
More is Less: How Group Chats Weaken the Security of Instant

Messengers Signal, WhatsApp, and Threema

Paul Rösler, Christian Mainka, Jörg Schwenk
{firstname.lastname}@rub.de

Chair for Network and Data Security
Ruhr-University Bochum

July 24, 2017

Abstract

Secure Instant Messaging (SIM) is utilized in two variants: one-to-one communication and group commu-
nication. While the first variant has received much attention lately (Frosch et al., EuroS&P16; Cohn-Gordon
et al., EuroS&P17; Kobeissi et al., EuroS&P17), little is known about the cryptographic mechanisms and
security guarantees of SIM group communication.

In this paper, we investigate group communication security mechanisms of three main SIM applications:
Signal, WhatsApp, and Threema. We first provide a comprehensive and realistic attacker model for analyzing
group SIM protocols regarding security and reliability. We then describe and analyze the group protocols
used in Signal, WhatsApp, and Threema. By applying our model, we reveal multiple weaknesses, and pro-
pose generic countermeasures to enhance the protocols regarding the required security and reliability goals.
Our systematic analysis reveals that (1) the communications’ integrity – represented by the integrity of all
exchanged messages – and (2) the groups’ closeness – represented by the members’ ability of managing the
group – are not end-to-end protected.

We additionally show that strong security properties, such as Future Secrecy which is a core part of the
one-to-one communication in the Signal protocol, do not hold for its group communication.

1 Introduction

Short Message Service (SMS) has dominated the text-based communication on mobile phones for years.
Instant Messaging (IM) applications started by providing free-of-charge SMS functionality, but today provide
numerous additional features, and therefore are more and more displacing SMS [17, 31].

One of the main advantages of IM applications over SMS is the possibility to easily communicate with
multiple participants at the same time via group chats. IM chats thereby allow sharing of text messages and
attachments, such as images or videos, for both, direct communication and group communication. Groups are
mainly defined by a list of their members. Additionally, meta information is attached to groups, for example,
a group title. Depending on the IM application and its underlying protocol, groups are administrated by
selected users, or can be modified by every user in a group.

With the revelation of mass surveillance activities by intelligence agencies, users have an increased aware-
ness for security and privacy. Therefore servers delivering messages can no longer be seen as trusted third
parties, and attacker models, which in the past focused on network-based attackers, now also include mali-
cious server-based attacks [35, 40].

In contrast to open standardized communication protocols like Extensible Messaging and Presence Pro-
tocol (XMPP) and Internet Relay Chat (IRC), most IM protocols are centralized such that users of each
application can only communicate among one another. As a result, a user cannot choose the most trustworthy
provider but needs to fully trust the one provider that develops both, protocol and application.

1

End-to-end encryption is a major security feature of all Secure Instant Messaging (SIM) protocols, and
additional security properties like future secrecy have been claimed [49], analyzed [33] and proven [23]. End-
to-end encryption is part of all major IM apps, including Signal [53], WhatsApp [70], Threema [65], Google
Allo [52], and Facebook Messenger [51]. One of the main achievements of SIM protocols is the usability of its
end-to-end encryption. After the application installation, keys are automatically generated, and encryption
is enabled — without any user-interaction. Experienced users may do some simple checks to verify the public
key of their counterpart [27], but this is often an optional step.

Contrary to classical multi-user chats, for example, to IRC in which all members are online, groups
in IM protocols must work in asynchronous settings; Groups must be createable and messages must be
deliverable even if some group members are offline. When it comes to end-to-end encryption, this leads
to the complex problem of asynchronously agreeing on a group key. Instead of establishing a group key
between all group members and then encrypting messages once with that dedicated key, many modern SIM
applications encrypt messages with keys established between the initiator (sender) and the receiver similar
to direct messaging. The message is enriched with meta information, for example, a flag indicating that the
message is a group message (instead of a direct message) and the unique identifier of the group, encrypted
with each member’s key, and delivered to these members. On the one hand, this mechanism leads to an
increased message overhead depending on the total number of group members. On the other hand, security
properties (e.g., key renewal, delivery status information, . . .) can be gained without any further effort.

The fact that widely used SIM protocols are neither open source nor standardized makes it harder
to analyze and compare their security properties. On the one hand, the applications must be reverse
engineered [9, 33, 34] for retrieving a protocol description. On the other hand, third-party implementations
are often blocked by providers [69] such that an active analysis is even more complicated.

When analyzing the protocols, the security properties in the setting of asynchronous, centralized mes-
saging must be investigated with the whole group environment in mind. The security of a protocol does not
only rely on single messages, exchanged between two group users. For example, the abstract security goal
confidentiality is based on the composition of the strength of the encryption algorithm for protecting the
content of single messages and the protocol’s strength to ensure that users who do not belong to a group
must not be able to add themselves to the group or send messages within the group without the members’
permission. Additionally, the integrity of the communication is not restricted to the non-malleability of single
exchanged messages but also consists of the correct message delivery between the communicating users.

Established definitions like reliable multicast [15, 36] and related formalizations like group communication
systems (GCS) [22] provide a set of properties that need to be reached for achieving a secure and reliable
group communication. However, they do not fully match the described setting and over-accomplish the
reliability requirements. Therefore the modeling of our security and reliability definitions bases on the three
representative SIM applications by extracting security properties from their features (provider statements or
visual user interface). We matched these requirements to definitions from the mentioned and further related
fields of research (e.g., authenticated key exchange, reliable broadcast, GCS) and thereby provide a novel
comprehensive attacker model for the investigation of group SIM protocols.

Accordingly we investigate these three popular SIM applications: Signal [53], Threema [65], and Whats-
App [70]. Signal can be seen as a reference implementation for other SIM protocols that implement the Signal
key exchange protocol like Facebook Messenger, Google Allo and other messengers. However, our analysis
shows that the integration of the Signal key exchange protocol does not imply same group communication
protocols. We chose to analyze WhatsApp, because it is one of the most widely used SIM applications with
more than one billion users [59]. We additionally chose to analyze Threema as a widely used representative
for the class of proprietary and closed source SIM applications. Signal and Threema are both used by at least
one million Android users [58, 64]. Based on this examination, we apply our model and evaluate the security
properties. In our systematical analysis, we reveal several design weaknesses in the group communication
protocols of these applications. Our contributions are outlined as follows:

I We present a realistic and comprehensive attacker model for the analysis of group communications in
SIM protocols (§ 2).

2

I We describe the group communication protocols of Signal (§4), WhatsApp (§5), and Threema (§6) and
thereby present three fundamentally different implementations of SIM group communication protocols.
We analyze them by applying our model and thereby reveal several security issues that break the traceable
delivery, closeness and thereby confidentiality of their group chat implementations. As a result, we show
that none of these group communication protocols achieves Future Secrecy.

I We provide and compare generic approaches to secure group communications, based on our observations
and related literature (§7).

All findings have been responsibly disclosed to the application developers.

2 Security Model for Encrypted Group Chats

Secure Instant Messaging (SIM) protocols should satisfy the general security goals confidentiality, integrity,
authenticity and availability. Some of them even claim advanced security goals like future secrecy.

One could expect that a SIM group protocol should provide the same properties, as well as several others
that are naturally achived in a two-party scenario. Intuitively, a group protocol in SIM should achive all
security goals that are gained when a group of people is communicating in an isolated room: everyone in the
room hears the communication (traceable delivery), everyone knows who spoke (authenticity), nobody else
can replay the words because the speaker’s lips can be seen (no duplication), nobody outside the room can
either speak into the room (no creation) or hear the communication inside (confidentiality), and the door to
the room is only opened for invited persons (closeness).

2.1 Notation and Assumptions

Most modern SIM protocols are centralized : all exchanged messages are transmitted via a central server,
which receives messages from the respective senders, caches them and forwards them as soon as the receivers
are online. Hence the protocols are executed in an asynchronous environment in which only the server is
always online.

We generally define a group gr as the tuple

(IDgr,Ggr,G∗gr, infogr),G∗gr ⊆ Ggr ⊆ U

where U is the set of protocol users, Ggr is the set of members in the group and G∗gr is the set of administrators
of the group. The group is uniquely referenced by IDgr. Additionally, a title and other usability information
can be configured in infogr.

We denote communicating users as A,B,C, .., U, ..,X ∈ U .
It is important to distinguish between actions that can be conducted by all members in Ggr and actions

that are only permitted to the administrators in G∗gr. All members can send messages and leave a group.
Adding members to the group should only be possible for administrators.

2.2 Threat Model

We consider five types of adversaries against SIM protocols:

Malicious User. Since all protocols are open for new users, the adversary may act as a malicious user who
can arbitrarily deviate from the protocol specification. To exclude trivial attacks against the instant delivery
of messages, we assume that members of the target group behave correctly by always following the protocol
description.

Long-term Secret Compromise. This adversary extends the malicious user by being able to compromise
a particular user during or after the protocol execution, to obtain her long-term secrets.

3

Session State Compromise. This adversary extends the malicious user by being able to compromise a
user to obtain the full session state at some intermediate stage of the protocol execution.

Network Attacker. This adversary has full control over the communication network, and may access and
modify all unprotected traffic.

Advanced Network Attacker. This adversary models attackers with access to the group chat protocol
alone. This type of attacker is non-standard, but is motivated by our aim to analyze the reliance of the SIM
protocols on the transport layer protection. One possibility is an attacker who can break transport security
protocols employed between the users and the central SIM server. A practical justification of this attacker
are recurrent successful attacks on TLS [3, 5, 46]. Similarly to other models [35, 40], this adversary also
models an attacker impersonating the central SIM server or a forgery of its certificates.

2.3 Security Goals

Before describing security goals for SIM group protocols, we look into security goals for direct messaging in
SIM. We will then extend their meaning for SIM group communication.

Security Goal: Confidentiality. In two-party communications, standard and advanced confidentiality
goals are:

I End-to-end Confidentiality Only the two participants of a direct messaging communication can see the
message plaintext.

I Perfect Forward Secrecy and Future Secrecy On leakage of secret values, neither past (Perfect Forward
Secrecy) nor future (Future Secrecy) messages’ confidentiality may be compromised. The attacker can
only break it for a relatively short protocol execution frame.

Future Secrecy is also known as Post-Compromise Security [23]. Our further examination shows that
compromise related security does not necessarily restricts to confidentiality. Therefore Future Secrecy can
also be applied to the other security goals.

Security Goal: Integrity. This goal not only targets end-to-end integrity of single messages, but the
whole communicated content.

I Message Authentication If a message is received and successfully validated, then it was indeed sent by the
given sender.

I Traceable Delivery If a message is sent, then this message is received by all its intended receivers or the
sender is informed about the failed delivery.

I No Duplication No message can be replayed to a recipient.

Both abstract security goals are applied to SIM group protocols by regarding the set of recipients ac-
cordingly.

