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Abstract. In this article, we provide the first independent security analysis of Deoxys,
a third-round authenticated encryption candidate of the CAESAR competition, and
its internal tweakable block ciphers Deoxys-BC-256 and Deoxys-BC-384. We show
that the related-tweakey differential bounds provided by the designers can be greatly
improved thanks to a Mixed Integer Linear Programming (MILP) based search tool.
In particular, we develop a new method to incorporate linear incompatibility in the
MILP model. We use this tool to generate valid differential paths for reduced-round
versions of Deoxys-BC-256 and Deoxys-BC-384, later combining them into broader
boomerang or rectangle attacks. Here, we also develop a new MILP model which
optimises the two paths by taking into account the effect of the ladder switch technique.
Interestingly, with the tweak in Deoxys-BC providing extra input as opposed to a
classical block cipher, we can even consider beyond full-codebook attacks. As these
primitives are based on the TWEAKEY framework, we further study how the security
of the cipher is impacted when playing with the tweak/key sizes. All in all, we are able
to attack 10 rounds of Deoxys-BC-256 (out of 14) and 13 rounds of Deoxys-BC-384
(out of 16). The extra rounds specified in Deoxys-BC to balance the tweak input
(when compared to AES) seem to provide about the same security margin as AES-128.
Finally we analyse why the authenticated encryption modes of Deoxys mostly prevent
our attacks on Deoxys-BC to apply to the authenticated encryption primitive.
Keywords: Deoxys-BC · AES · authenticated encryption · block cipher · differential
cryptanalysis · boomerang attack · MILP · linear incompatibility · ladder switch

1 Introduction
Authenticated Encryption (AE) schemes are symmetric-key cryptographic algorithms that
provide both confidentiality and authenticity of data in one single primitive. AE schemes
offer several advantages when compared with the use of two separate algorithms (e.g. AES
combined with HMAC) for securing digital communications: it typically gives rise to more
efficient and compact constructions, it simplifies key management, and it may allow more
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refined security arguments. A popular AE scheme is McGrew and Viega’s Galois/Counter
Mode (GCM) [MV05], which has been standardised by NIST [Nat07] and is widely deployed.

The recent growing interest in new AE schemes resulted in the launch in 2013 of
CAESAR, a competition organised by the international cryptologic research community
to identify a portfolio of authenticated ciphers that offer advantages over AES-GCM and
are suitable for widespread adoption1. The competition received 57 submissions in March
2014, with 30 candidates advancing to the second round in 2015. In August 2016, the
competition selected 15 third-round candidates. The final portfolio is expected in late 2017.
Deoxys is one of the CAESAR third-round authenticated encryption candidates [JNPS16].
Its design is based on the tweakable block cipher Deoxys-BC, used in two different fully
parallel and provably secure authenticated encryption modes: one for which the nonce
must not be reused, the other one providing security even when the nonce is reused.

Deoxys-BC is an AES-based tweakable block cipher, based on the TWEAKEY frame-
work [JNP14]. Tweakable block ciphers (TBC) were first introduced and formalised by
Liskov et al. [LRW02], and in addition to the two standard inputs, a plaintext and a key,
it takes an additional input called a tweak. Tweakable block ciphers are popular primitives
for constructing authenticated encryption schemes, and the Deoxys AE scheme makes use
of two versions of the cipher as its internal primitive: Deoxys-BC-256 and Deoxys-BC-384.

Most tweakable block cipher constructions take an existing block cipher (or permutation)
as a black box, and use the tweak to modify the input/output of the cipher. In contrast,
the TWEAKEY framework proposes a novel approach: it unifies the vision of key and tweak
inputs of a cipher, as the tweakey. This allows one to add a tweak of (almost) any length
to a key-alternating block cipher and/or to extend the key space of the block cipher to
(almost) any size: an n-bit block cipher using the framework will take a k-bit key and a
t-bit tweak, and a dedicated tweakey schedule will use the (k + t)-bit tweakey to produce
the n-bit round subtweakeys. This approach allows designers to claim full security of
the tweakable block cipher, which in turn translates to the AE scheme when employing
a provable secure authenticated encryption mode. Besides Deoxys-BC, two other AES-
like tweakable block ciphers were also introduced in [JNP14]: Joltik-BC and Kiasu-BC.
Similarly to Deoxys-BC, these ciphers were also used as the internal primitives of two
CAESAR submissions (Joltik and Kiasu, respectively), although neither were selected
for the third round. Other examples of block ciphers adopting the TWEAKEY framework
include SKINNY, MANTIS [BJK+16] and QARMA [Ava17].

The only existing public security analysis of the Deoxys-BC block cipher is the one
provided by the designers [JNP14, JNPS16]. As the cipher uses the AES round function,
with the only differences to AES being the number of rounds (14 for Deoxys-BC-256 and
16 Deoxys-BC-384) and the tweakey schedule, much of the analysis leverages the existing
analysis of the AES. When considering differential cryptanalysis, the designers provide
in [JNPS16] upper bounds on the probability of the best round-reduced related-key related-
tweak differential paths for both Deoxys-BC-256 and Deoxys-BC-384. For Deoxys-BC-256,
it is shown that the number of active S-boxes for 10 rounds is lower-bounded by 22, meaning
that the probability of the associated differential path is upper-bounded by 2−132 (the
maximal differential probability of the AES S-box being 2−6). Similarly, for Deoxys-BC-384
at least 22 S-boxes are active after 12 rounds. This led the designers to claim that “all
versions of Deoxys-BC (used in Deoxys) have a security margin of at least four rounds
and thus [are] highly resistant against related-key related-tweak attacks” [JNPS16]. They
also briefly discuss linear cryptanalysis, meet-in-the-middle attacks, among other attacks,
noting however that “all the attacks that do not exploit the key schedule will have the same
success on Deoxys-BC as on AES”.

Our contributions. In this paper we provide the first independent security analysis
1https://competitions.cr.yp.to/caesar.html
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of Deoxys and its internal tweakable block ciphers Deoxys-BC-256 and Deoxys-BC-384.
First, we exhibit greatly improved lower bounds for the number of active S-boxes for both
versions of Deoxys-BC, by performing a special MILP-based search, taking into account the
features of the cipher, in particular its linear tweakey schedule and linear incompatibilities
[FJP13] between differential propagations in the tweakey and the state.2 The obtained
bounds are given in Table 1. For example, for 10 rounds of Deoxys-BC-256 we can prove
31 actives S-boxes while the Deoxys designers only proved 22. Similarly, for 12 rounds of
Deoxys-BC-384 we can prove 35 actives S-boxes while the Deoxys designers only proved
22. Not only the bounds are improved, but our tool also covers many more rounds than
what the Deoxys designers could achieve.

Table 1: Old and new lower bounds on the number of active S-boxes for Deoxys-BC.

Deoxys-BC-256

types of lower bounds 1 2 3 4 5 6 7 8 9 10 11 12 13 14
in spec. ([JNPS16]) 0 0 1 5 9 12 16 17 - 22 - - - -
simple model 0 0 1 5 9 12 16 19 23 26 29 32 35 38
linear incompatibility† 0 0 1 5 10 14 18 22 27 31 35 40 44 48

Deoxys-BC-384

types of lower bounds 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
in spec. ([JNPS16]) 0 0 0 1 4 8 - - - - - 22 - - - -
simple model 0 0 0 1 4 8 10 14 18 21 24 28 31 35 37 45
linear incompatibility† 0 0 0 1 5 9 13 18 22 27 31 35 40 44 48 52
† Bounds for linear incompatibility are obtained under different assumptions from other

standard researches using MILP. More details will be explained in Sect. 3.3.

Since the MILP tool is not suitable for finding exact differential paths where 8-bit
S-boxes are used, but it is rather good at generating active-byte patterns in truncated
differential paths, we design a dedicated algorithm for searching differential paths which
works given a byte-wise active pattern. Then, combining the MILP tool and the dedicated
algorithm, we generate valid differential paths for reduced-round versions of Deoxys-BC-256
and Deoxys-BC-384. These differential paths can in turn be employed in a broader attack
process, such as boomerang or rectangle attacks. In particular, we develop a new MILP
model which optimises two paths by taking into account the effect of the ladder switch
proposed by [BK09]. We study how these attacks can apply to Deoxys-BC. We remark
that one can potentially use the tweak input to help in applying differential attacks and
gain a few more rounds when compared to a classical block cipher. These so-called beyond
full-codebook attacks have shown to be powerful and realistic against other tweakable block
ciphers [BHT16, DV17]. Our work gives some insight into the extent to which adding an
extra tweak input to a block cipher can reduce the security margin.

All in all, we are able to attack 10 rounds of Deoxys-BC-256 and 13 rounds of
Deoxys-BC-384 (compared to the best previous attacks reaching only 8 rounds for both
ciphers [JNPS16]). We have verified our cryptanalysis work by conducting practical
experiments; all our results are summarised in Table 2.

2 Two types of bounds are provided in this paper. The first type using simple model is obtained in the
same assumption as previous work. The second type using linear incompatibility requires an additional
assumption that truncated differential paths can only be satisfied when the degrees of freedom with respect
to the choice of differences is greater than or equal to the degrees of consumption.
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Finally, we discuss how these attacks on the internal tweakable block ciphers can be
applied to the entire AE scheme. We argue that our attacks are difficult to extend to
Deoxys-II, but some of them can be applicable to Deoxys-I under certain conditions.

Table 2: Previous and new cryptanalysis results on Deoxys-BC-256 and Deoxys-BC-384
(top table, Section 4), as well as on the four Deoxys CAESAR candidates
Deoxys-I-128-128, Deoxys-II-128-128, Deoxys-I-256-128 and Deoxys-II-256-128
(bottom table, Section 6). The attack marked with (?) has a success probability of about
75% compared to about 95% for the other attacks.

Deoxys internal primitives
number tweak key

time data memory
attack

ref.
of rounds size size type

Deoxys-BC-256

8/14 128 128 ≤ 2128 - - MitM [JNPS16]
≤ 8/14 128 128 ≤ 2128 - - differential [JNPS16]
9/14 128 128 2118 2117 2117 rectangle this paper
10/14 t < 52 k > 204 2204 2127.58 2127.58 rectangle this paper

Deoxys-BC-384
8/16 128 256 ≤ 2256 - - MitM [JNPS16]
12/16 128 256 2127 2127 2125 rectangle this paper
13/16 t < 114 k > 270 2270 2127 2144 rectangle this paper

Deoxys AE schemes
Deoxys-I-128-128 9/14 - 128 2118 2117 2117 rectangle this paper
Deoxys-II-128-128 - - 128 - - - - -
Deoxys-I-256-128 12/16 - 256 2236 2126 ? 2124 rectangle this paper
Deoxys-II-256-128 - - 256 - - - - -

Outline. In Section 2 we provide the specification of Deoxys and Deoxys-BC. In Section 3
we describe our new MILP model incorporating linear incompatibility for Deoxys-BC and
provide our improved bounds for the number of active S-boxes for Deoxys-BC-256 and
Deoxys-BC-384. In Section 4 we describe our dedicated algorithm for finding differen-
tial paths and then study the application of rectangle and boomerang attacks against
Deoxys-BC-256 and Deoxys-BC-384; we discuss that these attacks can potentially be
extended to beyond full-codebook boundaries in Section 5. Finally, we analyse in Section 6
why these findings on Deoxys-BC seem generally difficult to extend to Deoxys versions
where Deoxys-BC is plugged into the AEAD modes.

2 Description of Deoxys and Deoxys-BC

Deoxys-BC is an AES-based tweakable block cipher [JNPS16], based on the TWEAKEY
framework [JNP14]. The Deoxys authenticated encryption scheme makes use of two
versions of the cipher as its internal primitive: Deoxys-BC-256 and Deoxys-BC-384. Both
versions are ad-hoc 128-bit tweakable block ciphers which besides the two standard inputs,
a plaintext P (or a ciphertext C) and a key K, also take an additional input called a
tweak T . The concatenation of the key and tweak states is called the tweakey state. For
Deoxys-BC-256 the tweakey size is 256 bits, while for Deoxys-BC-384 it is 384 bits. In
Deoxys, the size of the key and tweak can vary within the tweakey boundaries, as long
as the key size is greater or equal to the block size, i.e. 128 bits. In this section we recall
the details of the Deoxys-BC block cipher and the Deoxys AEAD operating modes. We
assume that the reader is familiar with the AES block cipher [Nat01].
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Deoxys-BC is an AES-like design, i.e. it is an iterative substitution-permutation network
(SPN) that transforms the initial plaintext (viewed as a 4 × 4 matrix of bytes) using
the AES round function, with the main differences with AES being the number of rounds
and the round subkeys that are used every round. Deoxys-BC-256 has 14 rounds, while
Deoxys-BC-384 has 16 rounds.

