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Abstract. We make a number of remarks about the AES-GCM-SIV
nonce-misuse resistant authenticated encryption scheme currently consid-
ered for standardization by the Crypto Forum Research Group (CFRG).
First, we point out that the security analysis proposed in the ePrint
report 2017/168 is incorrect, leading to overly optimistic security claims.
We correct the bound and re-assess the security guarantees offered by the
scheme for various parameters. Second, we suggest a simple modification
to the key derivation function which would improve the security of the
scheme with virtually no efficiency penalty.
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1 Introduction

Authenticated Encryption. An authenticated encryption scheme aims at
providing both confidentiality and authenticity when communicating over an
insecure channel. The recent CAESAR competition [CAE] has spawned a lot of
candidate schemes as well as more theoretical works on the subject.

One of the most widely deployed AEAD scheme today is GCM [MV04],
which combines in the “encrypt-then-MAC” fashion [BN00] a Wegman-Carter
MAC [WC81, Sho96] based on a polynomial hash function called GHASH and
the counter encryption mode [BDJR97]. GCM is nonce-based [Rog04], i.e., for
each encryption the sender must provide a non-repeating value N . Unfortunately,
the security of GCM becomes very brittle in case the same nonce N is reused
(something called nonce-misuse), in particular a simple attack allows to completely
break authenticity [Jou06, BZD+16] (damages to confidentiality are to some
extent less dramatic [ADL17]).



AES-GCM-SIV. In order to remedy the nonce-misuse problem faced by GCM,
Gueron and Lindell [GL15] proposed the GCM-SIV mode. It is based on the same
components as GCM (and as such it can benefit from dedicated CPU instructions
that were developed to accelerate GCM) but it combines them through the SIV
composition method [RS06] which endows the resulting scheme with “nonce-
misuse resistance”, meaning that repeating a nonce does not affect authenticity
of the scheme and only allows an adversary to detect if the same message was
already encrypted along with the same nonce before.

Some time later, Gueron, Langley, and Lindell [GLL16] proposed a variant of
GCM-SIV called AES-GCM-SIV3 as a candidate for standardization to the Crypto
Forum Research Group (CFRG) of IETF. In order to overcome some limitations
of GCM-SIV, this mode slightly differs from the latter in essentially three ways: (i)
it uses a variant of GHASH called POLYVAL, (ii) it uses a key derivation function
to derive a hashing key and an encryption key from the nonce and the master key,
whereas GCM-SIV uses hashing and encryption keys that are independent from
the nonce, and (iii) the initial counter consists of the entire pseudorandom tag
(except for its most significant bit), whereas in GCM-SIV the 32 least significant
bits of the counter are initialized with zeros. The last modification was also
suggested under the name GCM-SIV1 by Iwata and Minematsu [IM16]. A security
analysis of AES-GCM-SIV was proposed by the designers [GLL17], which covers
versions 3 to 5 of the CFRG specification; weaknesses were spotted in version 2 of
the specification by the NSA [NSA17], leading to minor changes in the scheme.

Our Findings. We uncover a number of flaws in the security proofs of [GL15]
and [GLL17] which are serious enough to make the final security bound derived
for AES-GCM-SIV in [GLL17] essentially unusable.4 We give a simple attack
that contradicts this security bound, thus making the question of the provable
security of AES-GCM-SIV open. In order to fix the situation and correctly gauge
AES-GCM-SIV’s security, we present a corrected security proof and then turn to
the task of interpreting this bound for concrete parameters.

Based on their result, Gueron et al. [GLL17] claimed that the security bound
of AES-GCM-SIV is dominated by

QR2

2n−k−2 , (1)

where n is the block length of the underlying block cipher, Q is the number of
distinct nonces used throughout encryption queries, R is the maximal number of
3 The name AES-GCM-SIV is somehow a misnomer: ingenuously, one would think that
this designates the AEAD scheme resulting from instantiating the GCM-SIV mode of
operation [GL15] with the AES block cipher. It is unclear whether the designers of
AES-GCM-SIV think of it as a pure mode of operation, as the AEAD scheme resulting
from instantiating this mode with AES, or both.

4 This paper is based on ePrint version 20160310:063701 of [GL15] and ePrint version
20170223:140759 of [GLL17]. These two ePrint reports were updated after we sent a
preliminary version of this paper to the authors on July 7, 2017.
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repetitions of any nonce in encryption queries, and the maximum message length
is 2k − 1 blocks. This term essentially captures the probability that two counters
used for encryption collide, resulting in an immediate break of confidentiality.
We show that the corrected bound is actually dominated by

QR2

2n−2k+1 , (2)

which is roughly 2k times larger than term (1) and which captures the adversary’s
advantage in distinguishing the outputs of the underlying block cipher from
random (in other words, this is a classical “PRP-PRF switching” term, albeit
in the so-called “multi-user” setting). We stress that this bound is tight and
matched by a simple PRP-PRF distinguishing attack. For large values of k (which
can be up to 32), the difference between (1) and (2) is significant, and many
parameters deemed secure in [GLL17] are in fact not secure at all (see Table 1 in
Section 3.3). All details can be found in Section 3.

One might be tempted to argue that attacks against the counter encryption
mode based on distinguishing the underlying block cipher from a random function
through (the absence of) collisions in outputs is much less dangerous than collisions
in counters which immediately reveal the xor of two plaintext blocks. However,
this is a very dubious and dangerous reasoning, as shown by the following
textbook example [Jou09, Sect. 6.1.1.2]. Assume that the adversary knows that
a sender will encrypt one out of two possible “unrelated” plaintexts M0 and M1
of the same (sufficiently large) length (in blocks) `, and that it intercepts the
corresponding ciphertext C. Then it can simply compute C ⊕M0 and C ⊕M1
and look for collisions among blocks of the resulting strings: no collision can
occur for the correct plaintext, whereas a collision will occur with probability
roughly `2/2n for the incorrect plaintext. See also [McG12], which shows that
this kind of attacks can have a real impact in practice.

Improving the Key Derivation Function. As a secondary contribution, we
point out that the key derivation function used in AES-GCM-SIV can be replaced
with the “sum of PRPs” construction [Luc00] or a variant of CENC [Iwa06] to
improve the security bound without harming efficiency. Details can be found in
Section 4.

Recommendations. In light of our results, we think that it is necessary to
revise the recommended parameters and usage limitations for AES-GCM-SIV. In
particular, whether AES-GCM-SIV can securely encrypt more than 232 messages
with the same key, which was the limit for both GCM and GCM-SIV and the main
reason for designing AES-GCM-SIV in the first place,5 becomes questionable. If
we follow NIST recommendations for GCM [Dwo07, Sect. 9] and pose that the
5 The abstract of [GLL17] claims that AES-GCM-SIV “allows for encrypting up to

250 messages with the same key”. This is also the recommendation of the CFRG
draft [GLL16, Sect. 9] for the maximal number of messages encrypted with the same
key.
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adversary’s advantage, dominated by Equation (2), should not exceed 2−32, we
see that for n = 128, parameters Q, R and k must satisfy

QR2 ≤ 297−2k.

Hence, for k = 32 and tolerating up to R = 28 repetitions of any nonce (as
suggested in [GLL16, Sect. 9]), the total number Q of distinct nonces in encryp-
tions must be at most 217 (which implies that the total number of encrypted
messages cannot be more than QR = 225). In the case where nonces are drawn
uniformly and independently at random, the dominating term of the security
bound becomes

9NE
2n−2k+1 ,

where NE is the total number of encryptions. Hence, when n = 128 and k = 32,
NE must be less than approximately 230 for this term to be less than 2−32.

In conclusion, the suitability of the adoption of AES-GCM-SIV as a CFRG
standard or its deployment in large-scale protocols such as QUIC [QUI] should
be reconsidered based on the new security analysis presented in this paper.

2 Preliminaries

General Notation. We let {0, 1}n, {0, 1}∗, and ({0, 1}n)+ denote respectively
the set of bit strings of length n, the set of all bit strings (including the empty
string of length 0), and the set of non-empty tuples of n-bit strings. The length
of a bit string x is denoted |x|. Given two bit strings x and y, x||y denotes their
concatenation. Given a bit string x of length at least m, Truncm(x) denotes the
m least significant bits of x. Given an integer i ≤ 2a − 1, we let [i]a denote its
a-bit binary representation. Given a finite non-empty set X , x←$ X denotes the
sampling of x uniformly at random in X .

Security Notions. We only recall the formal definition of an AEAD scheme
here and defer additional security notions to Appendix A.

