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Abstract

We present a certificate access management system to support the USDOT’s proposed rule
on Vehicle-to-Vehicle (V2V) communications, Federal Motor Vehicle Safety Standard (FMVSS)
No. 150. Our proposal, which we call Binary Hash Tree based Certificate Access Management
(BCAM) eliminates the need for vehicles to have bidirectional connectivity with the Security
Credential Management System (SCMS) for certificate update. BCAM significantly improves
the ability of the SCMS to manage large-scale software and/or hardware compromise events.
Vehicles are provisioned at the start of their lifetime with all the certificates they will need.
However, certificates and corresponding private key reconstruction values are provided to the
vehicle encrypted, and the keys to decrypt them are only made available to the vehicles shortly
before the start of the validity periods of those certificates. Vehicles that are compromised can
be effectively removed from the V2V system by preventing them from decrypting the certificates.
We demonstrate that the system is feasible with a broadcast channel for decryption keys and
other revocation information, even if that channel has a relatively low capacity.
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1 Introduction

On January 12, 2017, the National Highway Traffic Safety Administration (NHTSA), U.S. Depart-
ment of Transportation (USDOT) proposed to issue a new Federal Motor Vehicle Safety Standard
(FMVSS) No. 150 [1], to require all new light vehicles to be capable of Vehicle-to-Vehicle (V2V)
communications, such that they will send and receive Basic Safety Messages (BSMs) to and from
other vehicles. In their Notice of Proposed Rulemaking (NPRM), NHTSA estimated that in year
30 of deployment, V2V communications will help prevent about half a million crashes and save
about a thousand lives (cf. Table I-1 of [1]). Therefore, the security of V2V communications is
paramount.

V2V system security largely depends on digital signatures [7, 20, 13], and in particular on
vehicles having access to digital certificates to sign their BSMs. In provisioning vehicles with
certificates, a balance must be struck: on one hand, if vehicles have fewer certificates than they
need for the rest of their lifetime, they must periodically connect to a Public-Key Infrastructure
(PKI) to download more certificates; on the other hand, the more certificates a vehicle has, the
longer it has to stay on the Certificate Revocation List (CRL), if it is compromised.

The current approach considered for national deployment is specified in the IEEE Std 1609.2
[12], the PKI designed by Crash Avoidance Metrics Partners LLC (CAMP) called the Security
Credential Management System (SCMS) [23], and the requirements and interfaces produced also
by CAMP [14, 15]. In this approach, vehicles are provided with 3 years’ worth of certificates (and
the corresponding private key reconstruction values1 in local storage and they can periodically “top
up” back to 3 years’ worth via a bidirectional connection with the SCMS. Also, CAMP estimates
that the most constrained vehicles will have space to store only about 10,000 CRL entries, which
means that the system can handle a revocation rate2 of only 3,000.

Providing the bidirectional connectivity for certificate top-up is a significant contributor to the
overall cost of the system [1]. Yet, the vehicles cannot be provisioned with more than 3 years’
worth of certificates, as that would further reduce the revocation rate that the system can handle
in the current design.

Contributions Our approach, called Binary Hash Tree based Certificate Access Management
(BCAM), builds upon the preliminary work of [18]. [18] is focused mainly on the different use cases
of satellite communication, and the protocols are presented at a very high level. This work has new
results and provides a thorough analysis along with experimental results.

In BCAM, vehicles are provisioned at the start of their lifetime with all the certificates they will
need, and as in the current system, the corresponding private keys are generated on (or, securely
injected into) the vehicle such that they are only known to the vehicle and not to any other entity
in the system. However, when the certificates (and the corresponding private key reconstruction
values) are provided to the vehicle, they are encrypted, and the keys to decrypt them are only
made available to the vehicles shortly before the start of the validity periods of those certificates.
Note that the pseudonym certificate model (i.e., certificate validity, number of concurrently valid
certificates, etc.) is unchanged and exactly like the current system designed by CAMP. This in turn

1Reconstruction values are used in implicit certificates [4], which are a variant of public key certificate, such that
a public key can be reconstructed from any implicit certificate, and is said then to be implicitly verified, in the sense
that the only party who can know the associated private key is the party identified in the implicit certificate. The
issuing Certificate Authority also provides a private key reconstruction value for the receiver to reconstruct its private
key for signing.