Additional Security Goals in Groups. Group protocols must fulfill additional requirements to meet the
abstract goals of confidentiality and integrity.

I No Creation Only group members can send messages to a group. More formally: if a member B ∈ Ggr
receives message m from sender A, then A ∈ Ggr holds.

I Closeness Only an administrator may alter the set of users in a group. More formally: if a member
A ∈ Ggr transforms the member set Ggr to Gnewgr : |Gnewgr | > |Ggr|, then an administrator U∗ ∈ G∗gr added
at least one new member B /∈ Ggr to the member set Gnewgr .

Some of these security goals are not stated explicitly in the SIM-companies’ security whitepapers, but are
implied by the GUI presented to the users. For example, the practical implementation of Traceable Delivery
can be seen in Figure 1: the first checkmark is set when the message is delivered to the SIM server, and the
second checkmark is only set if the message was received by all group members.

4

Figure 1: Double checkmarks in Signal (upper screenshot) and WhatsApp (lower screenshot) indicating that
a group massage was successfully delivered to all members’ devices.

3 Methodology

We describe our general evaluation methodology in the following.

Test Setup. For all three SIM applications, we used the official Android versions provided by the Google
Play Store. In order to analyze groups, we created a group of at least three members using three different
devices.

Protocol Descriptions. We derived the protocol descriptions by analyzing the source code and debugging
the implementations. For Signal, we used source code available on Github [61, 62]. Since neither WhatsApp
nor Threema provide official open source implementations, our analysis of these protocols mainly bases on
the traffic that was received by unofficial protocol implementations [9, 34]. The respective messages and
operations were sent by the official applications running on different devices and transmitted via the official
SIM servers.

Vulnerability Proof-of-Concepts. In order to substantiate the described protocol weaknesses, we were
able to implement proof-of-concept exploitations for a subset of them. We therefore modified the source code
of the according application in order to execute the attack. Please note that we could only manipulate the
source code of the SIM clients. We did not have any access to the SIM servers. Details are given in Sections
4.3, 5.3, and 6.3.

Protocol Observations. Some attacks could not be practically exploited. The attacks on WhatsApp use
the advanced network attacker. Since we could not manipulate the incoming traffic to the official WhatsApp
application due to transport layer protection, our results for these attacks base on the analysis of the observed
protocols. If we could not practically exploit the vulnerability, we note them as observation.

Responsible Disclosure. All tested and untested weaknesses were acknowledged by the developers during
the responsible disclosure process. Threema has already updated its application.

Description of an Exemplary Protocol Run. In order to provide a comparable description of the
protocols, Figures 3 (Signal), 5 (WhatsApp) and 7 (Threema) depict an exemplary protocol run of each
protocol containing direct and group communication. The figures are meant to highlight the differences
in the three SIM group protocols. The depicted protocol sequence covers the key usage for the following
actions:

(1) User A sends a direct message m = "Hi" to user B.

(2) User A sends a group message m = "Hey" to a group with members G = {A,B,C}.

(3) User A receives the information that user B leaves the group with members G = {A,B,C}, such that
its members are G = {A,C} afterwards.

(4) User A sends a group message m = "Ho" to the group with members G = {A,C}.

(5) User A creates a group with members H = {A,B,C}.

(6) User A sends a group message m = "Yo" to the group with members H = {A,B,C}.

(7) User A receives a group message m = "Yey" from user C to the group with members H = {A,B,C}.

5

4 Signal

Signal is an open source SIM application available for Android, iOS and as a Google Chrome extension [63].
It is well-known for its key exchange that reaches the goals Perfect Forward Secrecy and Future Secrecy.
Previous analyses focused on the key exchange protocol and direct messaging between two participants [23,
33].

Signal provides group messaging of text messages and other content such as pictures or videos. We
restrict our investigation to group messaging including the transmission of text content. Our analysis is
based on the source code of the Android application [61] and the Java library [62].

In Signal, a user is allowed to run multiple devices simultaneously, for instance, one mobile app (iOS or
Android) plus an arbitrary number of Google Chrome extensions. Thereby sending and receiving of messages
from all connected devices is possible and the chats (groups, and direct messages) are synchronized among
them. Our analysis does not consider this feature and assumes multiple users with one device each to form
groups because this strengthens the comparability of the analyzed protocols.

The Signal application implements Curve25519 [11] and HMAC-SHA256 [6] for the key derivation (Dou-
ble Ratchet algorithm). The HMAC is also used for message authenticity in combination with AES-CBC-
PKCS5Padding [26] for preserving confidentiality of the messages. We assume these implementations secure
and did not look for implementation issues therein.

In the following sections, we shortly introduce the general protocol setting stripped down to the essence
necessary to understand the group communication. We then describe the group protocol and evaluate it
regarding the defined attacker model.

Figures 3, 5, and 7 depict an exemplary protocol run of the analyzed protocols and thereby give an
overview on the fundamental differences in Signal, WhatsApp, and Threema.

4.1 General Initialization Protocol

4.1.1 Session Establishment with the Server

For identification and authentication, each user (more precisely, each device) holds credentials. This is a
user name, which corresponds to the user’s phone number, and a password that is randomly chosen by the
Signal server during the device’s initial usage. The credentials are sent to the Signal server in every request.
Additionally, Signal uses Transport Layer Security (TLS) as a cryptographic primitive to protect the channel
between users and the server.

4.1.2 Key Agreement and Key Derivation

The initial shared secret (root key) between two parties is calculated with the X3DH Key Agreement Protocol
[45] that uses static and ephemeral Diffie-Hellman shares of both parties. This root key initializes the
Double Ratchet algorithm (DR algorithm) [44], which can be seen as a stateful encryption algorithm [7].
The algorithm’s state – consisting of multiple keys – is updated asymmetrically by both parties during
the communication and symmetrically as long as only one communication party uses the algorithm. This
key update process is called ratcheting. When only the symmetric updating is conducted – as in WhatsApp
groups – this is called symmetric ratcheting. The DR algorithm is consequently the combination of symmetric
and asymmetric ratcheting. Thereby the initialization keys of the symmetric ratcheting are called chain keys.
Due to the characteristics of the symmetric ratcheting, it cannot provide Future Secrecy but provides Perfect
Forward Secrecy of the resulting keys. The asymmetric ratcheting provides both properties.

The encryption DRE and decryption DRD of the DR algorithm have modifying access to the keys which
are stored in the state (denoted as A,B in Figures 2 and 4). The key for encrypting and decrypting is
generated as soon as it is needed and removed directly afterwards. Only intermediate keys (e.g., chain keys)
that are not used for encryption and decryption are stored in the state.

c
$←− DREA,B(m), m := DRDA,B(c)

6

A schematic description of the DR algorithm when used in the Signal and WhatsApp messaging protocol
can be seen in Figure 8. The usage of the key streams can be seen in the exemplary protocol run in Figures
3 and 5.

4.2 Group Protocol

Figure 2: Schematic depiction of Signal’s traffic, generated for a message m from sender A to receivers B
and C in group gr with Ggr = {A,B,C}. Transport layer protection is not in the analysis scope (gray).

In contrast to other SIM group protocols (e.g., WhatsApp and Threema), Signal implements non-
administered groups such that all members of a group can manipulate the group management information
(i.e. G∗gr = Ggr). The group is uniquely referenced by a random 128 bit vector IDgr.

4.2.1 Group Messages

A group message in Signal is treated as a direct message but the group ID is additionally attached to the
encrypted plaintext. By using this approach, the Signal server cannot distinguish a group message from a
direct message. Together with the timestamp tm, the message is statefully end-to-end encrypted for each
member of the group. Every resulting ciphertext is then sent to the server together with the respective
receiver ID and the timestamp via TLS. The server forwards the end-to-end encrypted messages to the
respective group members via TLS, as well. When the server forwards the message to the receivers, it
replaces the receiver’s ID by the sender ID.

Figure 2 describes the format of a group message from member A to members B and C in group Ggr
that is sent via the server S1.

Messages for group management contain the updated group information in the end-to-end encrypted
message part:

m :=


plain content, if group content message

(Ggr, infogr), if group update message

leave, if group leave message

The server acknowledges messages from the sender, and the receivers acknowledge the receipt to the
server. These acknowledgments contain the sender ID and the timestamp tm of the original message but not
the group ID. Once a receiver’s acknowledgment is gained, the server forwards this receipt acknowledgment
to the sender. All acknowledgments are not end-to-end encrypted, thus only rely on TLS. The sender collects
the members’ acknowledgments and displays a successful receipt (see checkmarks in Figure 1) as soon as all
receivers’ acknowledgments arrived.

1We omitted irrelevant fields regarding our evaluation in the message format. The whole format can be found in the format
description [60]. We also left out Google’s Cloud Messaging (GCM) service for clarity.

7

4.2.2 Group Management

The group management consists of two protocol flows: an update flow and a flow that is processed once a
user leaves the group.

The update flow is used for the creation of a group, for adding users and for changing group information
like the title of a group. For creating and updating a group, the modifying member sends an end-to-end
encrypted message to each group member, containing the new set of members Ggr and the new group
information infogr. Signal does not allow removing of other members from a group. As a result an update
message, containing not the complete member set Ggr, does not lead to the removal of missing group members.

If a member choses to leave the group, she sends a leave information together with IDgr end-to-end
encrypted to every other member.

Figure 3: Schematic depiction of key streams of A and ciphertexts from and to A that are used when sending
and receiving direct and group messages and modifying the groups in Signal. The legend of the graphic also
regards to Figures 5 and 7.

4.2.3 Exemplary Protocol Run

Figure 3 depicts an exemplary protocol run. We denote the key derivation function (ratcheting) by an ar-
row, which forks multiple keys used for encryption and decryption (strongly simplified). The only difference
between group messages and direct messages can be found inside the end-to-end encrypted plaintext. Sum-
marized, one group message results in multiple direct messages. The group management messages are also
communicated via multiple direct messages.

As Figure 3 shows, A maintains two separate key streams, one for the communication with B and the
one for C. Both are separately used for direct and group communication (with B resp. C).

4.3 Security Evaluation and Observations

We practically carried out two attacks on Signal and created proof-of-concepts for them. First, we burgle
into a group by writing group management messages into it (breaks: Closeness, No Creation, and Future
Secrecy). Second, we make a victim believe that a message is delivered while it is not (breaks Traceable
Delivery).

4.3.1 Burgle into the Group

This vulnerability allows an attacker to become a member of the targeted group. The attacker can read any
further group communication and contribute own content to the group chat. Because every group member
in Signal has administrative privileges, the attacker automatically becomes a group administrator.

Preconditions. The attacker only needs to know the group ID IDgr and the phone number B of one
member.

I Malicious User In the simplest case, the attacker was a former member of the group, and has recorded
the group ID using a modified client software.