Deoxys-BC round function. Similarly to the AES, one round of Deoxys-BC has the fol-
lowing four transformations applied to the internal state in the order specified below:

• AddRoundTweakey – XOR the 128-bit round subtweakey (defined below) to the
internal state.

• SubBytes – Apply the 8-bit AES S-box S to each of the 16 bytes of the internal state.

• ShiftRows – Rotate the 4-byte i-th row left by ρ[i] positions, where ρ = (0, 1, 2, 3).

• MixColumns – Multiply the internal state by the 4× 4 constant MDS matrix of AES.

After the last round, a final AddRoundTweakey operation is performed to produce the
ciphertext.
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Figure 1: Instantiation of the TWEAKEY framework for Deoxys-BC-384.

Definition of the Subtweakeys. We denote the concatenation of the key K and the tweak
T as KT , i.e. KT = K||T . The tweakey state is then divided into 128-bit words. More
precisely, in Deoxys-BC-256 the size of KT is 256 bits with the first (most significant) 128
bits of KT being denoted W2; the second word is denoted by W1. For Deoxys-BC-384,
the size of KT is 384 bits, and we denote the first (most significant), second and third
128-bit words of KT by W3, W2 and W1, respectively. Finally, we denote by STKi the
128-bit subtweakey that is added to the state at round i during the AddRoundTweakey
operation. For Deoxys-BC-256, a subtweakey is defined as STKi = TK1

i ⊕ TK2
i ⊕RCi,

whereas for Deoxys-BC-384 it is defined as STKi = TK1
i ⊕ TK2

i ⊕ TK3
i ⊕RCi.

The 128-bit words TK1
i , TK

2
i , TK

3
i are outputs produced by a special tweakey schedule

algorithm, initialised with TK1
0 = W1 and TK2

0 = W2 for Deoxys-BC-256 and with
TK1

0 = W1, TK2
0 = W2 and TK3

0 = W3 for Deoxys-BC-384. The tweakey schedule
algorithm is defined as

TK1
i+1 = h(TK1

i ), TK2
i+1 = h(LFSR2(TK2

i )), TK3
i+1 = h(LFSR3(TK3

i )),

where the byte permutation h is defined as(
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
1 6 11 12 5 10 15 0 9 14 3 4 13 2 7 8

)
,
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with the 16 bytes of a 128-bit tweakey word numbered by the usual AES byte ordering.
The LFSR2 and LFSR3 functions are simply the application of an LFSR to each on

the 16 bytes of a 128-bit tweakey word. The two LFSRs used are given in Table 3 (x0
stands for the LSB of the cell).

Table 3: The two LFSRs used in Deoxys-BC tweakey schedule.

LFSR2 (x7||x6||x5||x4||x3||x2||x1||x0) → (x6||x5||x4||x3||x2||x1||x0||x7 ⊕ x5)

LFSR3 (x7||x6||x5||x4||x3||x2||x1||x0) → (x0 ⊕ x6||x7||x6||x5||x4||x3||x2||x1)

Finally, RCi denotes the key schedule round constants, of which we omit the details. A
schematic diagram of the instantiation of the TWEAKEY framework for Deoxys-BC is shown
in Figure 1.

We note that when active byte positions in the 16-byte words TK1
0 , TK2

0 , and TK3
0

are specified, active byte positions in TK1
∗ , TK2

∗ , and TK3
∗ are then uniquely determined.

We introduce the terminology “lane i” to denote the ith byte of TK1
0 , TK2

0 or TK3
0 and

the corresponding byte position in TK1
∗ , TK2

∗ or TK3
∗ .

The Deoxys AEAD operating modes. Based on the Deoxys-BC-256 and Deoxys-BC-384
block ciphers, the Deoxys designers proposed two AEAD modes, Deoxys-I and Deoxys-II.
The first mode, Deoxys-I, is a nonce-based AEAD, to be used in a nonce-respecting setting.
The second mode, Deoxys-II, is a nonce-based AEAD scheme that provides security even
in the nonce-misuse setting. We refer to the Deoxys submission document [JNPS16] for
full specification details.

With the recommended parameters given in [JNPS16], when instantiated with the
Deoxys-BC-256 block cipher, the two AE modes lead to a 128-bit key version (denoted
Deoxys-I-128-128 and Deoxys-II-128-128), while when using Deoxys-BC-384, they
lead to a 256-bit key version (Deoxys-I-256-128 and Deoxys-II-256-128). We note that
for all versions of Deoxys, a message cannot exceed 260 blocks, while a maximum of 264

messages can be ciphered under the same secret key. Therefore, when attacking one of the
Deoxys versions, an adversary can obtain at most 2124 blocks of data under the same key.

3 Improved Security Bounds for Deoxys-BC
Proving the lower bound on the number of active S-boxes for Deoxys-BC in the single-key
setting is straightforward: it is identical to the AES owing to the same round function.
Proving bounds in the related-tweakey setting is more challenging. In [JNPS16], the
designers evaluated lower bounds with Matsui’s algorithm [BN10], split approach [BN11],
and extended split approach [ELN+14]; these are shown in Table 1. They showed the
number of rounds to activate at least 22 active S-boxes, which ensures the maximum
probability of 2−132 and is thus unlikely to be satisfied even with the full codebook.
However, Deoxys accepts a tweak which can be used by the attacker to increase the attack
data resources. We note that trying 2132 plaintext/tweak pairs to satisfy the paths with
probability 2−132 does not distinguish the cipher immediately, because we obtain 24 wrong
pairs as well as 1 right pair. However, it is still possible to spend extra effort to analyze
those 24 + 1 candidates to identify the right pair, considering that 24 + 1 candidates are
significantly smaller than 2132 pairs. This fact motivates us to derive lower bounds for an
even higher number of rounds.

In this section, we first briefly explain how to search for differential bounds with mixed
integer linear programming (MILP). We then explain the simple application to Deoxys-BC
in Section 3.2. The simple application gives us only rough bounds. The main contributions
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of this section are the much tighter lower bounds obtained by incorporating degrees of
freedom with respect to differences, which is explained in Section 3.3.

3.1 Brief Introduction of MILP for Differential Bound Search
Mixed integer linear programming (MILP) is a general mathematical tool, which takes an
objective function and a system of linear inequalities with respect to real numbers as input,
and searches for an optimal solution which minimises/maximises the objective function
satisfying all the inequalities. Mouha et al. [MWGP11] showed that the problem of finding
the optimal differential path can be converted to MILP.

Single-Key for AES. The internal state of AES is represented by 16 bytes per round. To
find r-round truncated differential paths with the minimum number of active S-boxes,
one defines 16r variables xi ∈ {0, 1}, in which xi = 1 denotes that the ith byte is
active and xi = 0 denotes that the ith byte is inactive. The objective function becomes
“minimise Σxi.” To exclude solutions with invalid differential propagation, the property of
branch number 5 of MixColumns needs to be represented as a system of inequalities. By
introducing another dummy variable, dj ∈ {0, 1} for column j, Mouha et al. expressed
the constraints of the branch number with nine inequalities per column. For example,
suppose that 4 bytes (corresponding to x0, x5, x10, x15) are processed by MixColumns and
are updated to 4 bytes (corresponding to x16, x17, x18, x19). Then, valid active patterns
for x0, x5, x10, x15, x16, x17, x18, x19 can be expressed as

x0 + x5 + x10 + x15 + x16 + x17 + x18 + x19 ≥ 5dj ,

dj ≥ x0, dj ≥ x5, dj ≥ x10, dj ≥ x15, dj ≥ x16, dj ≥ x17, dj ≥ x18, dj ≥ x19. (1)

The constraints encoding valid differential propagations for the entire cipher (in the single-
key setting) can be constructed by iterating the above nine inequalities for all columns
and for all rounds, which results in 9 · 4 · r inequalities.

Related-Tweakey with T K1. The extension to related-tweakey with one tweakey state
is simple. One can define 16 binary variables stk0, stk1, · · · , stk15 to represent whether the
corresponding subtweakey byte is active or not. Let stk16r, stk16r+1, · · · , stk16r+15 be the
16 variables for the subtweakey after r rounds. Activeness of stk16r, stk16r+1, · · · , stk16r+15
for r ≥ 1 is uniquely determined accordingly to the tweakey permutation h and the active
pattern for r = 0. Namely, stk16r+j = stk16(r−1)+h(j) for r ≥ 1 and j = 0, 1, · · · , 15.

To model the AddRoundKey operation, one can introduce 16 further variables y16r+j

per round to denote the state after AddRoundKey. Suppose that the ith byte of the state
(corresponding to xi) and the ith byte of subtweakey (corresponding to stki) are xored to
compute the new ith byte of the state (corresponding to yi). Then, for (xi, stki, yi) where
i = 16r+ j, we need to exclude (xi, stki, yi) ∈ {(0, 0, 1), (0, 1, 0), (1, 0, 0)} from the solution
space, which can be done with one inequality per pattern:

xi + stki − yi ≥ 0, xi − stki + yi ≥ 0, −xi + stki + yi ≥ 0. (2)

Related-Tweakey with T K2 and T K3. Modelling multiple tweakey states is more
complex, owing to the bit-level update in TK2 and TK3 by the LFSRs. The natural
extension, making a bit-wise model, using 128 + 256 variables and 128 + 384 variables per
round for Deoxys-BC-256 and Deoxys-BC-384 respectively, is however too expensive and
the system soon becomes infeasible when r grows. The designers of SKINNY [BJK+16]
showed that TK2 and TK3 can be efficiently modelled at the byte-level. Suppose that a
single byte of TK1

0 and TK2
0 in the same position are active in the 256-bit tweakey, and let

a and b be the differences of those bytes. Then ∆STK0 is a⊕ b in this byte. In the next
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round, the byte position changes with h, and then b is updated with LFSR2, which makes
the difference of the next round tweakey a⊕LFSR2(b). Similarly, by ignoring the position
update, the round tweakey difference is computed by a⊕ (LFSR2)2(b), a⊕ (LFSR2)3(b)
and so on. Given the fact that the minimum (non-trivial) cycle of LFSR2 has length 15
(except the cycle length corresponding to the all-zero state), the number of cancellations
between those two bytes is at most 1 in every 15 rounds. Let LANEi, where i = 0, · · · , 15,
be 16 binary variables to represent that at least one among the ith bytes of TK1

0 and TK2
0

is active. Let hinv be the inverse of h. We then obtain the following constraints for r ≤ 15:

LANEi − stki ≥ 0, LANEi − stk16+hinv(i) ≥ 0, · · · , LANEi − stk16(r−1)+hr−1
inv

(i) ≥ 0,

stki + stk16+hinv(i) + stk32+h2
inv

(i) + · · ·+ stk16(r−1)+hr−1
inv

(i) ≥ r · LANEi − 1.
(3)

The model can simply be extended to TK3. The only difference from TK2 is that
the cancellation can occur up to twice for each LANEi owing to additional degrees of
freedom of differences in the state TK3

0 (see [JNP14] for more details). As a result, the
only difference will be the modifying of Eq. (3) as

stki + stk16+hinv(i) + stk32+h2
inv

(i) + · · ·+ stk16(r−1)+hr−1
inv

(i) ≥ r · LANEi − 2. (4)

3.2 Simple Application to Deoxys and Limitations
The MILP model for the related-tweakey setting in [BJK+16] can be simply applied to
both Deoxys-BC-256 and Deoxys-BC-384, which already provides better lower bounds
than the ones in [JNPS16]. They are listed in Table 1 in the row “simple model.”

Recall that the designers focused on the number of rounds to have at least 22 active
S-boxes. For both of Deoxys-BC-256 and Deoxys-BC-384, the new bounds ensure 22
active S-boxes with one fewer round than the designers’ evaluation, which implies that
the security of Deoxys-BC-256 and Deoxys-BC-384 against related-tweakey differential
attacks is higher than the original expectation.

We note that the simple application of the previous method in [BJK+16] cannot be
applied to 16-rounds of Deoxys-BC-384 directly. Because the cycle of the LFSRs is 15,
subtweakey differences in round 0 and round 15 become identical, namely ∆STK0 =
∆STK15. Then ∆STK15 must be modelled by the following modifications:

1. Add an inequality for ∆STK0 = ∆STK15 per byte, namely stki = stk16·15+h15
inv

(i).