2Revocation rate is the number of vehicles revoked per year.
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means that the SCMS use cases of misbehavior reporting and global misbehavior detection are also
unaffected by the BCAM system and should work exactly like the current system. Revocation is
modified as follows: vehicles that are compromised are prevented from participating in the V2V
system by not giving them the necessary keys for decrypting the certificates (and the corresponding
private key reconstruction values).

The benefits of BCAM are twofold: (1) two-way communication with the SCMS for certificate
download is eliminated except for extremely long-lived vehicles or vehicles that need for some reason
to be re-initialized; and (2) since revocation is enforced on the send-side, if vehicles are revoked
due to misbehavior or malfunction, they can be prevented from sending valid signed messages
altogether. Enforcing revocation on the send side eliminates the need for checking revocation as
is the case with any CRL-based system, and allows the system to handle widespread compromise
much more robustly and effectively than the current SCMS design.

The SCMS diagram, amended to support BCAM, is shown in Figure 1. Compared to the existing
SCMS design, a new SCMS component called Certificate Access Manager (CAM) is added, and
two existing SCMS components related to Certificate Revocation List (CRL) are renamed to reflect
their new roles.

1. CRL Generator ⇒ Revocation Generator (RG)

2. CRL Broadcast ⇒ Certificate Access Broadcast (CAB)

In this paper, we show that it is practical to broadcast the decryption information by signifi-
cantly compressing it using binary hash trees [17]. We present a novel encoding/decoding algorithm
for complete3 binary trees. We are unaware of any published encoding approaches for complete
binary trees which in general produce smaller encodings than ours while keeping the decoding time
linear in the depth of the tree. Our decoding algorithm, which is a breadth-first algorithm, is also
fast because the max queue size in our algorithm is the number of revoked vehicles and not the full
breadth of the tree.

We show that a 64 kbps broadcast channel is sufficient to guarantee that vehicles will receive
the decryption keys (and other revocation information), if they are entitled to them, in a reasonable
amount of time, such as a couple of hours of driving4, unless the number of compromised vehicles
is unrealistically high. Appropriate network coding, such as LT Codes [16] or Raptor Codes [22], is
strongly recommended to be used with the broadcast channel, so that the vehicles can seamlessly
download the broadcasted material over multiple sessions without any unnecessary overheads.

Outline The remainder of this paper is structured as follows. Section 2 presents related work.
Our design goals and an overview of the system are presented in Section 3. Section 4 details the
BCAM provisioning. Section 5 provides a discussion of security and other topics that arise from
this proposal. Finally, Section 6 summarizes this paper.

2 Related Work

This section discusses related work other than [18], whose relation to this work was already discussed
in the Introduction.

3In a complete binary tree every level, except possibly the last, is completely filled, and all nodes in the last level
are as far left as possible.

4On average, Americans spent 46 minutes per day behind the wheel in 2013.
http://newsroom.aaa.com/2015/04/new-study-reveals-much-motorists-drive/.
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The concept of Broadcast Encryption (BE) was introduced by Fiat and Naor in [8]. In this
paradigm, a broadcaster encrypts messages and transmits them to a group of users U who are lis-
tening to a broadcast channel and use their private keys to decrypt transmissions. The broadcaster
may exclude any subset of users R ⊆ U from being able to decrypt the contents of the broadcast
using a one-time exclusion or revocation mechanism [6]. The solutions to BE, however, do not
directly translate into solutions for our problem, because a non-revoked user can help a revoked
user to gain access to the sensitive information being broadcast (since this information is the same
for all users). In BCAM, a revoked vehicle (or, an adversary that has extracted its private keys,
encrypted certificates, etc.) should not be able to decrypt its certificates even if it colludes with
any number of non-revoked vehicles.