A nonce-based Authenticated Encryption with Associated Data (AEAD)
scheme is a tuple Π = (K,Enc,Dec) where K is a non-empty key set and Enc and
Dec are deterministic algorithms. The encryption algorithm Enc takes as input
a key K ∈ K, a nonce N ∈ {0, 1}nl where nl is the nonce-length, associated
data (AD) A ∈ {0, 1}∗, and a message M ∈ {0, 1}∗, and returns either a string
Y ∈ {0, 1}∗ or a special value ⊥ indicating that inputs are invalid. The decryption
algorithm Dec takes as input a key K ∈ K, a nonce N ∈ {0, 1}nl, associated data
A ∈ {0, 1}∗, and a string Y ∈ {0, 1}∗, and returns either a message M ∈ {0, 1}∗
or a special value ⊥ indicating that inputs are invalid. We write EncK(N,A,M)
for Enc(K,N,A,M) and DecK(N,A, Y ) for Dec(K,N,A, Y ).

For many AEAD schemes (in particular for AES-GCM-SIV), any non-⊥ output
Y of the encryption algorithm consists of the concatenation of a ciphertext C of
the same size as the message M and a tag T ∈ {0, 1}tl where tl is the tag-length.
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Definition 1 (MRAE-security). Let Π = (K,Enc,Dec) be a nonce-based
AEAD scheme. The advantage of an adversary A in breaking the MRAE-security
of Π is defined as

Advmrae
Π (A) =

∣∣∣Pr
[
K ←$ K : AΠ.EncK (·,·,·), Π.DecK (·,·,·) = 1

]
− Pr

[
A$(·,·,·),⊥(·,·,·) = 1

] ∣∣∣,
where $(·, ·, ·) is an oracle which on input (N,A,M) outputs a random string
of length |Π.EncK(N,A,M)| and ⊥(·, ·, ·) is an oracle which always outputs ⊥.
The adversary is not allowed to repeat a query or to make a decryption query
(N,A, Y ) if a previous encryption query (N,A,M) returned Y . The adversary is
said nonce-respecting if it never repeats a nonce N in its encryption queries.

Description of AES-GCM-SIV. The AES-GCM-SIV AEAD mode for a
block cipher E : K2 × {0, 1}n → {0, 1}n combines through the SIV composi-
tion method [RS06] a variable input-length PRF built from a polynomial hash
function called POLYVAL, a variant of GHASH [MV04], with the counter encryp-
tion mode. The high-level structure of the mode is depicted in Figure 1. We
describe each component in details below.

The variable-input-length PRF underlying AES-GCM-SIV follows a slight vari-
ant of the standard “hash-then-encrypt” (a.k.a. “UHF-then-PRF”) construction.
It will be convenient for the proof of Theorem 1 below to describe this function,
that we denote HtE[H,E], in the following modular way. It relies on E and an
additional keyed function H : K1 × {0, 1}∗ × {0, 1}∗ → {0, 1}n. It takes as input
a key (K1,K2) ∈ K1 × K2, a nonce N ∈ {0, 1}nl with nl < n, associated data
A ∈ {0, 1}∗, and a message M ∈ {0, 1}∗, and outputs a tag T ∈ {0, 1}n defined
as

HtE[H,E]K1,K2(N,A,M) = EK2(HK1(A,M)⊕N), (3)

where N is left-padded with zeros (AES-GCM-SIV sets n = 128 and restricts the
nonce-length to 96 bits, but it could potentially be larger).

The specific hash function H used in AES-GCM-SIV is defined as follows.
It uses a polynomial hash function POLYVAL taking as input a “hashing” key
K1 ∈ {0, 1}n and a tuple in ({0, 1}n)+ and returning a string in {0, 1}n (the
exact specification of POLYVAL, which is only defined for n = 128, is not needed
in this paper). It also uses an encoding function Encode taking as input associated
data A ∈ {0, 1}∗ and a message M ∈ {0, 1}∗ and returning a unique encoding of
(A,M) in ({0, 1}n)+ by padding A and M with zeros and appending an n-bit
block encoding of the length of A and M . Then

HK1(A,M) = 0‖Truncn−1

(
POLYVAL

(
K1,Encode(A,M)

))
. (4)

The specific counter mode CTR used in AES-GCM-SIV uses (n−1)-bit counters
with a random initial value. More formally, on input a non-empty message
M ∈ {0, 1}∗ parsed in n-bit blocks (M0, . . . ,M`−1) where ` = d|M |/ne, |Mi| = n

5



POLYVAL K1

Encode

MA

Truncn 1

0

N

EK2

T

T

UN

KeyDer

K

K1 K2 M0 M� 1

C0 C� 1

zero-pad

127

127

Truncn 1

1

EK2

M1

C1

1

EK2

1

1

EK2

1
96

EK EK EK EK EK EK

N [1]32 N [0]32 N [3]32 N [2]32 N [5]32 N [4]32 N [3]32 N [2]32

EK EK

T1

K1 K2

(if kl = 128) (if kl = 256)

T0 T3 T2 T5 T4 T3 T2

T1 T0 T3 T2 T5 T4 T3 T2K2

Fig. 1. The AES-GCM-SIV mode (top) and the key derivation function (bottom).

for i ∈ {0, . . . , `− 2}, and |M`−1| ≤ n, an initial counter U is drawn uniformly
at random in {0, 1}n−1 and the i-th ciphertext block is

Ci = Mi ⊕ EK2(1‖(U � i)),

where U � i denotes addition modulo 232 of the 32 least significant bits of U
and i. We denote CTR[E]K2(U,M) the result of encrypting message M ∈ {0, 1}∗
under key K2 ∈ K2 with initial counter U ∈ {0, 1}n−1.

From the components above, Gueron et al. [GLL17] define as an intermediate
layer of abstraction the GCM-SIV+ AEAD mode for E as follows. It has key space
K1×K2, and on input a key pair (K1,K2) and a triple (N,A,M) it returns C‖T
where

T = HtE[H,E]K1,K2(N,A,M),
C = CTR[E]K2(Truncn−1(T ),M).

Finally, the AES-GCM-SIV mode adds key derivation on top of GCM-SIV+. More
specifically, keys K1 and K2 are derived from a master key K ∈ K2 and the
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nonce N through a key derivation function KeyDer[E] : K2 × {0, 1}nl → K1 ×K2
(constructed from E, see below). On input a key K ∈ K2 and a triple (N,A,M),
it returns C‖T defined as

(K1,K2) = KeyDer(K,N),
C‖T = GCM-SIV+

K1,K2
(N,A,M).

Remark 1. We note that both GCM-SIV+ and AES-GCM-SIV slightly depart from
the “pure” SIV composition method: GCM-SIV+ uses the same key K2 both in
the PRF and in the encryption scheme, and AES-GCM-SIV uses a nonce-based
key derivation function. Note however that once EK2 has been replaced by a
uniformly random function F ∗, GCM-SIV+ becomes a strict instantiation of
SIV: indeed, in the tag generation part, F is only called on inputs whose most
significant bit is 0, while in the encryption part, it is only called on inputs whose
most significant bit is 1, which amounts to having independent uniformly random
functions in each part.

The Key Derivation Function. To be complete, it remains to describe
the key derivation routine KeyDer[E] : (K,N) 7→ (K1,K2). It is specified for
E ∈ {AES128,AES256} (hence the block length is n = 128 and K2 = {0, 1}kl where
the key-length kl is 128 or 256) and nonce-length nl = 96. For i ∈ {0, . . . , 5}, let

Ti = Trunc64
(
AESK(N‖[i]32)

)
.

Then K1 = T1‖T0 and

K2 = T3‖T2 if kl = 128,
= T5‖T4‖T3‖T2 if kl = 256.

In more abstract words, it relies on a PRP-to-PRF conversion method [BKR98,
HWKS98] which consists in concatenating truncated outputs of AES applied to
the input N and distinct indices. We will see in Section 4 that an equally efficient
but more secure PRP-to-PRF conversion method could have been used.

Remark 2. The decryption algorithm is not defined in [GLL17]. When discussing
the security of AES-GCM-SIV in the following sections, we will assume the
following natural decryption algorithm. On input a master key K ∈ K and a
triple (N,A,C‖T ), we let

(K1,K2) = KeyDer(K,N),
M = CTR[E]K2(Truncn−1(T ), C),
T ′ = HtE[H,E]K1,K2(N,A,M),

and the decryption algorithm returns M if T = T ′, and ⊥ otherwise. We note
that M = CTR[E]K2(Truncn−1(T ), C) corresponds to counter mode decryption.
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3 About the Security Bound

3.1 Problems in GLL’s Security Bound

The following security bound for AES-GCM-SIV was claimed in [GLL17]. We omit
the running time of adversaries since, unlike queries, they are irrelevant for our
discussion.

