
Secure Storage with Replication and Transparent Deduplication

Iraklis Leontiadis, Reza Curtmola

New Jersey Institute of Technology, USA
{leontiad,crix}@njit.edu

Abstract. We seek to answer the following question: To what extent can we deduplicate replicated storage ?
To answer this question, we design ReDup, a secure storage system that provides users with strong integrity,
reliability, and transparency guarantees about data that is outsourced at cloud storage providers. Users store
multiple replicas of their data at different storage servers, and the data at each storage server is deduplicated
across users. At the same time, users rely on remote data integrity mechanisms to check the integrity of their
data. In this setting, it is adequate to consider a stronger and more realistic adversarial model, one in which
we also allow collusions between storage servers and users of the system. As such, a cloud storage provider
(CSP) could store less replicas than agreed upon by contract, unbeknownst to the users. ReDup defends against
such adversaries by making replica generation to be time consuming so that a dishonest CSP cannot generate
replicas on the fly when challenged by the users.
In addition, ReDup employs transparent deduplication, which means that users get a proof attesting the dedu-
plication level used for their files at each replica server, and thus are able to benefit from the storage savings
provided by deduplication. The proof is obtained by aggregating individual proofs from replica servers, and
has a constant size regardless of the number of replica servers. Our solution scales better than state of the art
and is provably secure under standard assumptions.

1 Introduction

Outsourcing storage to cloud storage providers (CSPs) has become a popular and convenient practice. Despite
its cost-saving benefits, cloud storage remains rife with security issues [12]. There are reported incidents of lost
data or service unavailability due to power outages [11], hardware failure, software bugs [10], external or internal
attacks, negligence, or administrator error. Moreover, cloud infrastructures lack transparency and data owners have
to fully trust the CSPs. All these factors limit the suitability of cloud platforms for applications that require long-
term data integrity and reliability. Of particular concern to data owners is that although storage can be outsourced,
the liability in case data is lost, damaged, or stolen cannot be outsourced.

Several approaches can be used to ease these concerns. First, to improve reliability, data can be stored redun-
dantly by replicating it across geographically dispersed cloud storage servers. Whenever data is damaged at one
replica server (RS), data can be retrieved from healthy replication servers in order to repair the damaged data
and restore the desired level of redundancy. Second, the transparency of cloud infrastructures can be improved by
using an auditing mechanism such as remote data integrity checking (RDIC) [4, 7, 19], which allows data owners
to efficiently check the integrity of data stored at untrusted CSPs.

At the same time, a popular trend is that of data deduplication, which allows CSPs to reduce their storage costs
by exploiting common properties of files stored by different users. When different users upload the same file at a
CSP, deduplication ensures that only one copy is stored. Recent studies show that cross-user data deduplication
can lead to significant savings in storage costs, ranging from 50%[17] to 95%[17, 18].

Although deduplication across multiple users’ files is economically beneficial for CSPs, the individual users
whose files get deduplicated do not benefit from these savings. Typically, each user gets charged an amount that
is proportional with the amount of data stored and any savings due to deduplication with other users’ data are not
passed to the end user. Recently, Armknecht et al. [3] introduced transparent deduplication, which gives users
full transparency on the storage savings achieved through deduplication. This enables a new pricing model which
takes into account the level of deduplication of the data: The more users store the same piece of data, the lower
each individual user gets charged for storing that piece of data.

We wish to design a system that provides both integrity and reliability (via RDIC and replication) as well as
cost-efficient storage via transparent deduplication, when faced with an economically motivated adversary that
controls some or all of the storage servers. Adversarial servers will try to “cut corners” and gain an economic
advantage as long as it remains undetected. This can be achieved either by using less storage than required to
fulfill their contractual obligations for replication, or by charging users according to a deduplication level that is

lower than the real one. To achieve this goal, we are faced with two main challenges that were not addressed by
previous work:

Challenge 1: Overcoming the ROTF attack. Previous work has established that the storage servers should be re-
quired to store different and incompressible replicas [8, 9]. Otherwise, if all replicas are identical, an economically
motivated set of colluding servers may try to save storage by simply storing only one replica and redirecting all
data owner’s RDIC challenges to the one server storing the replica. One approach to generate different replicas
is by encrypting the original file with different keys. This mitigates the “redirection” attack described earlier: A
storage system cannot successfully pass RDIC challenges for the t replicas without actually storing the t replicas.

However, in order to enable deduplication across users, the replicas generated by two users for the same file
for the same storage server should be identical. For example, two users must generate identical replicas H1 for
storage server RS1, identical replicas H2 for storage server RS2, etc. To achieve this, users should use the same
keys to generate replicas for the same storage server. This introduces the replicate on the fly (ROTF) attack, a novel
attack unique to this setting: if at least one user shares with the CSP the keys used to generate replicas, then the
CSP can recover and store only the original file instead of storing the t replicas. The CSP can then generate on
the fly a particular replica to pass an RDIC challenge for that replica. This will hurt the reliability of the storage
system, because the CSP does not store t replicas, unbeknownst to the client.

Challenge 2: Efficient transparent deduplication for multiple replicas. Transparent deduplication has been investi-
gated only when the data is stored at a single cloud server [3]. When data is replicated at multiple storage servers,
the previous solution does not scale well and transparent deduplication becomes more challenging to achieve
securely and efficiently.

Contributions: In this work, we propose ReDup, a secure storage solution with Replication and transparent
deDuplication. ReDup provides users with strong integrity, reliability, and transparency guarantees about data
that is outsourced at cloud storage providers. To the best of our knowledge, ours is the first proposal to provide all
these guarantees at the same time. Specifically, ReDup offers:

– Integrity: ReDup employs a remote data integrity checking (RDIC) mechanism to allow users to check the
integrity of their outsourced data. Each user runs periodically a RDIC protocol to check the health of her data
at each replica server. Whenever data damage is detected at a replica, data from healthy replica servers can be
used to restore the desired replication level. Such a RDIC mechanism allows users to assess the health of their
data by periodically verifying the integrity and replication level of their data.

– Reliability: ReDup provides data reliability by replicating a user’s data at multiple storage servers that are
geographically dispersed. Since different users may have different reliability needs, ReDup offers multiple
replication levels and allows users to choose a replication level suitable for their needs. We consider a more
realistic adversarial model which includes not only collusions between storage servers, but also between stor-
age servers and users of the system. This introduces a novel attack, the replicate on the fly (ROTF) attack,
which allows the CSP to store only one copy of the data and generate replicas on the fly to respond to RDIC
challenges. To defend against the ROTF attack, we make the replica generation be time consuming and we en-
hance the standard RDIC challenge-response model to include an additional check regarding the time needed
to generate the RDIC proof. In this way, dishonest CSPs that try to generate replicas on the fly will not be
able to pass the RDIC challenges. In ReDup, replicas are generated from the original file by applying a novel
shortcut-free time consuming function (SFTCF), which we define formally and then instantiate with a butterfly
construction.

– Efficient and transparent deduplication for multiple replicas: When a user’s data is replicated at multiple
servers, ReDup provides a proof to the user attesting the deduplication level that occurs at each replica
server. The proof is obtained by aggregating individual deduplication level proofs from replica servers, and
has a constant size regardless of the number of replica servers. Users are charged inversely proportional to
the deduplication level of each of their replicas. ReDup reconciles the seemingly contradictory notions of
replication and deduplication: The data of each user is replicated at multiple servers to increase reliability,
whereas deduplication is applied independently at each replication server across different users’ data to reduce
storage costs.

– Collusion resistance: These guarantees hold even in the presence of collusion between replica servers or
between replica servers and users.

The remainder of the paper is organized as follows: In Section 2 we present background information and related
work. We describe the system and adversarial model in Section 3. In Section 4 we provide some preliminaries for

2

our basic building blocks. A solution overview of the protocol is depicted in Section 5 and its full description is
described in Section 6. Finally, Section 7 analyses the security of ReDup.

2 Background and Related Work

Remote data integrity checking for multiple replicas. Remote data integrity checking (RDIC) [4, 13, 19] is
a mechanism that allows to check the integrity of data stored at an untrusted cloud storage provider (CSP). A
data owner uploads at the CSP their data together with metadata consisting of a set of verification tags, and then
periodically challenges the CSP to provide a proof about the health of the data. The CSP is able to create such a
proof based on the data and the metadata initially uploaded by the owner.

To ensure data reliability over time, the data owner creates multiple replicas of the data and stores them at
multiple storage servers. The data owner then uses RDIC to periodically check the health of each replica, and if
a replica is found corrupt, data from the other healthy servers is used to restore the desired redundancy level in
the system [8, 9]. Previous work has established that the storage servers should be required to store different and
incompressible replicas [8, 9].

Transparent Deduplication. Armknecht et al. [3] introduced the notion of transparency for deduplicated storage:
The cloud provides to users proofs that attest the level of deduplication across users employed by the cloud over
their files. This enables a new pricing model which takes into account the level of deduplication of the data,
allowing end users to get the benefits of deduplication. Users are protected against a cloud provider that uses a
certain deduplication level, but charges users based on a lower level.