[10] proposed a Bandwidth Efficient Certificate Status Information (BECSI) mechanism to ef-
ficiently distribute certificate status information (CSI) in vehicular ad hoc networks. By means of
Merkle hash trees (MHT), BECSI allows to retrieve authenticated CSI not only from the infras-
tructure but also from vehicles acting as mobile repositories. Since these MHTs are significantly
smaller than the CRLs, BECSI reduces the load on the CSI repositories and improves the response
time for the vehicles.

In [11], authors presented an Efficient and Privacy-Aware (EPA) revocation mechanism that
relies on the use of positive proofs of the certificate’s no-invalidity instead of forcing vehicles to
download huge revocation lists. A no-invalidity proof gives evidences that a given certificate has
not been revoked. These proofs are obtained from a MHT that is constructed from the list of
revoked certificates.

However, none of these solutions eliminate the need of bidirectional communication, and still
put the burden on all valid vehicles instead of performing revocation at source as proposed in this
paper.

3 Overview

3.1 Design Goals

The BCAM approach has the following high-level goals:

• Remove the need for bidirectional connectivity to the SCMS for certificate provisioning.

• Provide a way to completely remove misbehaving / malfunctioning vehicles from the system
by removing their certificates and keys.

• Provide a mechanism for reinstating vehicles that were wrongly revoked, or which were re-
voked due to some fixable error which has been fixed.

In addition to the above, BCAM has the following lower level goals:

• Use HSMs to provide highly trusted services to vehicles.

• Keep the complexity of HSM implementation as low as possible.
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3.2 Terminology

In the Binary Hash Tree based Certificate Access Management (BCAM) provisioning, vehicles are
provisioned with a lifetime worth of certificates, say 30 years5, that are encrypted and stored in
standard, non-secure persistent storage. As with the current CAMP design, there are a number
of certificates simultaneously valid for a given period of time. The period of time is referred to
as the certificate validity period or the time window. It is currently set to a week in CAMP, and
this need not change in the BCAM approach. The collection of certs simultaneously valid within
a time window is referred to as a batch, and the number of certs in a batch can be baselined at 20
as in the current CAMP design. In addition to the existing time window equal to the certificate
validity period, there is a time window, equal to or an integer multiple of the certificate validity
period, which is referred to as the BCAM period, and which can be encoded as a 16-bit value. A
vehicle has one or more batches of certs within a given BCAM period, depending on how many
certificate validity periods fit into a BCAM period. All of the vehicle’s certificates within a single
BCAM period are consolidated into a single BCAM batch; the BCAM batch is encrypted with a
(vehicle and period)-specific symmetric key, the BCAM batch key, that is initially known only to
the Certificate Access Manager (CAM) in the SCMS and revealed at the appropriate time to the
vehicle’s Hardware Security Module (HSM). The length of time that all the BCAM batches of a
vehicle spans is called the BCAM lifetime.

3.3 General Approach

In BCAM, access to certificates and revocation are managed using three mechanisms.

3.3.1 “Soft” Revocation List

This is the first line of defense against compromised vehicles. Every BCAM period, the system
distributes a “soft” list of revoked vehicles in the group, referred to as a Soft Revocation List (SRL).
This list is signed by the Revocation Generator and is checked by a dedicated Hardware Security
Module (HSM) on the vehicle. If the vehicle is on the SRL, the HSM will refuse to recover the
decryption key, even though in principle such recovery would be possible, and the vehicle will not
have access to its certificates going forward.

This mechanism is sufficient to withdraw from service any vehicle that is subject to a compromise
of the software but not the HSM. We believe software compromise to be significantly more likely
than hardware compromise, so SRL will remove the vast majority of compromised vehicles from
the system.

A soft-revoked vehicle can be reinstated by removing its identifier from the SRL. Note that
the SRL is used once per BCAM period, by the vehicle’s HSM at the time it decrypts certificates,
rather than needing to be checked every time a message is received as is the case with CRLs. This
means the SRL itself does not need to be stored persistently; only the results of the HSM’s check
on its host vehicle’s validity need to be stored.