8

I Long-term secret compromise This is our general adversarial model for Perfect Forward Secrecy and Fu-
ture Secrecy. We regard the IDgr as a long-term secret, and the phone number B as public information.

I Session state compromise Since IDgr is part of every group message, it suffices to obtain a message key
and the ciphertext of a group message in order to retrieve the group ID.

Attack description. The attacker A, knowing the secret group ID IDgr, sends the following group update
m = ({A}, infogr)) to the known phone number B, using Signal’s direct messaging channel between A and
B:

(B, t,DREA,B(IDgr, t, ({A}, infogr)).

In fact, A could also send a content message such that only this message is sent to B in the group without
adding A to the group. This message breaks the no creation security goal. After receiving and validating
this message, B’s receiving Signal application updates its own group description:

Gnewgr := Ggr ∪ {A}.

B will use this set Gnewgr in all future communications with the group. However until now, A will only receive
group messages from B, but not from the other members.

This changes once group member B sends a second update message to the group. For example, if B
changes the group icon (which is part of infogr), she will send some message

(U, t′,DREB,U (IDgr, t
′, (Gnewgr , info′gr))

to all members U ∈ Gnewgr . After receiving this message, each member U will update her group member set
to Gnewgr . From now on, A receives all group messages.

To all other group members except B, it seems that B has added A to the group, which would be fine
since B was a member and thereby an administrator of the group.

Attack Optimizations. If A knows the phone number of multiple members, A can send this group update
message (or a content message) to all of them. Thereby no creation and closeness is broken for a larger set
of members, and it is more likely that one of these members sends the second update message.

Attack Impact. The attack violates the following security goals:

I No Creation A group member B accepts a message by A, who is not part of the group. This can be either
a content or an update message.

I Closeness By using an update message, breaking No Creation breaks also Closeness, since A can add
herself to the group.

I Future Secrecy After adding herself to the group, the confidentiality of future plaintext messages is com-
promised.

4.3.2 Breaking Traceable Delivery

Signal provides information on the receipt status of messages for the sender in groups and for direct messaging
(see Figure 1). However, this information can be forged by the Signal server.

Even though the Signal protocol internally provides two features to detect that sent messages were not
received by the desired recipient, the detection is not effective. Hence messages can stealthily be dropped
during the transmission.

Preconditions.

9

I Advanced Network Attacker The attacker A must be able to directly deliver a message to the victim’s
Signal application. Therefore, A must either compromise the Signal server, or be able to bypass the
transport layer protection.

Attack Description. As soon as a sender B sends a group message

(U, tm,DREB,U (IDgr, tm,m))

to all members U ∈ Ggr, the attacker A drops the message, for instance, she does not forward it to member
X. She then sends multiple acknowledgment response messages to B:

(U, tm, ACK),∀U ∈ Ggr \ {B}

B’s application displays the successful delivery even though member X never saw message m.

Attack Impact. The attack violates the following security goal:

I Traceable Delivery The receivers, for whom the message was dropped, never see B’s message. As a
consequence, B’s device indicates a successful message delivery (see Figure 1) while members did not
receive the message.

Despite the fact that the DR algorithm provides a continuous key stream, omissions of keys are ignored at
the receiver’s side and thereby the statefulness of the key stream is not used. Since receiver acknowledgments
in Signal are not end-to-end encrypted, A can drop messages and create the acknowledgments itself. Dropping
messages is however slightly restricted: the client application only maintains the last 2000 keys such that a
further deviation of the sender’s and receiver’s key streams causes the encryption to fail 2.

As a result traceable delivery is neither provided for group messages nor for direct messages by Signal.

4.3.3 Further Weaknesses

Vulnerabilities regarding additional security properties are described in subsection A.2.

5 WhatsApp

WhatsApp is a closed source instant messaging protocol. It uses the Signal protocol for key exchange and
encryption but is independent of Signal’s messaging protocol – especially, it is independent of the Signal
group communication protocol. WhatsApp is available for most mobile operation systems3.

Even though WhatsApp is a closed source application, there exist open source implementations [34,
47] whose usage is forbidden and aimed to be prevented by WhatsApp [69]. We used a fork4 of Galal’s
implementation [34] to analyze the traffic, generated by the official WhatsApp Android application5.

The algorithms for exchanging the keys and encrypting on the end-to-end layer use the same cryptographic
primitives as the implementation of Signal relies on. The signatures of group messages are calculated on
Curve25519 [11].

Our analysis confirms the description of WhatsApp’s technical white paper [38] regarding the implemen-
tation of the Signal key exchange protocol but further examines the messaging protocol as a whole. As a
result, we present several protocol and implementation weaknesses.

2https://github.com/WhisperSystems/libsignal-protocol-java/blob/master/java/src/main/java/org/

whispersystems/libsignal/state/SessionState.java#L41
3https://www.whatsapp.com/download/
4https://github.com/colonyhq/yowsup
5Version 2.17.107 from the Google Play Store

10

https://github.com/WhisperSystems/libsignal-protocol-java/blob/master/java/src/main/java/org/whispersystems/libsignal/state/SessionState.java#L41
https://github.com/WhisperSystems/libsignal-protocol-java/blob/master/java/src/main/java/org/whispersystems/libsignal/state/SessionState.java#L41
https://www.whatsapp.com/download/
https://github.com/colonyhq/yowsup

Figure 4: Schematic depiction of traffic, generated for a message m from sender A to receivers B,C in group
gr with Ggr = {A,B,C} in WhatsApp.

5.1 General Initialization Protocol

5.1.1 Session Establishment with the Server

WhatsApp uses Noise Pipes [54] to protect the communication between the clients and the server on the
transport layer [38]. The Noise Pipes are implemented with Curve25519, AES-GCM, and SHA256.

5.1.2 Key Agreement and Key Derivation

The Signal key exchange protocol, consisting of the X3DH Key Agreement Protocol [45] and the DR algorithm
[44], is integrated in WhatsApp in order to establish a confidential channel for messaging between two
users [38]. A detailed description of these building blocks can be found in section 4 and Figure 8.

5.2 Group Protocol

WhatsApp limits the maximum number of users in a group to 256. A group is uniquely referenced by IDgr,
containing the creator’s user ID and a timestamp. The initial set of administrators G∗gr contains the group
creator. By adding members to the administrator set, this set can be enlarged. The content of messages
is protected on the end-to-end layer while group modification messages are only protected on the transport
layer. As a result, the WhatsApp server is mainly responsible for the distribution of group messages based
on the group management. This is a main difference in comparison to Signal and Threema.

Although WhatsApp integrates the Signal key exchange protocol for direct messaging, keys in groups are
used very differently: instead of sending encrypted messages to each group member separately (cf. section 4),
each user generates a symmetric key (chain key) for encrypting only her messages to the group. The key
is then once transported to every other group member using the DR algorithm for direct messaging. The
dedicated group key is not refreshed by Diffie-Hellman ratcheting but only with the symmetric key derivation
function in contrast to direct messaging.

5.2.1 Group Content Messages

All messages between the users and the server are transport layer encrypted. On the end-to-end layer only
the actual content is encrypted and integrity protected under the symmetric ratcheted encryption SRE (see
subsubsection 4.1.2) with a message key from the symmetric ratcheting of the sender’s chain key. As a result,
the sender calculates one ciphertext for the whole group. This ciphertext is then signed with the current
signature key for the respective group (denoted as Sig in Figure 4). The receiving members can compute
the symmetric key for the decryption from the sender’s chain key, that was sent with her first message after
a group management operation (see below). Apart from the ciphertext, the transcript to the server also
contains IDgr and a message identifier IDm. The server adds the sender ID, a readable sender name and a
timestamp tm to the message for the receivers.

11

Notifications on the receipt status for the sender and an acknowledgment for the WhatsApp server are
sent protected by the transport layer only. The server forwards the receipt statuses to the sender. As soon as
all members’ receipts are collected by the sender, the successful delivery is displayed by the double checkmark
(see Figure 1). Additionally, the individual receipt statuses are listed in an extended menu.

As a result, group messages only result in one ciphertext to the server independent of the group size.

5.2.2 Group Management

Group administrators send group modifications to the server. These modification messages are only en-
crypted on the transport layer and no cryptography is used to protect them on the end-to-end layer between
a group’s members.

The modification messages contain the tuple OP = (action,H) where action indicates the operation
type like adding or removing of members, adding of administrators, leaving of members and H is the set of
affected users. After an administrator sent such a message to the server, the information is distributed to
all group members:

(A, IDgr, nameA, IDOP , tOP , OP)

The group secret of each member consist of the chain key and a signature key pair. Both are generated
freshly for the first message to a new group or for the first message to the group after a user left or was
removed from it as it can be seen in Figures 5 and 8. After the generation, the public signature key and the
chain key are distributed to all members via direct messaging between the sender and the respective receiver
using the DR algorithm. Consequently, the first message after which the group secrets are updated results
in |Ggr| ciphertexts. When a user is added to the group, the current chain key and the signature key of each
member is sent along with the first message after adding the new user the same way.

Figure 5: Schematic depiction of key streams of A and ciphertexts from and to A that are used when sending
and receiving direct and group messages and modifying the groups in WhatsApp.

5.2.3 Exemplary Protocol Run

Figure 5 depicts an exemplary protocol run. In contrast to Signal, WhatsApp maintains different key streams
for direct messaging and for group messaging. Keys for the group communication are generated once they
are used and distributed via the direct communication channels. If a group is created or a user is removed
from a group, each member generates a new group key. Every member needs to store one key for every
direct communication and one key for every member in each group. The information on group modifications
is not end-to-end encrypted.

12

5.3 Security Evaluation and Observations

We observed two design weaknesses in WhatsApp’s group protocol that allow to (1) burgle into a group and
to (2) break Traceable Delivery. The weaknesses have a similar results to the attacks on Signal, although
the underlying protocol and the weakness exploitation differs.

5.3.1 Burgle into a Group

The following protocol vulnerability allows an attacker A, controlling some of the messages sent by the
WhatsApp server, to become a member of the group or add other users to the group without any interaction
of the other users.

Preconditions. The attacker A needs to modify the group information at the client side.

I Advanced Network Attacker can send group modification messages to the group members on the commu-
nication channel between the WhatsApp server and the group member.

Attack Description. Suppose we have a group gr with three members B,C,D whereas B is the group
administrator:

gr = (IDgr,Ggr = {B,C,D},G∗gr = {B}, infogr)

The attacker A can then break Closeness in the group by conducting the following steps. The attacker
sends the following group modification message to users C,D6:

(B, IDgr, nameB , IDm, tm, (add, {A}))

Each receiving member sets
Gnewgr := Ggr ∪ {A}

and sends her current chain key and signature public key to A as soon as she sends a message to the group.
Since the modification of the group information is not bound to a cryptographic operation, it is not

necessary that a group member initiates the operation. The WhatsApp server can thereby forge a message
that indicates an added member for a group.