The solution lies in a Merkle tree tailored for this application, which allows an honest user to verify a) how
many users have also uploaded the same file and b) that information about the user’s file has been correctly
incorporated in the bill issued by the cloud. Although this solution is efficient when files are stored at a single
storage server, when translated to a multiple replica scenario it becomes inefficient as it would require multiple
instances of the Merkle tree, one per each replica.

2.1 Other Related Work

Current literature in remote data integrity checking protocols either does not address deduplication in a multi-
ple replica scenario, or does not consider the challenging multi-user scenario with collusions between users and
economically-motivated replica servers.

Multi-User with Tags Deduplication. Vasilopoulos et al. [21] proposed a combination of existing dedupli-
cation schemes with proofs of retrievability to further reduce the storage cost of tags for identical blocks. In their
model, there is a single replica storage policy and users do not collude with the cloud provider. Armknecht et al.
[2] considered the same model, whereby a single replica server stores only once tags coming from different users
for the same data block. The solution lies on shared aggregated tags based on BLS signatures [6] incorporating the
secret keys of all users and can tolerate collusions between users and a malicious cloud storage provider: Deleting
a deduplicated block tag and obtaining the secret key from a malicious cannot help the cloud to reconstruct the tag
without the participation of all the other users. Their model, however, does not consider providing both multiple
replica storage and deduplication.

Replicated Storage. Curtmola et al. [9] considered a model in which a single user stores replicas of a file at
multiple storage servers to tolerate faults. The user uses an RDIC protocol to verify faithful storage at each replica
server. However, this scenario does not consider multiple users or the deduplication functionality. Armknecht et
al. [1] considered a multiple replica storage scenario enhanced with proofs of correct replication by the user.

3 System and Adversarial Model

3.1 System Model

A set of users, U = U1, U2, U3, . . . , Um, store their files at a cloud storage provider (CSP). To ensure data reli-
ability and protect against data damage, the CSP exposes an interface that allows users to store multiple replicas
of their files at different replication servers. Each user uses remote data integrity checking (RDIC) to check the
integrity of their replicas stored at each replica server; in case data damage is detected at a replica server, the user
leverages replicas from other healthy replica servers to restore the desired level of redundancy.

3

Replication level. As users have different budgets and needs, the CSP allows users to choose the desired replica-
tion level (rl) for their files. Without loss of generality, we assume the CSP offers a fixed number of replication
levels (e.g., in practice it may offer three levels, corresponding to high, medium, and low reliability). Fig. 1(a)
shows an example with three users choosing different replication levels, rl1 = 4, rl2 = 3, rl3 = 3. User U1,
who chose rl1 = 4, will generate four replicas H1, H2, H3, H4 and the corresponding RDIC verification tags
vt11, vt

2
1, vt

3
1, vt

4
1, and will store them at replication servers RS1,RS2,RS3 and RS4. Whereas user U3, who chose

rl3 = 2, will generate two replicasH1, H2 and RDIC verification tags vt13, vt
2
3, and store them at servers RS1,RS2.

We assume users agree on a common key fk that will be used to generate the replicas. This ensures that if two
users want to store the same file, the replicas generated for the file will be identical, thus allowing deduplication
to be applied at each replica server. The mechanism used to agree on this common key is outside the scope of this
paper; for example, users can rely on variants of convergent encryption to derive this key securely, either with the
aid of a trusted server [14] or with a multiparty computation protocol between users [15].

Deduplication level. Whenever possible, the CSP employs deduplication across different users’ files at each
replication server: If multiple users store identical files, the CSP keeps only one copy. In the example of Fig. 1(b),
servers RS1,RS2,RS3 perform deduplication for the files H1, H2, H3, and the deduplication level (dl) is dl1 =
3,dl2 = 3,dl3 = 2, respectively. Server RS4 does not perform deduplication, as it already stores only one copy of
file H4. Notice that deduplication occurs at each replication server independently, meaning that different copies of
the same file will be dispersed along replica servers to ensure reliability, but at each replica server deduplication
is applied and only one copy of multiple identical files is stored.

Pricing model. The system divides time into epochs (e.g., one epoch is one day) and users get charged at the end
of each epoch. A user’s bill for each epoch is directly proportional to the chosen replication level and inversely
proportional to the deduplication level that occurs at each replica server. This means that if a user is uploading a
file at a replica server and that file is already stored by r other users, then each of the r+ 1 users that store the file
will get charged an amount that is r + 1 smaller compared to the case when no deduplication occurs.

To prevent a dishonest CSP from charging users more by claiming a lower deduplication level, the system
employs transparent deduplication: the CSP provides to each user at the end of each epoch a proof that attests to
the deduplication level that occured at each replication server.

H1 vt11

vt12

vt13

RS1

vt21

vt22

vt23

RS2

vt31

vt32

RS3

vt41

RS4

H1

H1

H2

H2

H2

H3

H3 H4

(a) Before Deduplication

vt11

vt12

vt13

RS1

vt21

vt22

vt23

RS2

vt31

vt32

RS3

vt41

RS4

H1 H2 H3 H4

(b) After Deduplication

Fig. 1: Multi-replica Deduplication

System overview. As depicted in Fig. 2, the system consists of four protocols: Setup,Replicate,RDIC, and
AttestDedup. Each user Uj , with 1 ≤ j ≤ n, runs these protocols. We give an overview of these protocols
next:

Setup(1λ, n, rlj): During Setup, each user Uj chooses rlj , the replication level for her files. Users also generate
the secret keys that will be used during the other protocols of the system.

Replicate(F, fk, kj , rlj): Each user Uj runs the Replicate protocol to generate replicas H1, H2, · · · , Hrlj for
file F, using the key fk. Identical files by different users are stored only once at each replica server, but are stored
multiple times according to the replication level choice rlj to ensure reliability. User Uj also computes the set of
RDIC verification tags vtij on top of each replica Hi, with 1 ≤ i ≤ rlj . Finally, user Uj uploads replica Hi and
verification tags vtij at server RSi, with 1 ≤ i ≤ rlj .

RDIC(F, < Uj : Q >,< RSi : σi >): Each user Uj engages in a remote data integrity checking protocol
(RDIC) with replica server RSi to check faithful storage of the replica file Hi, for 1 ≤ i ≤ rlj . In the RDIC
protocol, the user issues a challenge Q to a replica server, and the server responds with a proof σi that attests

4

the integrity of the replica stored at that server (this proof is constructed using the challenged replica file and its
corresponding verification tags). The user verifies the correctness of the proof received from the server. Unlike in
a standard RDIC protocol, the user performs an additional check in order to prevent the ROTF attack: whether the
server’s response time is below a threshold T .

U1 U2 U3 Um

· · ·

RS1 RS2 RSrl1

H1 H2 Hrl1

· · ·

vt11 vt21 vtrl11

(a) Replicate

U1 U2 U3 Um

· · ·

RDIC1 RDIC2 RDICrl1

RS1 RS2 RSrl1
H1 H2 Hrl1· · ·
vt11 vt21 vtrl11

(b) RDIC

U1 U2 U3 Um

· · ·

dlj
F

?
= correct, j ∈ 1, ...,m

dl1F dl2F dl3F dlmF

H2H1

RSrljRS2RS1

Hrlj· · ·

(c) AttestDedup

Fig. 2: Replicate,RDIC,AttestDedup.

AttestDedup(ep, Uj ,F): Each user Uj runs the AttestDedup protocol during each epoch ep to verify the
CSP’s claim about the deduplication level employed for the user’s replica files during that epoch. During each
time epoch, the CSP issues a bill to each user based on the replication level chosen by the user for her files, and
on whether the user’s replica files benefited from deduplication. The bill includes a proof that allows the client to
verify the deduplication level of its replicas. The AttestDedup protocol is needed to prevent dishonest CSPs from
claiming a lower deduplication level that the one deployed at its servers in order to charge users a higher bill.

3.2 Adversarial Model
In ReDup we assume a rational adversary who does not deviate from the protocol execution, unless economic
incentives force the cloud service provider to act maliciously. Herewith, we refer to the rational cloud as malicious
cloud whenever it does not follow the protocol rules in order to increase its revenues or decrease its costs violating
the contractual promises it offers to a signer. Recall the goal of a user Uj is to get sound guarantees that the cloud
stored rlj replicas of a file F. The second requirement of the user is to get assurances that the cloud correctly
computed the deduplication level of a file and did not cheat by overcharging users. In contrast with existing single
replica scenario, a multi-replica service storage service scenario poses challenging attacks:

1. Replicate on the fly (ROTF): A client has agreed with the cloud for rlj replica servers to ensure reliability
in case of a catastrophic damage of a server. The client creates rlj copies of the same file and uploads them
to the CSP. However a malicious cloud in order to reduce its storage costs, stores the file in less than rlj
replica servers and whenever the client challenges the CSP with a remote data checking protocol to assure
faithful file replica storage, it generates replica copies on the fly and computes correct proofs from the existing
replicas, thus passing the remote data checking protocol undetectably.
To remedy the aforementioned the client creates rlj different replica copies for the same file. However a
colluding user can share its secret key information with a colluding replica server thus enabling the latter to
reduce its storage cost and cheat under the radar of an honest user whenever the latter challenges the replica
server to prove file possession.

2. Incorrect Deduplication level: In order to increase its revenues a cloud service provider may advertise ap-
pealing charging costs for deduplicated files: Users are charged at each period inversely proportional to the
number of times a files has been stored in a replica server. A malicious cloud though can always claim unique
file storage on similar files, thus increasing its revenues.