2. Replace the left-hand side of Eq. (4) by
∑14

r=0 stk16r+hr
inv

(i).

Linear Incompatibility. Those bounds are not tight, that is to say, they do not ensure
truncated differential paths matching those bounds. Indeed, we tried to find differential
paths satisfying the truncated differential paths, without success. In fact, we observed
that all the truncated differential paths we tested included linear incompatibility, which
was demonstrated by Fouque et al. against AES in [FJP13].

Intuitively, the observation by Fouque et al. is that the difference cancellation between
the key state and the round state in some round, say round i, imposes some linear
relationship between the key and state differences. Hence, difference cancellation in a
different round, say round i+ 1, cannot be independently simulated.

An example of linear incompatibility for 2-round AES is illustrated in Figure 2. This
truncated differential path is correct if cancellation in round i, cancellation in round
i+ 1, and cancellation in the key schedule are independently considered. However, the
cancellation in the key schedule determines that two bytes in each row of the key must
have identical difference. This is incompatible with the cancellation in round i+ 1 due to
the property of MixColumns. We refer to [FJP13] for more details.

8



𝑀𝐶 𝐴𝐾 𝑆𝐵, 𝑆𝑅 𝑀𝐶 𝐴𝐾 

𝐴𝐸𝑆 𝐾𝑒𝑦 𝑆𝑐ℎ𝑒𝑑𝑢𝑙𝑒 

Figure 2: An example of linear incompatibility for 2-round AES in [FJP13, Figure 7].

3.3 Incorporating Degrees of Freedom and Consumption
In this section, we solve the problem of linear incompatibility. First, one may wonder
whether the linear incompatibility could be solved by a two-stage search as in [SGL+17].
Namely, in the first stage, truncated differential paths with small number of active S-boxes
(which may contain a linear incompatibility) are searched with a tool. Then in the second
stage, differential paths with the highest probability are searched for each discovered
truncated differential path until a feasible truncated differential path is found. This
approach works well for a small number of rounds, indeed Sun et al. [SGL+17] found
6-round related-key differential paths for AES-128. However, the running time for each
truncated differential path quickly increases when the number of rounds becomes large;
moreover, the number of truncated differential paths to test is too high when the model of
the first stage is loose.

The above discussion indicates the need of solving the linear incompatibility in the first
stage. We explain how to model linear incompatibility for Deoxys in MILP.

3.3.1 Overall Idea

The overall idea is to include constraints stating that the degree of freedom of differences
in the truncated differential paths is greater than or equal to the consumption of degrees
of freedom.

Degrees of Freedom. Suppose that the size of the tweakey states is s words, namely
s = 2 for Deoxys-BC-256 and s = 3 for Deoxys-BC-384. Suppose that LANEi is active,
i.e. some of the s states in position i have non-zero difference. Those differences can be
chosen independently, thus the total degrees of freedom of differences is s× ` bytes, where
` is the number of active lanes in the key schedule.

Degrees of Consumption Type 1. Due to the property of the tweakey schedule, for
each active lane, up to s− 1 subtweakey differences can be 0. Each cancellation of this
type enforces a linear constraint of the form TK1[i]⊕ TK2[i] = 0 for Deoxys-BC-256 and
TK1[i]⊕ TK2[i]⊕ TK3[i] = 0 for Deoxys-BC-384, in which ‘[i]’ denotes the ith byte of
the tweakey state. Consequently, every time a cancellation occurs to make a subtweakey
difference 0, the path consumes one degree of freedom.

Degrees of Consumption Type 2. This is for the difference cancellation in the MixColumns
and AddRoundKey operations, and is calculated column by column. After AddRoundKey and
SubBytes, we assume that the state difference in each active byte is uniformly random.
Then in the subsequent MixColumns (via ShiftRows), we count the number of inactive
output bytes. The path consumes degrees of freedom for the number of inactive bytes.
Subsequently, we count the number of difference cancellation in the next AddRoundKey oper-
ation. For each of the tweakey differences counted as degrees of freedom, the corresponding
differences in subtweakeys are uniquely determined. Hence, to calculate degrees we regard
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the subtweakey differences as fixed. Finally, the differential propagation consumes degrees
of freedom for each of the cancellations during AddRoundKey.

In summary, let a, b, and c be the number of active bytes before MixColumns, the number
of inactive bytes after MixColumns, and the number of cancellations during AddRoundKey,
respectively, for each column. Consumption of degrees are calculated by a− b− c. If this
is greater than or equal to 0, the path does not consume any degrees, while if it is below 0,
the path consumes degrees by −(a− b− c) bytes.

Example. We show an example of calculating degrees by using a 13-round truncated
differential path for Deoxys-BC-384 (s = 3) shown in Figure 5 in Appendix A. The number
of active lanes ` is 5, and thus the degrees of freedom of difference are 3× 5 = 15 bytes.
Cancellations in subtweakeys occur on 3 bytes in STK1, 1 byte in STK2, 2 bytes in STK5,
1 byte in STK6, and 1 byte in STK12; hence degrees are consumed by 8 bytes due to
type 1 consumption. Type 2 consumption first appears in the leftmost column in round 2.
There are 2 active bytes before MixColumns, 1 inactive byte after MixColumns, and 2 bytes
are cancelled for AddRoundKey. That is, (a, b, c) = (2, 1, 2) and the degree is consumed by
−(2− 1− 2) = 1 byte. The path consumes 7 bytes with type 2. In total, the degrees are
15− 8− 7 = 0.

We would like to make two remarks about the relationship between remaining freedom
degrees and validity of the truncated differential paths.

• Zero remaining degrees do not imply whether or not the truncated differential
path can be instantiated with particular differences. Because we do not consider
dependency between degrees of consumption in different columns, the path might be
satisfied. Hence, we keep truncated differential paths with zero remaining degrees as
candidates to achieve the minimum number of active S-boxes (and later explores the
actual differences with the method that will be explained in Section 4.2).

• Even if the remaining degrees of freedom are greater than 0, it does not ensure
that the truncated differential path can be instantiated with actual difference. For
example, our experiment detected the case that the consumption of degrees are
concentrated on a particular lane. Hence, even if the sum of degrees of freedom in all
lanes are greater than the sum of degrees of consumption in all lanes, contradiction
may occur for particular lanes.

3.3.2 Representing Degree Calculation in the MILP Model

Degrees of Freedom. Degrees of freedom are represented as s ·
∑15

i=0 LANEi.

Degrees of Consumption Type 1. Consumption of type 1 is calculated as the maximum
number of active bytes in the subtweakey minus the number of actually activated bytes.
The model is r ·

∑15
i=0 LANEi −

∑16r−1
i=0 stki, where r is the number of rounds to evaluate.

Degrees of Consumption Type 2. Type 2 consumption is more complicated. Suppose
that y0, y5, y10, y15 are input variables to MixColumns, x16, x17, x18, x19 are the correspond-
ing output variables from MixColumns, stk16, stk17, stk18, stk19 are variables of STK1 xored
in the subsequent AddRoundKey, and y16, y17, y18, y19 are the outputs from AddRoundKey.

a: Number of active bytes before MixColumns. This is represented by y0 +y5 +y10 +y15.

b: Number of inactive bytes after MixColumns. The natural model is 4−x16−x17−x18−
x19. A large value of b implies high consumption of degrees in this column. However,
if the column is inactive, this natural model sets b to 4, while the path actually
does not consume any degree; thus in this case we need to set b to 0. Recall that
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the previous model to describe MixColumns in Eq. (1) uses a dummy variable dj for
column j, which represents whether the column is active or not. Here, we introduce
another dummy variable bj and add an equality bj = 4dj − x16 − x17 − x18 − x19.
When the column is active (dj = 1), bj is set to 4 − x16 − x17 − x18 − x19 as the
natural model, and when the column is inactive (dj = 0), bj becomes 0 since all xi

are inactive when the column is inactive.

c: Number of cancellations in AddRoundKey. We introduce a variable ci for each byte,
and set ci = 1 only if the difference cancellation occurs in AddRoundKey. In detail,
we give additional constraints in the model of AddRoundKey in Eq. (2) so that
ci takes 1 only if non-zero xi and non-zero stki result in zero differences on yi,
where i = 16, 17, 18, 19. Namely, when xi = 1, stki = 1, and yi = 0, we give a
constraint that ci = 1 is in the solution space while ci = 0 is not. Similarly, when
(xi, stki, yi) ∈ {(0, 0, 0), (0, 1, 1), (1, 0, 1), (1, 1, 1)}, we give a constraint that ci = 0 is
in the solution space while ci = 1 is not. In the end, in addition to Eq. (2), we add
the following 5 inequalities;

−xi − stki + yi + ci ≥ −1,
xi + stki + yi − ci ≥ 0,
xi − stki − yi − ci ≥ −2,
−xi + stki − yi − ci ≥ −2,
−xi − stki − yi − ci ≥ −3.

For example, (xi, stki, yi) = (0, 0, 0) leads to ci = 0 because the second inequality
becomes 0 + 0 + 0− ci ≥ 0, and then ci = 1 does not satisfy the system.

Recall that consuming degrees are calculated by −(a− b− c). Let TYPE2j be integer
variables (not binary) to denote consuming degrees of type 2 for column j. Then

TYPE2j ≥ −
(
(y0 + y5 + y10 + y15)− bj − (cancel16 + cancel17 + cancel18 + cancel19)

)
.

Finally, the constrains to avoid linear incompatibility can be modelled as “degrees of
freedom is greater than or equal to consuming degrees”, which is represented as

s ·
15∑

i=0
LANEi ≥

(
r ·

15∑
i=0

LANEi −
16r−1∑

i=0
stki

)
+

4r−1∑
j=0

TYPE2j .

3.3.3 Search Results and Discussion

The results of solving the models incorporating degrees are shown in Table 1 in the
row of “linear incompatibility.” The lower bounds become significantly tighter. It is
interesting to notice that the difference in the bounds appears already for 5 rounds,
which will give a significant impact on the evaluation of boomerang-type attacks. If we
focus on the number of rounds to ensure 22 active S-boxes, the new bounds require only
8 (resp. 9) rounds, which improves from 10 (resp. 12) rounds proven by the designers
in [JNPS16], and from 9 (resp. 11) rounds proven by the simple model in Section 3.2 for
Deoxys-BC-256 (resp. Deoxys-BC-384), respectively.

Note that dependencies among linear relations derived from Type 1 and Type 2
degrees of consumption are not considered in our tool. In general, the bounds are often
established under some assumption e.g. Markov assumption, where the state is updated
by independently chosen subkeys in every round. In our analysis, we assume that no
path exists if the available degrees of freedom are smaller than the consumed degrees
of freedom. This assumption is reasonable as demonstrated in Section 4.2 that when a
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truncated differential path is given, the available degrees of freedom should be slightly
larger than or equal to the degrees of consumption to suggest an exact differential path
with a reasonable chance. In contrast, numbers with the simple model in Table 1 are
lower bounds under exactly the same assumption as many previous works since there is no
dependency among linear relations derived only from consumption degrees Type 1.

4 Boomerang and Rectangle Attacks against Deoxys-BC

Boomerang attacks and variants are typically useful for analysing schemes for which one
can find good short differential paths and bad long ones. Indeed, the main strategy of
these techniques is to combine short differential paths in order to attack a longer version
of the cipher. As we can observe in Table 1, this seems to be exactly the case with
Deoxys-BC (the number of active S-boxes remains rather small for a few rounds, but then
quickly grows). Thus boomerang-like attacks are likely to be among the most powerful
cryptanalytic techniques for this design.

4.1 Brief Introduction of the Attack Framework
Boomerang and Rectangle Attacks. Boomerang attack [Wag99] regards the target
cipher as a composition of two sub-ciphers E0 and E1. The first sub-cipher is supposed
to have a differential α → β, and the second one to have a differential γ → δ, with
probabilities p and q, respectively. The basic boomerang attack requires an adaptive
chosen plaintext/ciphertext scenario, and plaintext pairs result in a right quartet with
probability p2q2. Amplified boomerang attack works in a chosen-plaintext scenario and a
right quartet is obtained with probability p2q22−n [KKS00]. Further, it was pointed out
in [BDK01, BDK02] that any value of β and γ is allowed as long as β 6= γ. As a result,
the probability of the right quartet is increased to 2−np̂2q̂2, where p̂ =

√
ΣiPr2(α −→ βi)

and q̂ =
√

ΣjPr2(γj −→ δ). With this improvement, the attack was renamed as rectangle
attack.