3.3.2 Standard CRL

If a vehicle is on the SRL, but is also active and using valid certificates, it is a clear indication
that not only the software but the vehicle’s HSM is also compromised. Such vehicles are put on

5The current CAMP design has enrollment certificates with validity period of 30 years, that are intended to last
the lifetime of a vehicle.
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the standard CRL, which can also be distributed through the broadcast channel. At any time,
the BCAM system allows devices access to their certificates for the current and the next BCAM
period. So, devices will rarely need to stay on the standard CRL for longer than one broadcast
distribution cycle (typically a week) as their removal will in general be managed by withdrawing
access to their certificate decryption keys. Thus, CRLs are not essential and can be completely
done away with in the BCAM system, if a 1-week delay in removing HSM-compromised devices
were deemed acceptable.

3.3.3 Device-Specific Values and “Hard” Revocation

Vehicles whose HSMs are believed to be compromised are removed from the system by preventing
them from decrypting new certificates by a mechanism we call hard revocation. Every BCAM
period, the system uses the broadcast channel to distribute device-specific values (DSVs), which
are required to recover the decryption keys needed for decrypting the certificates. By the use
of binary hash trees [17], the amount of data needed to distribute the DSVs to say 350 million
vehicles6 can be made to scale slightly sub-linearly in the number of hard-revoked vehicles rather
than linearly in the total number of vehicles in the system. This makes distribution of individual
DSVs practical, especially given that the number of hard-revoked vehicles is the number of vehicles
that have had a compromise not only of the software but also of the HSM, and so that number can
be assumed to be relatively small.

A hard-revoked vehicle can be reinstated by starting to broadcast its DSV again. (A hard-
revoked vehicle will also be soft-revoked, so it will also be necessary to remove its identifier from
the SRL). Also, note that just like the SRL, DSVs are used once per BCAM period, by the vehicle’s
HSM at the time it decrypts certificates, rather than needing to be checked every time a message
is received as is the case with CRLs.

3.4 SCMS Architecture

In BCAM provisioning, certificate generation is carried out by the Pseudonym Certificate Authority
(PCA) and Registration Authority (RA) as in the current CAMP design, but certificates are pre-
generated for the entire life of a vehicle, i.e. 30 years, as opposed to just 3 years in the current
design. A new component called Certificate Access Manager (CAM) is added to the SCMS for
BCAM provisioning:

3.4.1 Certificate Access Manager

A component that is involved in managing devices’ ability to access their certificates and private
keys. It:

• Generates BCAM batch keys and uses them to encrypt the BCAM batches of certificates
(In BCAM provisioning, encryption of BCAM batches by the CAM is done in addition to
the encryption of individual pseudonym certificates done by the PCA in the current SCMS
design.)

• In order to generate the BCAM batch keys, generates Device-Specific Values (DSVs) which
can be used by the devices to derive the corresponding BCAM batch keys

6The Bureau of Transportation Statistics, USDOT reported that there were about 260 million registered vehicles
in 2014 in the U.S.A., so one can safely assume that the number of active light-duty vehicles shall not exceed 350
million in the foreseeable future. https://www.rita.dot.gov/bts/sites/rita.dot.gov.bts/files/publications/

national_transportation_statistics/html/table_01_11.html
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There may be more than one CAM in the system (i.e., in SCMS terminology it is not “intrinsically
central”).

The following existing SCMS components have been renamed (and functionalities added to
them) for BCAM provisioning:

• CRL Generator ⇒ Revocation Generator (RG): In addition to signing CRLs, RG is
responsible for also signing Soft Revocation Lists (SRLs) every BCAM period.

• CRL Broadcast ⇒ Certificate Access Broadcast (CAB): In addition to broadcasting
CRLs, CAB is responsible for also broadcasting SRLs (generated by RG) and DSVs (generated
by CAM) every BCAM period.

Additionally, the RA’s functionality is extended to include interactions with the CAM to create
the encrypted BCAM batches.

These new and renamed components, and the new RA-CAM interface, are illustrated in Fig-
ure 1.

3.5 Certificate Access Messages

Prior to the start of each BCAM period, the CAB broadcasts update messages for all the vehicles
in the system that control the vehicles’ access to their certificates for that BCAM period. These
updates consist of SRL, DSVs, and CRL.