3.3 Security Requirements
Inspired by the aforementioned adversarial model we define the security requirements of our system. The security
guarantees protect an honest user from a coalition of malicious replica servers and users who will try to not
follow the contractual agreement with respect to 1) faithful storage of a file at rlj replica servers and 2) the correct
deduplication level on the bill.

5

3.3.1 Collusion Resistant Replicas Integrity We do not consider any confidentiality guarantees or privacy
attacks due on deduplication. In contrast with previous multi-user Cloud storage services, whereby the client can
collude with a single replica server in order to convince an honest user for the faithful storage of a file, in our
model multiple replica servers RS can collude either in between them, or they can maliciously collaborate with
a malicious user. We build a stronger and more realistic adversarial model in terms collusions. ReDup exhibits
similar security requirements with multiple replica remote data checking guarantees, whereby a malicious cloud
proves to a user that it faithfully stores rlj copies of a file at their entire form. In contrast with single user multiple
replica remote data checking protocols [1, 9] ReDup aims to assure data integrity of each replica file under ROTF
attacks between malicious users and replica servers.

More specifically we say that ReDup assures:

– SG1: Replica integrity, if each replica server RSi can convince a user Uj with high probability that the replica
Hi remains intact in its entirety, for 1 ≤ i ≤ rlj .

– SG2: Storage Allocation, if the amount of data stored by a CSP for a file F of size |F| on a replication level rl
is at least rl|F|.

SG1 protects the users from a CSP that does not store replica files in their entirety. SG2 protects users from a
CSP that does not respect its contractual obligations of storing rlj replicas and tries to reduce its costs by storing
less replicas. Together, SG1 and SG2 imply that the CSP faithfully stores all rlj replica copies of a file F. We
capture these two guarantees under the Collusion Resistant Replicas Integrity (CR2P) property, formulated with a
standard security game between the adversary and the challenger:

Following previously formats for game based definitions [4, 7, 19] in RDIC protocols we extend them in order
to follow our stronger adversarial model whereby a replica server can collude either with another replica server
or with malicious users. During the game an adversary A creates the environment, consisting of users, replica
servers, files, replicas, authentication tags and keys. As in our adversarial model we assume A can collude with
another user U or another replica server RS we allow A during the game to have full control on them by having
access to the oracles, which provide all the secret transcripts. We denote by Oabc(k, l,m;x, y, z) the abc oracle
which takes as inputs the parameters k, l,m and executes its code with local variables x, y, z, which are unknown
to the caller–the adversary A. We denote with capital lowercase ai a list which can take up to i elements. With U ′
we refer to the set of corrupted users and with U −U ′ to the uncorrupted users. Subsequently withRS ′ we refer to
the corrupted replica servers and withRS −RS ′ to the faithful servers. The notation Ui → U states the insertion
of element Ui to the set U . For simplicity of presentation we do not assume two different adversaries A which
are stateless but we make the implicit assumption derived from the soundness proofs of zero-knowledge protocols
that the extractor does not participate in the real execution of the protocol. A has access to the following oracles:

– U ′,RS ′ ← OSetup(uidm−1, sidt;m, rluid): Whenever invoked with parameters a list of users ids uidm−1 and
replica servers ids sidt, the OSetup oracle stores the ids to the appropriate sets U ′,RS ′, denoting the list of
corrupted users and replica servers, respectively.

– Hi ← OGenReplica(F, uid; fk, i): The OGenReplica oracle takes as input a file F and a user id uid. It first checks
if uid ∈ U ′. If that user is corrupted then it outputs the replica copy Hi for the replica server RSi for that user
on file F using the key fk. The oracle keeps track of the uploaded files and for similar files it uses the same
key in order to simulate the deduplication process. Finally OGenReplica also stores Hi → H in the list H and
sends Hi to A.

– vtiuid ← OTagFile(Hi, uid; kuid): The OTagFile oracle on input Hi and uid first checks if uid ∈ U ′ and Hi ∈ H .
If both hold, then computes the tags vtiuid using kuid and forwards them to A.

– cuidF ← OChallenge(F, uid; kuid): TheOChallenge oracle outputs a challenge for file F for the user Uuid ∈ U −U ′.
– β ← OVerify(proofuid,iF , τi;T): The OVerify oracle takes as input a proof proofuid,iF and a response time τi. It

outputs β = 0 if either the proof is not valid or τi > T , otherwise it sets β = 1.

During the GameCR
2P

A game the adversary communicates with the oracles in order to create the environment to
be challenged upon as follows:

6

GameCR
2P

A

1 : U ′,RS ′ ←$AO
Setup

//A compromises users and servers

2 : for i = 1...rluid do

3 : Hi ←$AO
GenReplica(F,uid;fk,i)//A learns replica copies

4 : vtiuid ←$AO
TagFile(Hi,uid;kuid)//A asks for verifications tags

5 : cuidF ←$AO
Challenge(F,uid;kuid)//A is challenged

6 : proofuid,iF , τi ← A(U ′,RS ′,F, Hi, vtiuid, cuidF)//A issues a proof proofuid,iF

7 : βi ← OVerify(proofuid,iF , τi;T)

8 : return β =
∧
βi//Experiment is successful if β ?

=1

Finally the game outputs a value β ∈ {0, 1}. We define the success probabilities of an adversary A playing the
GameCR

2P
A game as: SuccCR

2P
A = Pr[GameCR

2P
A = 1]. The heuristic is that if the output of the experiment

equals 1 then A should posses all replica copies H1 . . . Hrlj . In order to formulate that heuristic we employ the
notion of the extractor E , which can communicate with the adversary and rewind her at different steps in order to
extract a file F from all replica copies H1 . . . Hrlj . We define the success probability of the extractor E as follows:
SuccExtractA = Pr[F = Ffh|Ffh ← EA].
Definition 1. (CR2P: Collusion Resistant Replica Possession) ReDup system guarantees Collusion Resistant
Replica Possession if under any collusions for a set users |U | who have stored the file F in rlj replica servers
RS1,RS2,RS3, · · · ,RSrlj and for any PPT adversaryA, for any security parameter λ and a negligible quantity
negl(λ), it holds that:

Pr[SuccExtractA ≤ negl(λ) ∧ SuccCR
2P

A > negl(λ)

: E U
′,RS′,F,Hi,vtiuid,c

uid
F←− A ↔ GameCR

2P
A] ≤ γ

Intuitively, the CR2P definition establishes an upper bound γ on the event that an adversary A wins the
GameCR

2P
A game with non-negligible probability and that an extractor E is not able to extract the file after inter-

acting with A.

3.3.2 Deduplication Correctness A rational CSP aims at increasing its revenues. Following a greedy strategy
it can deny deduplication on identical files on its storage log and charge users as owning a file that is not identical
with any other. Claiming a smaller deduplication level on the storage log included at each bill, allows the CSP to
enjoy higher charges. As such, the cloud ought to prove to a user Uj that is legitimately charged: All users, who
have deduplicated the file, have been accumulated in order to enjoy reduced costs. The cloud can accumulate the
deduplication level with respect to a file in an authenticated data structure. For each file it keeps track of user ids
as input to the data structure for a file and whenever a user wants to verify deduplication correctness for a file,
then it shows the user the size of the structure. However, acting maliciously it can delete elements undetectably.
Therefor for deduplication correctness and to detect the malicious behavior of the CSP apart from the size of the
data structure users ask for membership proofs of their id associated to the file they have stored. In that way when
the CSP claims a wrong, smaller deduplication level by deleting user ids, it can be detected by the membership
proofs verification.

Thus to assure deduplication correctness it suffices to attest:

– dc1) membership of each user who has stored identical files on the authenticated data structure.
– dc2) a correct size of the authenticated data structure.

Finally grouping together dc1 and dc2 we define (informally) deduplication correctness as:
SR3: Deduplication Correctness assures that a malicious CSP cannot claim a deduplication level dli

′

F for a
file F at replica server RSi different than the real one dliF, in an undetectable way.

Definition 2. (Deduplication Correctness) During an epoch ep, each user Uj stores file replicas at replica servers
RS1,RS2,RS3, · · · ,RSrlj and the deduplication level for a file F at each replica server RSi is dliF. The system
guarantees Deduplication Correctness if, for any epoch ep, an honest user U who runs the AttestDedup(ep, U,F)
algorithm will detect if a dishonest CSP claims a deduplication level dli

′

F 6= dliF for file F at replica server RSi.

7

4 Preliminaries

In this section we present the preliminaries building blocks of our design.

4.1 Shortcut Free - Time Consuming Function (SFTCF)

We put forward the definition of a Shortcut Free and Time Consuming Function S. S is a symmetric trapdoor
function which takes input I with v blocks and outputsH with v blocks. Moreover S should adhere to the shortcut
free property which states that the holder of any output H ′ with v′ < v blocks will not help her to recover the
remaining v − v′ output blocks in time less than a threshold T , even when it knows the trapdoor of S. Finally
the running time of S should be considerably greater than the running time of a well known functionality G.
For instance G in our case is the time to fetch from the hard disk v blocks and send them to a destination. The
properties of a SFTCF are:

1. Shortcut Freeness: Storing any intermediate state st, which is smaller than the original size v of the input,
does not result in evaluation time smaller than the running time of S on the original input of size v: S cannot
be decomposed in S1, S2, . . . , Sv , such that S(v) = S1() ◦ S2()◦, . . . , ◦Sv()

2. G-Detectable Time Consumption: Evaluation of the function requires computational resources, which re-
sults in a considerable detectable time for its evaluation. That is, for another function G whose complexity is
ΩG(v) we say that S guarantees G-Detectable Time Consumption if ΩS(v)� ΩG(v).