Boomerang and rectangle attacks under related-key setting were formulated in [BDK05].
Let ∆K and ∇K be the key differences for the first and second sub-cipher, respectively.
The attack needs to access four related-key oracles with K1 ∈ K, where K is the key space,
K2 = K1⊕∆K, K3 = K1⊕∇K and K4 = K1⊕∆K⊕∇K. In the related-key boomerang
attack, paired plaintexts P1, P2 such that P1 ⊕P2 = α are queried to K1 encryption oracle
and K2 encryption oracle, and the attacker receives ciphertexts C1 and C2. Then C3 and
C4 are calculated by C3 = C1 ⊕ δ and C4 = C2 ⊕ δ, and then queried to K3 decryption
oracle and K4 decryption oracle. The resulting plaintext difference P3 ⊕ P4 equals to α
with probability p̂2q̂2. Related-key rectangle attacks can be similarly formulated.

Boomerang Switch. The boomerang switch was used to gain free rounds in the middle
in the attacks against full AES-192 and AES-256 [BK09]. The idea was to optimise the
transition between the sub-paths of E0 and E1 in order to minimise the overall complexity
of the distinguisher. In [BK09], three types of switch were introduced. Two of them which
are used in this paper are the ladder switch and the S-box switch.

Ladder switch. A cipher is decomposed into rounds by default. However, decomposition
regarding smaller operations, like columns and bytes, may lead to better distinguishers.

S-box switch. Suppose E0 ends with an S-box and the output difference of this S-box
is ∆. If the same difference ∆ comes from the path of E1, then the propagation through
this S-box is for free in one of the directions.
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4.2 Search for Paths with High Probability
As mentioned before, the numbers of active S-boxes in Table 1 are lower bounds that do
not ensure the existence of a path. For the first step to mount an attack, exact differential
paths are searched given an active-byte pattern in truncated differential paths generated
with methods in Section 3.3. In the literature, the MILP-based approach is widely used to
search for exact differential paths. However, the 8-bit S-boxes used in Deoxys-BC are too
heavy for MILP solvers. In [SGL+17], Sun et al. found 6-round related-key differential
paths for AES-128 using a constraint programming (CP) solver. Thus, the CP-based
approach seems to work for Deoxys-BC. However, the experiments show that the CP-based
approach is applicable only when r < 6 (5) for Deoxys-BC-384 (Deoxys-BC-256). In this
subsection, an algorithm for searching exact related-key differential paths will be presented
for Deoxys-BC and other block ciphers where the key schedule is linear. This algorithm
applies even when the size of S-box is eight bits.

This algorithm exploits two observations on the generated active patterns. Firstly,
the master tweakey difference is confined to a small set by linear equations derived from
difference cancellations. Secondly, given an exact master tweakey difference, it is easy to
find differential paths or verify there is no solution following the active pattern. With
these two observations in mind, our algorithm is designed to proceed in two steps.

• Derive the space of the master tweakey difference. To do this, linear equations over
the master tweakey difference are first extracted from the active pattern, and then
the solution space is obtained by solving the system of linear equations.

• For each master tweakey difference in the solution space, search for differential paths
following the active pattern.

Derive the Space of the Master Tweakey Difference. There are two types of linear equa-
tions over the master tweakey difference regarding the types of consumption degrees. The
first comes from subtweakey difference cancellations. We follow the notation used in previ-
ous sections. Note that LANEi = 1 means the master tweakey differences ∆W1[i],∆W2[i]
(and ∆W3[i]) for Deoxys-BC-256 (Deoxys-BC-384) are active. If LANEi = 1 and after r
rounds stk16r+hr

inv
(i) = 0, then

∆W1[i]⊕ LFSRr
2(∆W2[i]) = 0

for Deoxys-BC-256, and

∆W1[i]⊕ LFSRr
2(∆W2[i])⊕ LFSRr

3(∆W3[i]) = 0

for Deoxys-BC-384. For simplicity, we take Deoxys-BC-256 as an example in the rest of
this section.

The other type of linear equations comes from cancellations between subtweakey
differences and state differences, i.e., consumption Type 2. An example of consumption
degrees for 2-round Deoxys-BC is illustrated in Figure 3. As shown in the figure, two active
bytes ∆Xr[4, 5] of the state at Round r are cancelled by the subtweakey difference. These
two active state bytes are involved in the same MixColumns, and there is a linear relation
between them, i.e. c1 ·∆Xr[4] ⊕ c2 ·∆Xr[5] = 0 where c1, c2 are constants, due to the
property of MixColumns that any four bytes of the input and output can be calculated from
the remaining four bytes. Thus, there is also a linear relation between the two subtweakey
difference bytes, namely

c1 ·∆STKr[4]⊕ c2 ·∆STKr[5] = 0.

13



Assume ∆STKr[4] = ∆W1[i]⊕LFSRr
2(∆W2[i]), ∆STKr[5] = ∆W1[j]⊕LFSRr

2(∆W2[j])
for some i, j ∈ [0, 15]. Then a linear equation over the master tweakey difference becomes

c1 · (∆W1[i]⊕ LFSRr
2(∆W2[i]))⊕ c2 · (∆W1[j]⊕ LFSRr

2(∆W2[j])) = 0.

h h h hSB,SR
ATK

MC h
ATK

h hDeoxys-BC Key Schedule

Round rRound r-1

Xr-1 Yr-1 Zr-1 Xr Yr

STKr-1 STKr

Figure 3: An example of consumption degrees Type 2.

Suppose the degrees of consumption of Type 1 and 2 are d1 and d2 respectively. Then
there are d1 + d2 byte-wise linear equations in total. With all linear equations over the
master tweakey difference extracted, the solution space can be calculated. Suppose all
these linear equations are independent, then the size of solution space is 2(s×`−d1−d2)×8.
Note that s is the number of tweakey states and ` is the number of active lanes in the key
schedule. Since the most available degrees of the master tweakey difference have been used
to minimise the number of active S-boxes through MILP, the number of byte degree left,
s× `− d1 − d2 is small (usually 1 or even 0, and the actual bit degree of freedom may be
slightly greater than 8× (s× `− d1 − d2) due to bit-level dependencies), making the size
of the resulting solution space small. Thus, traversing the solution space is practical.

Search for Differential Paths under Fixed Master Tweakey Difference. Given an exact
master key difference, all subtweakey differences are determined accordingly since the key
schedule is linear. With all subtweakey differences known, there are two types of S-boxes:

Type i the input and output differences are determined.

Type ii the input or output differences are not determined but some constraints are
imposed by the subtweakey differences.

We again take Figure 3 as an example. At Round r, ∆X[4, 5] can be known from
∆STKr, and further ∆Zr−1[6, 7] can be calculated through MixColumns. At Round r − 1,
∆Y [3, 14] are known from ∆STKr−1. Consequently, the input and output differences of
the two active S-boxes at Round r − 1 are determined and thus these two S-boxes belong
to Type i.

Active S-boxes at the first round and the last round belong to Type ii. There may
exist Type ii S-boxes in the middle rounds which form into small groups. For this case, a
local search for optimal differential path is needed for each group.

In short, the algorithm proceeds as follows.

1. Set pr = 0

2. For each master tweakey difference from the solution space:

(a) Compute the subtweakey differences.
(b) Derive input/output differences of S-boxes from the subtweakey differences.
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(c) For S-boxes of Type i, check whether the differentials are compatible or not. If
not, go to Step 2.

(d) For S-boxes of Type ii, check whether compatible differentials among each
group can be found or not.3 If not, go to Step 2; otherwise, find the best local
differentials for each group.

(e) Check if the probability p of the currently obtained path is greater than pr. If
yes, pr = p and save this path.

Given an active pattern, if there are ts (ts > 0) S-boxes of Type i, an exact differential
path is not guaranteed, which can be seen from Step 2(c) of our algorithm. Assume the
input and output differences of a Type ii S-box are random. Then the probability that the
differential of this S-box is compatible is almost 1

2 . As a result, an exact differential path
can be obtained with high chance only when (s× `−d1−d2)× 8 > ts. For the cases where
ts > 0, if the default constraint s× `− d1 − d2 ≥ 0 is imposed to the MILP model, then
for generated active patterns it is unlikely to find an exact differential path. So setting
aside 1/2-byte degrees in the MILP model is a way to increase the chance to find an exact
differential path at a cost of more active S-boxes. Therefore, there is a tradeoff between
s× `− d1 − d2 and the number of Type ii S-boxes ts.

Our algorithm for searching differential paths is implemented with SageMath. The main
results are differential paths of Deoxys-BC that constitute the boomerang distinguishers,
which are presented in the next section.

4.3 Boomerang Distinguisher of Deoxys-BC
In this section, we search for boomerang distinguishers of Deoxys-BC by exploiting the
switching techniques. First, we incorporate the ladder switch into the MILP model,
and generate truncated boomerang distinguishers. Then, given a truncated boomerang
distinguisher, the upper path and the lower path are searched independently by applying
the algorithm from Section 4.2.

Incorporate the Switching Techniques into the MILP Model. Suppose that the aim is
to find a boomerang distinguisher over R1 +R2 rounds. First, we generate an MILP model
for the first R1 + 1 rounds and for the last R2 + 1 rounds, respectively. Suppose binary
variables u0, · · · , u16·R1+15 denote the activeness of S-boxes in the first R1 + 1 rounds, and
l0, · · · , l16·R2+15 denote the activeness of S-boxes in the last R2 + 1 rounds. Then, we let
the middle two rounds overlap by adding another 32 binary variable y0, · · · , y31, and

u16·(R1−1)+i − yi ≥ 0, u16·R1−1+i − y16+i ≥ 0,
li − yi ≥ 0, l16+i − y16+i ≥ 0,

−u16·(R1−1)+i − li + yi ≥ −1, −u16·R1+i − l16+i + y16+i ≥ −1,

for 0 ≤ i ≤ 15. In the inequalities, yi = 1 if both of u16·(R1−1)+i and li are 1; otherwise,
yi = 0. Now the objective is to minimise

16·R1−1∑
i=0

ui +
31∑

j=0
yj +

16·R2+15∑
k=16

lk.

The boomerang distinguishers of Deoxys-BC obtained are listed in Table 4. Even
though only a single path is considered for both E0 and E1, the notation p̂2q̂2 is still

3For the boomerang attacks explained later, we pick one of the best differential characteristics. As
pointed out by a reviewer, multiple characteristics may contribute to increase the probability as demon-
strated in the attack against MANTIS by Dobraunig et al. [DEKM16].
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Table 4: Boomerang distinguishers

Deoxys-BC-256 Deoxys-BC-384

R1, R2 #AS pq p̂2q̂2 R1, R2 #AS pq p̂2q̂2

4,4 6 2−36 2−72 5,5 4 2−24 2−42

5,4 9 2−61 2−122 6,5 9 2−60 2−120

5,5 16 2−106 2−212 6,6 15 2−98 2−196

6,5 20 2−136 2−265 7,6 20 2−134 2−268

used, because there may be improvements on the probabilities due to the S-box switch.
Specifically, the 11-round distinguisher of Deoxys-BC-256 and the 10-round distinguisher
of Deoxys-BC-384 utilise the S-box switch and save one active S-box.

4.4 Application to Deoxys-BC-384

We present a practical 10-round boomerang distinguisher with 4 · 242 data complexity and
a 11-round boomerang distinguisher with 4 · 2120 data complexity against Deoxys-BC-384.
The data complexity is even lower if we attack a smaller number of rounds, e.g. 4 · 26 for
8-rounds and 4 · 218 for 9 rounds. We first focus on the 10-round distinguisher.

4.4.1 10-Round Distinguisher against Deoxys-BC-384

As summarised in Table 4, 10 rounds are divided into upper 5 rounds and lower 5 rounds.
Table 1 shows that the number of active S-boxes for 5 rounds is at least 5. Hence the
maximum probability of p and q is 2−30 for the straightforward evaluation, which requires
4 · (pq)−2 = 2122 queries. This data complexity is already close to the full codebook. We
found that, by using the ladder switch, the probabilities for 6 active S-boxes (out of 10)
can be 1, which is the main reason that the complexity dropped into practical range.