3.5.1 SRL

A list of vehicles whose software are believed to be compromised but whose HSMs are still believed
to be secure. SRLs are signed by the RG and then compressed. The BCAM provisioning system
requires that the signature on SRL (including the RG’s certificate and its chain up to the Root CA)
be verified inside the vehicle’s HSM. See 4.5.1 for more details on SRL, and 5.4.3 for a discussion
on the security of SRLs. (As the HSM of the vehicle on the SRL is secure, it is assumed to enforce
SRL by not decrypting the BCAM batch even though the corresponding DSVs needed for deriving
the BCAM batch keys are broadcast by the CAB.)

3.5.2 DSVs

A set of values that can be used by any vehicle that is not hard-revoked to derive the BCAM batch
key for decrypting the BCAM batch. If a vehicle’s HSM is compromised, it can no longer be trusted
to follow the protocols, and thus needs to be removed from the system. This is accomplished by
no longer sending its DSVs. The DSVs are compressed using a binary tree approach, but even so,
revocation by this approach creates relatively large packets per revoked device, which is why it is
only used if the HSM is believed to be compromised. This list is signed by the CAM, but need not
be verified within the HSM; see discussion in 5.4.1.

3.5.3 CRL (Optional)

The format and frequency of CRL have been specified in the existing SCMS specifications. The
CRL contains revocation information for devices that are on the SRL but are active and using
valid certificates decrypted from the BCAM batch, indicating that not only the software but the
vehicles’ HSMs are also compromised. However, a device needs to stay on the CRL only until the
end of next BCAM period, when it will be hard-revoked (and thus won’t be able to decrypt BCAM
batches to obtain new certificates) by not sending its DSV.

10



Figure 2: VID and GID

4 BCAM Details

4.1 System Setup

BCAM batch keys are derived from a vehicle-generated key (VK), a CAM-generated Device Specific
Value (DSV), and the BCAM period t, which the HSM must ensure is equal to the BCAM period
t′ in the SRL. A specific VK is denoted by vk. A specific DSV for the vehicle with unique identifier
id in BCAM period t is denoted δid,t.

4.1.1 Vehicle Identification

Each vehicle in the system has a unique 40-bit Vehicle Identifier (VID) constructed as illustrated
in Figure 2. It is comprised of a 2-bit Format field, an 8-bit Quarter/Year Code field, a 10-bit
Model Code field and a 20-bit Unit Code field. The Group Identifier (GID) is defined as the 20
most significant bits of the VID. SRL is divided into groups to keep the size of SRL from growing
indefinitely.

4.1.2 Cryptographic Primitives

Below we define the different cryptographic primitives used in BCAM provisioning. These defi-
nitions need to be public as they will be used by vehicles to derive their BCAM batch keys. In
what follows, for a bit b and an integer k, bk indicates a bit string containing the bit b repeated k
times; and for bit strings x and y, x‖y denotes their concatenation. H is a collision-resistant hash
function, such as the Secure Hash Standard SHA-256 [19]. M is a secure message authentication
code, such as the SHA-256 hash-based HMAC [9].

• Left and right hash functions, denoted L and R, on input: binary tree node value δ and
padding length l

L(δ) = H
(
δ‖0l

)
, R(δ) = H

(
δ‖1l

)
(1)

• BCAM batch key derivation function, denoted K, on inputs: vehicle-generated key vk, vehicle
identifier id, BCAM period t, CAM-generated device-specific value δ

K(vk, id, t, δ) =M (vk,M(vk, id)‖M(vk, t)‖M(vk, δ)) (2)

Remarks:

1. For the specific choice of SHA-256 for H, we recommend l = 192. This is because the SHA-
256 compression function takes input that is 512 bits long, and SHA-256 appends the final
block of input with a 64-bit length indicator, so an input of length 256 bits (for δ) + 192 bits
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(for the padding) = 448 = 512 - 64 (for the length indicator) is the maximum size for one
invocation of the compression function.

2. The reason for the nested construction of BCAM batch key derivation function is that it
provides protection against changes in the length of the input values in the future; if id, t, and
δ were concatenated without any length indication and the lengths changed, it is conceivable
that one pre-change (id‖t‖δ) combination could match a post-change combination. Likewise,
an encoding that explicitly indicates the length, while it would be secure against changes in
length as such, might be vulnerable to a future decision to change the encoding approach.
We believe the nested construction to be the most future-proof.