Security. An SFTCF is correct if it allows the recovery of the original input I from the output H . Evaluating S
and S−1 cannot be done without having the secret key.

Definition 3. An SFTCF S is secure if it assures shortcut freeness and is G-Detectable Time Consuming for any
G with ΩS(v)� ΩG(v).

4.1.1 Instantiation We present our SFTCF S instantiated with the butterfly function from [20]. Let I and H
be the input and output domain consisting of v block files. The butterfly construction is split in d rounds. For each
round an atomic operation w takes as input pairs of blocks and outputs another pair, acting as input for the next
same round. A PRP such as AES can be used for w. More formally S : Iv → Hv . The input blocks at level 1
are denoted as I1[u], u ∈ [1, . . . , v] and the final output blocks as Hd[u], u ∈ [1, . . . , v]. Any intermediate level
blocks Hj [u], j ∈ [1 . . . d] are computed from the output of the previous level blocks Hj−i. Thus, w is invoked
O(v/2 log2 v) times. An example is shown in figure 3. v = 8 = 23 and d = 4 = log2 8. Intuitively each round
mixes each block with another one. At the final round the result of each block H4[u] is the result of mixing uth
block with all the other u − 1 blocks. The final block H4[3] from round 4 it is a mix of block 3 and block 7 with
w. Blocks 3, 7 are the mix of blocks 1, 3 and 5, 7 accordingly from round 3. Blocks 1, 3, 5, 7 are the output blocks
from the input blocks 1, 2, 3, 4, 6, 7, 8. Deleting only the block H4[3] will not aid the malicious cloud to evaluate
S any time faster thanO(v) sinceH4[3] as we show depends on all blocks and S needs to be invoked from level 1.
In the aforementioned example we assume the number of input blocks to be a power of 2. Otherwise more rounds
than log2 v are needed to present a complete mix of all blocks, or a bigger branching factor of w (e.g: mix& slice
technique from [5]).

An alternative approach would be to apply a symmetric encryption algorithm multiple times on all the blocks
of the input file F. However this would have a negative effect at the user side concerning the decoding time of
each block. Namely, to achieve the same time delay as with the butterfly construction and assuming the running
time |w| of w equals the computation time of a single block encryption with the multiple encryption approach a
user has to apply the inverse of encryption more times than with the butterfly approach. E.g: The time threshold
is set to 6|w|. User encrypts a file composed of 8 blocks 7 times, resulting in 56 encryptions of a single block. In
contrast with the butterfly construction user needs to invoke w 12 times to guarantee the same threshold.

4.2 Merkle Trees

The use of Merkle Trees to authenticate streams of data has already been proposed by Merkle [16]. A binary tree
whereby the leaf nodes correspond to data and intermediate nodes keep digest thereof reduce the authentication
procedure to logarithmic costs on the height of the tree and the size of data subsequently. Let W be a collision
resistant hash function: W{0, 1}∗ → {0, 1}λ, mapping strings of arbitrary length to λ-bit strings. Assume a vector

8

r r r r r r r r

r r r r r r r r

r r r r r r r r

r r r r r r r r

input

level 1

level 2

I

H

w w w w

I1[v]

Hd[1]Hd[2]Hd[3] Hd[v]

w w w w

w w w w

level 3

I1[1]I1[2]I1[3]

Fig. 3: A butterly based SFTCF.

of data elements l = {l1, l2, l3, . . . , ln}. The MT(l) algorithm computes (cf. figure 5) the Merkle tree for the data
vector l and outputs its rootl (cf. figure 4-left). All leaf nodes correspond to the hash of each element W(l) and
parent nodes are computed as the hash of the concatenated children hashes. A prover who claims membership of
data element lx runs the ProveMT(x, l) algorithm and sends the authentication path aplx to the verifier. A verifier
can check the correctness of the authentication path with respect to the membership of the element lx in l by
recomputing the Merkle tree based on the authentication path aplx running the CheckPath algorithm. Finally it

checks if the computed root W′ ?
= rootl. For example in figure 4-right apl3 = {h4, h9, h14}.

h1 h2 h3 h4 h5 h6 h7 h8

H(h1||h2) H(h3||h4) H(h5||h6) H(h7||h8)h9 h10 h11 h12

h13 h14H(h9|h10) H(h11|h12)

H(h13|h14) = rootl

H(l1) H(l2) H(l3) H(l4) H(l8)H(l5) H(l6) H(l7) h1 h2 h3 h4 h5 h6 h7 h8

h9 h10 h11 h12

h13 h14

Fig. 4: Merkle Tree construction for the dataset l = l1, l2, l3, l4, l5, l6, l7, l8. White nodes are leaf nodes. Grey nodes are
intermediate-parent nodes.Black nodes consist the authentication path apl4 = {h4, h9, h14} of the dashed line leaf node l3.
Note that there is no requirement the number of elements to be hashed to be a power of two. In that case the tree is not balanced.

4.2.1 Security The security guarantee for a Merkle tree hash algorithm demonstrates that it is impossible for
an adversary to forge a Merkle Tree Hash rootl ← MT(l) claiming valid membership proof for elements which do
not belong in l.

Definition 4. If W is a collision resistant hash function then the MT(l) hash algorithm outputs a merkle hash tree
for the dataset l which is also collision resistant, i.e: an adversary A can claim to authenticate an element x 3 l
by generating the same rootl ← MT(l) algorithm with negligible probability.

5 ReDup Overview

We present an overview of ReDup. Recall the two challenges ReDup addresses: CH1a) resiliency against collu-
sions between servers, CH1b) resiliency against collusions between a user and replica servers and CH2) scalable
transparent deduplication for multiple replica servers.

CH1a: To avoid collusions between servers, we rely on encrypting the replicas with different keys. As such,
when RS′i does not store its replica copy Hi and acquires it from another server RSi on the fly to correctly reply

9

rootl ← MT(l)

1 : n = |l|
2 : if n == 1

3 : rootl = W(l1)

4 : return rootl

5 : else

6 : q =
⌊n
2

⌋
7 : MT(l0 . . . lq)||MT(lq+1 . . . ln)

apmx ← ProveMT(x,l)

1 : n = |l|
2 : if n == 1

3 : return ⊥
4 : else

5 : q =
⌊n
2

⌋
6 : if x < q

7 : return ProveMT(x, l0 . . . lq)||MT(lq+1 . . . ln)

8 : else

9 : return ProveMT(x− q, lq . . . ln)||MT(l1 . . . lq)

root← ComputePath(ap, x, n, lx)

1 : // lx:=the data element,x:=its ranking in the merkle tree

2 : // n:=the total number of leaves in the merkle tree

3 : if n == 1

4 : return W(lx)

5 : else

6 : q =
⌊n
2

⌋
7 : if x < q

8 : return ComputePath(ap1 . . .ap|ap|−1, x, q, lx)

9 : else

10 : return ComputePath(ap1 . . .ap|ap|−1, x− q, n− q, lx)

0, 1← CheckPath(ap, x, n, l, root)

1 : // lx:=the data element,x:=its ranking in the merkle tree

2 : // n:=the total number of leaves in the merkle tree

3 : root′ = ComputePath(ap, x, n)

4 : return (root′ == root)

Fig. 5: Merkle tree algorithms.

to the challenges of the RDIC protocol, it fails since each user Uj differentiates replica copies Hi with different
keys.

CH1b: To mitigate collusions between a user and a replica server, Uj encrypts each replica with a SFTCF
function S during the Replicate phase. Uj evaluates S function on input the file blocks f1, . . . , fv , keyed by a
different key for each replica. Authentication tags are computed based on the output of S by each user. Finally,
Uj uploads tags and replica copies to each replica server and whenever it wants to get assurances for the faithful
storage of each replica file at each replica server RSi, it runs a remote data integrity checking protocol RDIC with
each RSi. In contrast with previous RDIC protocols, the verification procedure during RDIC at ReDup, succeeds
if and only if the time to verify the integrity of each replica copy is below a threshold value T , which is greater
the time to evaluate S(F). As such Uj can detect malicious behavior of a replica server RSi who colludes with a
user to answer the challenges of RDIC without storing the replica file.

CH2: To assure correctness of the deduplication level, the CSP during the AttestDedup phase creates a digest
per file, per time epoch ep over the authenticated data structure of each file, which accumulates all users who have
stored that file. For the authenticated data structure creation we employ a Merkle tree construction (cf Fig. 6). User
ids are the leaves of the tree coupled with information about the identifier of the accumulated file and the epoch,
which are accumulated to create the public root of the Merkle tree hidF

0 , acting as the digest. For membership
queries (dc1 cf. subsection 3.3.2) it suffices for Uj to obtain the sibling path, which corresponds to its leaf and
to check the consistency of the Merkle tree: check equality of the constructed root with the one published by the
CSP.