The master tweakey difference is provided in Table 6 and the upper and lower 5-round
paths are specified in Table 11 of Appendix. Hereafter the notation ∆ and ∇ denote the
difference for the upper path and lower path, respectively. In Table 11, the columns of
X,K, Y and Z denote the initial state difference, subtweakey difference, state difference
after AddRoundKey, and state difference after ShiftRows ◦ SubBytes, respectively.

Upper Path. According to Table 6, we use the following tweakey difference:

∆TK1
0 =


00 00 90 00
00 00 00 1b
8b 00 00 00
00 90 00 00

 ,∆TK2
0 =


00 00 63 00
00 00 00 42
21 00 00 00
00 63 00 00

 ,∆TK3
0 =


00 00 7d 00
00 00 00 49
34 00 00 00
00 7d 00 00

 .

The values are hexadecimal numbers. These uniquely determine all subtweakey differ-
ences according to the key schedule. As shown in Table 11,

∆STK0 =


00 00 8e 00
00 00 00 10
9e 00 00 00
00 8e 00 00

 ,∆STK1 =


00 00 00 bb

00 00 00 d2
00 00 00 69
00 00 00 69

 ,∆STK3 = 0,∆STK4 = 0,

and so on. A notable feature is that the difference is chosen so that ∆STK3 and ∆STK4
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are 0. The plaintext difference is

∆P =


00 00 8e 00
a3 00 00 10
9e 00 00 00
00 8e 00 00

 ,

which is chosen so that 4 byte differences are cancelled by the initial AddRoundKey with
∆STK0. Furthermore, the remaining 1-byte difference a3 will propagate to 69 with
probability 2−6 through SubBytes, and cancel the 1-column difference in ∆STK1 in the
second round. After this cancellation, zero-difference state continues until AddRoundKey in
round 5, which activates 4 bytes in a diagonal position. However, as we explain below, the
probability for those 4 active S-boxes can be 1 due to the ladder switch effect.

Lower Path. Similarly to the upper path, the master tweakey difference ∇K and differ-
ential propagation are defined in Table 6 and Table 11. To avoid redundancy, we omit
re-defining the detailed data. The construction of the lower path is similar to the upper
path but the propagation goes to the inverse direction according to the boomerang attack
framework. The ciphertext difference ∇C is chosen to cancel the subtweakey difference
∇STK9 by AddRoundKey in round 10, and then zero-difference state continues until
AddRoundKey in round 7.

Switch in the Middle Two Rounds. In Table 11, the differential propagations are de-
scribed in both of lower and upper paths for round 5 and round 6 to estimate the effect of
ladder switch and S-box switch. Here, the goal is to divide the round function operation
for rounds 5 and 6 into two independent parts, and assign one part to the upper path and
the other part to the lower path in order to maximise the number of active S-boxes that
are bypassed with probability 1.

Let col(i) be the 4 bytes in column i and let diag−1(i) be 4 bytes that move to col(i) by
applying the map in ShiftRows. We denote by OP(col(i)) and OP(diag−1(i)) the application
of a OP operation only partially to col(i) and diag−1(i). We also denote multiple columns
or inverse diagonals by col(i1, i2, · · · ) and diag−1(i1, i2, · · · ).

The upper path covers from plaintext to AddRoundKey in round 5. The lower path
covers from ciphertext to round ShiftRows−1 in round 6. So, the remaining operations in
the middle two rounds are SubBytes(SB), ShiftRows(SR), MixColumns(MC) in round 5 and
AddRoundKey(AK), SubBytes(SB) in round 6. We divide those 5 operations as follows.

upper path
SB(diag−1(1, 2, 3)) SR(diag−1(1, 2, 3)) MC(col(1, 2, 3)) AK(col(1, 2, 3)) SB(col(2, 3))
lower path

SB(diag−1(0)) SR(diag−1(0)) MC(col(0)) AK(col(0)) SB(col(0, 1))

Then, the upper path does not include any active S-box during those 5 operations, and
thus the probability of differential propagation is 1 owing to the ladder switch. The lower
path contains one active S-box during the computation of SubBytes(col(1)) in round 6 (byte
position 6), which lowers the probability of the lower path q by a factor of 2−6. However,
if analysed in detail, the input difference of this active S-box is fixed (9e) from the upper
path, and the output difference of this active S-box is fixed (68) from the lower path.
Then the S-box switch in [BK09] can be applied. Namely, to calculate the probability of
forming a quartet (q2), the probability for one of the pairs becomes 1, i.e. the probability
stays q instead of q2. The mechanism of this S-box switch is as follows. Suppose that a
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paired input to the S-box i1 and i2 = i1 ⊕ 9e becomes o1 = S(i1) and o2 = S(i2), and
o1 ⊕ o2 = 68 by paying the cost of q. Then, values of the S-box output for the other pair
are o3 = o1 ⊕ 68 and o4 = o2 ⊕ 68, which get back to o2 and o1. Hence, the corresponding
i3 and i4 with probability 1 satisfy the difference 9e.

Complexity. All in all, there is one active S-box in round 1 of the upper path, which
makes p = 2−6 and there are two and one active S-boxes in round 10 and round 6 of the
lower path, respectively, which makes q = 2−18. When a quartet is constructed, we do not
have to calculate the squared value for the S-box switch in round 6. Thus the probability
of finding a right quartet is (2−6)2 ·2−6 · (2−12)2 = 2−42. Considering that we make queries
for 4 related-key oracles, the data complexity is 4 · 242 = 244.

Experimental Verification. We experimentally verified the distinguisher for reduced-
round variants. The first experiment is for 8 rounds. where round 1 and round 10 are
dropped from Table 11. Then, the only probabilistic behaviour is the S-box switch in
round 6, and the experiment clearly reflects the effect of the S-box switch (and the ladder
switch). Moreover, we also need to take care of the observation by Murphy [Mur11] which
pointed out that two independently chosen paths may not be connected.

The procedure in our experiment follows the related-key boomerang distinguisher
framework introduced in Section 4.1. Namely, we define four related-key oracles, randomly
generated many plaintext pairs (P1, P2), and check if the corresponding (P3, P4) returned
by the boomerang structure satisfy the same plaintext difference. Among 215 random
pairs of (P1, P2), 546 pairs of (P3, P4) satisfy the correct plaintext difference. Therefore
the probability to be a right quartet is 546/215 ≈ 2−5.91. This matches quite well the
theoretically evaluated 2−6 of the probability of the S-box switch.

The second experiment is for 9 rounds, where only round 10 is dropped from Table 11.
The theory expects that the probability for observing a right quartet lowers down by a
factor of 2−12 compared to the 8-round attack, due to the additional active S-box in round
1. Among 225 random pairs of (P1, P2), 133 pairs of (P3, P4) form a right quartet, thus
the probability is 133/225 ≈ 2−17.94. This also matches well the theoretically evaluated
2−6 · 2−12 = 2−18.

4.4.2 Rectangle Attack with Key Recovery against 13-Round Deoxys-BC-384

Similarly to the discussion above, as shown in Table 4, a distinguisher can be established
against 11-round Deoxys-BC-384 with 4 · 2120 = 2122 data complexity. In this section, we
further extend the attack to 13 rounds by appending key recovery in a rectangle attack
framework. The attack adds one round before and after the 11-round distinguisher as
shown in Table 12.

We follow the notations and the generic key recovery algorithm for rectangle attacks
from [LGS17], which provides formulae to estimate attack complexities. While Biham et al.
original algorithm works under the single key setting, these formulae apply for related-key
rectangle attacks as long as the key schedule is linear. In Round 0, let Ub be all the
possible differences in the plaintext, and Vb be the space spanned by the values in Ub.
Let rb = log2|Vb| and tb = log2|Ub|. Let mb be the STK0 bits which are involved in the
calculation of active S-boxes in Y0. Similarly, we define Uf , Vf , rf , tf and mf for Round
12. Note that in round 12, we can compute the difference in Z12 using the difference in
the ciphertext and the known difference in STK13. Hence, we can use Z12 to determine
the values of Uf , Vf , rf , tf and mf . The complexities of the key recovery attack are the
following according to [LGS17].

- Data complexity: D = 4M chosen plaintexts, where M = √g · 2n/2/p̂q̂ and g is the
expected number of right quartets.
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- Time complexity: 4M + 2 ·M2 ·2rf−n + 2 ·M2 ·2tf−n +M2 ·22tf +2rb−2n(1 + 2tb−rb) +
M2 · 2tb+tf−2n+1(2mb+tf + 2mf +tb) memory accesses.

- Memory complexity: 4M + 2tb + 2tf + 2mb+mf .

In the case of 13-round Deoxys-BC-384 key recovery attack, n = 128 and set the number
of right quartets g = 4 · p̂q̂ = 2−60 which is from the 11-round boomerang distinguisher.
Thus M =

√
4 · 264 · 260 = 2125. rb = log2(25612) = 96, tb = log2(12712) = 83.8, mb = 96,

rf = log2(2566) = 48, tf = log2(1276) = 41.9, mf = 48. With these parameters, we can
compute the complexities of the attack. The data complexity is 4M = 2127, the time
complexity is 2269.8 memory access and the memory complexity is 2144. Since the size of
tweakey is 384 bits, the attack is better than the brute force attack as long as the key size is
larger than 270 bits. If t = 128 as suggested by the designers, the attack covers 12 rounds:
we utilise the 11-round distinguisher as shown in Table 12. Unlike the 13-round attack
against Deoxys-BC-384, one round is added only before the distinguisher. Following the
same key recovery algorithm, the data, time and memory complexities are 2127, 2127 and
2125, respectively.

SB,SR
ATK

MC h
ATK

h

Round 1Round 0

plaintext Y0 Z0 X1 Y1

STK0 STK1

h h hSB,SR
ATK

MC
ATK

h

Round 12

X12 Y12 Z12 X13 ciphertext

STK12 STK13

Known difference

Unknown difference

11-round distinguisher of Deoxys-BC-384

Figure 4: Key recovery attack against 13-round Deoxys-BC-384 with data complexity
below codebook.

4.5 Application to Deoxys-BC-256

An attack against Deoxys-BC-256 can be mounted using similar techniques. We will
therefore skip the details, and only present the main attack results for Deoxys-BC-256.
Regarding distinguishers, as shown in Table 4, 8 rounds and 9 rounds can be distinguished
with 4 · 272 = 274 queries and 4 · 2122 = 2124 queries, respectively.

For key recovery, by appending one round at the end of the 9-round distinguisher,
10-round Deoxys-BC-256 can be attacked by rectangle attack with data complexity be-
low codebook. The attack procedure is similar to the one for 13-round attack against
Deoxys-BC-384. As a result, we can recover the key with data, time, memory complexities
of 2127.58, 2204 and 2127.58, respectively. If t = 128, then 9 rounds of Deoxys-BC-256 can
be attacked: we utilise the 9-round distinguisher given in Table 8. The first 8 rounds are
used as a distinguisher and the last round is considered as the appended round to the
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distinguisher. Following the same key recovery algorithm in Section 4.4.2, the data, time
and memory complexities are 2117, 2118 and 2117, respectively.

5 Beyond full-codebook for tweakable block ciphers
The complexity of cryptanalytic attacks against a block cipher is typically measured by the
different resources required to successfully run the attack. The time complexity corresponds
to the work effort required to mount the attack; the data complexity corresponds to the
amount of data (e.g. plaintext-ciphertext pairs); finally the memory complexity denotes the
amount of memory or storage required to run the attack. Regarding the data complexity,
a reasonable assumption in the case of single-key attacks is that the amount of data that
may potentially be available to an attacker is limited to the size of the message space,
i.e. 2n where n is the block length. An attack that requires 2n plaintexts / ciphertexts is
known as a full-codebook attack. While one could argue about the relevance or applicability
of such an attack, a full-codebook attack may still play a role in the security analysis of a
block cipher – for example, if the full domain encryption allows the recovery of the secret
key, this may still indicate some structural weakness in the cipher construction.

However, when considering tweakable block ciphers, the data limit of 2n message blocks
may no longer need to apply. Recall that tweakable block ciphers take as input a plaintext
(of length n) and a tweak (of length t), and so even in the single-key case, it is reasonable
to assume that an attacker may have available an amount of data D � 2n to carry out an
attack, as long as D ≤ 2n+t. In fact, these beyond full-codebook attacks have shown to be
powerful and realistic against real-world tweakable block ciphers. For example, Bellare
et al. [BHT16] describe an attack against the NIST standards for Format-Preserving
Encryption (FPE) [Nat16] when they are used with small message spaces. They presented
message-recovery, beyond full-codebook attacks that exploit the fact that the algorithms
are Feistel-based tweakable block cipher constructions. For example, for 4-bit messages,
the attacks fully recover the target message using between 221 and 225 ciphertexts. These
require a large number of tweaks, but only three messages per tweak.