Theorem ([GLL17], Theorem 6). Let A be an adversary against the MRAE-
security of Π = AES-GCM-SIV[E] where E = AES. Assume that A:

– makes encryption queries of length (in 128-bit blocks) at most 2k − 1,
– uses at most Q distinct nonces in encryption queries,
– repeats any nonce at most R times in encryption queries,
– makes at most qD decryption queries of total length at most L bits for each
distinct nonce.

Then there exists an adversary A′ against the PRF-security of AES making at
most Q(2R + 2qD + L/128) oracle queries and an adversary A′′ against the
PRP-security of AES making at most 6Q oracle queries such that

Advmrae
Π (A) ≤ Advprp

AES(A′′) + min
{

36Q2

2129 ,
6Q
296

}
+Q

(
2Advprf

AES(A′) + R2

2126−k + R2 + 2qD
2127

)
.

We note that it is very unusual and confusing for the security bound of a
mode of operation to contain both the PRP- and the PRF-insecurity of the
underlying block cipher. Block ciphers are designed to be good PRPs, not PRFs.
The remaining of this section will show that confusing the two can be misleading.

More concernedly, this security bound is flawed in at least two respects.
First, the authors use an hybrid “multi-user” argument to infer the security
bound for the variant of AES-GCM-SIV denoted Π ′ where a uniformly random
function is used to derive keys for each nonce. However, such an argument must
take into account all keys derived in the security experiment by encryption
and decryption queries. Since nonces in decryption queries are arbitrary (in
particular, they can be completely different from the ones used in encryption
queries), this means that the number of hybrid experiments must be Q+ qD (and
hence the multiplicative factor in front of the security bound given by [GLL17,
Theorem 4] should be Q + qD as well).6 To formally disprove the bound as
stated, simply consider an attacker against AES-GCM-SIV with AES replaced by
a uniformly random permutation, which makes no encryption queries (Q = 0)
and simply attempts to forge a valid ciphertext within qD random decryption
queries: the bound of [GLL17, Theorem 6] indicates that the advantage of this
6 The discussion here depends on the exact decryption algorithm. We assume that it
is defined as in Remark 2.

8



adversary should be zero, whereas it is clearly not (it is roughly qD/2n, the
probability that a random tag be valid). We note that this problem also affects
the term min{36Q2/2129, 6Q/296} which accounts for the adversary’s advantage
in distinguishing the key derivation function from random and which should also
consider decryption queries, so that Q should be replaced by Q+ qD in this term
as well.

Second, the number of queries made by A′, which is claimed to be at most
Q(2R+ 2qD +L/128), is incorrect. Details are not given, but the factor Q seems
to come from the Q hybrid “multi-user” security experiments, while the term
2R + 2qD + L/128 comes from [GLL17, Theorem 4]. However, Q should only
multiply the advantage, not the number of queries of the adversary constructed
in each hybrid experiment. Besides, the number of queries claimed by [GLL17,
Theorem 4] for each hybrid experiment is also erroneous, as we explain in more
details in Section 3.2. As we will see later, a correct upper bound for the number
of queries made by the PRF-adversary A′ against AES is essential for accurately
analyzing AES-GCM-SIV’s security.

Remark 3. Upper bounding the number of queries made by reduction A′ is
actually quite straightforward. A source of mistake in [GLL17, Theorem 6] was to
derive this upper bound by composing reductions, which, in addition to usually
resulting in looser bounds, is also quite error-prone. When analyzing the security
of a high-level mode of operation which consists of the combination of several
components (as is the case for AES-GCM-SIV), one should rather begin with
replacing the underlying primitive with its uniformly random counterpart in the
high-level mode, and only then analyze the security of each component in the
information-theoretic setting.

3.2 Correcting the Security Bound

In order to remedy the situation, we prove a corrected version of the bound. We
start with a corrected version of the security bound for the GCM-SIV+ mode. For
the sake of clarity, we slightly depart from the notation used in [GLL17] (we will
revert to the original notation when comparing the bounds). We also specify an
upper bound on the AD length, which is needed to upper bound the maximal
differential probability of POLYVAL. The message length of an encryption query
(N,A,M), resp. decryption query (N,A,C‖T ) is the length of M , resp. C.

Theorem 1 (GCM-SIV+ security bound). Let E be a block cipher with n-bit
blocks. Let A be an adversary against the MRAE-security of Π = GCM-SIV+[E]
making at most qE encryption queries and qD decryption queries, such that

– the message length (in n-bit blocks) in any encryption or decryption query is
at most `m,

– the AD length (in n-bit blocks) in any encryption or decryption query is at
most `a,

– the total message length in encryption queries is at most LE bits,
– the total message length in decryption queries is at most LD bits.
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Then there exists an adversary A′ against the PRF-security of E making at most
qE + qD + dLE/ne+ dLD/ne oracle queries such that

Advmrae
Π (A) ≤ Advprf

E (A′) + q2
E`m

2n−1 + (qE + qD)2(`m + `a + 1)
2n + qD

2n .

Proof. The adversary A has access to either the real encryption and decryption
oracles of (with a slight abuse of notation) GCM-SIV+[HK1 , EK2 ] for uniformly
random keys K1 and K2, or ($,⊥). First, we replace the block cipher EK2 in
the real encryption and decryption oracles with a uniformly random function
F ∗, and denote Π∗ the resulting scheme. Consider the adversary A′ against
the PRF-security of E, having access to an oracle O (which is either EK2 for
a random key K2 or a uniformly random function F ∗ from {0, 1}n to {0, 1}n),
which simply runs A, draws a uniformly random hashing key K1, and answers
all encryption/decryption queries made by A using K1 and its oracle O. Then
A′ makes at most qE + qD + dLE/ne + dLD/ne oracle queries (in details, for
each encryption or decryption query it makes exactly one oracle query when
computing the tag and as many oracle queries as the length (in blocks) of the
message when encrypting or decrypting it). Moreover, one has

Advmrae
Π (A) ≤ Advprf

E (A′) + Advmrae
Π∗ (A).

It remains to upper bound A’s advantage against Π∗. By Remark 1, Π∗ is an
instantiation of the generic SIV construction (also called composition method A4
in [NRS14]), so that we can apply Theorem 2 of [RS06] or the result of [NRS14,
Appendix A.3] to obtain7

Advmrae
Π∗ (A) ≤ AdvivE

CTR[F∗](B) + Advprf
HtE[H,F∗](B

′) + qD
2n ,

where B is an adversary against the ivE-security of the counter mode CTR[F ∗]
making at most qE queries, each of length (in n-bit blocks) at most `m and B′ is
an adversary against the PRF-security of HtE[H,F ∗], where H is defined as in
Equation (4), making at most8 qE + qD queries. Clearly, the outputs of CTR[F ∗]
are perfectly indistinguishable from random unless two counters collide. This
cannot happen for two counters used in the same encryption query. Consider now
two distinct encryption queries. Since they are both of length at most `m, the set
of counters used for these two encryptions will overlap iff the initial counter of
the second encryption falls in a set of size at most 2`m − 1, which happens with
7 The last term in the bound of [RS06, Theorem 2] is (qE + qD)/2n, but it is easy to
see from its proof that this can be improved to qD/2n as stated here or in [NRS14,
Appendix A.3].

8 We note that [NRS14, Lemma 3] charges B′ with a higher number of queries, namely
2(qE + qD), which has been propagated through Theorems 2.2, 3.5, 4.2, and 4.3
of [GL15] up to Theorem 4 of [GLL17]. This is actually due to the fact that Lemma 3
of [NRS14] applies to other composition methods than A4 that require this higher
number of queries. It is in fact easy to see (e.g., from the proof of Theorem 2 in [RS06])
that the factor 2 is superfluous.
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probability at most (2`m − 1)/2n−1 (recall that counters are (n− 1)-bit long).
Summing over all pairs of encryption queries, one has

AdvivE
CTR[F∗] ≤

qE(qE − 1)
2 · 2`m − 1

2n−1 ≤ q2
E`m

2n−1 . (5)

The PRF-security of the UHF-then-PRF construction is standard (xoring the
nonce to the output of the hash function implies that one needs the hash function
to be AXU rather than AU). Assuming H is ε-AXU, since B′ makes at most
qE + qD queries, one has [GL15, Lemma 3.3]

Advprf
HtE[H,F∗](B

′) ≤ (qE + qD)2ε

2 .

It remains to upper bound ε, which depends on the maximal length of inputs to
POLYVAL. Since Encode appends exactly one block to the concatenation of M
and A, all inputs to H have length at most `m + `a + 1. By [GLL17, Lemma 2],
we have that H is ε-AXU for

ε = `m + `a + 1
2n−1 . (6)

(Note that the denominator is 2n−1 rather than 2n because of the truncation of
the most significant bit of POLYVAL.) Combining all equations above yields the
result.