To attest the correct size of the deduplication level of a file (dc2 cf. subsection 3.3.2), we follow the accumu-
lation Merkle tree construction in [3, Section 3.2.1], dubbed as CARDIAC, which enables the CSP to prove an
upper bound on the number of leaves of the Merkle tree. In CARDIAC there is an upper bound of users X , which
are accumulated in the same Merkle tree hidF

0 as for dc1, corresponding to users who stored file F. The tree is
augmented with 2fh − |X| zero leaves, which are leaves with the hash of value of 0, for a fixed height fh of the
Merkle tree. A rational CSP shows less elements in X in order to increase its revenues. During the deduplication

10

level proof the CSP sends the right-most non-zero leaf and its sibling path. At the verification phase, the client
checks the sibling path of this last node and also builds up the tree starting from the zero-leaves. If a server is
cheating by excluding leaves of users, it should add more zero nodes, otherwise the client would detect it, when
it builds up the tree from the zero leaves. However, adding more zero-leaves will destroy the structure of the tree
and the verification during dc1 will fail. We show first a naive adaptation of CARDIAC to our multi-replica model
and then we present an improved solution.

Naive solution. A superficial adaptation of CARDIAC to a multi-replica scenario does not scale well with
different replication level policies per user. Imagine 10 replica servers, one file and three users (e.g Fig. 6) with
three different replication levels: rl1 = 3, rl2 = 5, rl3 = 10 for users U1, U2, and U3 accordingly. Then the CSP
following the naive CARDIAC approach has to maintain 10 different trees, one per each replica server RSi.
Whenever U3 wants to check for dc1 has to obtain Merkle sibling paths for 10 different trees, increasing the proof
computation and verification time and the communication bandwidth. Alike with dc1, U3 must reconstruct the 10
trees from the zero leaves for dc2 and check membership in 10 Merkle trees for all the rightmost non-zero leafs.
E.g in Figure 6 fh = 2 and U2 to attest a correct deduplication level in the tree corresponding to the 5th replica
gets as part of the proof for dc1 the sibling path of node h2 which is h1, h6. For dc2 the CSP returns the claimed
correct deduplication level number dl5F = 3, the rightmost non-zero leaf = h3 and its sibling path that allows U2

to build up that tree starting from the remaining zero leafs = h5. The client for dc1 checks the correctness of the
Merkle tree with the sibling path. For dc2 U2 verifies 1) whether dl5F + |zero leafs| ?

= 2fh and 2) whether the
rightmost non-zero leaf h3 with its sibling path h5 correctly build the Merkle tree for RS5.

Optimized solution. Recall that the CSP offers a finite number of different replication policies, which in a
real world example could be 3, 5, 10 (RP = 3, rp1 = 3, rp2 = 5, rp3 = 10) different replica servers and users
choose their replication level rlj accordingly. Our solution reduces the number of Merkle trees per file from rlj to
a constant number 3, which is the number of different replication policies offered by the CSP. Our observation
is that different replica server Merkle trees which are symmetric: the same number of users are accumulated in
different trees, can be further aggregated. To accomplish the aggregation we annotate the leaves of the tree with
the id of all symmetric RSi (cf. Fig. 7). It is not difficult to see that all the different sets of symmetric trees
equal the different replication level RP offered by the CSP. For example, for replication policies rp1 = 3, rp2 =
5, rp3 = 10 and three users with replication levels rl1 = 3, rl2 = 5 and rl3 = 10, then the three symmetric
replica server groups are aggrp1 = RS1,RS2,RS3 for U1, U2 and U3, aggrp2 = RS4,RS5, for U2 and U3 and
aggrp3 = RS6,RS7,RS8,RS9,RS10 forU3. Thus, following the example in Figure 6 now userU3 has to perform
3 verifications for dc1 and dc2 for one file F stored in 10 replicas instead of 10 verifications. Consequently the
CSP aggregates proofs for 10 Merkle trees in 3 trees as shown in Figure 7.

h5 h6h6

W(F,RS10, U3, ep)

root10

h1

h5

root6

W(F,RS10, U3, ep)

h6h6

h1

h1

root4

W(F,RS4, U2, ep)

h6

h2

h6

W(F,RS4, U3, ep) W(F,RS5, U3, ep)

h6

h1 h2

h6

W(F,RS5, U2, ep)

root5

W(F,RS3, U3, ep)

h6

h1 h2 h3

h6

W(F,RS3, U1, ep)W(F,RS3, U2, ep)

root3
root1

W(F,RS1, U2, ep)W(F,RS1, U1, ep)

h6

h3h2h1

h6

W(F,RS1, U3, ep)

h5
h5

b b b
b b b

b b b

sibling path node for the zero leaf nodes

zero leaf H0 = W(0)

H0 H0 H0 H0

H0 H0H0 H0 H0H0

H0

H0 H0

Fig. 6: Merkle Trees for Deduplication Level Proofs.

11

aggrp1 = RS1||RS2||RS3
W(F, aggrp1, U2, ep)

root1

W(F, aggrp1, U1, ep)

h13

h10

h4h3h2h1

h6

root3

W(F, aggrp3, U3, ep)

h13

h10h9

h1

h5 h6h6

h1 h2

h6

W(F, aggrp2, U2, ep)

root2

W(F, aggrp2, U3, ep)

aggrp2 = RS4||RS5 aggrp3 = RS6||RS7||RS8||RS9||RS10
H0 = W(0)

W(F, aggrp1, U3, ep)

H0 H0 H0 H0 H0H0

h5h5

Fig. 7: Optimized Merkle Trees for Deduplication Level Proofs. The grey node is the zero node for that tree: its value is the
hash digest of 0. During the AttestDedup.V phase the user to verify the correctness of the deduplication level proof checks the
sibling path of the right-most non-zero node h3 and then recomputes the tree from the remaining zero nodes and their sibling
path: the crossed filled h5 node.

6 Protocol

In this section we present our protocol in full details in figures 8, 9 and 10. We start with some common notation
(cf. table 1).

RSi Replica server i, 1 ≤ i ≤ n
Uj User j, 1 ≤ j ≤ m
fu File block u, 1 ≤ u ≤ v
S Shortcut Free and Time Consuming Function (SFTCF)
fk Secret key for S
W A hash function W : {0, 1}∗ → {0, 1}λ

vtij Verification tags created by user Uj for her replica stored at RSi
dliF Deduplication level of file F at RSi
rlj Replication level for user Uj
fh Fixed height of the Merkle tree
nz Index of the rightmost non-zero leaf of a Merkle tree
Z idF A list of users owning file with id idF

l
idF
U A list of hashes of each element of the list Z idF

rootidF The root of the Merkle tree for file idF

h
idF
0 The signed root of the Merkle tree for file idF

apm
idF
j The authentication path for node hj of the Merkle tree with root h

idF
0

h
idF
nz The rightmost non-zero leaf of the Merkle tree with root h

idF
0

apc
idF
j The authentication path of the rightmost non-zero leaf of the Merkle tree with root h

idF
0

π
idF,ep
j The proof of deduplication correctness for epoch ep of user Uj and file with id idF

Table 1: Notations

A file F consists of file blocks f1, f2, ..., fv . Moreover, each replica server RSi maintains of a log file FL to
keep track which users have stored a specific file. FL is abstracted as a dictionary keyed by the id of a file idF.
FL[idF].append(Uj) denotes the insertion of user Uj under the key idF and FL[idF] returns a tuple set with the id
of all users who have stored file F with id idF. In turn, the CSP stores in a log dictionary RL the replication level
choice of a user and the files each user has stored: RL[Uj] = (rl : rlj , f : ()). We write RL[Uj] to fetch the tuple
(rl : rlj , f : ()) and RL[Uj].rl to retrieve the replication level of user Uj . RL[Uj].f denotes the identifiers of the files
Uj has stored. The protocol overall can be described in four phases: Setup,Replicate,RDIC,AttestDedup. In the
Setup phase users agree on replica generation keys and tag keys.

Setup: Each user Uj runs the Setup algorithm, which outputs tag keys kj (line 1, Setup algorithm, fig. 8).
Users agree on a key fk to compute the replica copies, different per replica, but identical inside a replica server
in case of identical files. The derivation of fk is a black box in our protocol. Furthermore, each user chooses its
replication level rlj and forwards it to the CSP (line 2), which in turn stores it at the replication level dictionary
RL[Uj].rl = rlj (line 3).

Replicate: Each user calls this algorithm, which outputs the replica copies to be stored at each replica server
RSi and the verification tags thereof. More specifically, Uj for each replica server RSi, 1 ≤ i ≤ rlj generates
the replica copy Hi (Replicate, fig 8) with a Shortcut-free time consuming function as the butterfly construction

12

from the hourglass scheme [20]. A key fki is derived for each replica server RSi with the use of a PRF, which
is keyed by fk and takes as input the identifier of the replica server i. Finally the SFTCF S is applied to all
blocks f1, f2, . . . , fv and the replica copy Hi is obtained. For the generation of the verification tag files vtij for
each replica RSi and user Uj we base our solution to CPOR for remote data integrity checking such as CPOR. In
contrast with previous RDIC protocols though the TagFile does not take the file F but the output Hi of the S time
consuming function.