Ciphers adopting the TWEAKEY framework [JNP14], such as Deoxys-BC, offer further
flexibility in setting the limit of data resources available for an attack. The construction
allows one to add a tweak of (almost) any length to a key-alternating block cipher and/or
to extend the key space of the block cipher to (almost) any size. A n-bit block cipher using
the framework will take a k-bit key and a t-bit tweak, and a tweakey schedule will then
take the (k + t)-bit tweakey to produce the n-bit round subtweakeys STKi. Then for a
fixed-size tweakey, the versatility of the TWEAKEY framework for setting the values of k and
t provides attackers with a potentially optimal strategy to attack instances of TWEAKEY
ciphers: select the key size k as large as possible – which results on a higher security claim
– as long as the size of the tweak t is large enough to supply the required data to run the
attack.

However, having sufficiently large plaintext/tweak space to satisfy the characteristic
does not ensure the simple differential attack based on a differential characteristic with
probability below 2−n. This is because we will obtain too much wrong pairs that probabilis-
tically satisfy the same input and output differences without following the characteristic.
Here, with a careful analysis, we show that characteristics with probability below 2−n can
still be used to distinguish the cipher from the ideal one.

In general, our strategy is exploiting the small bias of the characteristic by iterating
the bias many times. Assume that for an input difference ∆i, the output difference ∆j

appears with probability 2−p, where p > n. Also assume that for any output difference but
∆j appears with probability 2−n. Then, we consider asking 2x pairs of (P, T ) satisfying
∆i where x > p, and count how many times each of output differences occur. The
number of hits without satisfying the characteristic follows Poisson distribution with a
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parameter λ = 2x−n. When λ is big enough, Poisson distribution with parameter λ can
be approximated to the normal distribution with average λ and variance λ. When a
probabilistic variable X follows the normal distribution with average µ and variance σ2,
the probability that X is within µ± σ is 66.7%. (The probability that X is within µ± 3σ
is 99.73%.) Hence, any output difference but ∆j is observed about 2x−n ± σ times, while
∆j is observed about 2x−n ± σ + 2x−p times. σ is 2(x−n)/2. The condition to be a valid
distinguisher is 2x−p > 2(x−n)/2, which is x > 2p− n.

For example, let us consider the case with n = 128, p = 140 (and sufficiently large
tweak size). The condition of the number of queries x is x > 2 · 140− 128 = 152. Indeed,
when x = 160, random generations occur 232 ± 216 times, while δo occurs 232 ± 216 + 220.
Due to this difference, the cipher can be distinguished.

5.1 Rectangle Attacks on Deoxys-BC
Under classical settings where the available data is below full-codebook, it is pointed
in [BDK02] that whenever the boomerang distinguisher succeeds then the key recovery
attack also succeeds in boomerang and rectangle attacks. However, under the new setting
where the available data can be more than 2n, additional constraints should be satisfied to
make the key recovery succeed.

Suppose the tweak size is t, the tweakey size is h, p̂q̂ = 2−w. In both boomerang
attacks and rectangle attacks, there are two natural constraints: (1) the data complexity
M under each related key should be less than 2n+t; (2) the time complexity for processing
data should be less than 2h−t. Based on these two constraints, a rough bound for w is
derived as follows. Note that the bound applies when the key schedule is linear.

In rectangle attacks, the data complexity under the related-key setting D = 4M . There
are M2 = 2x quartets. First, the data complexity under each related key should be
less than the number of available data, i.e., 2 x

2 < 2n+t. Second, the time complexity of
analyzing 2x quartets should be at least 2x2−n. This can be deduced from the extreme
case where no round is appended after the distinguisher. In this extreme case, pairs of
ciphertexts whose difference is not equal to the output difference of the distinguisher
can be discarded immediately. The number of quartets remaining is 2x2−n and the time
complexity of the key recovery attack should be at least 2x2−n. Therefore, the second
requirement is that 2x2−n < 2h−t. Additionally, to distinguish the right key from wrong
keys, 2x2−n−2w >

√
2x2−2n as demonstrated previously, where 2−n−2w ( 2−2n) is the

probability of the right key (wrong keys) being suggested by a quartet. This implies that
x > 4w. Consequently, 

2w < n+ t

4w − n < h− t
t, w ≥ 0

should hold. If h = 2n, then w ∈ [0, 2
3n); if h = 3n, it follows that w ∈ [0, 5

6n).
This analysis provides an upper bound of w. Note that, in conventional rectangle

attacks, w should be less than n
2 . As can be seen, there exists a less tight bound of w in

beyond code-book rectangle attacks.
We consider beyond code-book rectangle attacks of Deoxys-BC and check if it is possible

to cover more rounds than conventional rectangle attacks. For Deoxys-BC-384, the 12-
round distinguisher has w = 98. However, with the input and output differences being
dense, a 14-round attack is not possible. Even though a 13-round attacks can be mounted,
it requires higher complexities than the 13-round attacked described in Section 4.4.2.
For Deoxys-BC-256, among the distinguisher we obtained (see Table 4), no one satisfies
64 < w < 2

3n). Although we do not find better rectangle attacks under the beyond code-
book setting, this setting may be helpful under other cases where suitable distinguishers
are found.
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6 Impact on Deoxys Authenticated Encryption
In the previous sections, we studied the security of the Deoxys-BC tweakable block cipher,
where an attacker can ask for encryption/decryption with any tweak value and even for
related keys. However, the CAESAR submission Deoxys uses this primitive inside two
operating modes, as described in Section 2. Here, we analyse to what extent an adversary
is constrained by the fact that they only have access to the AE interface, and not the
internal TBC directly.

First, a small restriction is due to the 4-bit encoding placed in the tweak input of the
TBC in both Deoxys modes, in order to separate their various phases. The effect for an
attacker is that 4 bits of the tweak input have to be fixed to the specific encoding value
and thus cannot contain any difference. However so few bits are unlikely to represent a big
challenge, and may well be overcome by choosing an appropriate differential paths that
does not contain any difference on these 4 bits. We have verified that for the attacks given
in the bottom subtable of Table 2, there is indeed no difference in these 4 bits.

Secondly, in Deoxys the maximum amount of data allowed for a given key is 2t−4, which
is equal to 2124 when using the recommended parameters given in [JNPS16]. Therefore,
all attacks requiring more than this amount of resources per key should be discarded. We
can note that if a rectangle attack requires a bit more data than this limit, it is possible to
use less data by accepting a slightly lower success probability (or keeping the same success
probability, but repeating the attack a few times and thus increasing the time complexity).
Moreover, the claimed security of the Deoxys modes is obviously limited to the key size
used. Thus, all attacks requiring more than 2128 time/data/memory for Deoxys-BC-256
or more than 2256 time/data/memory for Deoxys-BC-384 should be discarded as well.

Thirdly, a natural restriction when interacting with an AE scheme is that a null
character is returned in case the tag is not valid during a decryption/verification (unless in
the specific misuse setting where unverified plaintext is released [ABL+14]; however such
a scenario is not claimed to be covered by the Deoxys designers). This of course prevents
the classical boomerang attack to apply, as a decryption oracle to the internal TBC is
required in this adaptive chosen plaintext ciphertext attack. However, this restriction is not
problematic for the amplified boomerang variant, or for the rectangle attack, where only
chosen plaintext is required. We also note a similar restriction due to the counter mode
used for encryption in Deoxys-II: whatever the scenario, only the ciphering direction is
computed and the attacker can never access the decryption primitive.

A final and potentially more problematic restriction is due to the nonce input of the
AE mode. Indeed, in a nonce-respecting scenario, the attacker can only query a nonce once
for a given key (a nonce can be queried several times only if a different key is used each
time, which is allowed in a related-key setting). In the case of Deoxys-I, where the nonce
is used as tweak input to the internal TBC together with a block counter, this restriction
is not so problematic for the adversary. Indeed, the attacker can organise the queries in
advance so that they can observe the encrypted data required to perform the amplified
boomerang or rectangle attacks on the internal TBC (the attack just has to ensure that
the proper difference is inserted in the tweak input). The case of Deoxys-II appears to be
more problematic, as the tag value that is inserted in the tweak input of the internal TBC
cannot be controlled, nor even predicted by the attacker (in contrast to Deoxys-I). This
makes it very challenging for an adversary to organise the queries in advance to obtain
the necessary data to run the amplified boomerang or rectangle attacks on the internal
TBC. Moreover, the plaintext of the TBC is fixed to the nonce, which further restricts the
attacker’s abilities. Observing directly the tag to perform the attack will not work either as
an extra TBC call is performed before outputting the tag value (thus two encryption layers
have to be attacked). Even in the nonce-misuse scenario, the tag will be unpredictable to
the attacker so this optimistic scenario does not seem to help the cryptanalysis.

In summary, from all the attacks against (reduced-round) Deoxys-BC described in
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previous sections, the only ones that can be applied to the Deoxys AE modes are amplified
boomerang or rectangle attacks against Deoxys-I, with a maximal data complexity of
≤ 2124 per key (or close to that threshold, with a tradeoff possible with the success
probability and/or time complexity), and time complexity ≤ 2128 for Deoxys-I-128-128,
and ≤ 2256 for Deoxys-I-256-128.
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B Differential Paths and Boomerang Distinguishers
We give in this section the details of all boomerang distinguishers that are summarised in
Table 4 of Section 4. The master tweakey differences are collected in Table 5 and Table 6.
The differences are represented in hexadecimal and differences that are not crucial to the
distinguishers are denoted with “**”. At the meeting point of the upper path and the
lower path, the grey colour is used to visualise the switching techniques.

Table 5: Master tweakey differences for distinguishers of Deoxys-BC-256

8 rounds
4K

00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 46
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 d1

∇K
00 00 02 00 00 00 00 b3 00 00 00 00 00 00 00 00
00 00 a8 00 00 00 00 96 00 00 00 00 00 00 00 00

9 rounds
4K

00 7f 00 00 00 ff 00 00 0b 00 f1 00 00 00 00 7c
00 cf 00 00 00 3f 00 00 70 00 5e 00 00 00 00 be

∇K
00 00 00 00 00 a1 00 04 00 00 00 00 00 00 00 00
00 00 00 00 00 bf 00 a8 00 00 00 00 00 00 00 00

10 rounds
4K

aa 71 c7 00 00 00 00 00 00 00 00 25 00 00 00 00
2a 38 98 00 00 00 00 00 00 00 00 12 00 00 00 00

∇K
00 00 8d 00 00 00 00 00 61 00 00 00 00 00 00 08
00 00 83 00 00 00 00 00 e0 00 00 00 00 00 00 a8

11 rounds
4K

00 3f 00 00 15 00 00 00 7f 00 00 00 00 00 00 07
00 cf 00 00 8a 00 00 00 9f 00 00 00 00 00 00 83

∇K
00 00 00 00 00 00 00 00 52 61 fa 00 00 00 00 00
00 00 00 00 00 00 00 00 77 f0 66 00 00 00 00 00

Table 6: Master tweakey differences for distinguishers of Deoxys-BC-384

10 rounds

4K
00 00 8b 00 00 00 00 90 90 00 00 00 00 1b 00 00
00 00 21 00 00 00 00 63 63 00 00 00 00 42 00 00
00 00 34 00 00 00 00 7d 7d 00 00 00 00 49 00 00

∇K
00 00 00 00 00 00 00 6e 00 00 00 00 b1 00 00 00
00 00 00 00 00 00 00 42 00 00 00 00 f5 00 00 00
00 00 00 00 00 00 00 b3 00 00 00 00 d3 00 00 00

11 rounds

4K
00 8b 00 00 c4 00 00 00 7a 00 c5 a6 00 00 00 00
00 ad 00 00 c4 00 00 00 73 00 21 d8 00 00 00 00
00 a3 00 00 9a 00 00 00 3b 00 0d 2e 00 00 00 00

∇K
00 00 02 00 00 00 00 00 d7 00 00 00 00 00 00 00
00 00 99 00 00 00 00 00 bc 00 00 00 00 00 00 00
00 00 0c 00 00 00 00 00 f1 00 00 00 00 00 00 00

12 rounds

4K
b8 00 7e 00 86 00 00 00 00 00 00 b8 00 00 d4 06
f5 00 c6 00 f5 00 00 00 00 00 00 f5 00 00 a6 3f
a4 00 e6 00 48 00 00 00 00 00 00 a4 00 00 31 c0

