol{e}^{\prime \prime} \stackrel{\$}{\leftarrow} \psi_{16} \\
& \boldsymbol{b} \leftarrow \boldsymbol{a} \boldsymbol{s}+\boldsymbol{e} \xrightarrow{(\boldsymbol{b}, \text { seed })} \boldsymbol{a} \leftarrow \operatorname{Parse}(\mathrm{SHAKE}-128(\text { seed })) \\
& u \leftarrow \boldsymbol{a} \boldsymbol{s}^{\prime}+\boldsymbol{e}^{\prime} \\
& \boldsymbol{v} \leftarrow \boldsymbol{b} \boldsymbol{s}^{\prime}+\boldsymbol{e}^{\prime \prime} \\
& \boldsymbol{v}^{\prime} \leftarrow \boldsymbol{u s} \stackrel{(\boldsymbol{u}, \boldsymbol{r})}{\longleftarrow} \boldsymbol{r} \stackrel{\$}{\stackrel{H}{ }} \stackrel{\operatorname{HelpRec}(v)}{\leftarrow} \\
& \boldsymbol{v} \leftarrow \operatorname{Rec}\left(\boldsymbol{v}^{\prime}, \boldsymbol{r}\right) \quad \boldsymbol{v} \leftarrow \operatorname{Rec}(\boldsymbol{v}, \boldsymbol{r}) \\
& \boldsymbol{\mu} \leftarrow \text { SHA3-256 }(\boldsymbol{v}) \quad \boldsymbol{\mu} \leftarrow \text { SHA3-256 }(v)
\end{aligned}
$$

### 2.2 Algorithms

Reconciliation We follow [ADPS16] in implementing the reconciliation function. The main idea of the recovery mechanism is to encode and decode over the lattice $\tilde{D}_{4}$, which is the densest lattice sphere packing in dimension 4 so that it provides the lowest failure rate. $\tilde{D}_{4}$ consists the two

```
Algorithm 1: HelpRec
    Parameter : \(r\)-bits reconciliation information
    Input \(: w \in \mathbb{Z}_{q}^{4}\)
    Output : 4 dimension \(r\)-bits reconciliation information \(\left\{0,1, \ldots, 2^{r}-1\right\}^{4}\)
\(1 b \stackrel{\&}{\leftarrow}\{0,1\}\)
\(2 \boldsymbol{x} \leftarrow\left(\frac{2^{r}}{q}\left(\boldsymbol{w}+b \cdot\left(\frac{1}{2}, \frac{1}{2}, \frac{1}{2}, \frac{1}{2}\right)^{t}\right)\right)\)
\(3 \boldsymbol{v}_{0} \leftarrow\lfloor\boldsymbol{x}\rceil\)
\({ }_{4} \boldsymbol{v}_{1} \leftarrow\left\lfloor\boldsymbol{x}-\left(\frac{1}{2}, \frac{1}{2}, \frac{1}{2}, \frac{1}{2}\right)^{t}\right\rceil\)
\(\mathbf{5} k \leftarrow\left(\left\|\boldsymbol{x}-\boldsymbol{v}_{0}\right\|_{1}<1\right)\) ?0: 1
\(6\left(v_{0}, v_{1}, v_{2}, v_{3}\right)^{t} \leftarrow \boldsymbol{v}_{k}\)
7 return \(\left(v_{0}, v_{1}, v_{2}, k\right)^{t}+v_{3} \cdot(-1,-1,-1,2)^{t} \bmod 2^{r}\)
```

```
Algorithm 2: Rec
    Parameter : \(r\)-bits reconciliation information
    Input \(\quad: w \in \mathbb{Z}_{q}^{4}, \boldsymbol{r}=\left(r_{0}, r_{1}, r_{2}, r_{3}\right)\)
    Output : 1-bit shared information
\(\left.\mathbf{1} \boldsymbol{x} \leftarrow\left(\frac{1}{q} \boldsymbol{w}-\frac{1}{2^{r}} \cdot\left(r_{0}, r_{1}, r_{2}, \frac{r_{0}+r_{1}+r_{2}+r_{3}}{2}\right)^{t}\right)\right)\)
\(2 \boldsymbol{v}=\boldsymbol{x}-\lfloor\boldsymbol{x}\rceil\)
3 return 0 if \(\|\boldsymbol{v}\|_{1} \leq 1\), and 1 otherwise
```

shifted copies $\mathbb{Z}^{4}$ with the shift vector $\boldsymbol{g}=(1 / 2,1 / 2,1 / 2,1 / 2)^{t}$. The basis of $\tilde{D}_{4}$ is $\left(\boldsymbol{e}_{1}, \boldsymbol{e}_{2}, \boldsymbol{e}_{3}, \boldsymbol{g}\right)$.

$$
\tilde{D}_{4}=\mathbb{Z}^{4} \cup\left(\mathbb{Z}^{4}+\boldsymbol{g}\right)
$$

The encoding method is to equally split the 4 -dimensional space by the 1-norm distance to $\boldsymbol{g}$, that is, the regular 24-cells icositetrachoron shape. The $r$-bit assisted reconciliation algorithm, the algorithm to generate hints, is shown in Algorithm 1, the reconciliation algorithm is shown in Algorithm 2, and NewHope selects the parameter $r=2$.

Number-Theoretic Transform. Direct multiplication (using school-book algorithm) between two elements in polynomial ring costs $n^{2}$ multiplications and roughly as many additions or subtractions. The best way to accelerate the computation is to use fast Fourier transform. The number theoretic transform (NTT) is a discrete version of fast Fourier transform defined over a finite ring $\mathbb{Z}_{p}$. The NTT algorithm is shown in Algorithm 3, and the inverse number theoretic transform, INTT is very similar to NTT except for an additional final multiplication by $n^{-1}$ for each coefficient of the polynomial.