TagFile algorithm first splits the replica copy Hi to v blocks H1
i , H

2
i , . . . ,H

v
i . For each block Hi a random

element a $← Zp is chosen uniformly at random. The final tag is coupled with an unpredictable function PRF (i|u),
encompassing information about the current block u and the replica server RSi. Finally, the verification tag for
user Uj for replica server RSi is vtij = {aujHu

i + PRFkj (i|u)}vu=1 (lines 2-4, TagFile algorithm). Uj runs the
TagFile for all the replica servers of its choice rlj .

RDIC: For the remote data checking protocol the users and the CSP invoke the Challenge,Prove and Verify
algorithms (cf. 9) as in typical remote data integrity checking protocols. For our protocol instantiation we employ
the CPOR technique. User issues challenges for each replica server RSi and the latter computes a proof for each
challenge. Finally the user verifies the correctness of the proof. The verification of RDIC protocol, in contrast with
previous remote data integrity checking protocols, succeeds if and only if the time to verify the integrity of each
replica copy is below a threshold value T > Time(S(F)).

AttestDedup: The CSP computes the Merkle trees per epoch with the AttestDedup.P algorithm (lines 1-14 ,
alg. AttestDedup.P, fig. 10). Each tree associates the users storing a file F at the leaves of the tree along with
all the symmetric replica servers of each replication policy inside each leaf. More specifically for each different
replication policy rp offered by the CSP (line 2 , alg. AttestDedup.P) the CSP fetches the files that have been
stored in the system (line 3) and retrieves the id of the users who have stored these files at any replica server
(line 4). Each user will be a different leaf of the tree (line 5). In lines 6-9 the correct symmetric replica servers
for rp are accumulated in the leaf of each user and finally the leaf vidF

U is being hashed with a collision resistant
hash function W to output the digest lidF

U . For the rest 2fh − |lidF
U | nodes, zero leaves are computed as W(0) to fill in

the tree of height fh. Once all the leaves of the tree have been computed, the CSP calls the MT algorithm, which
computes the root of the Merkle tree rootidF (line 12) and finally signs it (line 13) with an unforgeable signature
Sig to compute Sig(rootidF) = hidF

0 .
To compute the proof for a user Uj the CSP computes the sibling paths apmidF

j for all the trees the user
is included (line 4), using the common Merkle tree membership proof (ProveMT algorithm). That assures that
the user has been inserted in the Merkle tree for that file F. To establish a correct deduplication level of the tree
(total non-zero leaves), the CSP fetches the right-most non zero leaf node hidF

nz of each tree whereby Uj has been
inserted, with the FetchR algorithm and computes its sibling path apcidF

j as well (lines 5-6). Finally it forwards
the proof πidF,ep

j = (apmidF
j , hidF

nz , apc
idF
j , fh, |lidF

U |) to Uj .
Uj upon receipt of the proof πidF,ep

j invokes AttestDedup.V to verify the proof. It first checks whether the
claimed deduplication level is consistent with the zero leafs for a tree of height fh (line 4, alg AttestDedup.V). For
the dc1 part, which assures that its id is included in the tree(s) of the corresponding files, Uj calls the CheckPath
(which also verifies the signed root of the Merkle tree) to verify the consistency of the returned sibling path apmidF

j

(line 5, alg AttestDedup.V). To verify dc2: the correctness of the deduplication level |lidF
U |, Uj first verifies the

paths of all hidF
nz with the CheckPath Merkle tree algorithm (line 6, alg. AttestDedup.V). Afterwards the user

checks if (2fh − 1)− |lidF
U | nodes computed as zero leaf nodes, along with their sibling nodes, compute correctly

the Merkle tree with the CheckZeroNodes algorithm (line 6, alg AttestDedup.V). Finally if all the checks succeed
(lines 4-6 alg. AttestDedup.V), Uj outputs 1 as a successful deduplication level verification, otherwise it outputs
0 (line 7, alg. AttestDedup.V).

7 Analysis

7.1 Security

ReDup scheme is secure as long as it guarantees Collusion Resistant Replicas Integrity and Deduplication Cor-
rectness. We split the Collusion Resistant Replicas Integrity proof in two parts. The first part focuses on the
correctness property of the proof returned by each RSi during the RDIC subprotocol. Namely, we prove that a
rational adversary A cannot forge an incorrect proof to be accepted by an honest user Uj . At the second part we

13

– Setup(1λ, n, rlj): // Run by Uj .

1 : (kj , fk)← KeyGen(1λ, n)

2 : Uj
rlj−→ CSP

3 : CSP : RL[Uj].rl = (rlj)//CSP stores the replication level in the log file rl.
– Replicate(F, fk, kj , rlj): // Run by Uj .

1 : for (i = 1, i ≤ rlj , i++) do

2 : Hi ← GenReplica(i,F, fk) :

3 : vtij ← TagFile(Hi, kj)

4 : Uj
Hi,vt

i
j−−−−→ RSi

5 : CSP : FLi[idF].append(Uj)
– RDIC(F, < Uj : Q >,< RSi : σi >): // Run by Uj and CSP.

1 : for (i = 1, i ≤ rlj , i++) do

2 : Q← Challenge(l, n)

3 : σi ← Prove(Q,Hi, vti)

4 : τi ← (Time(Verify(σi) ≤ T)) : 1?0

5 : if
∧
τi

?
= 1 return 1 else return 0

– AttestDedup(ep, Uj ,F):// Run by Uj and CSP.

1 : for (ep ∈ T ∧ F ∈ FL ∧ Uj ∈ U) do

2 : π
idF,ep
j ← AttestDedup.P(ep, Uj ,F)

3 : 0, 1← AttestDedup.V(π
idF,ep
j)

Fig. 8: The ReDup system.

build an extractor, who communicates with a prover and is able to extract the file from the transcripts of interac-
tion with A. That assures that as long as the each replica server RSi answers correctly the challenges during the
challenge phase of the RDIC then it faithfully stores the replica copy.

7.1.1 Collusion Resistant Replicas Integrity For the first part we show that the only way the Verify algorithm
accepts the σi is the CSP to compute the correct response values {µdc}lc=1. Namely the proof relies on the
unforgeability of the tags and the semantic security of S: an adversaryA impersonating the cloud service provider
CSP cannot make a honest Uj during the Verify procedure to accept with the submission of wrong responses.

Theorem 1. Let PRF be a pseudorandom function,A a probabilistic polynomial time adversary and S a SFTCF
with atomic building block w which is semantically secure. Then, there is negligible probability for the Verify
algorithm to accept the {µ′dc}lc=1 6= {µdc}lc=1, during its interaction through a challenger C with A, during the
CR2P game.

For the proof of the theorem we employ the game hopping technique. Starting from the original game we
show 1) how subsequent games are constructed and 2) the distinguishing probability of an adversary A to detect
the changes in the game.

Proof. We show the sequence of games that will demonstrate the proof of Theorem 1.

– Game 0 is the original CR2P game. The adversary A communicates with the oracles:
OSetup,OGenReplica,OTagFile to create its environment. Based on that environment the challenger issues
a challenge and forwards it to A with the OChallenge oracle.

14

– (aj , kj , fk)← KeyGen(1λ, n):

– Hi ← GenReplica(i,E, fk):

1 : parse F as f1, f2, . . . , fv
2 : fki = PRFfk(i) //Derive the key for replica RSi.

3 : Hi = Sfki(f1, f2, . . . , fv) //Run the SFTCF S on E.

4 : returnHi

– vtij ← TagFile(Hi, aj , kj):

1 : parse Hi as H
1
i , H

2
i , . . . , H

v
i

2 : for (u = 1, u ≤ v, u++) do

3 : vtu,ij = ajH
v
i + PRFkj (i|u) //Compute the verification tag

4 : return vtij = {vtu,ij }
v
u=1

– Q = {dc, bc}lc=1 ← Challenge(l, n):

1 : for (c = 1, c ≤ l, c++) do

2 : dc ← [1...v]

3 : bc
$← Zp

4 : return Q = {dc, bc}lc=1

– ({µdc}lc=1, σi)← Prove(Q,Hi, vti):

1 : parseHi as H
1
i , H

2
i , H

3
i , . . . , H

v
i

2 : parse Q as {dc, bc}lc=1

3 : for (dc ∈ Q) do

4 : µdc = Σbdc ·H
c
i

5 : σi = Σbdc · vt
c
i

6 : return ({µdc}
l
c=1, σi)

– Verify({adc}lc=1, {bdc}lc=1, {µdc}lc=1, σi):

1 : if σi
?
= Σl

c=1bdc · PRFkj (i|c) +Σl
c=1µdc · aj

2 : return 1 //

3 : else

4 : return ⊥

Fig. 9: Algoriths for Replicate and RDIC . Run by U: Client , CSP:Cloud Storage Provider ,

– In Game 1 the challenger, wheneverA queries theOGenReplica oracle with input F, uid, i then C instead of using
the PRF it randomly chooses a random elements {rv}uv=1

$← Zp and stores in a lookup table T [F, uid, i] =
{rvi }uv=1. If A is able to distinguish between Game 0 and Game 1 then it halts the game. The probability to
halt the game is treated as a bad event and it is the probability of distinguishing pseudorandom output of a
PRF from a real random element. Assuming PRF is pseudorandom then the distinguishing probability is
negligible.