Attack Optimizations. The attack can be optimized by adding A to B’s group perspective. There are
different approaches to achieve this: (a) if B’s client accepts group modification messages with source B even
though B did not originate the operation, the described message is also sent to B to update Gnewgr := Ggr∪{A},
(b) if B’s client accepts this message from a non-administrative member, the message is sent to B with
source C or D, (c) in bigger groups with two or more administrators, the attacker pretends the message to
be originated from one administrator when sending it to another.

Attack Impact. The attack violates the following security goals:

I Closeness A can write to the group and read messages.

5.3.2 Breaking Traceable Delivery

Even though WhatsApp’s graphical user interface implies that a sender sees the receipt status of sent
messages (double checkmark), this weakness allows the attacker to stealthily drop messages.

Preconditions. The attacker needs to drop messages and send notifications to the sender.

I Advanced Network Attacker can manipulate the transcript between sender and server or server and re-
ceivers.

6Schematic representation of modification message for adding a new member to a group.

13

Attack Description. The attacker drops a group message from the sender and replies with acknowledg-
ments, indicating the successful receipt for all members. These acknowledgments are of the form

(U, IDgr, IDm, tm, ack), U ∈ Ggr \ {A}

where A is the original sender of the message.

Attack Impact.

I Traceable Delivery WhatsApp’s delivery state information is vulnerable towards the described attacker.

Although the key derivation from the chain key provides a consecutive key stream, the omission of message
keys is ignored by the receivers to a certain degree. Our practical evaluation showed that 1999 omitted keys
were ignored. Additionally the receiver’s acknowledgments are not authenticity protected. Consequently
Traceable Delivery is not provided because the attacker can drop sent messages and tamper the receiver’s
receipt status arbitrarily by sending forged receipt notifications to the sender.

Although our description covers the group setting, this weakness directly applies for direct messaging.

5.3.3 No Future Secrecy

Since Diffie-Hellman key ratcheting, as one main component of the DR algorithm, is not integrated into the
encryption of group messages, Future Secrecy cannot be reached.

5.3.4 Further Weaknesses

As described in subsection A.3, ordering is not protected in WhatsApp.

5.4 Impact of the Weaknesses’ Combination

The described weaknesses enable attacker A, who controls the WhatsApp server or can break the transport
layer security, to take full control over a group. Entering the group however leaves traces since this operation
is listed in the graphical user interface. The WhatsApp server can therefore use the fact that it can stealthily
reorder and drop messages in the group. Thereby it can cache sent messages to the group, read their content
first and decide in which order they are delivered to the members. Additionally the WhatsApp server can
forward these messages to the members individually such that a subtly chosen combination of messages can
help it to cover the traces.

6 Threema

Threema is a proprietary closed source instant messenger protocol available for most mobile operation systems
[65]. It uses a centralized server architecture for relaying messages to the respective receivers and distributing
user keys. The messenger application provides direct messaging and group chats. In both settings not only
text messages but also pictures, arbitrary files, contacts and other content can be sent.

Even though the application is closed source, there are open source implementations available: we based
our analysis on the implementation of Berger [9] which was based on an analysis of Ahrens [2]. We used the
open source implementation only for analyzing the protocol flow and for proof-of-concept exploitation. We
then observed the results of an attack on a parallel running, original Android application from the Google
Play Store, which simulates the victim.7

7Version v.2.92.323

14

Figure 6: Schematic depiction of traffic, generated for a message m from sender A to receivers B,C in group
gr with Ggr = {A,B,C} in Threema.

6.1 General Initialization Protocol

During the creation of an identity, the application of user A generates a Diffie-Hellman share pkltA, sends
it to the central key server of Threema with a fresh proof of possession of the corresponding private part
and stores this private part skltA locally. The Diffie-Hellman share represents the long term public key of the
user. It is used to authenticate the user during the session key agreement with the server and for all key
agreements with other users.

6.1.1 Session Establishment with the Server

Once the application is started, a proprietary key exchange protocol is executed to derive a session key ksesA,S
for the channel between the user A (client) and the Threema server S. Both, the server’s and the client’s
long term keys are used for the authentication. The protocol is built up on three dependent Diffie-Hellman
key exchanges (DHKEs).

The session channel encryption and the end-to-end encryption are implemented with the XSalsa20 cipher
[12] with integrity and authenticity protection using the Poly1305-AES MAC [10].

We identified that Threema implements Curve25519 for all DHKEs, which is also described in [66].

6.1.2 Key Agreement

A client can either request the public key of a contact from the central Threema key distribution server or
scan it directly from the contact’s device. In either case, two users A,B derive a symmetric contact key
kA,B = ECDH(skltA, pk

lt
B) = ECDH(skltB , pk

lt
A) from the DHKE of the long term key shares. This key is used

for all direct and group messages between these two users as it can be seen in Figure 7.

6.2 Group Protocol

In Threema, only the creator U∗gr of a group is the administrator G∗gr = {U∗gr}. Threema limits the number of
group members to 50 per group. Each group is uniquely referenced by IDgr containing the administrator’s
user ID and a random bit vector, each of 64 bits.

6.2.1 Group Messages

All group messages contain the reference IDgr as an identification value in the end-to-end encrypted part.
The transmission is implemented the same way as for direct messages: one group message is sent to every
member as a message that is encrypted with the long term contact key kA,U ∀ U ∈ Ggr \ {A} between the
sender A and the respective group member (see Figure 7). These end-to-end encrypted messages are sent via
the encrypted session channel between the respective users and the server. The format of a message can be
seen in Figure 6 where IDm,U is a random message identifier for the respective receiver, tm is a timestamp

15

Figure 7: Schematic depiction of keys of A and ciphertexts from and to A that are used when sending and
receiving direct and group messages and modifying the groups in Threema.

and nameA is the readable name of A. The figure disregards message type labels on the direction and the
content type of the message.

Additionally to the group ID, the end-to-end encrypted part can contain:

m :=


plain content, if content message

Ggr, if update message 1

infogr, if update message 2

leave, if leave message

In contrast to direct messages between two users (outside of a group), content group messages are not end-
to-end acknowledged: The server acknowledges the sender’s messages and the receivers acknowledge the
receipt towards the server. The latter acknowledgments are only encrypted by the session channel and not
forwarded to the sender (i.e. the sender has no information on the receipt status).

6.2.2 Group Management

The group management is split into two protocol flows: an update flow and a flow that is processed for a
user to leave. The update flow is used for the creation of a group, for adding and removing users and for
changing group information like the title of a group. Note that in contrast to Signal, Threema allows the
removal of other members in a group.

Group creation and update follow the same protocol consisting of two messages, sent from U∗gr to Ggr \
{U∗gr}: (1) a message containing the new set Ggr and (2) a message containing the updated infogr of the
group, such as the group title. The first message is sent to all users that were members until the operation
is started and to all users that become a member due to the operation. The second message is only sent to
users that will be members after the operation.

If a user leaves the group, she sends that information together with the group reference end-to-end
encrypted to all other members.

A group member can request the administrator to synchronize the group information. The administrator
then starts the group update protocol with the current group information.

6.2.3 Exemplary Protocol Run

Analogically to Signal, Threema handles group messages similarly to direct messages: a group message is sent
as multiple direct messages. In contrast to Signal, a flag, which is readable by the Threema server, indicates
the type of the message (e.g., group content message). As depicted in Figure 5, all group messages and all
direct messages are encrypted and decrypted with the same key. There is no key derivation in Threema.

16

6.3 Security Evaluation and Observations

We practically carried out a replay attack on Threema with a proof-of-concept implementation. The attack
breaks No Duplication and Closeness. We further observed that Threema does not achieve Perfect Forward
Secrecy, Future Secrecy, or Traceable Delivery.

6.3.1 Replaying Messages

Even though a random ID is assigned to every message, messages can be resent to a group easily and thereby
No Duplication is broken for the Threema group messaging protocol.

Preconditions. The attacker needs to control the channel somewhere between sender and receiver.

I Advanced Network Attacker can manipulate the transport layer protected traffic.

Attack Description. The attacker A needs to record an end-to-end encrypted message

(A,B, nameA, tm, IDm,B ,EncA,B(IDgr,m))

once and can resend this message to sender A or receiver B later repeatedly:

(A,B, nameA, t
′
m, ID′m,B ,EncA,B(IDgr,m))

(B,A, nameA, t
′
m, ID′m,B ,EncA,B(IDgr,m))

Since Threema only protects the group ID and the actual content of a message on the end-to-end layer,
A can update the timestamp (and all other unprotected metadata) and replay the encrypted message. The
established encryption key is used for both directions between sender and receiver, thus, messages can be
resent to the receiver and to the sender.

Attack Impact. The attack violates the following security goals:

I No dublication A can replay messages.

I Closeness This weakness also affects the Closeness of a group because A can rewind every group manipu-
lation by resending previous group update messages. For example, A can rewind the removal of a group
member.

6.3.2 No Forward and Future Secrecy

In Threema, every message between two users is encrypted with the same key, derived from the DHKE of their
long term public keys. Consequently no security property can be reached when considering compromising
attackers.

6.3.3 No Traceable Delivery

The Threema application provides no information on the receipt status of sent group messages. Consequently
this property cannot be attacked.

Receivers actually acknowledge group messages only towards the server. As a result, the sender cannot
verify the message status such that delivery in Threema cannot be traced.

6.3.4 Further Weaknesses

Weaknesses of Threema regarding ordering, agreement and the confidentiality of meta data are described in
subsection A.4.

17

7 Lessons Learned

In this section we first briefly describe specific fixes for the analyzed protocols and then evaluate general
approaches for reaching the security properties efficiently.

7.1 Fixing the Protocols

7.1.1 Signal

Closeness and No Creation. In Signal, Closeness can be reached by implementing a simple check when
receiving a group message. If the sender is not part of the current group, the message is dropped. This
efficiently preserves No Creation and Closeness. As a side effect, the group ID can then be public knowledge.
We discussed this proposal with Open WhisperSystems, but unfortunately it turned out, that due to their
current implementation, this verification is impossible. Open WhisperSystems is currently developing a new
group management system with advanced administrative features so that they decided not apply our fix.

Traceable Delivery. Signal could reach Traceable Delivery by treating receipt messages like content
messages and thus end-to-end encrypt them8. This would guarantee the authenticity of these messages.
We will discuss and compare this approach with the usage of the properties of stateful encryption (see
subsubsection 7.2.1).

7.1.2 WhatsApp

Closeness. In order to ensure that only administrators of a group can manipulate the member set, the
authenticity of group manipulation messages needs to be protected. This can be achieved, for example, by
signing these messages with the administrator’s group signature key.

In order to maintain the member set at the server with regard to an advanced network attacker, a counter
for the current modification step could be attached to every message and the signed manipulation notification
could include the whole member set instead of its changes only. Thereby, the current signed notification
could be distributed when a member loses their information of the group (e.g., due to a re-installation).