Negative Wrapped Convolution. The NewHope uses the anti-cyclic ideal $\mathbb{Z}_{q}[X] /\left(X^{n}+1\right)$, which does not lead to a classical cyclic convolution when we multiply two ring elements. We use what is called "negative wrapped convolution" to solve the problem. Negative wrapped convolution is first introduced in [LMPR08], and Chen et al. implemented the algorithm on FPGA $\left[\mathrm{CMV}^{+} 15\right]$. Let $\boldsymbol{c}=\left(c_{0}, c_{1}, \ldots, c_{n-1}\right)$ be the negative wrapped convolution of $\boldsymbol{a}=\left(a_{0}, a_{1}, \ldots, a_{n-1}\right)$

```
Algorithm 3: Number-Theoretic Transform, NTT
    Parameter : \(\omega\) is a primitive \(n\)-th root of unity in \(\mathbb{Z}_{q}[X], n\) and \(q\)
    Input : \(\boldsymbol{a} \in \mathbb{Z}_{q}[X] /\left(X^{n}+1\right)\)
    Output : A \(=N T T_{\omega}^{n}(\boldsymbol{a})\)
    \(\boldsymbol{a} \leftarrow\) Order_reverse \((\boldsymbol{a})\)
    for \(i=0\) too \(\log _{2} n-1\) do
        for \(j=0\) to \(n / 2-1\) do
        \(P_{i j} \leftarrow\left\lfloor\frac{j}{2^{\log _{2} n-1-i}}\right\rfloor \times 2^{\log _{2} n-1-i}\)
        \(A_{j} \leftarrow a_{2 j}+a_{2 j+1} \omega^{P_{i j}} \bmod q\)
        \(A_{j+n / 2} \leftarrow a_{2 j}-a_{2 j+1} \omega^{P_{i j}} \bmod q\)
        if \(i \neq \log _{2} n-1\) then
        \(\boldsymbol{a} \leftarrow \boldsymbol{A}\)
    return \(A\)
```

```
Algorithm 4: Polynomial Multiplication using NTT over \(\mathbb{Z}_{q}[X] /\left(X^{n}+1\right)\)
    Parameter : \(\omega\) is a primitive \(n\)-th root of unity in \(\mathbb{Z}_{q}[X], \phi^{2}=\omega, n\), and \(q\)
    Input \(: \boldsymbol{a}, \boldsymbol{b} \in \mathbb{Z}_{q}[X] /\left(X^{n}+1\right)\)
    Output : \(\boldsymbol{c}=\boldsymbol{a} * \boldsymbol{b} \in \mathbb{Z}_{q}[X] /\left(X^{n}+1\right)\)
    Precompute: \(\omega^{i}, \omega^{-i}, \phi^{i}, \phi^{-1}\), where \(i=0,1, \ldots, n-1\)
    for \(i=0\) to \(n-1\) do
        \(\bar{a}_{i} \leftarrow a_{i} \phi^{i} \bmod q\)
        \(\bar{b}_{i} \leftarrow b_{i} \phi^{i} \bmod q\)
    \(\overline{\boldsymbol{A}} \leftarrow N T T_{\omega}^{n}(\overline{\boldsymbol{a}})\)
    \(\overline{\boldsymbol{B}} \leftarrow \operatorname{NTT}_{\omega}^{n}(\overline{\boldsymbol{b}})\)
    for \(i=0\) to \(n-1\) do
        \(\bar{C}_{i} \leftarrow \bar{A}_{i} \bar{B}_{i} \bmod q\)
    \(\overline{\boldsymbol{c}} \leftarrow I N T T_{\omega}^{n}(\overline{\boldsymbol{C}})\)
    for \(i=0\) to \(n-1\) do
        \(c_{i} \leftarrow \bar{c}_{i} \phi^{-i} \bmod q\)
    return \(c\)
```

and $\boldsymbol{b}=\left(b_{0}, b_{1}, \ldots, b_{n-1}\right)$, it is defined by

$$
c_{i}=\sum_{j=0}^{i} a_{j} b_{i-j}-\sum_{j=i+1}^{n-1} a_{j} b_{n+i-j} .
$$

This is exactly the polynomial multiplication over $\mathbb{Z}_{q}[X] /\left(X^{n}+1\right)$. Using the NTT multiplication with negative wrapped convolution, the complexity of multiplication over the polynomial ring $\mathbb{Z}_{q}[X] /\left(X^{n}+1\right)$ becomes $O(n \log n)$. The pseudo-code of negative wrapped convolution is shown in Algorithm 4.

Noise Sampling. The Knuth-Yao algorithm [KY76] is a common way to sample high-precision discrete Gaussian distribution, which is implemented in [RVV13]. However, such near optimality may result in non-constant execution time, which might lead to side-channel attack. Thus, we do not use the algorithm in this work. NewHope samples the noise from the binomial distribution instead of discrete Gaussian distribution, which needs high precision and much more computation resources. Moreover, sampling from the centered binomial distribution $\psi_{16}$ is cheap in both hardware and software. One can use the property that the centered binomial distribution follows $\sum_{i=0}^{15} b_{i}-b_{i}^{\prime}$, where the $b_{i}, b_{i}^{\prime}$ are random bits. Thus, the sampling algorithm needs 32 random bits to generate one coefficient.

### 2.3 FPGA

The basic building block of FPGAs is the look-up tables (LUTs). In Xilinx 7 series FPGA, each LUT can be programmed either as a 6 -input 1-output function or two 5 -input 1-output functions. To implement sequential circuits, each LUT can be connected to two flip-flops. Certain number of LUTs are then grouped into a slice, and a few slices are grouped into a configurable logic block (CLB). Building around CLBs, FPGAs have other circuitries for, e.g., multiplexing input and output, carry-propagation chains for accelerating arithmetic computation, as well as routing fabrics for connecting LUTs. Furthermore, FPGAs also have fixed multipliers in so-called "DSP slices" that can carry out (fixed-point) arithmetic operations, as well as block RAM as the fast on-die working memory. We use Xilinx Zynq-7000 all programmable SoC (AP SoC), which is equipped with a dual-core ARM Cortex-A9 processors running at 667 MHz and integrated with 28 nm Artix-7 Z-7020 FPGA. This FPGA has 46,200 look-up tables and 220 DSP slices.