– In Game 2 C does not compute the correct replica Hi from the OGenReplica oracle. Instead it substitues the
output of the SFTCF S with random outputs of size v Ri = R1 . . . Rv . and forwards to A Ri. Assuming a
semantically secure S with indistinguishable encryptions A cannot distinguish Game 2 from Game 1.

15

πepj ← AttestDedup.P(ep, Uj , fh): // Run by the CSP

1 : pp = 1

2 : foreach rp do // For replication levels 3,5,10, at every loop rp = 3, 5, 10

3 : for (idF ∈ RL[Uj].f) do // For every file fetch the id thereof from RL

4 : for U ∈ FL[idF] do // Retrieve the set of users who stored the file

5 : Z idF = U||ep
6 : for (j = pp; j ≤ rp) do

// Aggregate in one tree all the RS of that replication level group

7 : if (RL[U].rl > j) continue

8 : Z idF+ = ||RSj // Aggregate all the replica servers.

9 : l
idF
U + = W(Z idF) // Using a CRHF W hash the leaf value.

10 : for (z = 1; z ≤ (2fh − 1)− |lidF
U |; z ++)

11 : l
idF
U + = W(0) // Pad with 0 leaf nodes

12 : rootidF ← MT(l
idF
U) // Build the merkle tree for lidF,rl

U

13 : h
idF
0 = Sig(rootidF) // Sign the root

14 : pp = rp

1 : foreach rp do // For replication levels 3,5,10, at every loop rp=3,5,10

2 : if (RL[Uj].rl < rp) continue

3 : for (idF ∈ RL[Uj].f) do // For every file fetch the id thereof from RL

4 : apm
idF
j ← ProveMT(hj , l

idF
U) // Compute the sibling path for Uj’s leaf

5 : hidF
nz ← FetchR(h

idF
0) // Fetch the rightmost non-zero leaf

6 : apc
idF
j ← ProveMT(hidF

nz, l
idF
U) // Compute its sibling path

7 : π
idF,ep
j = (apm

idF
j , hidF

nz, apc
idF
j , fh, dlrpF)

8 : return π
idF,ep
j , ∀idF ∈ RL[Uj].f

0, 1← AttestDedup.V(π
idF,ep
j) : // Run by Uj

1 : foreach rp do // For replication levels 3,5,10, at every loop rp = 3, 5, 10

2 : if (RL[Uj].rl < rp) continue

3 : for (idF ∈ RL[Uj].f) do // For every file fetch the id thereof from RL

4 : dlrpF + |zero leafs| ?
= 2fh

5 : 1, 0← CheckPath(hj , apm
idF
j , h

idF
0) //Check if Uj’s file F was included

6 : 1, 0← CheckPath(hidF
nz, apc

idF
j , h

idF
0) //Test inclusion of rightmost non-zero leaf

7 : 1, 0← CheckZeroNodes(h
idF
0) // Build up the tree starting from the zero nodes

8 : return (all checks == 1)?1 : 0

Fig. 10: Algorithms for AttestDedup: The CSP builds Merkle Trees and
computes the deduplication correctness proof . The Client verifies the proof.

16

– In Game 3 the challenger does some bookkeeping. Whenever A queries the OGenReplica oracle keeps track of
the result replica copies H1, . . . ,Hrlj . If A does not query the OTagFile for replica copies H1, . . . ,Hrlj , then
C calls it and stores the verification tags vtij for replica server RSi. Then when the challenger C challenges
A, C gets the response and aborts if it is not the supposed one: {µdc}lc=1, σi. Let the expected responses be
{µdc}lc=1, σi. Recall that µdc = Σbdc · vtci and σi = Σbdc ·Hc

i . A cheatingA who succeeds without sending
the expected {µdc}lc=1, σi sends to the challenger: σi′ = Σl

c=1bdc · rvi +Σl
c=1µ

′
dc
· adc , where µ′dc 6= µdc for

at least one µdc . We define ∆σ = σi − σi′ and ∆µ = µ− µ′. Therefore ∆σ = Σl
c=1∆µdc

· aj . The bad event
occurs when A passes forged responses, yet OVerify verifies correctly and ∆σ 6= 0. For fixed ∆σ and ∆µ A
has to guess the correct values of aj for a suer Uj . The only view A has for aj is from the OTagFile oracle
which responds with vtu,ij = ajH

u
i + rui , where {ru}vu=1 are uniformly at random elements in Zp.

Thus the correct probability of guessing aj is 1/p and after q queries is q/p. Thus with probability q/p A can
compute convincing responses for a replica copy Hi corresponding to replica copy Hi.

For the second part of the proof we demonstrate the feasibility of building an extractor E which extracts the file
F from its interaction with each replica server RSi. In contrast with previous definitions of soundness in proofs
of retrievability [7, 19] we enhance our model with a time parameter in which the colluding A with a user U ′j has
to issue the proof for the faithful possession of replica copy.

Theorem 2. ReDup system assures Collusion Resistant Replicas Integrity assuming a Shortcut Free and G-
Detectable Time Consuming SFTCF S.

Proof. (Sketch) A file F consists of v blocks: f1, f2, f3, . . . , fv and is uploaded in t replica servers. Ai corrupts
RSi and tries to cheat. A the CSP controls all Ai. Let δui the probability Ai corrupts block fu at replica server
RSi. We assume for the sake of lucidness that all δui are equal.1 Let δui follow a Bernoulli distribution with
success probability δui denoting the probability A corrupts block fu at replica server RSi and failure probability
1 − δui . Let Uuid be the user who challenges the CSP. Then all the vrluid blocks have corruption probability
δui for u ∈ [1 . . . vrluid]. The success probability SuccCR

2P
A for A to pass a challenge of size l depends on the

failure probability 1 − δui and the success probability δui to corrupt fu by outputting the correct challenge on
time less than T . We assume S is a secure SFTCF. The probability to correctly guess the challenged blocks
equals the probability to randomly guess the output of S for each block of the challenge of size l, and is equal to
SuccCR

2P
A =

∏l
u=1 (1− δui +

δui ε
2v), where ε is a negligible probability that corresponds to the event of evaluating

S in time less than T . From that we conclude that SuccCR
2P

A ≤ negl(λ). Thus if the corruption probability δui
for a block fu is ≈ 1 then the first summand annihilates and the second summand δui ε

2v is negligible small. When
δui ≈ 0 then A does not follow an adversarial behavior and faithfully stores all blocks.

We analyze the success probabilities of the extractor E who communicates with the adversary A and aims to
extract the file F from the transcripts of interaction with A. E has access to the challenges given to A and tries to
reconstruct the original file F. The extractor E simulates the OTagFile oracle. When A queries the OTagFile oracle
with input (Hi, uid), E first checks if uid ∈ U ′ and Hi ∈ H . If both hold then it computes the tags vtiuid and
forwards them to A. We assume A stores only s < vrluid blocks. By storing we mean both the blocks and the
verifications tags. Thus, during the challenge, A has to correctly guess the blocks and tags of the challenge. Let
some s′ < l, s blocks of the total l-block challenge be stored byA. We denote byE1 the eventA correctly guesses
the remaining l − s′ challenged blocks (which are not stored), E2 the event A computes the responses for that
challenge correctly and E3 the event the OTagFile oracle outputs a special malicious output h∗, from which A can
compute the remaining l − s′ blocks and the responses on the fly. Accordingly, the probabilities for E1, E2, E3

are p1, p2, p3, respectively.
Clearly, p1 = p2 = 2l−s

′

2v , p3 = 1
2q , where q is the digest size of the OTagFile response. As such, SuccExtractA =

1−(p1p2+(1−p1p2)p3) = 1−p3+p1p2(p3−1) = 1− 1
2q+

22(l−s
′)

22v (1
2q−1), meaning that SuccExtractA > negl(λ).

As such, Pr[SuccExtractA ≤ negl(λ) ∧ SuccCR
2P

A > negl(λ)] ≤ negl(λ).
1 The CSP may vary that probability according to frequency of challenges per RSi–i.e: RSa is challenged more often than

RSb, thus δa ≤ δb.

17

7.2 Deduplication Correctness

Theorem 3. ReDup system guarantees Deduplication Correctness against a rational adversaryA who controls
all the replica servers RSi assuming 1) a collision resistant hash function W during the construction of the Merkle
trees at the AttestDedup phase and 2) honest users.

Proof. (Sketch) A rational adversary A will only act maliciously when it has economic incentives from this
behavior. Thus, a detectable malicious behavior, which in turn degrades its reputation is not part of its strategy.
During the AttestDedup interaction with each user, the CSP provides proofs of memberships and proofs for
the correct deduplication πidF,ep

j of a file with identifier idF for a time epoch ep, through Merkle hash trees. An

incorrect dli
′

F can be either greater or smaller the correct one dliF.