Comparison with GLL’s Bound. Theorem 4 in [GLL17] states that for any
adversary A making at most qE encryption queries of maximal message length (in
n-bit blocks) 2k − 1 and at most qD decryption queries of overall message length
at most L bits,9 there exists an adversary A′ making at most 2qE + 2qD + L/n
oracle queries such that

Advmrae
Π (A) ≤ 2Advprf

E (A′) + q2
E

2n−k−2 + q2
E + qD
2n−1 .

Restating Theorem 1 using notation of [GLL17, Theorem 4] for the sake of
comparison, we obtain that for any adversary A making at most qE encryption
queries of maximal message length (in n-bit blocks) 2k − 1 and at most qD
decryption queries of overall message length at most L bits, and such that the
AD length (in n-bit blocks) in any query is at most `a, there exists an adversary
A′ making at most qE + qD + qE(2k − 1) + dL/ne oracle queries such that

Advmrae
Π (A) ≤ Advprf

E (A′) + q2
E

2n−k−1 + (qE + qD)2(2k + `a)
2n + qD

2n .

Putting aside factors 2 or so coming from overlooked optimizations when defin-
ing A′ and computing a few probabilities, various mistakes throughout the proofs
of Theorems 3.5, 4.2, and 4.3 in [GL15] explain the differences between [GLL17,
Theorem 4] (whose proof relies on the aforementioned theorems) and Theorem 1
above:
9 As far as we can tell, no upper bound is put on the AD length in the statement
of [GLL17, Theorem 4].
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– the number of queries made by A′ does not take into account A’s encryption
queries;10

– the number of queries of adversary B′ used for deriving the final security
bound in [GL15, Theorem 3.5] is not correct;11

– the length of the AD is not taken into account when computing the maximal
differential probability ε of H in [GL15, Theorem 4.3].12

Based on Theorem 1, we now state the following corrected security bound
for AES-GCM-SIV used with a block cipher with 128-bit blocks such as AES for
the particular (and simpler) case where qD = 0 (i.e., we consider an adversary
attacking privacy of the scheme), which will be sufficient to make our point. We
give a more general bound in Appendix B.

Theorem 2 (AES-GCM-SIV privacy bound). Let A be an adversary against
the MRAE-security of Π = AES-GCM-SIV[E] with E = AES. Assume that A:

– makes encryption queries of maximal message length (in 128-bit blocks) 2k−1
and maximal AD length (in 128-bit blocks) `a,

– uses at most Q distinct nonces in encryption queries,
– repeats any nonce at most R times in encryption queries,
– makes no decryption queries.

Then there exists an adversary A′ against the PRF-security of AES making at
most R · 2k queries and an adversary A′′ against the PRP-security of AES making
at most 6Q queries such that

Advmrae
Π (A) ≤ Advprp

AES(A′′) + min
{

36Q2

2129 ,
6Q
296

}
+QAdvprf

AES(A′) + QR2

2126−k + QR2`a
2128 .

Proof. The proof is similar to the one of [GLL17, Theorem 6]. We first replace
KeyDer[E](K, ·) by a uniformly random function from {0, 1}nl to K1 ×K2, and
let Π ′ denote the resulting AEAD scheme. By [GLL17, Lemma 5], there exists
10 The problem seems to have slipped in when going from [GL15, Theorem 4.3], where
L denotes the overall length of all (encryption and decryption) queries to [GLL17,
Theorem 4], where L denotes the overall length of decryption queries only.

11 This adversary, denoted B(A) in the proof of [GL15, Theorem 3.5], is said to make
at most 2(qE + qD) queries in the middle of the proof (which is correct up to the
remark of Footnote 8), but this becomes qE in Equation (3) at the end of the proof.

12 This is correctly taken into account in the bound of [GL15, Theorem 4.2] through
the term (dL/ne + 1)q2

E/2n (up to correcting qE to qE + qD, see Footnote 11)
where L denotes the overall length of all queries (presumably including the AD
length). However, in the proof of [GL15, Theorem 4.2], the authors use the inequality
dL/ne ≤ 2k, where 2k has been defined in Sect. 2 as the maximum message length (in
n-bit blocks), which, as far as we understand, excludes the AD length. The mistake
is then propagated to [GL15, Theorem 4.3].
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an adversary A′ against the PRP-security of AES making at most 6Q queries
such that

Advmrae
Π (A) ≤ Advprp

AES(A′′) + min
{

36Q2

2129 ,
6Q
296

}
+ Advmrae

Π′ (A).

Note that Π ′ is exactly “GCM-SIV+ in the multi-user setting”, where a fresh
pair of keys (K1,K2) is drawn uniformly at random for each nonce.13 Hence,
by a straightforward multi-user hybrid argument and Theorem 1 with qE = R,
`m = 2k − 1, LE = R · (2k − 1) · n, and qD = LD = 0, there is an adversary A′
against the PRF-security of AES making at most R · 2k queries such that

Advmrae
Π′ (A) ≤ Q

(
Advprf

AES(A′) + R2

2126−k + R2`a
2128

)
,

which concludes the proof.

3.3 Analyzing the Security Bound
We assume to begin with that `a = 0 and will come back to the impact of the
AD length at the end of this section.

It is claimed in [GLL17] that the security bound of AES-GCM-SIV is dominated
by the term QR2/2126−k, which captures both the probability that two counters
collide for two encryption queries using the same nonce and the probability that
two outputs of POLYVAL (with empty AD input) collide for two queries with the
same nonce. We disprove this claim by showing that for virtually all parameters,
the bound is actually dominated by the term QAdvprf

AES(A′). Indeed, since AES
is a pseudorandom permutation, for any q ≤ 2129/2, there exists an adversary B
making q queries such that

Advprf
AES(B) ≥ 0.316q(q − 1)

2128 .

(Adversary B simply checks whether there is a collision among answers received
from its oracle. See e.g. [BKR00, Proposition 2.4].) Since A′ makes up to R · 2k
queries, this means in particular that the best upper bound we can hope for the
term QAdvprf

AES(A′) is roughly

0.316 QR2

2128−2k .

Stated otherwise, the PRF-advantage term in the security bound should be
replaced by a PRP-advantage term at the cost of the PRP-PRF switching lemma
(see [BKR00, Proposition 2.5]), i.e.,

QAdvprf
AES(A′) ≤ QAdvprp

AES(A′) + QR2

2129−2k ,

13 This is not entirely true since an adversary against GCM-SIV+ in the multi-user
setting would be able to freely choose nonces in encryption queries for each user,
whereas in the security experiment against Π ′ the nonce is fixed according to the
key pair, but this can only lower the adversary’s advantage.
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after which the security bound of Theorem 2 becomes (assuming `a = 0)

Advmrae
Π (A) ≤ Advprp

AES(A′′) + min
{

36Q2

2129 ,
6Q
296

}
+QAdvprp

AES(A′) + QR2

2129−2k + QR2

2126−k .

Note that QR2/2129−2k is larger than QR2/2126−k as soon as k ≥ 4 and larger
than 6Q/296 when R ≥ 218−k. Hence, assuming that AES is a good PRP, under
these two mild conditions, the bound is dominated by the term QR2/2129−2k

corresponding to the “multi-user” PRF-advantage of A′ against AES.

A Matching Attack. We stress that the term QR2/2129−2k in the bound above
is actually tight up to some small constant. For any fixed parameters (Q,R, k),
consider the following “multi-user PRP-PRF” distinguisher: for i ∈ {1, . . . , Q}
and j ∈ {1, . . . , R}, it queries (Ni, ∅,Mi,j) to the encryption oracle for arbitrary
distinct nonces N1, . . . , NQ and arbitrary distinct messages Mi,j of length 2k
(and ∅ denotes empty AD), and returns 1 iff for some i, a collision occurs among
the R · 2k blocks of (Ci,1 ⊕Mi,1, . . . , Ci,R ⊕Mi,R), where Ci,j is the answer of
the encryption oracle to the query (Ni, ∅,Mi,j).

This adversary returns 1 with probability at most QR2/2126−k when interact-
ing with the real encryption oracle (see below), while it returns 1 when interacting
with $(·, ·, ·) with probability

1−

R·2k−1∏
i=1

(
1− i

2128

)Q

≥ 1−

R·2k−1∏
i=1

e−i/2128

Q

≥ 1− e−QR·2
k(R·2k−1)/2·2128

≥ 0.316 QR2

2129−2k ,

implying that the adversary’s advantage is lower bounded by

0.316 QR2

2129−2k −
QR2

2126−k =
(

0.316− 1
2k−3

)
· QR2

2129−2k .

To see that the adversary returns 1 with probability at most QR2/2126−k

when interacting with the real encryption oracle, we closely follow the proof
of Theorem 1. The difference is that we treat EK2 as a uniformly random
permutation rather than a uniformly random function.