## 3 Implementation

The block diagram is in Figure 1. There are three main blocks in the diagram representing the flowchart of our hardware implementation of NewHope. First, Alice (Server) uses the TRNG and PRNG to generate the seed of $\widehat{a}$, and computes $b=a s+e$ in NTT domain. Bob (Client) receives the seed of $\widehat{a}$ and $\widehat{b}$ ( $b$ in NTT domain), computes $u=a s^{\prime}+e^{\prime}$ in NTT domain and the his shared secrete $v=b s^{\prime}+e^{\prime \prime}$, and compute the reconciliation information and the shared key. In the last step, Alice (Server) receives $\widehat{u}$ ( $u$ in NTT domain) and reconciliation information $r$, compute their shared secret $v=u s$, and derive the shared key though the reconciliation function with $r$. We explain the techniques in our implementation.

### 3.1 Random Number Generator

There are two phases in generating the randomness: TRNG (true random number generator) and PRNG (pseudorandom number generator). In the TRNG phase, we use a credible way from

Fig. 1: Flowchart of our implementation


Wold and Tan's work to generate the randomness by oscillator rings, which has passed NIST and DIEHARD statistical tests [WT09]. The throughput of the implementation from Wold and Tan is 100 Mbps with less than 100 logic elements in an Altera Cyclone II FPGA. In our implementation, we use 32 oscillators rings to generate the randomness, and their experiment showed if the number of oscillator rings exceeds 25 , the result can pass the statistical tests. In the PRNG phase, NewHope uses SHAKE128 as the PRNG, which is the Extendable Output Functions (XOF's) of SHA-3 family. NewHope uses the extendable property to generate 1024 uniform coefficients in $\mathbb{Z}_{p}$ with 256 bits true randomness since the randomness is sufficient resist either classic bruteforce attack or quantum attack (Grover's algorithm). We extract the SHAKE128 portion from open-source code [Ope12], which usually provides only standard SHA-3 on FPGA.

### 3.2 Number-Theoretical Transform

We use the design of optimized NTT hardware implementation in $\left[\mathrm{CMV}^{+} 15, \mathrm{RVM}^{+} 14\right]$. The main differences are that we use 4 butterfly units, and the modulus is different.

Figure 2 is the high level design of our NTT implementation, it combined both NTT and INTT. For NTT, it processes multiplication on $\phi^{i}$, order reverse, and butterfly units in order. In contrast, INTT processes order reverse, butterfly units and multiplication on $\phi^{i}$ in order.

Butterfly Units. In $\left[\mathrm{CMV}^{+} 15\right]$, they use 8 and 2 butterfly units and compare the performance. In $\left[\mathrm{RVM}^{+} 14\right]$ 's implementation, they use a single butterfly unit to compute the NTT function in order to optimize the area usage. We use 4 butterfly units to compute the NTT since our implementation aims to be more speed-optimized. Also, we follow the idea of [CMV $\left.{ }^{+} 15\right]$ we use the architecture shown in Figure 3 that places the data into the memory in the correct positive in order to achieve higher efficiency.

Fig. 2: Overview of our NTT implementation, which consists three components of circuit: multiplication on $\phi^{i}$, order reverse, and butterfly units.


Fig. 3: Illustration of the design of the butterfly unit


Modular Reduction. A common way to do modular reduction is Barrett reduction.

$$
c \bmod p=c-\left\lfloor\left(c \cdot \frac{1 \ll 32}{12289}\right) \gg 32\right\rfloor \cdot 12289
$$

In this viewpoint, we can use DSP to multiply the reciprocal of 12289 without computing the floating number. Since the algorithm chops rather than rounds the result, the result is possibly slightly large than $p$. Thus, the algorithm subtracts $p$ if it is larger than $p$ in the final step. We can further improve the computation since $12289=(1 \ll 13)+(1 \ll 12)+1$ by following equation, where $\bar{a}$ is the complement of $\left\lfloor\left(c \cdot \frac{1 \ll 32}{12289}\right) \gg 32\right\rfloor$

$$
c \bmod p=(c+(\bar{a} \ll 13))+((\bar{a} \ll 12)+\bar{a})
$$

So a Barrett modular reduction with $q=12289$ is around 5 cycles. But there is a multiplication between 32 bit- and 19-bit numbers leading to a long critical path and limiting the frequency.

Therefore we opt for the efficient reduction method from [LN16] for modular reduction. The method is a variant of Montgomery reduction with the auxiliary modulus $k$, which is defined by $q=k \cdot 2^{m}+1$. For $q=12289$, we have $m=12$ and $k=3$.
This algorithm is suitable for hardware implementation, since the operations in the function $\mathrm{K}-\mathrm{RED}$ and K-RED2x are bit selections plus a final step which is equal to $\left(C_{0} \ll 1\right)+C_{0}-C_{1}$ and