3. The BCAM period t used by the HSM must come from the SRL. See Section 5.4.3 for rationale.

4.1.3 Device-Specific Values

Device-Specific Values (DSVs) are calculated using a unique binary hash tree for each BCAM
period. For efficiency reasons, it is recommended that each CAM uses a single binary tree for all
the vehicles it serves. DSVs, which are the leaf node values of a binary hash tree, are generated as
follows:

1. Each CAM, for each BCAM period t, selects a 256-bit random seed value, denoted δt.

(It is important that seed values for two different CAMs or BCAM periods are unrelated
so that revealing the seed value of a given CAM and BCAM period doesn’t reveal anything
about any other seed value of either a different CAM or a different BCAM period.)

2. For each vehicle with a unique identifier id, calculates DSV δid,t via a binary hash tree as
follows:

(a) Set δid,t = δt

(b) For each bit b in the binary representation of id, starting from the leftmost bit:

i. If b = 0, set δid,t = L (δid,t)

ii. If b = 1, set δid,t = R (δid,t)

(c) Output the final δid,t.

The binary tree provides a means to compress information about DSVs. Indeed, a node in the
tree can be used to derive values of all its child (and grandchild, and so on) nodes. This means
that if any node value between a vehicle’s leaf node and the root node is made public, the vehicle
can derive its DSV from that node’s value by using the appropriate combination of left and right
hashes. This is illustrated in Figure 3. In the upper part of Figure 3, no node is revoked, and so
the root node is made public and all leaf nodes can be derived from it.

In the lower part of Figure 3, node 100 is revoked, and so the rest of the keys are made public
by revealing the following node values, which in the diagram are heavy-outlined:

• Node 0 (enables the derivation of leaf nodes 000, 001, 010, 011)

• Node 11 (enables the derivation of leaf nodes 110, 111)

• Node 101
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Figure 3: Binary Trees
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For a system with a total of n users out of which r users are revoked, the broadcast message will
on average include

(
r · log2

(
n
r

))
number of binary tree nodes (cf. Theorem 1 of [2]) for 1 ≤ r ≤ n/2.

A proposal for encoding of node positions in the binary tree is presented in Section 4.4.
The use of the DSVs to generate the BCAM batch keys for encrypting/decrypting BCAM

batches is described in Section 4.2. The use of the binary trees to remove vehicles from the system
is described in Section 4.4.

4.1.4 Initialization and Configuration

The SCMS components involved are the CAM, the SCMS Manager, and the vehicle Configuration
Managers (DCMs). In the SCMS design, the DCMs have responsibility for provisioning the vehicle
with trust management information, for example root CA certificates and the URL of the RA,
and also for attesting to the Enrollment CA that the vehicle currently applying for certificates is
entitled to them. Each CAM is responsible for a set of vehicles. When a new CAM is created, it
communicates with the SCMS Manager to get the initialization parameters, which include a unique
identifier, hash function to be used, CA info for getting a certificate, etc.

On initialization, and every quarter thereafter, the CAM communicates with the SCMS Manager
to get information, e.g., a list of vehicles it is responsible for, their DCMs, their lifetimes, encryption
algorithm to be used, etc.

4.2 Certificate Provisioning

A vehicle’s On-Board Equipment (OBE) is considered to have two parts to its architecture: a
host processor and an HSM. This is illustrated in Figure 4. Applications that can access the
cryptographic keys without human authentication, known as privileged applications, run on the
host processor. Cryptographic keys themselves are stored within the HSM. The keys can be used by
processes outside the HSM, subject to access control mechanisms enforced by the host processor, but
never leave the host processor in plaintext. This architecture is already accepted in the Connected
Vehicle setting, but this proposal requires additions to functionality typically required of HSMs in
the Connected Vehicle setting, e.g., it must be able to export the vehicle key vk encrypted to the
CAM, it must be able to parse and verify signature on the SRL, it must be able to vehicle BCAM
batch keys, etc.