Traceable Delivery. The same countermeasure that is described for Signal applies to WhatsApp for
providing Traceable Delivery.

7.1.3 Threema

No Duplication. Since there is already a message ID appended to every message, this ID only needs
to be cryptographically bound to the message. This would prevent that one message is accepted by the
client multiple times. We proposed this fix to the developers of Threema. They appreciated our effort and
implemented a fix in Version 3.149.

7.2 General Outcomes

7.2.1 Reaching Traceable Delivery in General

The result of our analysis shows that Traceable Delivery in SIM protocols is seldom reached. Without
going into detail, we also analyzed the respective direct messaging protocols regarding Traceable Delivery.
Signal and WhatsApp do not reach Traceable Delivery, but the direct messaging in Threema reaches it by
end-to-end encrypting the receipt acknowledgment to the sender and thereby cryptographically ensuring the
authenticity of these acknowledgments.

8Signing the message would be sufficient but the encryption is already part of the protocol and additionally protects the
confidentiality of the receipt messages.

9https://threema.ch/en/versionhistory

18

https://threema.ch/en/versionhistory

Using the approach of negative acknowledgments (NACKs) turns the responsibility of the Traceable
Delivery from the sender to the receiver [1, 28, 32, 42]. The receiver can therefore use the Signal key
exchange protocol since it is stateful. It provides a consecutive key stream such that Traceable Delivery
can be reached by detecting an omitted key of this stream. Once a key is omitted, the receiver knows that
a message was not delivered such that she can request the sender to resend this message. This approach
however fails if the communication is disrupted for ever because thereby the sender never knows that the
receiver did not receive the message.

7.2.2 Securely Managing a Group

In order to reach Closeness and No Creation in groups, members of a group need to distinguish between
group members and outstanding users.

We see two major approaches of a secure group management:

(1) A consistent view on the member set for each of its members.

(2) A group secret that serves as a proof of membership.

Abstractly this means that either the receiver always checks her guest list or a sender always provides a
ticket. While Signal only implements the second mechanism, Threema mainly uses the first one. WhatsApp
somehow follows the guest list approach while the guest list in manipulable from outside.

Consistent View. For the effective group management, group information needs to be maintained locally
on every member’s device. Each user knows, who is part of the group, that means, who is allowed to write
a group message and from whom group messages should be accepted. In order to ensure a consistent view
on the member set, Traceable Delivery must be achieved because otherwise the server provider can drop
messages that aim to manipulate the member set and thereby cause an inconsistent view. Even if the group
information is centrally stored, it needs to be ensured, that (1) only members can modify this information
and (2) all members are informed about a modification.

Schiper and Toueg showed that the problem of membership in groups can be reduced to the more general
problem of maintaining a set of arbitrary elements and thereby decouple the group from the protocol [56].
Similarly we argue that a protocol, reaching consistency of all messages (content and group management),
can be treated as a protocol considering static groups. Nevertheless the consistent message delivery in groups
restricts the instant communication for SIM protocols.

Membership Proof. When solely using a group secret that protects Closeness and No Creation of the
group, this secret needs to be calculated future secure, when the whole protocol reaches this property.
Otherwise, a revealed group secret can be used to become part of the group without the members’ permission.

This target is related to future secure group key exchange. A first group key exchange with this property
was recently proposed by Cohn-Gordon et al. [24].

8 Related Work

Related work to this paper is structured in (1) analyses of IM applications in general, specific analyses of
the analyzed protocols, as well as (2) theoretical concepts in multi user settings.

Analyses of IM Applications. Schrittwieser et al. [57] analyze IM applications regarding the initial
authentication and the account management and describe weaknesses accordingly. Unger et al. [67] system-
atize current SIM application solutions by proposing an evaluation security framework. Regarding group
communications, they conduct only a high level investigation on basic concepts and features of the protocols.

Analyses of Signal. The analysis of Signal started with Frosch et al. [33]. They analyze TextSecure v2,
the predecessor of the Signal key exchange protocol. As a result, they identify an Unknown Key-Share
(UKS) attack and propose fixes. Kobeissi et al. [40] describe the application of formal verification software
for analyzing a slightly modified version of the Signal protocol and other real world protocols. They derive

19

a proof from an automatic cryptographic verification tool but also model the UKS of Frosch et al. and
present attacks on the protocol that go beyond the model for the proof. Cohn-Gordon et al. [23] conduct a
formal analysis on the Signal key exchange protocol. Therefore, they develop a new multi-stage key exchange
security model, identify security properties in the Signal protocol, and prove it to be secure. Previous to
their analysis, they published a work on definitions and constructions for Future Secrecy [25]. Bellare et al.
[8] investigate ratcheting as a cryptographic primitive. Their work does not specifically focus on a real world
protocol, but forms the basis of a definition and application for this primitive.

All these works concentrate on two party communications instead of multi-user setups. For this reason,
the security goals identified in this work differ significantly.

Analyses of WhatsApp. Schrittwieser et al. [57] analyzed WhatsApp among other IM applications
regarding the authentication and account management and found several vulnerabilities. Another application
specific analysis [4] focused on WhatsApp’s Android application. A recent newspaper article described that,
even though key verification is implemented in WhatsApp, its effectiveness can partially be circumvented
for usability reasons [43, 50]. In addition to these analyses, the WhatsApp protocol was implemented and
published as open source projects [34, 47].

Analyses of Threema. An initial analysis of the Threema protocol was conducted by Ahrens [2]. Based
on this Berger [9] implemented an open source desktop client on which we based our protocol analysis.
Independent of our work Schilling and Steinmetz presented a detailed description of the Threema message
format and another open source implementation [55].

Security in Multi User Settings. Multiparty non-interactive key exchange (mNIKE) solves the issue of
instantly agreeing on a group secret. Certainly all known mNIKE protocols for an unbounded number of
users base on problems, for which no practical solutions exist [13, 14, 37].

Group key agreement protocols solve this problem by generating a key among the group members [16,
20, 29, 39]. These protocols, however, need the interaction of the users before the communication begins and
are thereby not practical in an asynchronous environment.

Cohn-Gordon et al. [24]10 recently published a group key exchange protocol that enables the future secure
ratcheting of a group secret. This protocol is a hybrid of multiple two-party protocols for the instantiation
and a refreshable group key agreement. They also proof parts of their construction.

Bracha and Toueg introduced the notion of reliable broadcast in the asynchronous setting [15]. Since then
many works introduced and improved algorithms to solve the problem of validly and consistently delivering
messages in a multi user setting [18, 19, 21, 41] but also refined the notion and definition to provide realistic
attacker models [18].

Chockler et al. [22] give an overview on various models and results regarding group communication
systems (GCS) like [48, 68] and others. They systematize different notions and definitions regarding the
reliability and security of group communication in the literature.

9 Conclusion

Nowadays, Instant Messaging (IM) applications rely more and more on end-to-end protection. Although the
one-to-one communication of Secure Instant Messaging (SIM) applications has been in the focus of recent
analyses [23, 33, 40], the investigation of end-to-end protected group communications has gained only little
attention.

We fill this gap and provide a systematical analyses of the three major SIM applications Signal, Whats-
App, and Threema. This analysis provides a methodology for further examinations of similar protocols.
While our investigation focuses on three major SIM applications, our methodology and underlying attack
model is of generic purpose and can be applied to other SIM group protocols as well. For example, it would
be interesting to analyze the group chat implementations of other Signal-based SIM applications, such as

10Cohn-Gordon et al. [24] describe Signal’s group communication protocol differently than we do. We verified our protocol
description with the latest versions of July 24, 2017.

20

Google’s Allo and Facebook Messenger, or even non Signal-based protocols similarly to our investigation of
Threema.

For one-to-one communication the Signal key exchange protocol is practically used and cryptographically
proven secure. In contrast to this, for group communication no such protocol exists. A cryptographically
future secure group key exchange was recently published [24]. Still on the one hand, this protocol was
designed for a partially asynchronous setting and on the other hand, our work shows that the key exchange
is only a building block for secure and reliable group SIM protocol. In fact, we demonstrate that Future
Secrecy should not only be restricted to the establishment of a common secret for encryption.

Consequently our work can be seen as a structural survey, a base point and an illustration of a target for
the design of secure and reliable group SIM protocols.

References

[1] B. Adamson, C. Bormann, M. Handley, and J. Macker. 2008. Multicast Negative-Acknowledgment
(NACK) Building Blocks. RFC 5401. IETF. 1–42 pages. https://tools.ietf.org/html/rfc5401

[2] Jan Ahrens. 2014. Threema protocol analysis. (2014). http://blog.jan-ahrens.eu/files/

threema-protocol-analysis.pdf

[3] Martin R. Albrecht and Kenneth G. Paterson. 2016. Lucky Microseconds: A Timing Attack on Amazon’s
s2n Implementation of TLS. In Advances in Cryptology - EUROCRYPT 2016 - 35th Annual Interna-
tional Conference on the Theory and Applications of Cryptographic Techniques, Vienna, Austria, May
8-12, 2016, Proceedings, Part I (Lecture Notes in Computer Science), Marc Fischlin and Jean-Sébastien
Coron (Eds.), Vol. 9665. Springer, 622–643. https://doi.org/10.1007/978-3-662-49890-3_24

[4] Cosimo Anglano. 2014. Forensic analysis of WhatsApp Messenger on Android smartphones. Digital
Investigation 11, 3 (2014), 201–213. https://doi.org/10.1016/j.diin.2014.04.003

[5] Nimrod Aviram, Sebastian Schinzel, Juraj Somorovsky, Nadia Heninger, Maik Dankel, Jens Steube,
Luke Valenta, David Adrian, J. Alex Halderman, Viktor Dukhovni, Emilia Käsper, Shaanan Cohney,
Susanne Engels, Christof Paar, and Yuval Shavitt. 2016. DROWN: Breaking TLS Using SSLv2. In 25th
USENIX Security Symposium, USENIX Security 16, Austin, TX, USA, August 10-12, 2016., Thorsten
Holz and Stefan Savage (Eds.). USENIX Association, 689–706. https://www.usenix.org/conference/
usenixsecurity16/technical-sessions/presentation/aviram

[6] Mihir Bellare, Ran Canetti, and Hugo Krawczyk. 1996. Keying Hash Functions for Message Authenti-
cation. In Advances in Cryptology - CRYPTO ’96, 16th Annual International Cryptology Conference,
Santa Barbara, California, USA, August 18-22, 1996, Proceedings. 1–15. https://doi.org/10.1007/

3-540-68697-5_1

[7] Mihir Bellare, Anand Desai, E. Jokipii, and Phillip Rogaway. 1997. A Concrete Security Treatment of
Symmetric Encryption. In 38th Annual Symposium on Foundations of Computer Science, FOCS ’97,
Miami Beach, Florida, USA, October 19-22, 1997. 394–403. https://doi.org/10.1109/SFCS.1997.