We first fix i ∈ {1, . . . , Q}, and focus on (Ci,1 ⊕Mi,1, . . . , Ci,R ⊕Mi,R). By
construction, for any j ∈ {1, . . . , R}, we never have a collision among the 2k
blocks of Ci,j ⊕Mi,j . We then fix distinct j, j′ ∈ {1, . . . , R} and consider the
probability of having a collision between one of the 2k blocks of Ci,j ⊕Mi,j and
one of the 2k blocks of Ci,j′ ⊕Mi,j′ . There are two cases that make the collision
occur:
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Case 1. HK1(Mi,j) = HK1(Mi,j′).
Case 2. Ui,j � ` = Ui,j′ � `′ for some `, `′ ∈ {0, 1, . . . , 2k − 1}, where Ui,j =

Truncn−1(Ti,j) and Ti,j is the tag for the query (Ni, ∅,Mi,j).
Note that Case 2 refers to the event

{Ui,j , Ui,j � 1, . . . , Ui,j � (2k − 1)} ∩ {Ui,j′ , Ui,j′ � 1, . . . , Ui,j′ � (2k − 1)} 6= ∅,

i.e., the event that we have a collision among these 2 · 2k counters.
The probability of Case 1 is at most ε = (2k+1)/2127 from [GLL17, Lemma 2].

Assuming that we have HK1(Mi,j) 6= HK1(Mi,j′), the probability of Case 2 is
at most 2k+1/(2128 − 1), since for any fixed Ti,j , there are 2128 − 1 possible
values for Ti,j′ that are different from Ti,j , and the condition Ui,j � ` = Ui,j′ � `′

requires that the most significant 127−k bits of Ui,j′ be the same as those of Ui,j ,
implying that we have at most 2k+1 possibilities for Ti,j′ that meet the condition.
Therefore, for any fixed i ∈ {1, . . . , Q}, we have a collision among Ci,j ⊕Mi,j

and Ci,j′ ⊕Mi,j′ with probability at most

2k + 1
2127 + 2k

2128 − 1 ≤
2k

2125 ,

and the claim follows from a union bound, as we have at most R2/2 possible
choices for distinct j, j′ ∈ {1, . . . , R} and Q choices for i ∈ {1, . . . , Q}.

Random Nonces. A security bound for AES-GCM-SIV when N is a value drawn
at random (a “random IV”) rather than a non-repeating nonce was also given
in [GLL17, Corollary 8], but since it was inferred from [GLL17, Theorem 6] it
is flawed as well.14 Hence, we also state a corrected bound for this case. As
in [GLL17, Sect. 5.2], the proof follows from the fact that the probability that
any value repeats four or more times when drawing NE 96-bit values uniformly
at random is at most (NE)4/(24 · 2288), and applying Theorem 2 with Q = NE
and R = 3.
Corollary 1. Let A be an adversary against the MRAE-security of the random
IV-based variant of Π = AES-GCM-SIV[E] where E = AES. Assume that A makes
at most NE encryption queries of maximal message length (in n-bit blocks) 2k− 1
with empty AD and no decryption queries. Then there exists an adversary A′
against the PRF-security of AES making at most 3 · 2k queries and an adversary
A′′ against the PRP-security of AES making at most 6NE queries such that

Advmrae
Π (A) ≤ Advprp

AES(A′′) + min
{

36(NE)2

2129 ,
6NE
296

}
+NE

(
Advprf

AES(A′) + 9
2126−k

)
+ (NE)4

24 · 2288 .

14 Additionally, it is argued in the proof sketch of [GLL17, Corollary 8] that since the
maximal number of repetitions of any nonce is 3 except with small probability, the
number of distinct nonces Q resulting from NE encryption queries is at most NE/3
except with the same small probability; but actually only a very small number of
nonces will repeat three times, so that Q is in fact close to NE .
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Table 1. Security bound for AES-GCM-SIV revised according to the leading term of
Theorem 2 and Corollary 1 compared with claims in [GLL17, Fig. 4]. We highlight in
gray parameters for which the security bound is above 2−32 and should be considered
insecure according to NIST recommendations for GCM. For the nonce-based version,
the total number of encryptions NE is set to QR.

Scheme NE Q R k bound [GLL17] claim

AES-GCM-SIV 232 232 1 32 2−33 2−61

(nonce based) 264 264 1 32 2−1 2−29

231 1 231 32 2−3 2−32

231 1 231 16 2−35 2−48

239 1 239 16 2−19 2−32

242 1 242 10 2−25 2−32

250 242 28 32 2−7 2−36

250 242 28 16 2−39 2−51

250 246 24 32 2−11 2−40

AES-GCM-SIV 248 — — 32 2−14 2−44

(random IV) 263 — — 16 2−31 2−32

Again, for a large range of parameters, this security bound is dominated by the
term

NEAdvprf
AES(A′) ' 9NE/2129−2k.

Parameters Examples. For concreteness, we give in Table 1 a revised version
of the claims made in [GLL17, Fig. 4] (which did not take the PRF-security
of AES into account) based on the corrected security bound of Theorem 2 and
Corollary 1. We see that the security guarantees provided by AES-GCM-SIV are
significantly weaker than claimed in [GLL17, Fig. 4].

Apart from the numerical examples in [GLL17, Fig. 4], the authors presented
three more concrete examples.

1. For AES-GCM-SIV with a nonce, when Q = 240, R = 28, and k = 10, it is
stated in [GLL17, Sect. 5.1] that the security bound is ε′′ + 257ε′ + 2−53,
where ε′ = Advprf

AES(A′) for A′ making 257 queries. Even though the number
of queries made by A′ is erroneous (it should be R · 2k = 218), the authors
should have concluded that the bound was vacuous since for an adversary A′
making as much as 257 queries, ε′ ' 2−15 and 257ε′ is much larger than 1.15

2. For AES-GCM-SIV with a random IV, when NE = 232 and k = 32, it is stated
in [GLL17, Sect. 5.2] that the adversary’s advantage is at most 2−60, whereas
our corrected security bound shows that it is only upper bounded by 2−30.

15 Curiously, the term 2−53 is correct according to our bound, but according to the
bound of [GLL17, Theorem 4] it should have been 2−60.
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3. The same paragraph states that when NE = 264 and k = 32, the distin-
guishing probability is at most 2−28, whereas our corrected security bound
becomes void (for the good reason that a variant of the matching attack
described above succeeds with advantage close to 1).

We note that [GLL17, Sect. 5.3] acknowledges that Advprf
AES(A′) can be large,

but this crucial observation is not taken into consideration in [GLL17, Fig. 4]
nor in the surrounding discussion.

Impact of the AD Length. It might seem surprising that the AD length
shows up in the privacy bound, since the AD is not supposed to be secret. This
is in fact a consequence of the definition of privacy of an AEAD scheme, which
demands that the tag be indistinguishable from random. This in turn depends
on the maximal differential probability of POLYVAL and hence on the AD length.
The term QR2`a/2128 in the security bound of Theorem 2 is actually matched
by a simple distinguishing attack: for Q distinct nonces N1, . . . , NQ, query the
encryption oracle with R triplets (Ni, Ai,j , ∅), where Ai,j are arbitrary ADs of
length `a and ∅ denotes the empty message, receiving a tag Ti,j in response; then
there will be a collision between two tags Ti,j and Ti,j′ with probability roughly
QR2`a/2128, whereas for truly random tags such a collision should happen with
probability approximately QR2/2128.

We note that no maximal length for the AD is given in [GLL17], while the
CFRG specification draft [GLL16] sets a maximal length of 261− 1 bytes.16 Even
though there is little reason in practice for the AD to be that large, such an
upper bound implies that the two terms QR2`a/2128 and QR2/2129−2k are of
similar magnitude when both the message length and the AD length are maximal
(i.e., k = 32 and `a ' 257 blocks).

4 About the Key Derivation Function

In this section, we point out that the key derivation function specified in
AES-GCM-SIV is sup-optimal w.r.t. security. In short, the designers could have
used the “sum of PRPs” construction [BKR98, BI99, Luc00] rather than trunca-
tion.

More precisely, consider the key deriving function KeyDer′[E] which maps
(K,N) to (K1,K2) where

K1 = EK(N‖[1]32)⊕ EK(N‖[0]32)
K2 = EK(N‖[3]32)⊕ EK(N‖[2]32) if kl = n,

= EK(N‖[5]32)⊕ EK(N‖[4]32)
∥∥EK(N‖[3]32)⊕ EK(N‖[2]32) if kl = 2n.