## function $\mathrm{K}-\mathrm{RED}$ (C)

$C_{0} \leftarrow C \bmod 2^{m}$
$C_{1} \leftarrow C / 2^{m}$
return $k C_{0}-C_{1}$
end function
function $\mathrm{K}-$ RED -2 x (C)
$C_{0} \leftarrow C \bmod 2^{m}$
$C_{1} \leftarrow C / 2^{m} \bmod 2^{m}$
$C_{2} \leftarrow C / 2^{2 m}$
return $k^{2} C_{0}-k C_{1}+C_{2}$
end function
$\left(C_{0} \ll 3\right)+C_{0}-\left(C_{1} \ll 1\right)-C_{1}+C_{2}$, respectively. Using this technique, we replace Line $5 \& 6$ in Algorithm 3 and get Algorithm 5.

```
Algorithm 5: Number-Theoretic Transform with K-RED
    Parameter : \(\omega\) is a primitive \(n\)-th root of unity in \(\mathbb{Z}_{q}[X], n\) and \(q\)
    Input \(: \boldsymbol{a} \in \mathbb{Z}_{q}[X] /\left(X^{n}+1\right)\)
    Output : \(\boldsymbol{A}=N T T_{\omega}^{n}(\boldsymbol{a})\)
    \(\boldsymbol{a} \leftarrow\) Order_reverse \((\boldsymbol{a})\)
    for \(i=0\) to \(\log _{2} n-1\) do
        for \(j=0\) to \(n / 2-1\) do
            \(P_{i j} \leftarrow\left\lfloor\frac{j}{2^{\log _{2} n-1-i}}\right\rfloor \times 2^{\log _{2} n-1-i}\)
            \(U \leftarrow \mathbf{K}-\mathbf{R E D}\left(a_{2 j}\right)\)
            \(V \leftarrow \mathbf{K}-\operatorname{RED} 2 \mathbf{x}\left(a_{2 j+1} \omega^{P_{i j}}\right)\)
            \(A_{j} \leftarrow U+V\)
            \(A_{j+n / 2} \leftarrow U-V\)
        if \(i \neq \log _{2} n-1\) then
            \(a \leftarrow A\)
    return \(A\)
```

We replace Line 3, 4, 8, 9 and 11 in Algorithm 4 to get Algorithm 6.
Note that K-RED function does not compute the exact value $C \bmod q$ but $k C \bmod q$. . Correspondingly K-RED2x function computes $k^{2} C \bmod q$, and we eliminate the extra factor of $k$ by storing $\omega_{i j}^{P} k^{-1}$ instead of $\omega_{i j}^{P}$. Thus, after multiplication of $\omega_{i j}^{P} k^{-1}$ and K-RED2x function, the result $k C$ has the correct value. Since $n=1024=2^{10}$, there are ten stages in NTT function, the output vector from NTT with K-RED is $k^{10} v$, where $v$ is the correct output vector of NTT. It is easy to transform the output vector to correct one, but we wait until the last step of INTT, which now becomes a final multiplication by the pre-computable $n^{-1} k^{-14}$.

One trick in the modified algorithm is to pre-compute $\phi^{i} k^{-(2+\log n)}$ instead of $\phi^{i}$. This ensures that the output of our modified algorithm is exactly the same as that from the original NTT. We also replace $I N T T_{\omega}^{n}$ by $N T T_{-\omega}^{n}$, and multiply instead by $n^{-1} \phi^{-i}$ (which can also be precomputed and stored in the block RAM) in Line 11,. This way we only need 1024 multiplications.

Note that the output of both functions are bounded by not a fixed value but by $q+|C| / 2^{m}$ which is related the input value $C$. Applying results of [LN16] to our algorithm, the input size of function K-RED and K-RED2x are 16 bits and 30 bits, respectively. One technique to maintain a plus sign for the output of these two functions (in order to multiply using DSP slices in the next stage) is to add multiples of $q=12289$. It can be verified that $U+V$ and $U-V$ are larger than $-2 q$ and $-4 q$, respectively. But directly adding $2 q$ and $4 q$ to $U+V$ and $U-V$ causes a

```
Algorithm 6: Polynomial Multiplication using NTT with K-RED over \(\mathbb{Z}_{q}[X] /\left(X^{n}+1\right)\)
    Parameter : \(\omega\) is a primitive \(n\)-th root of unity in \(\mathbb{Z}_{q}[X], \phi^{2}=\omega, n\), and \(q\)
    Input : \(\boldsymbol{a}, \boldsymbol{b} \in \mathbb{Z}_{q}[X] /\left(X^{n}+1\right)\)
    Output : \(\boldsymbol{c}=\boldsymbol{a} * \boldsymbol{b} \in \mathbb{Z}_{q}[X] /\left(X^{n}+1\right)\)
    Precompute: \(\omega^{i}, \omega^{-i}, \phi^{i}, \phi^{-1}\), where \(i=0,1, \ldots, n-1\)
    for \(i=0\) to \(n-1\) do
        \(\bar{a}_{i} \leftarrow \mathbf{K - R E D} 2 \mathbf{x}\left(a_{i}\left(\phi^{i} k^{-(2+\log n)}\right)\right)\)
        \(\bar{b}_{i} \leftarrow \mathbf{K - R E D 2 x}\left(b_{i}\left(\phi^{i} k^{-(2+\log n)}\right)\right)\)
    \(\overline{\boldsymbol{A}} \leftarrow N T T_{\omega}^{n}(\overline{\boldsymbol{a}})\)
    \(\overline{\boldsymbol{B}} \leftarrow N T T_{\omega}^{n}(\overline{\boldsymbol{b}})\)
    for \(i=0\) to \(n-1\) do
        \(\bar{C}_{i} \leftarrow \mathbf{K - R E D 2 x}\left(\bar{A}_{i} \bar{B}_{i}\right)\)
    \(\overline{\boldsymbol{c}} \leftarrow N T T_{-\omega}^{n}(\overline{\boldsymbol{C}})\)
    for \(i=0\) to \(n-1\) do
        \(c_{i} \leftarrow \mathbf{K - R E D} 2 \mathbf{x}\left(\bar{c}_{i}\left(\phi^{-i} k^{-(4+\log n)} n^{-1}\right)\right)\)
    return \(c\)
```

new problem: it may exceeds 16 bits. BRAM reads 64 bit at a time, so 17 bits as the input of K-RED slows each BRAM read to 3 data points.