646128

[8] Mihir Bellare, Asha Camper Singh, Joseph Jaeger, Maya Nyayapati, and Igors Stepanovs. 2016. Ratch-
eted Encryption and Key Exchange: The Security of Messaging. IACR Cryptology ePrint Archive 2016
(2016), 1028. http://eprint.iacr.org/2016/1028

[9] Philipp Berger. 2016. Open Source Implementation of a Threema Desktop Client. (2016). https:

//github.com/blizzard4591/openMittsu Based on the descriptions of Jan Ahrens’ paper.

21

https://tools.ietf.org/html/rfc5401
http://blog.jan-ahrens.eu/files/threema-protocol-analysis.pdf
http://blog.jan-ahrens.eu/files/threema-protocol-analysis.pdf
https://doi.org/10.1007/978-3-662-49890-3_24
https://doi.org/10.1016/j.diin.2014.04.003
https://www.usenix.org/conference/usenixsecurity16/technical-sessions/presentation/aviram
https://www.usenix.org/conference/usenixsecurity16/technical-sessions/presentation/aviram
https://doi.org/10.1007/3-540-68697-5_1
https://doi.org/10.1007/3-540-68697-5_1
https://doi.org/10.1109/SFCS.1997.646128
https://doi.org/10.1109/SFCS.1997.646128
http://eprint.iacr.org/2016/1028
https://github.com/blizzard4591/openMittsu
https://github.com/blizzard4591/openMittsu

[10] Daniel J. Bernstein. 2005. The Poly1305-AES Message-Authentication Code. In Fast Software Encryp-
tion: 12th International Workshop, FSE 2005, Paris, France, February 21-23, 2005, Revised Selected
Papers. 32–49. https://doi.org/10.1007/11502760_3

[11] Daniel J. Bernstein. 2006. Curve25519: New Diffie-Hellman Speed Records. In Public Key Cryptography
- PKC 2006, 9th International Conference on Theory and Practice of Public-Key Cryptography, New
York, NY, USA, April 24-26, 2006, Proceedings. 207–228. https://doi.org/10.1007/11745853_14

[12] Daniel J. Bernstein. 2008. The Salsa20 Family of Stream Ciphers. In New Stream Cipher Designs - The
eSTREAM Finalists, Matthew J. B. Robshaw and Olivier Billet (Eds.). Lecture Notes in Computer
Science, Vol. 4986. Springer, 84–97. https://doi.org/10.1007/978-3-540-68351-3_8

[13] Dan Boneh and Alice Silverberg. 2003. Applications of multilinear forms to cryptography. Contemp.
Math. 324, 1 (2003), 71–90.

[14] Dan Boneh and Mark Zhandry. 2014. Multiparty Key Exchange, Efficient Traitor Tracing, and More
from Indistinguishability Obfuscation. In Advances in Cryptology - CRYPTO 2014 - 34th Annual
Cryptology Conference, Santa Barbara, CA, USA, August 17-21, 2014, Proceedings, Part I. 480–499.
https://doi.org/10.1007/978-3-662-44371-2_27

[15] Gabriel Bracha and Sam Toueg. 1985. Asynchronous Consensus and Broadcast Protocols. J. ACM 32,
4 (1985), 824–840. https://doi.org/10.1145/4221.214134

[16] Emmanuel Bresson, Olivier Chevassut, and David Pointcheval. 2002. Dynamic Group Diffie-Hellman
Key Exchange under Standard Assumptions. In Advances in Cryptology - EUROCRYPT 2002, In-
ternational Conference on the Theory and Applications of Cryptographic Techniques, Amsterdam,
The Netherlands, April 28 - May 2, 2002, Proceedings. 321–336. https://doi.org/10.1007/

3-540-46035-7_21

[17] Business2Community. 2015. Are Instant Messaging Apps the Future of the (Mo-
bile) Internet? (Aug. 2015). http://www.business2community.com/mobile-apps/

instant-messaging-apps-future-mobile-internet-01313577

[18] Christian Cachin, Klaus Kursawe, Frank Petzold, and Victor Shoup. 2001. Secure and Efficient Asyn-
chronous Broadcast Protocols. In Advances in Cryptology - CRYPTO 2001, 21st Annual International
Cryptology Conference, Santa Barbara, California, USA, August 19-23, 2001, Proceedings. 524–541.
https://doi.org/10.1007/3-540-44647-8_31

[19] Christian Cachin, Klaus Kursawe, and Victor Shoup. 2005. Random Oracles in Constantinople: Prac-
tical Asynchronous Byzantine Agreement Using Cryptography. J. Cryptology 18, 3 (2005), 219–246.
https://doi.org/10.1007/s00145-005-0318-0

[20] Christian Cachin and Reto Strobl. 2004. Asynchronous group key exchange with failures. In Proceedings
of the Twenty-Third Annual ACM Symposium on Principles of Distributed Computing, PODC 2004,
St. John’s, Newfoundland, Canada, July 25-28, 2004. 357–366. https://doi.org/10.1145/1011767.

1011820

[21] Ran Canetti and Tal Rabin. 1993. Fast asynchronous Byzantine agreement with optimal resilience. In
Proceedings of the Twenty-Fifth Annual ACM Symposium on Theory of Computing, May 16-18, 1993,
San Diego, CA, USA. 42–51. https://doi.org/10.1145/167088.167105

[22] Gregory V. Chockler, Idit Keidar, and Roman Vitenberg. 2001. Group communication specifications: a
comprehensive study. ACM Comput. Surv. 33, 4 (2001), 427–469. https://doi.org/10.1145/503112.
503113

22

https://doi.org/10.1007/11502760_3
https://doi.org/10.1007/11745853_14
https://doi.org/10.1007/978-3-540-68351-3_8
https://doi.org/10.1007/978-3-662-44371-2_27
https://doi.org/10.1145/4221.214134
https://doi.org/10.1007/3-540-46035-7_21
https://doi.org/10.1007/3-540-46035-7_21
http://www.business2community.com/mobile-apps/instant-messaging-apps-future-mobile-internet-01313577
http://www.business2community.com/mobile-apps/instant-messaging-apps-future-mobile-internet-01313577
https://doi.org/10.1007/3-540-44647-8_31
https://doi.org/10.1007/s00145-005-0318-0
https://doi.org/10.1145/1011767.1011820
https://doi.org/10.1145/1011767.1011820
https://doi.org/10.1145/167088.167105
https://doi.org/10.1145/503112.503113
https://doi.org/10.1145/503112.503113

[23] Katriel Cohn-Gordon, Cas Cremers, Benjamin Dowling, Luke Garratt, and Douglas Stebila. 2017. A
formal security analysis of the Signal messaging protocol. In Proc. IEEE European Symposium on
Security and Privacy (EuroS&P) 2017. IEEE. To appear.

[24] Katriel Cohn-Gordon, Cas Cremers, Luke Garratt, Jon Millican, and Kevin Milner. 2017. On Ends-to-
Ends Encryption: Asynchronous Group Messaging with Strong Security Guarantees. IACR Cryptology
ePrint Archive 2017 (2017), 666. http://eprint.iacr.org/2017/666

[25] Katriel Cohn-Gordon, Cas J. F. Cremers, and Luke Garratt. 2016. On Post-compromise Security. In
IEEE 29th Computer Security Foundations Symposium, CSF 2016, Lisbon, Portugal, June 27 - July 1,
2016. 164–178. https://doi.org/10.1109/CSF.2016.19

[26] Joan Daemen and Vincent Rijmen. 1998. The Block Cipher Rijndael. In Smart Card Research and
Applications, This International Conference, CARDIS ’98, Louvain-la-Neuve, Belgium, September 14-
16, 1998, Proceedings. 277–284. https://doi.org/10.1007/10721064_26

[27] Sergej Dechand, Dominik Schürmann, Karoline Busse, Yasemin Acar, Sascha Fahl, and Matthew Smith.
2016. An Empirical Study of Textual Key-Fingerprint Representations. In 25th USENIX Security Sym-
posium, USENIX Security 16, Austin, TX, USA, August 10-12, 2016., Thorsten Holz and Stefan Savage
(Eds.). USENIX Association, 193–208. https://www.usenix.org/conference/usenixsecurity16/

technical-sessions/presentation/dechand

[28] Christophe Diot, Walid Dabbous, and Jon Crowcroft. 1997. Multipoint Communication: A Survey
of Protocols, Functions, and Mechanisms. IEEE Journal on Selected Areas in Communications 15, 3
(1997), 277–290. https://doi.org/10.1109/49.564128

[29] Ratna Dutta and Rana Barua. 2008. Provably Secure Constant Round Contributory Group Key
Agreement in Dynamic Setting. IEEE Trans. Information Theory 54, 5 (2008), 2007–2025. https:

//doi.org/10.1109/TIT.2008.920224

[30] Electronic Frontier Foundation. 2017. Secure Messaging Scorecard. (2017). https://www.eff.org/

node/82654

[31] eMarketer. 2015. Mobile Messaging to Reach 1.4 Billion Worldwide in 2015. (Nov. 2015). https:

//www.emarketer.com/Article/Mobile-Messaging-Reach-14-Billion-Worldwide-2015/1013215

[32] Sally Floyd, Van Jacobson, Ching-Gung Liu, Steven McCanne, and Lixia Zhang. 1997. A reliable
multicast framework for light-weight sessions and application level framing. IEEE/ACM Trans. Netw.
5, 6 (1997), 784–803. https://doi.org/10.1109/90.650139

[33] Tilman Frosch, Christian Mainka, Christoph Bader, Florian Bergsma, Jörg Schwenk, and Thorsten Holz.
2016. How Secure is TextSecure?. In IEEE European Symposium on Security and Privacy, EuroS&P
2016, Saarbrücken, Germany, March 21-24, 2016. 457–472. https://doi.org/10.1109/EuroSP.2016.
41

[34] Tarek Galal. 2016. Open Source Implementation of a WhatsApp Client. (2016). https://github.com/
tgalal/yowsup This code is not maintained anymore but some of its forks are still under development.