This key derivation function makes exactly the same number of calls to E as the
original one. However, its PRF-security is much better and essentially optimal.
16 No rationale is given for this choice, which was presumably made according to the

GCM specification [Dwo07].
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It has been studied in numerous papers [Luc00, BI99, Pat08a, Pat10, Pat13,
DHT17]. In particular, using [DHT17, Theorem 1], the PRF-advantage of any
adversary A making at most Q oracle queries against KeyDer′ is upper bounded
by

Advprf
KeyDer′(A) ≤ 3 · 1.5Q+ 3

√
Q

2n ≤ 15Q
2n .

(Note that in the particular case we are considering, n = 128 and Q ≤ 296 =
2128−32 since nonces are 96 bits long, so that the hypothesis Q ≤ 2n−5 of [DHT17,
Theorem 1] is always met.) Even an adversary which is able to query all 296

possible nonces to KeyDer′ has a distinguishing advantage of at most 2−28,
whereas it has advantage close to 1 against the original truncation-based key
derivation function KeyDer.

Alternatively, one can use of a variant of CENC [Iwa06] to derive the keys as

K1 = EK(N‖[1]32)⊕ EK(N‖[0]32)
K2 = EK(N‖[2]32)⊕ EK(N‖[0]32) if kl = n,

= EK(N‖[3]32)⊕ EK(N‖[0]32)
∥∥EK(N‖[2]32)⊕ EK(N‖[0]32) if kl = 2n.

This saves two calls of E, and the security is comparable to the “sum of PRPs”
construction [Pat05, IMV16].
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A Additional Security Notions

Given non-empty sets X and Y, the set of all functions from X to Y is denoted
Func(X ,Y), and the set of all permutations of X is denoted Perm(X ).

PRFs and Block Ciphers. A keyed function with key space K, domain X ,
and range Y is a function F : K × X → Y. We denote FK(X) for F (K,X). A
(q, t)-adversary against F is an algorithm A with oracle access to a function
from X to Y, making at most q oracle queries, running in time at most t, and
outputting a single bit. The advantage of A in breaking the PRF-security of F is
defined as

Advprf
F (A) =

∣∣Pr
[
K ←$ K : AFK = 1

]
− Pr

[
R←$ Func(X ,Y) : AR = 1

]∣∣ .
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A block cipher with key space K and domain X is a mapping E : K×X → X
such that for any key K ∈ K, X 7→ E(K,X) is a permutation of X . We denote
EK(X) for E(K,X). A (q, t)-adversary against E is an algorithm A with oracle
access to a permutation of X , making at most q oracle queries, running in time
at most t, and outputting a single bit. The advantage of A in breaking the
PRP-security of E is defined as

Advprp
E (A) =

∣∣Pr
[
K ←$ K : AEK = 1

]
− Pr

[
P ←$ Perm(X ) : AP = 1

]∣∣ .
IV-based Encryption Schemes. Syntactically, an IV-based encryption (ivE)
scheme is a tuple Π = (K,Enc,Dec) where K is a non-empty key set and Enc and
Dec are deterministic algorithms. The encryption algorithm Enc takes as input
a key K ∈ K, an initial value IV ∈ {0, 1}ivl, where ivl is the IV length, and
a message M ∈ {0, 1}∗, and outputs a ciphertext C ∈ {0, 1}∗. The decryption
algorithm Dec takes as input a key K ∈ K, an initial value IV ∈ {0, 1}ivl, and a
ciphertext C ∈ {0, 1}∗, and outputs a message M ∈ {0, 1}∗. We require that

Dec(K, IV,Enc(K, IV,M)) = M

for all tuples (K, IV,M) ∈ K × {0, 1}ivl × {0, 1}∗.
We denote Enc$ the probabilistic algorithm which takes as input (K,M) ∈

K × {0, 1}∗, internally generates a uniformly random IV ←$ {0, 1}ivl, computes
C = Enc(K, IV,M), and outputs (IV, C) ∈ {0, 1}ivl×{0, 1}∗. We write Enc$

K(M)
for Enc$(K,M). The security of an ivE scheme is defined as follows.

Definition 2 (Security of an ivE scheme). Let Π = (K,Enc,Dec) be an ivE
scheme. The advantage of an adversary A in breaking Π is defined as

AdvivE
Π (A) =

∣∣∣Pr
[
K ←$ K : AΠ.Enc$

K(·) = 1
]
− Pr

[
A$(·) = 1

]∣∣∣ ,
where $(·) is an oracle which on input M ∈ {0, 1}∗ outputs a random string of
length |Π.Enc$

K(M)|.

Multi-User Security. All security definitions above can be declined in the
multi-user setting [ML15, BT16, HT16, LMP17]. All oracles to which the ad-
versary has access take an additional “identifier” input i ∈ I ⊂ N. For each
identifier i ∈ I, a key K is drawn independently at random in the “real world”,
whereas an independent ideal oracle is implemented in the “ideal world”. We
denote the corresponding security notion with prefix “mu-”. For example, the
mu-PRF security of a keyed function F : K ×X → Y is defined as

Advmu-prf
F (A) =

∣∣∣Pr
[
Ki ←$ K, i ∈ I : A(i,x)7→FKi

(x) = 1
]

− Pr
[
Ri ←$ Func(X ,Y), i ∈ I : A(i,x) 7→Ri(x) = 1

] ∣∣∣.
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B A General Security Bound for AES-GCM-SIV

In this section, we prove a general security bound for AES-GCM-SIV. All lengths
below are measured in n-bit blocks.

We will make use of the H-coefficients technique [Pat08b], that we recall very
briefly here. See e.g. [CS14] for more details. Consider an adversary A interacting
with one out of two possible systems (i.e., tuples of oracles) Sre and Sid, called by
convention respectively the real world and the ideal world, and outputting a single
bit. The interaction of A with either system defines a transcript τ which lists all
queries made by A together with their answers. A transcript is said attainable
if it can be obtained with non-zero probability when A interacts with the ideal
world. We let Xre, resp. Xid denote the random variable for the transcript in the
real, resp. ideal world. The fundamental lemma of the H-coefficients technique is
the following one.

Lemma 1. Fix an adversary A trying to distinguish two systems Sre and Sid.
Let Tbad be a subset of the set T of attainable transcripts and Tgood = T \ Tbad
be its complement. Assume that there exists ν such that for any τ ∈ Tgood,

Pr [Xre = τ ]
Pr [Xid = τ ] ≥ 1− ν.

Then ∣∣Pr
[
ASre = 1

]
− Pr

[
ASid = 1

]∣∣ ≤ Pr [Xid ∈ Tbad] + ν.

We will need the following “constrained” multi-user PRP-PRF switching
lemma for a multi-user adversary making queries according to a specific pattern.
Note that we cannot use the nice result that PRP-PRF switching does not suffer
multi-user degradation [LMP17] (according to which we could use the single-user
PRP-PRF switching bound with the total number Qtot of adversarial queries)
since the only upper bound we have for Qtot is QR · 2k + qD +σD, and this would
yield a bound which is quadratic in Q.

Lemma 2. Let E be a block cipher with n-bit blocks. Let A be an adversary
against the mu-PRF-security of E making at most R · 2k queries for at most Q
distinct users and distributing at most qD + σD additional queries as it wishes
among users. Then

Advmu-prf
E (A) ≤ Advmu-prp

E (A) + QR2

2n−2k + (qD + σD)(R · 2k + qD + σD)
2n .

Proof. First, we replace E by a family of independent and uniformly random
permutations, at the cost of the advantage of A against the mu-PRP-security
of E. We must now upper bound A’s advantage in distinguishing a family of
independent and uniformly random permutations from a family of independent
and uniformly random functions. For this, we use the H-coefficients technique.
We assume wlog that the adversary makes the maximal number of allowed queries
and never repeats queries. We let the real world be the family of functions and
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the ideal world be the family of permutations. There is no bad transcript. Let τ
be an attainable transcript. This implies that for each identifier i ∈ I, all queries
with identifier i are distinct (by the convention that the adversary never repeats
queries) and all corresponding answers are distinct (since in the ideal world the
adversary interacts with permutations). Then, in the real (function) world,

Pr [Xre = τ ] = 1
(2n)QR·2k+qD+σD

.

On the other hand, in the ideal (permutation) world,

Pr [Xid = τ ] =
∏
i∈I

1
(2n)qi

,

where qi is the number of queries for identifier i in the transcript and (2n)qi =
2n(2n − 1) · · · (2n − qi + 1) with the convention that (2n)0 = 1. Let I ′ be the set
of Q identifiers for which the adversary makes R · 2k queries, and for i ∈ I let q′i
be the number of additional queries made for identifier i. Then

Pr [Xid = τ ] ≤
∏
i∈I′

1
(2n)R·2k

∏
i∈I

1
(2n −R · 2k)q′

i

≤
(

1
(2n)R·2k

)Q
· 1

(2n −R · 2k)qD+σD

,

where we used that
∑
i∈I q

′
i = qD + σD. Then we obtain for the ratio

Pr [Xre = τ ]
Pr [Xid = τ ] ≥

(
(2n)R·2k

(2n)R·2k

)Q
· (2n −R · 2k)qD+σD

(2n)qD+σD

≥ 1− QR2

2n−2k −
(qD + σD)(R · 2k + qD + σD)

2n .