Thus, we propose the method to solve the problem:
Let $s$ be bit 11 (corresponding to 2048) of $a_{2 j+1} \omega^{P_{i j}}$ in Line 6 in Algorithm 5.

$$
\begin{aligned}
& \text { If } s=0, A_{j} \leftarrow U+V+2 q \text { and } A_{j+n / 2} \leftarrow U-V+2 q . \\
& \text { If } s=1, A_{j} \leftarrow U+V \text { and } A_{j+n / 2} \leftarrow U-V+4 q .
\end{aligned}
$$

Note that both sets of values are computed and then selected using $s$ to avoid side-channels. This modification makes sure that the results of that step are positive. This method is a consequence of the properties of the K-RED and K-RED2x functions, and we give the proof in Appendix A. Note that the outputs of function K-RED and K-RED2x are signed 14 bits and signed 16 bits, respectively. Combined all the techniques describe above, the design of K-RED in the butterfly unit is shown in Figure 4.

### 3.3 Reconciliation

A naive way to implement the HelpRec and Rec function on FPGA is to pre-compute $1 / q$ and to use DSPs to compute the multiplication in runtime. This way is inefficient and wastes many logic elements. In our implementation of reconciliation, instead of trying to determine $\sum_{n=0}^{3} x_{i} / q<1$ or not, we determine where $\sum_{n=0}^{3} x_{i}$ is less than $q$ or not, in order to avoid floating-point number computation. Other divisors do not need this trick because they are all powers of 2.

## 4 Results

The three phases of key exchange cost $90.1,162.4$, and $80.8 \mu s$, respectively. The resource consumption of each component is shown in Table 2. The area of PRNG (SHAKE from SHA-3) is quite large among the components. However, it is not the focus of this work. In theory we could have taken any FPGA SHA-3 implementation, such as the area-optimized one from [ $\mathrm{KDV}^{+} 11$ ] which only uses one tenth of the area. Alternatively, one can use a lightweight PRNG to generate

Fig. 4: illustration of the design of K-RED

the randomness for $\psi_{16}$.
The area of NTT component is reasonable since it is around 4 times that of $\left[\mathrm{RVM}^{+} 14\right]$. Note that we use 4 butterfly units in each NTT component, and they use only one. Obviously, our implementation is the fastest post-quantum key exchange, which is $74 \%$ smaller and 62.7 times faster than that of SIDH [BK16].
In Fig 3, we also show the best record of hardware implementation of lattice-based PKE. At first glance, our results is worse than the hardware implementation of PKE. But the computation of NewHope is about 3.3 times larger than the computation of RLWE with $(p, q, \sigma)=$ (512, 12289, 4.92).

Runtime. The computation of NTTs dominates both schemes (in fact, NewHope has higher load because it has to expand $a$ and compute Rec and HelpRec) Totally, NewHope has 6 NTT parts (include INTT) and RLWE has 4 NTT parts (include INTT). And considering that the size of the NTT is $n \log n$, the overall computation ratio is at least 3.3. The total time of our implementation is $333.3 \mu s$, and the total time of $\operatorname{RLWE}(512,12289,4.92)$ is $58.9 \mu s$. Taking into account the relative sizes of computations, our implementation did 1.71 times slower than theirs. One reason is the maximum frequency is bounded by the critical path in PRNG component, other components all can go higher. Another is that the two primitives are different. For a public-key encryption scheme to provide forward secrecy, a one-time public key needs to be generated and transmitted every time before being used. That would probably make up much of the difference.

Area-time product. Ignoring the PRNG, we did about $6.1 \times$ worse in area-time product than $\operatorname{RLWE}(512,12289,4.92)$, considering the computation effort. We emphasise that our implementation is not optimized for area-time product, and again, the structures of the algorithms are also much different.

Table 2: The resource consumption of each component

| Component | Area |  |  |  |  | Clock Count |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | \#FFs | \#LUTs | \#Slices <br> Registers | \#DSPs | \#BRAMs |  |
| TRNG | 130 | 310 | 258 | 0 | 0 | 1 |
| PRNG (SHA-3) | 2,958 | 4,848 | 2,963 | 0 | 0 | 24 |
| pipelined NTT | 2,934 | 2,832 | 1,317 | 12 | 10 | 2486 |
| -multiply $\phi^{i}$ | - | - | - | - | - | 132 |
| -Order Reverse | - | - | - | - | - | 1024 |
| -Butterfy Units | - | - | - | - | - | 1330 |
| HelpRec | 0 | 308 | 0 | 0 | 0 | 1 |
| Rec | 0 | 422 | 0 | 0 | 0 | 1 |

Table 3: Hardware comparison of post-quantum key exchange and some post-quantum public key encryption