∇K
00 00 00 00 00 00 00 00 3d 00 00 00 00 00 00 58
00 00 00 00 00 00 00 00 c8 00 00 00 00 00 00 5b
00 00 00 00 00 00 00 00 8c 00 00 00 00 00 00 d0

13 rounds

4K
dd 00 00 1b 00 00 00 00 00 00 00 00 f8 3f 00 00
e3 00 00 84 00 00 00 00 00 00 00 00 54 79 00 00
36 00 00 24 00 00 00 00 00 00 00 00 a0 99 00 00

∇K
00 00 00 00 58 3d 00 00 00 00 00 00 00 00 00 00
00 00 00 00 2d e4 00 00 00 00 00 00 00 00 00 00
00 00 00 00 a1 19 00 00 00 00 00 00 00 00 00 00
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Table 7: 8-round distinguisher of Deoxys-BC-256

R X K Y Z pr

1

00 b9 00 00 00 00 00 00 00 b9 00 00 00 35 00 00

2−2400 00 d1 00 00 00 00 00 00 00 d1 00 00 5d 00 00
00 00 00 ab 00 00 00 00 00 00 00 ab 00 01 00 00
61 00 00 97 00 00 00 97 61 00 00 00 00 8c 00 00

2

00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

100 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 e5 00 00 00 e5 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

3

00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

100 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

4

00 00 00 00 ca 00 00 00 ca 00 00 00 ** 00 00 00

100 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

5

** 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

1** 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
** 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
** 00 00 00 00 5f 00 00 00 00 00 00 00 00 00 00

4

00 00 ** ** 00 00 05 00 00 ** ** ** 00 ** ** **

1** 00 ** ** 00 00 00 00 ** 00 ** ** 00 ** ** **
** ** 00 ** 00 00 00 00 ** ** 00 ** 00 ** ** **
** ** ** 00 42 00 00 00 ** ** ** 00 00 ** ** **

5

00 7a 00 00 00 00 00 00 00 7a 00 00 00 b9 00 00

100 00 3e 00 00 00 00 00 00 00 3e 00 00 d1 00 00
00 00 82 ab 00 00 82 00 00 00 00 ab 00 01 00 00
00 00 00 df 00 00 00 df 00 00 00 00 00 00 00 00

6

00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

100 03 00 00 00 03 00 00 00 00 00 00 00 00 00 00
00 6a 00 00 00 6a 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

7

00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

100 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

8

00 00 00 00 d5 00 00 00 d5 00 00 00 60 00 00 00

2−1200 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 06 00 00 00 06 00 00 00 00 0c
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Table 8: 9-round distinguisher of Deoxys-BC-256

R X K Y Z pr

1

00 00 7b 00 00 00 7b 00 00 00 00 00 00 00 00 00

1b0 c0 00 00 b0 c0 00 00 00 00 00 00 00 00 00 00
00 00 af 00 00 00 af 00 00 00 00 00 00 00 00 00
61 00 00 c2 00 00 00 c2 00 00 00 00 00 00 00 00

2

00 00 00 00 e0 80 00 00 e0 80 00 00 b4 c9 00 00

2−2800 00 00 00 00 4d 00 00 00 4d 00 00 21 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 ea 00 00 00 ea 73 00 00 00

3

63 89 00 00 00 89 00 00 63 00 00 00 8d 00 00 00

2−1485 c9 00 00 85 00 00 00 00 c9 00 00 8c 00 00 00
00 c9 00 00 00 c9 00 00 00 00 00 00 00 00 00 00
00 40 00 00 00 40 00 00 00 00 00 00 00 00 00 00

4

8e 00 00 00 8e 00 00 00 00 00 00 00 00 00 00 00

18e 00 00 00 8e 00 00 00 00 00 00 00 00 00 00 00
01 00 00 00 01 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

5

00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

100 00 00 00 00 00 80 03 00 00 80 03 00 ** ** 00
00 00 00 00 13 00 00 00 13 00 00 00 00 00 ** 00
00 00 00 00 00 98 00 00 00 98 00 00 00 00 ** 00

6

00 ** ** 00 00 00 81 07 00 ** ** 07 00 ** ** **

100 ** ** 00 00 00 00 35 00 ** ** 35 ** ** ** 00
00 ** ** 00 00 00 00 b4 00 ** ** b4 ** ** 00 **
00 ** ** 00 00 1d 00 00 00 ** ** 00 00 00 ** **

5

** e4 00 ** 00 00 00 00 ** e4 00 ** ** e4 00 **

1** ** 00 ** 00 00 00 55 ** ** 00 00 ** 00 00 **
00 ** ** 8f 00 00 00 00 00 ** ** 8f ** 8f 00 **
5c 00 ** ** 00 00 00 84 5c 00 ** ** ** 5c 00 **

6

b4 00 00 49 00 00 00 49 b4 00 00 00 ee 00 00 00

2−700 32 00 00 00 00 00 00 00 32 00 00 2f 00 00 00
00 05 00 00 00 05 00 00 00 00 00 00 00 00 00 00
00 00 00 b5 00 00 00 00 00 00 00 b5 b6 00 00 00

7

00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

106 00 00 00 06 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
71 00 00 00 71 00 00 00 00 00 00 00 00 00 00 00

8

00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

100 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

9

00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

2−1200 00 00 00 00 e3 00 00 00 e3 00 00 72 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 0c 00 00 00 0c 00 00 00 00 9d 00
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Table 9: 10-round distinguisher of Deoxys-BC-256

R X K Y Z pr

1

80 00 00 00 80 00 00 00 00 00 00 00 00 00 00 00

149 00 00 00 49 00 00 00 00 00 00 00 00 00 00 00
5f 00 00 00 5f 00 00 00 00 00 00 00 00 00 00 00
00 00 37 00 00 00 37 00 00 00 00 00 00 00 00 00

2

00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

2−2100 00 00 00 00 00 00 f6 00 00 00 f6 00 00 15 00
00 00 00 00 01 00 00 00 01 00 00 00 00 00 15 00
00 00 00 00 00 ff 00 00 00 ff 00 00 00 00 15 00

3

00 00 3f 00 00 00 00 a4 00 00 3f a4 00 00 16 a8

2−3300 00 00 00 00 00 00 9c 00 00 00 9c 00 00 62 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 2a 00 00 92 00 00 00 92 2a 00 00 00 2c fc

4

00 00 a6 b7 00 00 00 b7 00 00 a6 00 00 00 24 00

2−1400 00 fe 54 00 00 fe 00 00 00 00 54 00 00 6c 00
00 00 00 b7 00 00 00 b7 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

5

00 00 fc 00 00 00 02 00 00 00 fe 00 00 00 ** 00

100 00 fc 00 00 00 fc 00 00 00 00 00 00 00 00 00
00 00 48 00 00 00 48 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

6

00 00 ** 00 00 00 6a 00 00 00 ** 00 00 00 ** 00

100 00 ** 00 00 d8 00 00 00 d8 ** 00 ** ** 00 00
00 00 ** 00 00 00 6e 00 00 00 ** 00 ** 00 00 00
00 00 ** 00 00 00 00 fa 00 00 ** fa ** 00 00 **

5

** ** 00 ** 67 00 00 00 ** ** 00 ** ** ** 00 **

1** ** ** 00 00 00 00 00 ** ** ** 00 ** ** 00 **
00 ** ** ** 00 00 b5 00 00 ** ** ** ** ** 00 **
** 88 ** ** 00 88 00 00 ** 00 ** ** ** ** 00 **

6

00 ** 00 ** 00 00 00 00 00 ** 00 ** 00 73 00 f6

1** fc 00 ** 00 fc 00 00 ** 00 00 ** 00 00 05 7b
** ** 00 ** 00 00 00 09 ** ** 00 ** 00 f0 b8 7a
** ** 00 00 00 6d 00 00 ** ** 00 00 00 78 d3 00

7

00 6e 6e 00 00 6e 00 00 00 00 6e 00 00 00 20 00

2−2000 00 0a 8e 00 00 0a 00 00 00 00 8e 00 00 3d 00
00 00 00 79 00 00 00 79 00 00 00 00 00 00 00 00
00 95 00 00 00 00 00 00 00 95 00 00 00 00 0b 00

8

00 00 0c 00 00 00 0c 00 00 00 00 00 00 00 00 00

100 00 51 00 00 00 51 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 4b 00 00 00 4b 00 00 00 00 00 00 00 00 00

9

00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

100 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

10

00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

2−1800 00 00 00 00 00 00 96 00 00 00 96 00 00 f3 00
00 00 00 00 00 18 00 00 00 18 00 00 00 00 00 ce
00 00 00 00 00 00 00 a2 00 00 00 a2 59 00 00 00
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Table 10: 11-round distinguisher of Deoxys-BC-256. The S-box switch is used in Round
7 (lower) for the S-box at position (3,3).

R X K Y Z pr

1

00 9f e0 00 00 9f e0 00 00 00 00 00 00 00 00 00

1f0 00 00 00 f0 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 84 00 00 00 84 00 00 00 00 00 00 00 00

2

00 00 00 00 a0 00 00 00 a0 00 00 00 12 00 00 00

2−1400 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 40 00 00 00 40 1b 00 00 00

3

3f 00 00 00 00 00 00 00 3f 00 00 00 80 00 00 00

2−709 00 00 00 09 00 00 00 00 00 00 00 00 00 00 00
3f 00 00 00 3f 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

4

1b 00 00 00 1b 00 00 00 00 00 00 00 00 00 00 00

2−2880 00 00 00 80 00 00 40 00 00 00 40 00 00 45 00
80 00 00 00 00 00 00 40 80 00 00 40 00 15 cf 00
9b 00 00 00 00 00 00 00 9b 00 00 00 00 15 00 00

5

00 00 00 00 81 00 00 bf 81 00 00 bf 3f 00 00 a0

2−4200 2a c0 00 00 00 c0 00 00 2a 00 00 3f 00 00 00
00 15 c0 00 00 00 00 00 00 15 c0 00 3f 00 00 3b
00 3f 8a 00 00 3f 00 00 00 00 8a 00 00 00 00 60

6

00 00 00 00 00 00 c1 00 00 00 c1 00 00 00 ** 00

100 00 00 8d 00 00 00 00 00 00 00 8d 00 00 ** 00
7e 00 00 76 00 00 00 76 7e 00 00 00 00 00 ** 00
41 00 00 00 41 83 00 00 00 83 00 00 00 00 ** 00

7

00 00 ** 00 00 00 00 00 00 00 ** 00 00 00 ** 00

100 00 ** 00 00 00 e4 00 00 00 ** 00 00 ** 00 00
00 00 ** 00 00 00 bd 87 00 00 ** 87 ** ** 00 00
00 00 ** 00 00 00 00 c3 00 00 ** c3 ** 00 00 **

6

00 00 00 00 67 00 00 00 ** 00 ** ** ** 00 ** **

100 00 00 00 00 00 00 25 ** ** 00 ** ** 00 ** **
00 00 00 00 00 00 00 00 ** ** ** 00 ** 00 ** **
00 00 00 00 00 a7 00 00 00 ** ** ** ** 00 ** **

7

7c 00 00 e8 00 00 00 45 7c 00 00 ad 73 00 00 f6

2−734 d6 00 54 00 00 00 00 34 d6 00 54 95 00 43 7b
dd 8e 00 b8 00 00 00 b8 dd 8e 00 00 00 00 a2 7a
00 b2 00 c3 00 6d 00 00 00 df 00 c3 42 00 fd 00

8

00 00 9a 00 00 00 00 00 00 00 9a 00 00 00 db 00

2−2000 00 86 8e 00 00 86 00 00 00 00 8e 00 00 10 00
20 00 00 79 00 00 00 79 20 00 00 00 00 00 66 00
84 00 00 00 84 00 00 00 00 00 00 00 00 00 00 00

9

00 00 fb 00 00 00 fb 00 00 00 00 00 00 00 00 00

100 00 51 00 00 00 51 00 00 00 00 00 00 00 00 00
00 00 07 00 00 00 07 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

10

00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

100 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

11

00 00 00 00 00 0e 00 00 00 0e 00 00 00 c8 00 00

2−1800 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 f6 00 00 00 f6 00 00 00 00 00 21
00 00 00 00 00 00 00 a2 00 00 00 a2 59 00 00 00
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Table 11: 10-round distinguisher of Deoxys-BC-384. The S-box switch is used in Round
6 (lower) for the S-box at position (1,1).