Combined with Lemma 1, this concludes the proof.

We are now ready to state and prove our improved security bound for
AES-GCM-SIV.

Theorem 3 (AES-GCM-SIV MRAE-security bound). Let E be a block ci-
pher with n-bit blocks and key space K2 = {0, 1}kl, where kl is the key length.
Let A be an adversary against the MRAE-security of Π = AES-GCM-SIV[E] such
that

– A uses at most Q distinct nonces in encryption queries,
– A repeats any nonce at most R times in encryption queries,
– A makes at most qD decryption queries,
– the message length in any encryption or decryption query is at most 2k − 1,
– the AD length in any encryption or decryption query is at most `a,
– the total message length in decryption queries is at most σD.
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Then there exists an adversaries A′ against the mu-PRP-security of E making at
most R · 2k queries for at most Q distinct users and distributing at most qD + σD
additional queries as it wishes among users and an adversary A′′ against the
PRP-security of E making at most 6(Q+ qD) queries such that

Advmrae
Π (A) ≤ Advprp

E (A′′) + min
{

36(Q+ qD)2

2n+1 ,
6(Q+ qD)

23n/4

}
+ Advmu-prp

E (A′) + QR2

2n−2k + (qD + σD)(R · 2k + qD + σD)
2n

+ (Q+ qD)2

2kl+1 + QR2(2k + `a)
2n + RqD(2k + `a)

2n−1 + qD
2n + QR2

2n−k−1 .

Before proving Theorem 3, let us briefly derive the bound that would be
obtained with a straightforward multi-user hybrid argument similar to the one
used in the proof of [GLL17, Theorem 6] and Theorem 2. As in the proof of
Theorem 2, we first replace KeyDer[E](K, ·) by a uniformly random function from
{0, 1}nl to K1 ×K2, and let Π ′ denote the resulting AEAD scheme. By [GLL17,
Lemma 5], there exists an adversary A′′ against the PRP-security of E making
at most 6(Q+ qD) queries such that

Advmrae
Π (A) ≤ Advprp

E (A′′) + min
{

36(Q+ qD)2

2n+1 ,
6(Q+ qD)

23n/4

}
+ Advmrae

Π′ (A).

Then, we use a multi-user hybrid argument (with Q+ qD users) combined with
Theorem 1 where qE = R, `m = 2k − 1, LE = R(2k − 1)n, and LD = σDn. This
yields the bound

Advmrae
Π′ (A) ≤ (Q+ qD)

(
Advprf

E (A′) + R2

2n−k−1 + (R+ qD)2(2k + `a)
2n + qD

2n

)
for an adversary A′ making at most R · 2k + qD +σD oracle queries. (Note that in
such a basic multi-user hybrid argument, we have no other choice than assuming
that each hybrid adversary makes at most qD decryption queries of total message
length σD.) By the PRP-PRF switching lemma, we have

Advprf
E (A′) ≤ Advprp

E (A′) + (R · 2k + qD + σD)2

2n+1 .

Combining the three equations above, one obtains

Advmrae
Π (A) ≤ Advprp

E (A′′) + min
{

36(Q+ qD)2

2n+1 ,
6(Q+ qD)

23n/4

}
+ (Q+ qD)Advprp

E (A′) + (Q+ qD)(R · 2k + qD + σD)2

2n+1

+ (Q+ qD)R2

2n−k−1 + (Q+ qD)(R+ qD)2(2k + `a)
2n + (Q+ qD)qD

2n ,

which is a very crude bound (note in particular that it contains terms that
are cubic in qD). Instead, we set to prove a better bound with a more careful
multi-user argument.
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Proof of Theorem 3. We use a game-based approach [Sho04, BR06], i.e., we
gradually modify the behavior of the two oracles (that we call “worlds” rather
than games) to which the adversary has access. World W1 corresponds to the
real encryption and decryption oracles. The changes in each of the successive
worlds, which are formally specified in Figure 2 and Figure 3, are as follows:
– in world W2, we replace the key derivation function KeyDer[E](K, ·) by a

uniformly random function ρkd : {0, 1}nl → K1 ×K2;
– in world W3, we replace the block cipher E with a uniformly random function
F ∗ : K2 × {0, 1}n → {0, 1}n;

– in world W4, we use two independent random functions F ∗, G∗ : {0, 1}nl ×
{0, 1}n → {0, 1}n keyed by the nonce for resp. the tag generation part and
the encryption part;17

– in world W5, we replace the tag generation function by a random function
ρtag from {0, 1}nl × {0, 1}∗ × {0, 1}∗ to {0, 1}n and let the decryption oracle
always reject;

– the final world W6 is simply the ideal world ($,⊥).

In all the following, we let

∆i,j =
∣∣Pr
[
AWi = 1

]
− Pr

[
AWj = 1

]∣∣ .
We are interested in upper bounding ∆1,6 and will consider each transition in
turn.

Transition W1-W2. It is easy to see that ∆1,2 can be upper bounded by
the PRF-advantage against KeyDer of an adversary making at most Q + qD
oracle queries. By [GLL17, Lemma 5], there exists an adversary A′′ against the
PRP-security of E making at most 6(Q+ qD) queries such that

∆1,2 ≤ Advprp
E (A′′) + min

{
36(Q+ qD)2

2n+1 ,
6(Q+ qD)

23n/4

}
.

Transition W2-W3. We construct an adversary A′ against the mu-PRF-security
of E. Let O be the oracle to which A′ has access. It runs A and answers its queries
according to the pseudocode of worlds W2/3 by drawing all necessary keys K1
itself and replacing all calls to E/F ∗ by calls to its oracle, using the nonce as the
“user identifier”. Then A′ makes at most R ·2k queries for at most Q distinct users
and distributes at most qD + σD additional queries as it wishes among users and
it perfectly simulates W2, resp. W3, when its oracle is E, resp. F ∗, so that

∆2,3 ≤ Advmu-prf
E (A′).

Combined with Lemma 2, we obtain

∆2,3 ≤ Advmu-prp
E (A′) + QR2

2n−2k + (qD + σD)(R · 2k + qD + σD)
2n .

17 Since F ∗ and G∗ are secret random functions, using the nonce directly as the key is
equivalent (but syntactically simpler) to drawing distinct keys K2,N for keying F ∗ in
the tag generation part and distinct keys K′2,N for keying G∗ in the encryption part.
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Transition W3-W4. Note that in W3, all calls to F ∗ in the tag generation part,
resp. encryption part, have their most significant bit set to 0, resp. 1, which
is equivalent to having two independent families of random functions. Hence,
as long as all keys K2 generated in W3 are distinct, worlds W3 and W4 are
perfectly equivalent (if two keys collide in W3, the same function is used for
two distinct nonces, whereas in W4 functions associated with distinct nonces are
independent by construction). By the fundamental lemma of game playing, the
indistinguishability advantage is upper bounded by the probability that two keys
K2 collide in W3, so that

∆3,4 ≤
(Q+ qD)2

2kl+1 .

Transition W4-W5. Let TagGen and Ver be the oracles defined in Figure 3.
By simulating the encryption part, we construct an adversary B having access
to a pair of oracles (O1, O2) ∈ {(TagGen,Ver), (ρtag,⊥)} as follows. Adversary
B runs A and answers its queries as follows, lazily sampling random functions
G∗N when needed: on an encryption query (N,A,M), it returns C‖T where
T = O1(N,A,M) and

C = CTR[G∗N ](Truncn−1(T ),M);

on a decryption query (N,A,C‖T ), it computes

M = CTR[G∗N ](Truncn−1(T ), C),

queries O2(N,A,M, T ), and returns M if O2 returns > and ⊥ if O2 returns ⊥.
Then one can check that B perfectly simulatesW4 when (O1, O2) = (TagGen,Ver)
and W5 when (O1, O2) = (ρtag,⊥), so that

∆4,5 =
∣∣Pr
[
BTagGen,Ver = 1

]
− Pr

[
Bρtag,⊥ = 1

]∣∣ . (7)

Moreover, note that B’s queries to its left, resp. right oracle have the same char-
acteristics as A’s queries to its encryption, resp. decryption oracle. In particular,
B never submits a right query (N,A,M, T ) if a previous left query (N,A,M)
returned T (this can only happen if A makes a decryption query (N,A,C‖T ) such
that a previous encryption query (N,A,M) returned C‖T , which is forbidden
by definition of MRAE-security). We will refer to B’s queries to the left, resp.
right oracle as tag queries, resp. verification queries.