[35] Christina Garman, Matthew Green, Gabriel Kaptchuk, Ian Miers, and Michael Rushanan. 2016. Dancing
on the Lip of the Volcano: Chosen Ciphertext Attacks on Apple iMessage. In 25th USENIX Security
Symposium, USENIX Security 16, Austin, TX, USA, August 10-12, 2016. 655–672. https://www.

usenix.org/conference/usenixsecurity16/technical-sessions/presentation/garman

[36] Vassos Hadzilacos and Sam Toueg. 1993. Distributed Systems (2Nd Ed.). ACM Press/Addison-Wesley
Publishing Co., New York, NY, USA, Chapter Fault-tolerant Broadcasts and Related Problems, 97–145.
http://dl.acm.org/citation.cfm?id=302430.302435

23

http://eprint.iacr.org/2017/666
https://doi.org/10.1109/CSF.2016.19
https://doi.org/10.1007/10721064_26
https://www.usenix.org/conference/usenixsecurity16/technical-sessions/presentation/dechand
https://www.usenix.org/conference/usenixsecurity16/technical-sessions/presentation/dechand
https://doi.org/10.1109/49.564128
https://doi.org/10.1109/TIT.2008.920224
https://doi.org/10.1109/TIT.2008.920224
https://www.eff.org/node/82654
https://www.eff.org/node/82654
https://www.emarketer.com/Article/Mobile-Messaging-Reach-14-Billion-Worldwide-2015/1013215
https://www.emarketer.com/Article/Mobile-Messaging-Reach-14-Billion-Worldwide-2015/1013215
https://doi.org/10.1109/90.650139
https://doi.org/10.1109/EuroSP.2016.41
https://doi.org/10.1109/EuroSP.2016.41
https://github.com/tgalal/yowsup
https://github.com/tgalal/yowsup
https://www.usenix.org/conference/usenixsecurity16/technical-sessions/presentation/garman
https://www.usenix.org/conference/usenixsecurity16/technical-sessions/presentation/garman
http://dl.acm.org/citation.cfm?id=302430.302435

[37] Dennis Hofheinz, Tibor Jager, Dakshita Khurana, Amit Sahai, Brent Waters, and Mark Zhandry.
2016. How to Generate and Use Universal Samplers. In Advances in Cryptology - ASIACRYPT 2016 -
22nd International Conference on the Theory and Application of Cryptology and Information Security,
Hanoi, Vietnam, December 4-8, 2016, Proceedings, Part II. 715–744. https://doi.org/10.1007/

978-3-662-53890-6_24

[38] WhatsApp Inc. 2016. WhatsApp Encryption Overview. (2016). https://www.whatsapp.com/

security/WhatsApp-Security-Whitepaper.pdf Technical white paper.

[39] Hyun-Jeong Kim, Su-Mi Lee, and Dong Hoon Lee. 2004. Constant-Round Authenticated Group Key
Exchange for Dynamic Groups. In Advances in Cryptology - ASIACRYPT 2004, 10th International
Conference on the Theory and Application of Cryptology and Information Security, Jeju Island, Korea,
December 5-9, 2004, Proceedings. 245–259. https://doi.org/10.1007/978-3-540-30539-2_18

[40] Nadim Kobeissi, Karthikeyan Bhargavan, and Bruno Blanchet. 2017. Automated Verification for Secure
Messaging Protocols and their Implementations: A Symbolic and Computational Approach. In IEEE
European Symposium on Security and Privacy (EuroS&P). Available at http://prosecco. gforge. inria.
fr/personal/bblanche/publications/KobeissiBhargavanBlanchetEuroSP17. pdf. To appear.

[41] Klaus Kursawe and Victor Shoup. 2005. Optimistic Asynchronous Atomic Broadcast. In Automata,
Languages and Programming, 32nd International Colloquium, ICALP 2005, Lisbon, Portugal, July 11-
15, 2005, Proceedings. 204–215. https://doi.org/10.1007/11523468_17

[42] Brian Neil Levine and J. J. Garcia-Luna-Aceves. 1998. A Comparison of Reliable Multicast Protocols.
Multimedia Syst. 6, 5 (1998), 334–348. http://link.springer.de/link/service/journals/00530/

bibs/8006005/80060334.htm

[43] Tobias Boelter Manisha Ganguly. 2017. WhatsApp vulnerability allows snooping on encrypted
messages. The Guardian (2017). https://www.theguardian.com/technology/2017/jan/13/

whatsapp-backdoor-allows-snooping-on-encrypted-messages

[44] Moxie Marlinspike and Trevor Perrin. 2016. The Double Ratchet Algorithm. (11 2016). https:

//whispersystems.org/docs/specifications/doubleratchet/doubleratchet.pdf

[45] Moxie Marlinspike and Trevor Perrin. 2016. The X3DH Key Agreement Protocol. (11 2016). https:

//whispersystems.org/docs/specifications/x3dh/x3dh.pdf

[46] Christopher Meyer, Juraj Somorovsky, Eugen Weiss, Jörg Schwenk, Sebastian Schinzel, and Erik Tews.
2014. Revisiting SSL/TLS Implementations: New Bleichenbacher Side Channels and Attacks. In 23rd
USENIX Security Symposium. 733–748. https://www.usenix.org/conference/usenixsecurity14/

technical-sessions/presentation/meyer

[47] mgp25. 2016. Open Source Implementation of a WhatsApp PHP API. (2016). https://github.com/

mgp25/Chat-API

[48] Louise E. Moser, P. M. Melliar-Smith, Deborah A. Agarwal, Ravi K. Budhia, and Colleen A. Lingley-
Papadopoulos. 1996. Totem: A Fault-Tolerant Multicast Group Communication System. Commun.
ACM 39, 4 (1996), 54–63. https://doi.org/10.1145/227210.227226

[49] Moxie Marlinspike. 2013. Advanced cryptographic ratcheting. (2013). https://whispersystems.org/
blog/advanced-ratcheting/

[50] Moxie Marlinspike. 2017. There is no WhatsApp ’backdoor’. (2017). https://whispersystems.org/

blog/there-is-no-whatsapp-backdoor/

24

https://doi.org/10.1007/978-3-662-53890-6_24
https://doi.org/10.1007/978-3-662-53890-6_24
https://www.whatsapp.com/security/WhatsApp-Security-Whitepaper.pdf
https://www.whatsapp.com/security/WhatsApp-Security-Whitepaper.pdf
https://doi.org/10.1007/978-3-540-30539-2_18
https://doi.org/10.1007/11523468_17
http://link.springer.de/link/service/journals/00530/bibs/8006005/80060334.htm
http://link.springer.de/link/service/journals/00530/bibs/8006005/80060334.htm
https://www.theguardian.com/technology/2017/jan/13/whatsapp-backdoor-allows-snooping-on-encrypted-messages
https://www.theguardian.com/technology/2017/jan/13/whatsapp-backdoor-allows-snooping-on-encrypted-messages
https://whispersystems.org/docs/specifications/doubleratchet/doubleratchet.pdf
https://whispersystems.org/docs/specifications/doubleratchet/doubleratchet.pdf
https://whispersystems.org/docs/specifications/x3dh/x3dh.pdf
https://whispersystems.org/docs/specifications/x3dh/x3dh.pdf
https://www.usenix.org/conference/usenixsecurity14/technical-sessions/presentation/meyer
https://www.usenix.org/conference/usenixsecurity14/technical-sessions/presentation/meyer
https://github.com/mgp25/Chat-API
https://github.com/mgp25/Chat-API
https://doi.org/10.1145/227210.227226
https://whispersystems.org/blog/advanced-ratcheting/
https://whispersystems.org/blog/advanced-ratcheting/
https://whispersystems.org/blog/there-is-no-whatsapp-backdoor/
https://whispersystems.org/blog/there-is-no-whatsapp-backdoor/

[51] Open Whisper Systems. 2017. Facebook Messenger deploys Signal Protocol for end to end encryption.
(2017). https://whispersystems.org/blog/facebook-messenger/

[52] Open Whisper Systems. 2017. Open Whisper Systems partners with Google on end-to-end encryption
for Allo. (2017). https://whispersystems.org/blog/allo/

[53] Open Whisper Systems. 2017. Signal Website. (2017). https://signal.org/

[54] Trevor Perrin. 2016. The Noise Protocol Framework. (2016). http://noiseprotocol.org/noise.pdf

[55] Roland Schilling and Frieder Steinmetz. 2016. A look into the Mobile Messaging Black Box. (12 2016).
https://media.ccc.de/v/33c3-8062-a_look_into_the_mobile_messaging_black_box Talk at the
33c3 in Hamburg, Germany. Implementation: https://github.com/o3ma.

[56] André Schiper and Sam Toueg. 2006. From Set Membership to Group Membership: A Separation of
Concerns. IEEE Trans. Dependable Sec. Comput. 3, 1 (2006), 2–12. https://doi.org/10.1109/TDSC.
2006.13

[57] Sebastian Schrittwieser, Peter Frühwirt, Peter Kieseberg, Manuel Leithner, Martin Mulazzani, Markus
Huber, and Edgar R. Weippl. 2012. Guess Who’s Texting You? Evaluating the Security of Smart-
phone Messaging Applications. In 19th Annual Network and Distributed System Security Symposium,
NDSS 2012, San Diego, California, USA, February 5-8, 2012. http://www.internetsociety.org/

guess-whos-texting-you-evaluating-security-smartphone-messaging-applications

[58] Signal. 2017. Signal Private Messenger in Google Play. (2017). https://play.google.com/store/

apps/details?id=org.thoughtcrime.securesms

[59] Statista. 2017. Most popular messaging apps. (2017). https://www.statista.com/statistics/

258749/most-popular-global-mobile-messenger-apps/

[60] Open Whisper Systems. 2016. Message Format in the Signal Protocol. (11 2016). https://github.com/
WhisperSystems/libsignal-service-java/blob/4cedb5c31c11c1e8811b3bb7cd68d56ff7e0c03f/

protobuf/SignalService.proto Specified with Google Protocol Buffers.

[61] Open Whisper Systems. 2016. Source Code of Signal-Android. (11 2016). https://github.com/

WhisperSystems/Signal-Android/commit/ce812ed8ba49fc43db9de018c135be67b5b44f7d Android
Application Version 3.23.0.

[62] Open Whisper Systems. 2016. Source Code of Signal-Service Library. (11 2016). https://github.com/
WhisperSystems/libsignal-service-java/commit/460cd7559caa74bb6539c72865c71de660a69bac

Java Library Version 2.4.1.