R X K Y Z pr

1

00 00 8e 00 00 00 8e 00 00 00 00 00 00 00 00 00

2−6a3 00 00 10 00 00 00 10 a3 00 00 00 00 00 00 69
9e 00 00 00 9e 00 00 00 00 00 00 00 00 00 00 00
00 8e 00 00 00 8e 00 00 00 00 00 00 00 00 00 00

2

00 00 00 bb 00 00 00 bb 00 00 00 00 00 00 00 00

100 00 00 d2 00 00 00 d2 00 00 00 00 00 00 00 00
00 00 00 69 00 00 00 69 00 00 00 00 00 00 00 00
00 00 00 69 00 00 00 69 00 00 00 00 00 00 00 00

3

00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

100 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

4

00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

100 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

5

00 00 00 00 69 00 00 00 69 00 00 00 ** 00 00 00

100 00 00 00 00 bb 00 00 00 bb 00 00 ** 00 00 00
00 00 00 00 00 00 d2 00 00 00 d2 00 ** 00 00 00
00 00 00 00 00 00 00 69 00 00 00 69 ** 00 00 00

6

** 00 00 00 00 10 00 00 ** 10 00 00 ** ** 00 00

1** 00 00 00 00 9e 00 00 ** 9e 00 00 ** 00 00 **
** 00 00 00 00 8e 00 00 ** 8e 00 00 00 00 ** **
** 00 00 00 00 8e 00 00 ** 8e 00 00 00 ** ** 00

5

00 ** ** ** 00 ee 00 00 00 ** ** ** 00 ** ** **

1** 00 ** ** 00 00 00 00 ** 00 ** ** 00 ** ** **
** ** 00 ** 00 00 00 00 ** ** 00 ** 00 ** ** **
** ** ** ** 00 00 00 11 ** ** ** 00 00 ** ** **

6

00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

2−600 9e 00 00 00 00 00 00 00 9e 00 00 68 00 00 00
00 0a ab 00 00 0a 00 00 00 00 ab 00 01 00 00 00
00 00 93 7a 00 00 93 00 00 00 00 7a b9 00 00 00

7

00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

16a 00 00 00 6a 00 00 00 00 00 00 00 00 00 00 00
ba 00 00 00 ba 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

8

00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

100 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

9

00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

100 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

10

00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

2−1200 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 6a 00 00 00 6a 00 61 00 00
00 00 00 00 ba 00 00 00 ba 00 00 00 00 97 00 00
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Table 12: 11-round distinguisher of Deoxys-BC-384

R X K Y Z pr

1

00 9a 32 00 00 9a 32 00 00 00 00 00 00 00 00 00

185 00 00 00 85 00 00 00 00 00 00 00 00 00 00 00
00 00 e9 00 00 00 e9 00 00 00 00 00 00 00 00 00
00 00 50 00 00 00 50 00 00 00 00 00 00 00 00 00

2

00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

100 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

3

00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

2−2800 00 00 00 00 00 00 4f 00 00 00 4f 00 00 2a 00
00 00 00 00 f1 7a 00 00 f1 7a 00 00 00 00 15 a6
00 00 00 00 00 57 00 00 00 57 00 00 00 00 6b 00

4

00 00 00 a6 00 00 00 a6 00 00 00 00 00 00 00 00

2−1300 00 00 f1 00 00 00 f1 00 00 00 00 00 00 00 00
00 00 bd 57 00 00 00 57 00 00 bd 00 19 00 00 00
00 00 e9 a6 00 00 e9 00 00 00 00 a6 2b 00 00 00

5

32 00 00 00 32 00 00 00 00 00 00 00 00 00 00 00

100 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
4f 00 00 00 4f 00 00 00 00 00 00 00 00 00 00 00
4f 00 00 00 4f 00 00 00 00 00 00 00 00 00 00 00

6

00 00 00 00 00 00 85 00 00 00 85 00 00 00 ** 00

100 00 00 00 00 00 00 b9 00 00 00 b9 00 00 ** 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 9a 34 00 00 9a 34 00 00 00 ** ** 00

7

00 ** ** 00 00 00 00 08 00 ** ** ** 00 ** ** **

100 ** ** 00 00 50 00 00 00 ** ** 00 ** ** 00 00
00 ** ** 00 00 00 13 09 00 ** ** ** ** ** 00 **
00 ** ** 00 00 00 00 1b 00 ** ** ** ** 00 ** **

6

** cb 00 ** 00 00 00 00 ** cb 00 ** ** cb 00 **

1** ** ff 00 00 ** 00 00 ** ** ff 00 ** ff 00 **
00 ** ** 1a 00 00 00 00 00 ** ** 1a ** 1a 00 **
00 ** ** ** 00 ** 00 00 00 00 ** ** ** 00 00 **

7

00 8d 00 00 00 8d 00 00 00 00 00 00 00 00 00 00

2−700 00 00 e6 00 00 00 00 00 00 00 e6 00 00 ed 00
14 00 00 af 00 00 00 af 14 00 00 00 00 00 99 00
00 a3 00 00 00 00 00 00 00 a3 00 00 00 00 b5 00

8

00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

100 00 c4 00 00 00 c4 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 05 00 00 00 05 00 00 00 00 00 00 00 00 00

9

00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

100 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

10

00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

100 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

11

00 00 00 00 00 00 00 05 00 00 00 05 00 00 00 08

2−1200 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 c4 00 00 00 c4 00 00 00 00 00 7f
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
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Table 13: 12-round distinguisher of Deoxys-BC-384

R X K Y Z pr

1

e9 3b 00 00 e9 3b 00 00 00 00 00 00 00 00 00 00

100 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
5e 00 00 43 5e 00 00 43 00 00 00 00 00 00 00 00
00 00 e9 f9 00 00 e9 f9 00 00 00 00 00 00 00 00

2

00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

2−1400 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 99 00 00 00 99 00 00 00 00 00 e1
00 00 00 00 00 00 c8 00 00 00 c8 00 00 00 00 fd

3

00 00 00 1c 00 00 00 1c 00 00 00 00 00 00 00 00

2−700 00 00 c5 09 00 00 c5 09 00 00 00 00 00 00 43
00 00 00 c5 00 00 00 c5 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

4

00 00 00 c5 00 00 00 c5 00 00 00 00 00 00 00 00

2−2000 00 00 86 00 00 c5 86 00 00 c5 00 00 07 00 00
00 00 00 43 00 00 00 00 00 00 00 43 00 f8 00 00
00 00 00 43 74 00 00 43 74 00 00 00 00 f1 00 00

5

00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

2−1400 ec 00 00 00 00 00 00 00 ec 00 00 79 00 00 00
00 e4 00 00 00 e4 0d 00 00 00 0d 00 b1 00 00 00
00 06 00 00 00 06 00 00 00 00 00 00 00 00 00 00

6

3a 00 00 00 00 00 00 00 3a 00 00 00 ** 00 00 00

13a 00 00 00 3a aa 00 00 00 aa 00 00 ** 00 00 00
00 00 00 00 00 00 e9 00 00 00 e9 00 ** 00 00 00
c8 00 00 00 c8 00 00 e9 00 00 00 e9 ** 00 00 00

7

** 00 00 00 cf 4e 00 00 ** 4e 00 00 ** ** 00 00

1** 00 00 00 00 8a 09 00 ** 8a 09 00 ** ** 00 **
** 00 00 00 00 8a 3b 00 ** 8a 3b 00 ** 00 ** **
** 00 00 00 00 00 00 00 ** 00 00 00 00 ** 00 00

6

00 ** ** ** 00 00 00 00 00 ** ** ** 00 ** ** **

1** 00 ** ** 00 00 00 00 ** 00 ** ** 00 ** ** **
** ** 00 ** 00 00 00 40 ** ** 00 ** 00 ** ** **
** ** ** 00 00 94 00 00 ** ** ** 00 00 ** ** **

7

00 00 ** 00 00 00 00 00 00 00 ** 00 00 00 f5 00

100 00 2a ** 00 00 2a 00 00 00 00 ** 00 00 fd 00
00 00 00 5d 00 00 00 5d 00 00 00 00 00 00 00 00
00 ** 00 00 00 00 00 00 00 ** 00 00 00 00 f1 00

8

00 00 1c 00 00 00 1c 00 00 00 00 00 00 00 00 00

100 00 e5 00 00 00 e5 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

9

00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

100 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

10

00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

100 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

11

00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

2−1300 00 00 00 1c 00 00 00 1c 00 00 00 00 00 00 ff
00 00 00 00 00 e5 00 00 00 e5 00 00 00 00 00 aa
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

12

00 00 00 b0 2a 00 00 00 2a 00 00 b0 86 00 00 84

2−3000 00 00 00 5d 00 00 00 5d 00 00 00 00 00 00 2f
00 00 00 b0 00 00 00 00 00 00 00 b0 00 84 00 00
00 00 00 55 00 00 00 00 00 00 00 55 9f 00 00 00
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Table 14: 13-round distinguisher of Deoxys-BC-384

R X K Y Z pr

1

08 00 00 0c 08 00 00 0c 00 00 00 00 00 00 00 00

100 00 00 df 00 00 00 df 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
bb 00 00 00 bb 00 00 00 00 00 00 00 00 00 00 00

2

00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

100 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

3

00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

2−1400 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 dd 00 00 00 dd 00 d6 00 00
00 00 00 00 3f 00 00 00 3f 00 00 00 00 6d 00 00

4

00 bb 00 00 00 bb 00 00 00 00 00 00 00 00 00 00

2−700 0c 00 00 00 0c 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 0c 00 00 00 00 00 00 00 0c 00 00 00 00 08 00

5

00 00 08 00 00 12 08 00 00 12 00 00 00 da 00 00

2−2800 00 08 00 00 df 00 00 00 df 08 00 18 75 00 00
00 00 18 00 00 00 00 00 00 00 18 00 18 00 00 00
00 00 10 00 00 00 10 00 00 00 00 00 00 00 00 00

6

30 30 00 00 00 30 00 00 30 00 00 00 b8 00 00 00

2−4218 30 00 00 00 00 00 00 18 30 00 00 b8 00 00 77
28 af 00 00 28 00 00 00 00 af 00 00 00 00 00 11
00 00 00 00 00 00 2d c1 00 00 2d c1 b8 00 00 33

7

00 00 00 bb 00 00 00 00 00 00 00 bb 00 00 00 **

16b 00 00 ee 00 00 00 ee 6b 00 00 00 00 00 00 **
d3 00 00 00 d3 3e 00 00 00 3e 00 00 00 00 00 **
00 00 00 00 00 00 46 00 00 00 46 00 00 00 00 **

8

00 00 00 ** 00 00 00 b8 00 00 00 ** 00 00 00 **

100 00 00 ** 76 00 00 ef 76 00 00 ** 00 00 ** **
00 00 00 ** ff 00 00 00 ff 00 00 ** 00 ** ** 00
00 00 00 ** 00 00 00 00 00 00 00 ** ** 00 00 00

7

** ** ** 00 00 00 00 00 ** ** ** 00 ** ** ** 00

100 ** ** ** 00 00 00 00 00 ** ** ** ** ** ** 00
** 00 ** ** 00 00 40 00 ** 00 ** ** ** ** ** 00
** ** 00 ** 94 00 00 00 ** ** 00 ** ** ** ** 00

8

00 ** 00 00 00 00 00 00 00 ** 00 00 00 f5 00 00

100 2a ** 00 00 2a 00 00 00 00 ** 00 00 fd 00 00
00 00 5d 00 00 00 5d 00 00 00 00 00 00 00 00 00
** 00 00 00 00 00 00 00 ** 00 00 00 00 f1 00 00

9

00 1c 00 00 00 1c 00 00 00 00 00 00 00 00 00 00

100 e5 00 00 00 e5 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

10

00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

100 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

11

00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

100 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

12

00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

2−1300 00 00 00 00 00 00 1c 00 00 00 1c 00 00 ff 00
00 00 00 00 e5 00 00 00 e5 00 00 00 00 00 aa 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

13

00 00 b0 00 00 00 00 2a 00 00 b0 2a 00 00 84 86

2−3000 00 00 00 00 00 00 5d 00 00 00 5d 00 00 2f 00
00 00 b0 00 00 00 00 00 00 00 b0 00 84 00 00 00
00 00 55 00 00 00 00 00 00 00 55 00 00 00 00 9f
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