Both the Host Processor and the HSM are required to be secure. However, this proposal assumes
that the Host Processor cannot be made as secure as the HSM, so the probability of Host Processor
compromise is significantly greater than the probability of HSM compromise. This is a reasonable
assumption: The Host Processor runs more, and more complex, software than the HSM does, and
the Host Processor software is more likely to be frequently updated. Note that following from
this assumption we make certain design recommendations based on the principle that the software
inside the HSM should be kept as limited as possible as noted in the design goals in Section 3.

Certificate provisioning is expected to follow these steps:

0. Initialization (RA). The RA is provided with the length of the BCAM periods and the
information about which CAM is responsible for which vehicles.

1. Certificate Request. The vehicle requests certificates from the RA just as it would have
in the current SCMS, except it includes the encrypted (to the CAM) vehicle key vk in the
request.

2. Certificate Request Processing. It differs from the current SCMS in the following ways:

14



Figure 4: OBE Architecture
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(a) The RA first determines if the vehicle needs to be provisioned with BCAM batches or
not. If so, then divides all certificates into different BCAM periods to form (unencrypted)
BCAM batches, and gives them along with the vehicle identifier id and the encrypted
vk to the CAM.

(b) For each BCAM period t, the CAM generates the BCAM batch key ekid,t using the key
derivation function defined in 4.1.2 with inputs (vk, id, t, δid,t), where δid,t is the binary
tree node value generated by the CAM for id and t.

(c) The CAM encrypts each BCAM batch with the corresponding ekid,t, and gives all the
encrypted BCAM batches to RA, which makes them available for download by the
vehicle.

3. Vehicle Processing. The vehicle downloads the encrypted BCAM batches just as it would
have downloaded the certificates in the current SCMS.

4.3 Operations

Every BCAM period, the Certificate Access Broadcast (CAB) broadcasts a Certificate Access List
(CAL, named by analogy with Certificate Revocation List) containing all the information needed for
legitimate vehicles to decrypt that BCAM period’s and the following BCAM period’s certificates.

The Certificate Access List contains two sections plus a header:

• Header: Contains date of issuance. This enables mid-week revocation, see 4.3.1.

• Device-Specific Values List: It contains CAM ID cid; BCAM period t; node values cov-
ering all non-hard-revoked vehicles for t, t+ 1: ∆cid(t),∆cid(t+ 1); and the CAM’s signature.

• Soft Revocation List (SRL): It contains BCAM period t; a bitmap of length equal to the
number of vehicles in the system, where at any position u, a “1” indicates that the vehicle u
has been soft-revoked, and “0” otherwise; and the Revocation Generator’s signature.

Notes:

1. The SRL bitmap is expected to be sparse and can be significantly compressed using standard
compression techniques. The DSV list, on the other hand, cannot be compressed as it contains
cryptographically random data.

2. The SRL bitmap is signed-then-compressed (as opposed to compressed-then-signed), because
the HSM has to verify the signature on the bitmap and check for the status of the OBE’s bit
within the bitmap. If it were compressed-then-signed, the HSM would have to also implement
decompression, which runs contrary to our design goal to have as little functionality as possible
inside the HSM.

On receiving the CAL, each correctly-behaving vehicle id with key vk takes the following steps:

1. Decompresses and verifies the signature on the SRL for its group, and aborts if the signature
does not verify.

2. (Within the HSM) Parses the bitmap and aborts if id is identified as soft-revoked, otherwise
stores the BCAM period t from the SRL and continues.
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3. Verifies the signature on the DSV list and aborts if the signature does not verify, other-
wise derives its DSV for BCAM periods t, t+ 1 (denoted δid(t), δid(t+ 1), respectively) from
∆cid(t),∆cid(t+ 1), respectively.

4. (Within the HSM) Derives the BCAM batch keys for periods t, t+ 1 (denoted ekid,t, ekid,t+1,
respectively) using vk, id, t, δcid(t), δcid(t + 1) using the derivation function defined in 4.1.2.
Note that t is from the SRL in step 2.