– Case 1: dli
′

F < dliF. As users act honestly they will verify the membership test of their leaf node at each
symmetric Merkle tree at each time epoch ep. Assuming a rationale A, and a collision resistant hash function
W, used for the construction of all the symmetric trees, then an honest user Uj during the verification of the
correctness of dli

′

F < dliF will accept the proof π̂j idF,ep with negligible probability neg(λ) ≤ 2−λ, where 2λ is
the image length of the collision resistant hash function W. The collision resistance property of W prevents A
of computing a set of leaves lidF,rl

U ′ different than the correct set of leaves lidF,rl
U with the same root digest hidF,rl

0 .
If that is doable then we show a reduction, which breaks the collision resistance property of W. The reduction
is omitted in the full version.

– Case 2: dli
′

F > dliF. This event does not occur, as it will further reduce the storage allocation costs per user since
by adding more leaves to a tree and reducing the number of the 0 leaf nodes to demonstrate that dli

′

F > dliF,
the cost of a deduplicated file will be shared across more users than actually store the file.

This concludes the proof and ReDup system guarantees Deduplication Correctness with non negligible proba-
bility 1− 2−λ.

7.3 Efficiency

We perform a theoretical evaluation of our design. More specifically we analyze the cost at user side for replica
copies and challenges generation, the verification of the deduplication cardinality proof and the response verifi-
cation overhead from the challenge during the RDIC subprotocol. Accordingly we analyze the costs at the CSP
side for the responses of the challenge per replica server and the deduplication cardinality proof of correctness.
All algebraic operations take place in Zp.

User overhead. Uj at the Replicate phase invokes rlj times a PRF function to derive a secret key for each
replica RSi and then calls the SFTCF function S, rlj times to generate the replica copies Hi, i ∈ [1, . . . , rlj]
within the GenReplica algorithm. To tag a file F at each replica server RSi, i ∈ [1, . . . , rlj] user UJ computes
n multiplications, n additions and n PRF evaluations. To compute a challenge Uj randomly choses l indexes
{dc}lc=1 and l random elements {bc}lc=1

$← Zp. To verify the response ({µdc}lc=1, σi) from a replica server, Uj
validate the equation σi

?
= Σl

c=1bdc · PRFkj (i|c) + Σl
c=1µdc · aj , which results in 2l multiplications and 2l + 1

additions. For the verification of the deduplication cardinality proof πidF,ep
j per epoch, Uj first checks membership

of its node to each aggregated Merkle tree with the CheckPath algorithm, membership of the last non-zero node
and re-evaluates each aggregated Merkle tree according to the starting position of the first zero leaf. Thus the total
cost per epoch per aggregated tree is 3 log zl + (zl − dlrpF) · W = O(log zl + zl), where W is the cost for the hash
function evaluation.

Cloud overhead. For the computation of the response during the RDIC subprotocol each RSi commits to 2l
multiplication and 2l additions to compute µdc = Σbdc ·Hc

i and σi = Σbdc · vtci at the Prove algorithm. For the
AttestDedup subprotocol the CSP computes rp symmetric Merkle trees per file per time epoch ep. Thus the com-
putational cost for a single file F per time epoch is rp · log zl for Merkle trees with zl leaves. To compute the dedu-
plication cardinality proof πidF,ep

j per epoch for a user Uj with replication level rlj assuming rlj = max (rp ∈ RP),
then CSP computes the sibling path of two elements: the user node at the tree with root hidF,rp

0 and the sibling
path for the rightmost non-zero leaf hidF

nz . It also computes the missing parent nodes for the re-evaluation of the
tree from the zero nodes. It is highly likely that these nodes will overlap with the previous sibling paths. Thus the
overall size of the proof computed by the server per epoch for a file F is 3 · log zl = O(log zl).

18

Bibliography

[1] F. Armknecht, L. Barman, J. Bohli, and G. O. Karame. Mirror: Enabling proofs of data replication and
retrievability in the cloud. In 25th USENIX Security Symposium, USENIX Security 16, Austin, TX, USA,
August 10-12, 2016., pages 1051–1068, 2016.

[2] F. Armknecht, J.-M. Bohli, D. Froelicher, and G. O. Karame. Sport: Sharing proofs of retrievability across
tenants. Cryptology ePrint Archive, Report 2016/724, 2016. http://eprint.iacr.org/2016/724.

[3] F. Armknecht, J.-M. Bohli, G. O. Karame, and F. Youssef. Transparent data deduplication in the cloud. In
Proceedings of the 22Nd ACM SIGSAC Conference on Computer and Communications Security, CCS ’15,
pages 886–900, New York, NY, USA, 2015. ACM.

[4] G. Ateniese, R. Burns, R. Curtmola, J. Herring, L. Kissner, Z. Peterson, and D. Song. Provable data pos-
session at untrusted stores. In Proceedings of the 14th ACM conference on Computer and communications
security, pages 598–609. ACM, 2007.

[5] E. Bacis, S. D. C. di Vimercati, S. Foresti, S. Paraboschi, M. Rosa, and P. Samarati. Mix&slice: Efficient
access revocation in the cloud. In Proceedings of the 2016 ACM SIGSAC Conference on Computer and
Communications Security, Vienna, Austria, October 24-28, 2016, pages 217–228, 2016.

[6] D. Boneh, B. Lynn, and H. Shacham. Short Signatures from the Weil Pairing, pages 514–532. Springer
Berlin Heidelberg, Berlin, Heidelberg, 2001.

[7] K. D. Bowers, A. Juels, and A. Oprea. Proofs of retrievability: Theory and implementation. In Proceedings
of the 2009 ACM Workshop on Cloud Computing Security, CCSW ’09, pages 43–54, New York, NY, USA,
2009. ACM.

[8] B. Chen and R. Curtmola. Towards self-repairing replication-based storage systems using untrusted clouds.
In Proceedings of the Third ACM Conference on Data and Application Security and Privacy, CODASPY
’13, pages 377–388, New York, NY, USA, 2013. ACM.

[9] R. Curtmola, O. Khan, R. Burns, and G. Ateniese. Mr-pdp: Multiple-replica provable data possession. In
Proceedings of the 2008 The 28th International Conference on Distributed Computing Systems, ICDCS ’08,
pages 411–420, Washington, DC, USA, 2008. IEEE Computer Society.

[10] http://www.computerworld.com/. Oops: Google ”loses” your cloud data, 2015. https://goo.gl/
zXRAdR.

[11] http://www.datacenterknowledge.com/. Amazon data center loses power during storm, 2012. https:
//goo.gl/anNoI.

[12] http://www.infoworld.com/. The dirty dozen: 12 cloud security threats, 2016. ttps://goo.gl/i6tAsF.
[13] A. Juels and B. S. Kaliski. PORs: Proofs of retrievability for large files. In Proc. of ACM Conference on

Computer and Communications Security (CCS ’07), 2007.
[14] S. Keelveedhi, M. Bellare, and T. Ristenpart. Dupless: server-aided encryption for deduplicated storage. In

Presented as part of the 22nd USENIX Security Symposium (USENIX Security 13), pages 179–194, 2013.
[15] J. Liu, N. Asokan, and B. Pinkas. Secure deduplication of encrypted data without additional independent

servers. In Proceedings of the 22nd ACM SIGSAC Conference on Computer and Communications Security,
pages 874–885. ACM, 2015.

[16] R. C. Merkle. A certified digital signature. In Advances in Cryptology - CRYPTO ’89, 9th Annual Inter-
national Cryptology Conference, Santa Barbara, California, USA, August 20-24, 1989, Proceedings, pages
218–238, 1989.

[17] D. T. Meyer and W. J. Bolosky. A study of practical deduplication. In Proceedings of the 9th USENIX
Conference on File and Stroage Technologies, FAST’11, pages 1–1, Berkeley, CA, USA, 2011. USENIX
Association.

[18] D. T. Meyer and W. J. Bolosky. A study of practical deduplication. Trans. Storage, 7(4):14:1–14:20, Feb.
2012.

[19] H. Shacham and B. Waters. Compact Proofs of Retrievability, pages 90–107. Springer Berlin Heidelberg,
Berlin, Heidelberg, 2008.

[20] M. van Dijk, A. Juels, A. Oprea, R. L. Rivest, E. Stefanov, and N. Triandopoulos. Hourglass schemes:
How to prove that cloud files are encrypted. In Proceedings of the 2012 ACM Conference on Computer and
Communications Security, CCS ’12, pages 265–280, New York, NY, USA, 2012. ACM.

[21] D. Vasilopoulos, M. Önen, K. Elkhiyaoui, and R. Molva. Message-locked proofs of retrievability with secure
deduplication. In Proceedings of the 2016 ACM on Cloud Computing Security Workshop, CCSW ’16, pages
73–83, New York, NY, USA, 2016. ACM.

http://eprint.iacr.org/2016/724
https://goo.gl/zXRAdR
https://goo.gl/zXRAdR
https://goo.gl/anNoI
https://goo.gl/anNoI
ttps://goo.gl/i6tAsF

	Secure Storage with Replication and Transparent Deduplication
	Introduction
	Background and Related Work
	Other Related Work

	System and Adversarial Model
	System Model
	Adversarial Model
	Security Requirements
	Collusion Resistant Replicas Integrity
	Deduplication Correctness

	Preliminaries
	Shortcut Free - Time Consuming Function (SFTCF)
	Instantiation

	Merkle Trees
	Security

	ReDup Overview
	Protocol
	Analysis
	Security
	Collusion Resistant Replicas Integrity

	Deduplication Correctness
	Efficiency