| Work | Scheme | Parameters | Security Parameter | Area |  |  |  | Time |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | \#FFs | \#LUTs | \#DSPs | \#BRAMs | $\begin{array}{\|c\|} \hline \text { Freq } \\ (\mathrm{MHz}) \end{array}$ | $\begin{gathered} \text { Latency } \\ \left(\times 10^{3}\right) \end{gathered}$ | $\begin{gathered} \text { Total time } \\ (\mu \mathrm{s}) \end{gathered}$ |
| [KAKJ17] | SIDH | prime: 511 bits | 128 bits | 30,031 | 24,499 | 192 | 27 | 177 | 5,967 | 33,700 |
| [BK16] | SIDH | prime: 503 bits | 125 bits | 26,659 | 19,882 | 192 | 40 | 181.4 | 3,800 | 20,900 |
| This Work | NewHope | $\begin{gathered} n=1024, p=12289 \\ \text { noise dist. } \psi_{16} \end{gathered}$ | 128 bits | 6,098 | 12,340 | 29 | 14 | 114 | $\begin{gathered} 8.6 / 11.3 \\ / 2.8 \end{gathered}$ | $\begin{gathered} 75.4 / 99.1 \\ / 24.6 \end{gathered}$ |
| $\left[\mathrm{RVM}^{+} 14\right]$ | $\begin{aligned} & \text { RLWE } \\ & \text { (PKE) } \end{aligned}$ | $\begin{gathered} n=256, q=7681, \\ \sigma=4.516 \end{gathered}$ | 80 bits | 860 | 1,349 | 1 | 2 | 313 | 6.3/2.8 | 20.1/9.1 |
| $\left[\mathrm{RVM}^{+} 14\right]$ | RLWE <br> (PKE) | $\begin{gathered} n=512, q=12289, \\ \sigma=4.92 \end{gathered}$ | 128 bits | 953 | 1,536 | 1 | 3 | 278 | 13.3/5.8 | 47.9/21 |
| [PG13] | $\begin{aligned} & \text { RLWE } \\ & \text { (PKE) } \end{aligned}$ | $\begin{gathered} n=256, q=7681, \\ \\ \sigma=12.18 \end{gathered}$ | 80 bits | 3,624 | 4,549 | 1 | 12 | 262 | 6.86/4.40 | 26.19/16.8 |
| $\left[\mathrm{HMO}^{+} 16\right]$ | $\begin{gathered} \text { LWE } \\ \text { (PKE) } \end{gathered}$ | $\begin{gathered} n=256, q=4096, \\ \sigma=3.39 \end{gathered}$ | 128 bits | 4,804 | 6,152 | 1 | 73 | 125 | 98.3/32.8 | 786/262 |
| [LW16] | $\begin{array}{\|c\|} \text { NTRU } \\ \text { ees761ep } 1 \\ \hline \end{array}$ | $\begin{gathered} n=761, q=2048, \\ p=3 \end{gathered}$ | 128 bits | \#logic elements: 42,642, \#registers: 16,746 |  |  |  | 75.36 | 0.44 | 5.89 |

However, as we mentioned in the introduction, the functionality of key transport is not the same as key agreement. Therefore, there is a need for a post-quantum key exchange scheme as well as its hardware implementation.

## 5 Results and Discussion

In this work, we proposed the first hardware implementation of lattice-based key exchange, which is also the fastest hardware implementation of post-quantum key exchange so far. Compare to the most optimized RLWE hardware implementation, our implementation did $1.71 \times$ worse due to differences in the algorithm structures. To achieve perfect forward secrecy using PKE scheme, it needs to generate an ephemeral key each time. Thus to compare the key agreement speed fairly, key generation time needs to be accounted for as well. This code will be open-sourced after we clean it up.

### 5.1 Future Work

We will consider a pipelined butterfly unit to improve resource usage. Second, a countermeasures for side channel attacks (SCA) is an urgent priority. For example, we may use a method such as the masked RLWE decryption implementation resistant to first-order SCA is proposed in [RRVV15]. and apply it in our implementation. It is also interesting to optimize the SCA countermeasures for post-quantum key exchange scheme.