[63] Open Whisper Systems. 2017. Signal Github Repository. (05 2017). https://github.com/

WhisperSystems/

[64] Threema. 2017. Threema in Google Play. (2017). https://play.google.com/store/apps/details?

id=ch.threema.app

[65] Threema. 2017. Threema Website. (2017). https://threema.ch/en

[66] Threema GmbH. 2016. Threema Cryptography Whitepaper. (2016). https://threema.ch/

press-files/2_documentation/cryptography_whitepaper.pdf

[67] Nik Unger, Sergej Dechand, Joseph Bonneau, Sascha Fahl, Henning Perl, Ian Goldberg, and Matthew
Smith. 2015. SoK: Secure Messaging. In 2015 IEEE Symposium on Security and Privacy, SP 2015, San
Jose, CA, USA, May 17-21, 2015. 232–249. https://doi.org/10.1109/SP.2015.22

25

https://whispersystems.org/blog/facebook-messenger/
https://whispersystems.org/blog/allo/
https://signal.org/
http://noiseprotocol.org/noise.pdf
https://media.ccc.de/v/33c3-8062-a_look_into_the_mobile_messaging_black_box
https://github.com/o3ma
https://doi.org/10.1109/TDSC.2006.13
https://doi.org/10.1109/TDSC.2006.13
http://www.internetsociety.org/guess-whos-texting-you-evaluating-security-smartphone-messaging-applications
http://www.internetsociety.org/guess-whos-texting-you-evaluating-security-smartphone-messaging-applications
https://play.google.com/store/apps/details?id=org.thoughtcrime.securesms
https://play.google.com/store/apps/details?id=org.thoughtcrime.securesms
https://www.statista.com/statistics/258749/most-popular-global-mobile-messenger-apps/
https://www.statista.com/statistics/258749/most-popular-global-mobile-messenger-apps/
https://github.com/WhisperSystems/libsignal-service-java/blob/4cedb5c31c11c1e8811b3bb7cd68d56ff7e0c03f/protobuf/SignalService.proto
https://github.com/WhisperSystems/libsignal-service-java/blob/4cedb5c31c11c1e8811b3bb7cd68d56ff7e0c03f/protobuf/SignalService.proto
https://github.com/WhisperSystems/libsignal-service-java/blob/4cedb5c31c11c1e8811b3bb7cd68d56ff7e0c03f/protobuf/SignalService.proto
https://github.com/WhisperSystems/Signal-Android/commit/ce812ed8ba49fc43db9de018c135be67b5b44f7d
https://github.com/WhisperSystems/Signal-Android/commit/ce812ed8ba49fc43db9de018c135be67b5b44f7d
https://github.com/WhisperSystems/libsignal-service-java/commit/460cd7559caa74bb6539c72865c71de660a69bac
https://github.com/WhisperSystems/libsignal-service-java/commit/460cd7559caa74bb6539c72865c71de660a69bac
https://github.com/WhisperSystems/
https://github.com/WhisperSystems/
https://play.google.com/store/apps/details?id=ch.threema.app
https://play.google.com/store/apps/details?id=ch.threema.app
https://threema.ch/en
https://threema.ch/press-files/2_documentation/cryptography_whitepaper.pdf
https://threema.ch/press-files/2_documentation/cryptography_whitepaper.pdf
https://doi.org/10.1109/SP.2015.22

[68] Robbert van Renesse, Kenneth P. Birman, and Silvano Maffeis. 1996. Horus: A Flexible Group Com-
munication System. Commun. ACM 39, 4 (1996), 76–83. https://doi.org/10.1145/227210.227229

[69] WhatsApp. 2016. Why am I banned for using WhatsApp Plus and how do I get unbanned? (2016).
https://www.whatsapp.com/faq/en/general/105

[70] WhatsApp. 2017. WhatsApp Security. (2017). https://www.whatsapp.com/security/

A Additional Security and Reliability Properties

A.1 Definitions

A.1.1 Message Order

A primary feature regarding the consistency of communicated transcripts is ordering of messages.

I FIFO Order : All messages of one user are delivered in the same order in which this user sent them.

While FIFO order only considers the order of messages sent by one member, total order can only be
achieved by constructing a protocol that establishes an order for the whole content of a group. The aim of
ordering a group’s content is twofold. On the one hand it presents a consistent view on delivered messages
among the receivers if the sender is correct. On the other hand it prevents the breach of the existing
order such that the causality of messages is preserved. For real time protocols a certain delay of the order
establishment should therefore be granted.

I Total Order : All receivers of two messages decide on the same order between these two messages.

In addition to the local ordering schemes, there exists the definition global ordering in multicast settings.
Global ordering implies that all messages, regardless in which group or multicast they were delivered, have
a fixed order. In instant messaging this could be of interest if a message in one group is sent because of a
message that was received in another group.

A.1.2 Reliable Multicast

Even though we disregard consistency of messages and group management in the presence of malicious group
members, we give the definition of agreement for completeness.

I AGR Agreement : if a message m is delivered by one correct member A ∈ Ggr then m is delivered by all
correct members B ∈ Ggr.

In fact two of the protocols gain a weak form consistency in the presence of malicious senders. WhatsApp
achieves agreement in case of an honest SIM server since a sender can only send one message to the group
and the server has to distribute it to the receiving members. Threema restricts the permission to manipulate
group management information to the creator of the group. Consequently only a malicious group creator
can break the agreement regarding group management information in the long run.

A.2 Limitations of Signal

Ordering. A malicious server provider cannot only drop messages, but also reorder them. The receiving
application orders simultaneously received messages by the timestamp which is manipulable for the provider.
The decryption of received messages follows this order. Since old omitted keys are removed after a certain
number of new keys are derived, reordering by the provider is restrictedly possible. Since the number of

26

https://doi.org/10.1145/227210.227229
https://www.whatsapp.com/faq/en/general/105
https://www.whatsapp.com/security/

acceptably omitted keys is also at least 2000, this restriction is not effective. Henceforth neither FIFO order
nor total order are provided by Signal.

Agreement. Signal does not implement an algorithm for providing agreement. Consequently the server
provider and members can cause inconsistency of messages and of the member set in groups.

A.3 Limitations of WhatsApp

Ordering. In contrast to Signal and Threema, the sending time for a message is set at the server side. The
honest server transmits messages to the receivers in the order the server received them from the sender. The
receiving clients decrypt and display the messages in the order the server transmits them.

If messages are received in a different order than they were encrypted, this is disregarded by the client as
the omission of message keys is. As a result a malicious server provider cannot only drop messages but also
reorder them because they are not listed in the order of encryption but in the order of transmission by the
server. Due to the limit of decryption of old messages up to 1999 messages can be reordered by the server.
On the one hand this results in an immutable list of messages and a live display of received messages but on
the other hand the server provider can disrupt the sender’s order of messages.

A.4 Limitations of Threema

Ordering. Messages received by the application are ordered by the receiving time. The sending time
is additionally not protected on the end-to-end layer. Therefore the server provider can reorder messages
arbitrarily during the transmission.

Agreement. Threema does not implement an algorithm for providing agreement as Signal does not. Con-
sequently the server provider and members can cause inconsistency of messages. The member set is managed
by the administrator who can inconsistently provide a view on it to the members.

Additional Information Leakage. When a user in Threema sends a message to a group of which she is
not a member, this message is not accepted by its members. In order to indicate this non-member status,
the group administrator starts the group update protocol and sends both the set of members and the title
to this user in response. A user who left the group or who was removed from the group can thereby keep
informed about the group’s management information. This weakness was also fixed in Threema version 3.14.

B Tabular Summary of Analysis Results

E2E
C
on

fid
en

tia
lit

y

Fo
rw

ar
d

Se
cr

ec
y

Fu
tu

re
Se

cr
ec

y

M
sg

.
A
ut

he
nt

ic
at

io
n

Tra
ce

ab
le

D
el
iv
er

y

N
o

D
ub

lic
at

io
n

N
o

C
re

at
io
n

C
lo
se

ne
ss

Signal 6í � 6í 6í

WhatsApp 7 � � �
Threema 7 7 7 � � �

Table 1: 7: Not implemented feature; 6í: Attackable by Malicious User who can compromise victim; �: At-
tackable by Advanced Network Attacker ; Gray symbols indicate that attack is side effect of another attack

Similar to previous analyses of SIM applications and protocols [30, 67], we provide a table that summarizes
our results. Even though we found significant heuristic arguments that support the fact that non-attacked

27

requirements are fulfilled by the protocols, we do not mark them as such since our analysis contains no
proofs. Thereby Table 1 can be seen as a negative scorecard.

The gray cells indicate, that a feature is attackable because another feature is attackable. Since a
compromising malicious user can break the Closeness of Signal, Future Secrecy is implicitly violated as
well. In comparison to Signal, where Closeness and No Creation are independently attackable, breaking
No Creation in WhatsApp results from breaking Closeness. In Threema breaking No Creation results from
breaking Closeness which is caused by the successful attack against No Duplication. This is because an
attacker can rewind group management operations and thereby add removed users who are then able to
contribute content to the group.

According to our attack description, we always depict the weakest successful attacker. Consequently
a Compromising Advanced Network Attacker can break the same requirements as a Malicious User with
compromising access to the victim’s secrets.

As described earlier, Threema updated their application in response to our responsible disclosure. Con-
sequently No Duplication, No Creation, and Closeness are not attackable anymore.

C Signal Key Exchange Protocol and its Usage

Figure 8 describes the exact usage of keys for group communication in Signal and WhatsApp. The DR
algorithm is initialized by the root key (RK) and is updated by Diffie Hellman key exchanges between the
sender and the receiver (DH ratcheting). The output of these updates is the input of the symmetric ratcheting
which only consists of a key derivation function. Half of the output is used for the consecutive ratcheting
(chain keys CK) and the other half is used as encryption keys (message keys MK). While Signal uses these
keys directly for all communication, WhatsApp generates a separate key stream for group communication.
This additional key stream is update symmetrically only.

28

Figure 8: Sender key stream from A to B and ciphertexts from A to the server when sending one direct
message to B and two group messages to a group G of which A and B are members in Signal and WhatsApp.

29

	Introduction
	Security Model for Encrypted Group Chats
	Notation and Assumptions
	Threat Model
	Security Goals

	Methodology
	Signal
	General Initialization Protocol
	Session Establishment with the Server
	Key Agreement and Key Derivation

	Group Protocol
	Group Messages
	Group Management
	Exemplary Protocol Run

	Security Evaluation and Observations
	Burgle into the Group
	Breaking Traceable Delivery
	Further Weaknesses

	WhatsApp
	General Initialization Protocol
	Session Establishment with the Server
	Key Agreement and Key Derivation

	Group Protocol
	Group Content Messages
	Group Management
	Exemplary Protocol Run

	Security Evaluation and Observations
	Burgle into a Group
	Breaking Traceable Delivery
	No Future Secrecy
	Further Weaknesses

	Impact of the Weaknesses' Combination

	Threema
	General Initialization Protocol
	Session Establishment with the Server
	Key Agreement

	Group Protocol
	Group Messages
	Group Management
	Exemplary Protocol Run

	Security Evaluation and Observations
	Replaying Messages
	No Forward and Future Secrecy
	No Traceable Delivery
	Further Weaknesses

	Lessons Learned
	Fixing the Protocols
	Signal
	WhatsApp
	Threema

	General Outcomes
	Reaching Traceable Delivery in General
	Securely Managing a Group

	Related Work
	Conclusion
	Additional Security and Reliability Properties
	Definitions
	Message Order
	Reliable Multicast

	Limitations of Signal
	Limitations of WhatsApp
	Limitations of Threema

	Tabular Summary of Analysis Results
	Signal Key Exchange Protocol and its Usage