We must now upper bound B’s distinguishing advantage. For this, we use
the H-coefficients technique. More specifically, our approach is very similar
to [CLS17]. We refer to (TagGen,Ver), resp. (ρtag,⊥) as the real, resp. ideal
world. From the interaction of B with its oracles, we build the queries transcript
which consists of all tag queries together with their answer, which we denote
generically (N,A,M)→ T , and all verification queries (N ′, A′,M ′, T ′). Note that
for an attainable transcript (whose probability in the ideal world is non-zero), all
answers to verification queries are ⊥, and hence we omit these answers from the
queries transcript.
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In order to define good and bad transcripts easily, we reveal to B, after it has
made all its queries, the hashing keys K1,N for nonces appearing in the queries
transcript (in the ideal world, we simply reveal “dummy” keys that are uniformly
random and independent from the queries transcript). By appending these keys
to the queries transcript, we obtain what we simply call the attack transcript.
We let Xre, resp. Xid denote the random variable for the attack transcript in the
real, resp. ideal world.

We say that a transcript is bad if one of the two following conditions is fulfilled
(otherwise we say that it is good):

(C-1) there exists two distinct tag queries (N,A1,M1)→ T1 and (N,A2,M2)→
T2 with the same nonce such that

HK1,N
(A1,M1) = HK1,N

(A2,M2);

(C-2) there exists a tag query (N,A,M)→ T and a verification query (N,A′,
M ′, T ′) with the same nonce such that{

HK1,N
(A,M) = HK1,N

(A′,M ′)
T = T ′.

Note that the second condition cannot happen in the real world since it would
imply that the verification query is valid (i.e., should have returned >).

Probability of Bad Transcripts. We consider each condition in turn, using
the ε-AU property of H (recall that in the ideal world, hashing keys are random
and independent from the queries transcript). Consider the first condition. For
each of the Q possible values of the nonce, and for each of the R(R−1)/2 possible
pairs of tag queries for this nonce, the probability of a hash output collision is at
most ε. By a union bound and Equation (6) with `m = 2k − 1, we obtain that
the probability that the first condition is met is at most

QR2(2k + `a)
2n .

Consider now the second condition. Fix any verification query (N,A′,M ′, T ′).
There are at most R tag queries (N,A,M)→ T with the same nonce. Let us fix
one of them. We distinguish two cases. If the verification query comes after the
tag query, then either T 6= T ′ or (A,M) 6= (A′,M ′) since otherwise this would
mean that B submitted a verification query (N,A,M, T ) after having received
tag T to tag query (N,A,M), which is forbidden. In the first case, the condition
cannot be fulfilled, while in the later case the probability that the hash outputs
collide is at most ε. It the tag query comes after the verification query, then
T is uniformly random and independent from T ′, and hence the condition is
fulfilled with probability 2−n. Since ε ≥ 2−n, in all cases, the condition is fulfilled
with probability at most ε. By summing over the at most RqD possible pairs of
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verification and tag queries and using Equation (6) with `m = 2k − 1, we obtain
that the probability that the ideal transcript satisfies condition (C-2) is at most

RqD(2k + `a)
2n−1 .

All in all,

Pr [Xid is bad] ≤ QR2(2k + `a)
2n + RqD(2k + `a)

2n−1 . (8)

Probability of Good Transcripts. Fix any good transcript τ . It remains
to lower bound the ratio Pr [Xre = τ ] /Pr [Xid = τ ]. We omit the probability
that hashing keys take some particular value since it is the same in both worlds
and cancels in the ratio. Then one simply has Pr [Xid = τ ] = 1/(2n)QR. The
probability to obtain τ in the real world is exactly the probability (over functions
F ∗N ) that for each tag query (N,A,M)→ T ,

F ∗N (HK1,N
(A,M)⊕N) = T

and for each verification query (N ′, A′,M ′, T ′)

F ∗N ′(HK1,N′ (A
′,M ′)⊕N ′) 6= T ′.

Note that for each nonce N used in encryption queries, values HK1,N
(A,M)⊕N

for tag queries (N,A,M) made with this nonce are distinct, as otherwise condition
(C-1) would be fulfilled, and that no decryption query is “incompatible” with
the tag queries transcript, as otherwise condition (C-2) would be fulfilled. This
implies that

Pr [Xre = τ ] ≥
(

1
2n

)QR (
1− qD

2n
)
.

Thus,
Pr [Xre = τ ]
Pr [Xid = τ ] ≥ 1− qD

2n . (9)

Finally, combining Equation (7), Lemma 1, Equation (8), and Equation (9),
we obtain

∆4,5 ≤
QR2(2k + `a)

2n + RqD(2k + `a)
2n−1 + qD

2n .

Transition W5-W6. Clearly, the distinguishing advantage from W5 to W6 is
upper bounded by the mu-ivE-advantage against the counter encryption mode of
an adversary making at most R queries of maximal length 2k to at most Q users.
By a straightforward hybrid argument and Equation (5), one has

∆5,6 ≤
QR2

2n−k−1 .

Combining all bounds on ∆i,i+1 for i = 1, . . . , 5 yields the result.
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1 algorithm KeyGen World W1
2 K ←$ K2
3 algorithm Enc(N,A,M)
4 (K1,K2) := KeyDer(K,N)
5 T := EK2 (HK1 (A,M)⊕N)
6 C := CTR[EK2 ](Truncn−1(T ),M)
7 return C‖T
8 algorithm Dec(N,A,C‖T )
9 (K1,K2) := KeyDer(K,N)

10 M := CTR[EK2 ](Truncn−1(T ), C)
11 T ′ := EK2 (HK1 (A,M)⊕N)
12 if T = T ′ then return M else return ⊥

1 algorithm KeyGen World W2
2 ρkd ←$ Func({0, 1}nl,K1 ×K2)
3 algorithm Enc(N,A,M)
4 (K1,K2) := ρkd(N)
5 T := EK2 (HK1 (A,M)⊕N)
6 C := CTR[EK2 ](Truncn−1(T ),M)
7 return C‖T
8 algorithm Dec(N,A,C‖T )
9 (K1,K2) := ρkd(N)

10 M := CTR[EK2 ](Truncn−1(T ), C)
11 T ′ := EK2 (HK1 (A,M)⊕N)
12 if T = T ′ then return M else return ⊥

1 algorithm KeyGen World W3
2 ρkd ←$ Func({0, 1}nl,K1 ×K2)
3 F ∗ ←$ Func(K2 × {0, 1}n, {0, 1}n)
4 algorithm Enc(N,A,M)
5 (K1,K2) := ρkd(N)
6 T := F ∗K2 (HK1 (A,M)⊕N)
7 C := CTR[F ∗K2 ](Truncn−1(T ),M)
8 return C‖T
9 algorithm Dec(N,A,C‖T )

10 (K1,K2) := ρkd(N)
11 M := CTR[F ∗K2 ](Truncn−1(T ), C)
12 T ′ := F ∗K2 (HK1 (A,M)⊕N)
13 if T = T ′ then return M else return ⊥

Fig. 2. Worlds W1-W3 used in the proof of Theorem 3. The keyed hash function H is
defined as in Equation (4).
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1 algorithm KeyGen World W4
2 ρkd ←$ Func({0, 1}nl,K1)
3 F ∗ ←$ Func({0, 1}nl × {0, 1}n, {0, 1}n)
4 G∗ ←$ Func({0, 1}nl × {0, 1}n, {0, 1}n)
5 algorithm Enc(N,A,M)
6 T := TagGen(N,A,M)
7 C := CTR[G∗N ](Truncn−1(T ),M)
8 return C‖T
9 algorithm Dec(N,A,C‖T )

10 M := CTR[G∗N ](Truncn−1(T ), C)
11 if Ver(N,A,M, T ) = > then return M else return ⊥
12 algorithm TagGen(N,A,M)
13 K1,N := ρkd(N)
14 T := F ∗N (HK1,N (A,M)⊕N)
15 return T
16 algorithm Ver(N,A,M, T )
17 K1,N := ρkd(N)
18 T ′ := F ∗N (HK1,N (A,M)⊕N)
19 if T = T ′ then return > else return ⊥

1 algorithm KeyGen World W5
2 ρtag ←$ Func({0, 1}nl × {0, 1}∗ × {0, 1}∗, {0, 1}n)
3 G∗ ←$ Func({0, 1}nl × {0, 1}n, {0, 1}n)
4 algorithm Enc(N,A,M)
5 T := ρtag(N,A,M)
6 C := CTR[G∗N ](Truncn−1(T ),M)
7 return C‖T
8 algorithm Dec(N,A,C‖T )
9 return ⊥

Fig. 3. Worlds W4-W5 used in the proof of Theorem 3. The keyed hash function H is
defined as in Equation (4).
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