## References

[ABB10a] Shweta Agrawal, Dan Boneh, and Xavier Boyen. Efficient lattice (H)IBE in the standard model. In Advances in Cryptology - EUROCRYPT 2010, 29th Annual International Conference on the Theory and Applications of Cryptographic Techniques, French Riviera, May 30 June 3, 2010. Proceedings, pages 553-572, 2010.
[ABB10b] Shweta Agrawal, Dan Boneh, and Xavier Boyen. Lattice basis delegation in fixed dimension and shorter-ciphertext hierarchical IBE. In Advances in Cryptology - CRYPTO 2010, 30th Annual Cryptology Conference, Santa Barbara, CA, USA, August 15-19, 2010. Proceedings, pages 98-115, 2010.
[ADPS16] Erdem Alkim, Léo Ducas, Thomas Pöppelmann, and Peter Schwabe. Post-quantum key exchange - A new hope. In 25th USENIX Security Symposium, USENIX Security 16, Austin, TX, USA, August 10-12, 2016., pages 327-343, 2016.
$\left[\mathrm{BCD}^{+} 16\right]$ Joppe W. Bos, Craig Costello, Léo Ducas, Ilya Mironov, Michael Naehrig, Valeria Nikolaenko, Ananth Raghunathan, and Douglas Stebila. Frodo: Take off the ring! practical, quantumsecure key exchange from LWE. In Proceedings of the 2016 ACM SIGSAC Conference on Computer and Communications Security, Vienna, Austria, October 24-28, 2016, pages 10061018, 2016.
[BCNS15] Joppe W. Bos, Craig Costello, Michael Naehrig, and Douglas Stebila. Post-quantum key exchange for the TLS protocol from the ring learning with errors problem. In 2015 IEEE Symposium on Security and Privacy, SP 2015, San Jose, CA, USA, May 17-21, 2015, pages 553-570, 2015.
[BK16] Mehran Mozaffari Kermani Brian Koziel, Reza Azarderakhsh. Fast hardware architectures for supersingular isogeny diffie-hellman key exchange on fpga. Cryptology ePrint Archive, Report 2016/1044, 2016. http://eprint.iacr.org/2016/1044.
$\left[\mathrm{BLP}^{+} 13\right]$ Zvika Brakerski, Adeline Langlois, Chris Peikert, Oded Regev, and Damien Stehlé. Classical hardness of learning with errors. In Symposium on Theory of Computing Conference, STOC'13, Palo Alto, CA, USA, June 1-4, 2013, pages 575-584, 2013.
[BV11a] Zvika Brakerski and Vinod Vaikuntanathan. Efficient fully homomorphic encryption from (standard) lwe. Electronic Colloquium on Computational Complexity (ECCC), 18:109, 2011.
[BV11b] Zvika Brakerski and Vinod Vaikuntanathan. Fully homomorphic encryption from ring-lwe and security for key dependent messages. In Advances in Cryptology - CRYPTO 2011-31st Annual Cryptology Conference, Santa Barbara, CA, USA, August 14-18, 2011. Proceedings, pages 505-524, 2011.
[Cho15] Tung Chou. Sandy2x: New curve25519 speed records. In Selected Areas in Cryptography - SAC 2015-22nd International Conference, Sackville, NB, Canada, August 12-14, 2015, Revised Selected Papers, pages 145-160, 2015.
[CIV16] Wouter Castryck, Ilia Iliashenko, and Frederik Vercauteren. Provably weak instances of ringlwe revisited. In Advances in Cryptology-EUROCRYPT 2016-35th Annual International Conference on the Theory and Applications of Cryptographic Techniques, Vienna, Austria, May 8-12, 2016, Proceedings, Part I, pages 147-167, 2016.
[CLN16] Craig Costello, Patrick Longa, and Michael Naehrig. Efficient algorithms for supersingular isogeny diffie-hellman. In Advances in Cryptology - CRYPTO 2016-36th Annual International Cryptology Conference, Santa Barbara, CA, USA, August 14-18, 2016, Proceedings, Part I, pages 572-601, 2016.
$\left[\mathrm{CMV}^{+} 15\right]$ Donald Donglong Chen, Nele Mentens, Frederik Vercauteren, Sujoy Sinha Roy, Ray C. C. Cheung, Derek Pao, and Ingrid Verbauwhede. High-speed polynomial multiplication architecture for ring-lwe and SHE cryptosystems. IEEE Trans. on Circuits and Systems, 62-I(1):157166, 2015.
[Din12] Jintai Ding. A simple provably secure key exchange scheme based on the learning with errors problem. IACR Cryptology ePrint Archive, 2012:688, 2012.
[ELOS15] Yara Elias, Kristin E. Lauter, Ekin Ozman, and Katherine E. Stange. Provably weak instances of ring-lwe. In Advances in Cryptology - CRYPTO 2015-35th Annual Cryptology Conference, Santa Barbara, CA, USA, August 16-20, 2015, Proceedings, Part I, pages 63-92, 2015.
[FY14] Heba Mohammed Fadhil and Mohammed Issam Younis. Article: Parallelizing rsa algorithm on multicore cpu and gpu. International Journal of Computer Applications, 87(6):15-22, February 2014. Full text available.
[Gen09] Craig Gentry. Fully homomorphic encryption using ideal lattices. In Annual ACM Symposium on Theory of Computing - STOC, pages 169-178, 2009.
[GFS $\left.{ }^{+} 12\right]$ Norman Göttert, Thomas Feller, Michael Schneider, Johannes A. Buchmann, and Sorin A. Huss. On the design of hardware building blocks for modern lattice-based encryption schemes. In Cryptographic Hardware and Embedded Systems - CHES 2012-14th International Workshop, Leuven, Belgium, September 9-12, 2012. Proceedings, pages 512-529, 2012.
[ $\mathrm{HMO}^{+} 16$ ] James Howe, Ciara Moore, Máire O’Neill, Francesco Regazzoni, Tim Güneysu, and K. Beeden. Standard lattices in hardware. In Proceedings of the $53 r d$ Annual Design Automation Conference, DAC 2016, Austin, TX, USA, June 5-9, 2016, pages 162:1-162:6, 2016.
[KAKJ17] Brian Koziel, Reza Azarderakhsh, Mehran Mozaffari Kermani, and David Jao. Post-quantum cryptography on FPGA based on isogenies on elliptic curves. IEEE Trans. on Circuits and Systems, 64-I(1):86-99, 2017.
[ $\mathrm{KDV}^{+} 11$ ] Stéphanie Kerckhof, François Durvaux, Nicolas Veyrat-Charvillon, Francesco Regazzoni, Guerric Meurice de Dormale, and François-Xavier Standaert. Compact FPGA implementations of the five SHA-3 finalists. In Smart Card Research and Advanced Applications - 10th IFIP WG 8.8/11.2 International Conference, CARDIS 2011, Leuven, Belgium, September 14-16, 2011, Revised Selected Papers, pages 217-233, 2011.
[KY76] D. Knuth and A. Yao. Algorithms and Complexity: New Directions and Recent Results, chapter The complexity of nonuniform random number generation. Academic Press, 1976.
[LMPR08] Vadim Lyubashevsky, Daniele Micciancio, Chris Peikert, and Alon Rosen. SWIFFT: A modest proposal for FFT hashing. In Fast Software Encryption, 15th International Workshop, FSE 2008, Lausanne, Switzerland, February 10-13, 2008, Revised Selected Papers, pages 5472, 2008.
[LN16] Patrick Longa and Michael Naehrig. Speeding up the number theoretic transform for faster ideal lattice-based cryptography. In Cryptology and Network Security - 15th International

Conference, CANS 2016, Milan, Italy, November 14-16, 2016, Proceedings, pages 124-139, 2016.
[LP11] Richard Lindner and Chris Peikert. Better key sizes (and attacks) for lwe-based encryption. In $C T-R S A$, pages 319-339, 2011.
[LPR10] Vadim Lyubashevsky, Chris Peikert, and Oded Regev. On ideal lattices and learning with errors over rings. In EUROCRYPT, pages 1-23, 2010.
[LW16] Bingxin Liu and Huapeng Wu. Efficient multiplication architecture over truncated polynomial ring for ntruencrypt system. In IEEE International Symposium on Circuits and Systems, ISCAS 2016, Montréal, QC, Canada, May 22-25, 2016, pages 1174-1177, 2016.
[Ope12] OpenCores. SHA3(KECCAK). https://opencores.org/project,sha3, 2012. [Online; accessed 09-November-2012, updated 02-December-2016].
[oSN16] National Institute of Standards and Technology (NIST). POST-QUANTUM CRYPTO PROJECT. http://csrc.nist.gov/groups/ST/post-quantum-crypto/, 2016. [Online; accessed 29-February-2016].
[Pei09] Chris Peikert. Public-key cryptosystems from the worst-case shortest vector problem: extended abstract. In Proceedings of the 41 st Annual ACM Symposium on Theory of Computing, STOC 2009, Bethesda, MD, USA, May 31-June 2, 2009, pages 333-342, 2009.
[Pei14] Chris Peikert. Lattice cryptography for the internet. In Post-Quantum Cryptography - 6th International Workshop, PQCrypto 2014, Waterloo, ON, Canada, October 1-3, 2014. Proceedings, pages 197-219, 2014.
[PG13] Thomas Pöppelmann and Tim Güneysu. Towards practical lattice-based public-key encryption on reconfigurable hardware. In Selected Areas in Cryptography - SAC 2013-20th International Conference, Burnaby, BC, Canada, August 14-16, 2013, Revised Selected Papers, pages 68-85, 2013.
[Reg09] Oded Regev. On lattices, learning with errors, random linear codes, and cryptography. $J$. ACM, 56(6):1-40, 2009.
[RRVV15] Oscar Reparaz, Sujoy Sinha Roy, Frederik Vercauteren, and Ingrid Verbauwhede. A masked ring-lwe implementation. In Cryptographic Hardware and Embedded Systems - CHES 201517th International Workshop, Saint-Malo, France, September 13-16, 2015, Proceedings, pages 683-702, 2015.
$\left[\mathrm{RVM}^{+} 14\right]$ Sujoy Sinha Roy, Frederik Vercauteren, Nele Mentens, Donald Donglong Chen, and Ingrid Verbauwhede. Compact ring-lwe cryptoprocessor. In Cryptographic Hardware and Embedded Systems - CHES 2014-16th International Workshop, Busan, South Korea, September 23-26, 2014. Proceedings, pages 371-391, 2014.
[RVV13] Sujoy Sinha Roy, Frederik Vercauteren, and Ingrid Verbauwhede. High precision discrete gaussian sampling on fpgas. In Selected Areas in Cryptography - SAC 2013-20th International Conference, Burnaby, BC, Canada, August 14-16, 2013, Revised Selected Papers, pages 383401, 2013.
[WT09] Knut Wold and Chik How Tan. Analysis and enhancement of random number generator in FPGA based on oscillator rings. Int. J. Reconfig. Comp., 2009:501672:1-501672:8, 2009.

## A Proof of the input size and output size of K-RED butterfly

Here we consider the case of $q=12289, k=3$. The input $U, V$ satisfies the following condition.

$$
\begin{aligned}
& V=V_{0}+V_{1} \cdot 2^{12}+V_{2} \cdot 2^{24} \\
& U=U_{0}+U_{1} \cdot 2^{12}
\end{aligned}
$$

where

$$
\begin{gathered}
0 \leq V_{0}<2^{12} \\
0 \leq V_{1}<2^{12} \\
0 \leq V_{2}<2^{6} \\
0 \leq U_{0}<2^{12} \\
0 \leq U_{1}<2^{4} \\
A=\operatorname{K-RED}(U)=3 U_{0}-U_{1} \\
B=\mathrm{K}-\operatorname{RED} 2 \mathrm{x}(V)=9 V_{0}-3 V_{1}+V_{2}
\end{gathered}
$$

Thus, the output of the butterfly unit is:

$$
\begin{aligned}
& A+B=9 V_{0}+3 U_{0}+V_{2}-\left(3 V_{1}+U_{1}\right) \\
& A-B=3\left(U_{0}+V_{1}\right)-\left(9 V_{0}+V_{2}+U_{1}\right)
\end{aligned}
$$

Define $s=\left(V_{0} \gg 11\right) \% 2$; let's first consider $s=0, V_{0}<2^{11}$.

$$
\begin{gathered}
9 V_{0}+3 U_{0}+V_{2} \geq A+B \geq-\left(3 V_{1}+U_{1}\right) \\
9 V_{0}+3 U_{0}+V_{2} \geq A+B \geq-\left(3 V_{1}+U_{1}\right) \\
9 \cdot 2^{11}+3 \cdot 2^{12}+2^{12} \geq A+B \geq-\left(3 \cdot 2^{12}+2^{12}\right) \\
2^{16}-2 q \geq A+B>-2 q \\
2^{16}>A+B+2 q>0 \\
A-B \geq-\left(9 \cdot 2^{11}+2^{6}+2^{4}\right)>-2 q \\
A-B \leq 3\left(U_{0}+V_{1}\right)<6 \cdot 2^{12}<2^{16}-2 q \\
2^{16}>B-A+2 q \geq 0
\end{gathered}
$$

We prove that when $s=0$, adding $2 q$ always make the output between 0 and $2^{16}$ When $s=1, V_{0} \leq 2^{11}$

$$
\begin{aligned}
2^{16} & >A+B \geq 9 \cdot 2^{11}-\left(3 V_{1}+U_{1}\right)>9 \cdot 2^{11}-2^{14}>0 \\
A-B & \geq-\left(9 v_{0}+V_{2}+U_{1}\right) \geq-\left(9 \cdot 2^{12}+2^{12}+2^{12}\right)>-4 q \\
A-B & \leq 3\left(U_{0}+V_{1}\right)-9 \cdot 2^{11}<3\left(2^{12}+2^{12}\right)-9 \cdot 2^{11}<2^{16}-4 q \\
2^{16} & >A-B+4 q \geq 0
\end{aligned}
$$

We prove that adding $4 q$ to $B-A$ makes the output between 0 and $2^{16}$.