5. Decrypts the certificates for periods t, t+ 1.

Steps 2 and 4 are carried out within the HSM on the OBE, i.e. the HSM has the responsibility
for enforcing soft revocation via SRL. If the HSM is compromised, soft revocation will not work; in
this case, hard revocation is enforced by removing the DSV for that vehicle from ∆cid(t),∆cid(t+1).

4.3.1 Mid-Week Revocation

In general, once an OBE has received the current CAL, it need not download anything more till
the end of the next BCAM period. However, it is conceivable that an OBE needs to be revoked
mid-week because it is observed to be misbehaving in a serious way. In this case the OBE is added
to the SRL and the header information in the CAL is updated to indicate the generation time
of the new SRL. Receiving OBEs can note that the CAL has a new generation time and run the
receive-and-reconstruct process again. Additionally, if mid-week hard revocation is necessary, it
can be implemented by updating the standard CRL.

4.4 Binary Tree Encoding

We propose to encode the tree and the DSV values separately: the encoding of the tree indicates
which nodes are present, and is followed by a list of DSV values such that the number of DSV values
is equal to the number of published nodes. The problem of encoding the DSV list thus becomes a
problem of efficiently encoding the tree.

A standard textbook approach for encoding the topology of a general binary tree with n nodes
that is not necessarily complete like the one being used here is to create a bit string of length n,
with each bit set to 0 for a leaf node (i.e., a node with no children) and to 1 for an internal node
(i.e. a node with 2 children). The binary trees for use in this setting are slightly different:

1. All branches of the original tree are of the same depth, so the topology is known; the only
question is which nodes are published and which are omitted.

2. All published nodes allow the derivation of the full subtree below them, so once a node is
known to be published there is no need to publish any of its child nodes.

In other words, nodes are in the state “omitted”, “published”, or “can be derived from published
nodes”, where only nodes in the “published” state need to have the corresponding value published,
and the state of a node need only be given if its parent node is in the “omitted” state.

To examine encoding effectiveness, we consider three different scenarios (also see Section 4.5.2
for real-world experiments with binary tree of depth 40). On day 1 (Figure 5) no vehicle is revoked.
On day 2 (Figure 6) vehicles 2, 3 and 7 are revoked. In the pathological case (Figure 7) every odd-
numbered vehicle is revoked. In the figures, striped leaf nodes indicate revoked vehicles, striped
nodes (both leaf and non-leaf) are the nodes on the path from revoked vehicles to the root node
and hence must never be published; solid black nodes indicate the nodes published; and uncolored
nodes indicate the nodes covered by solid black nodes.
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4.4.1 Encoding Algorithm for the CAM

It takes as input the colored tree, and outputs an encoded bit string encString and a list of DSVs
dsvList:

1. Start from the root node of the tree and with an empty bit string encString and an empty
DSV list dsvList.

2. If the node is not present in the collection of subtrees, i.e. striped node, append 0 to encString;
go to the next node to the right or, if at the rightmost node in a row, go to the first node on
the next row.

3. If the node is present, i.e. solid black node:

(a) Append 1 to the encString.

(b) Add the node value to dsvList.

(c) Go to the next node and return to step 2.

4. If the node is a child of a present node, i.e. uncolored node, do not append anything to
encString; go to the next node and return to step 2.

The above steps can be summarized as: 0 for striped, 1 for solid black, and nothing for
uncolored.

4.4.2 Decoding Algorithm for the Vehicle

It takes as input a vehicle identifier id, and the outputs of the encoding algorithm encString and
dsvList. It outputs a (binary tree) node’s DSV and the node’s depth in the tree:

1. Start with curDepth = 0, curPosition = 0, bitsBefore = 0, bitsAfter = 0, nodesPresent =
0.

2. Take the encoding of the current layer, i.e. (bitsBefore + 1 + bitsAfter) bits in encString
starting from curPosition.

(a) Initially this is the single first bit of the encoding.

(b) Note, in the top layer there’s only one bit, which is always the bit of interest. So
bitsBefore and bitsAfter are both 0.

3. Set nodesPresent = nodesPresent+ the number of 1s in the first bitsBefore bits.

4. The bit of interest is the one that comes after the first bitsBefore bits. If the bit of interest
is 1, stop and output (nodesPresent+ 1)th entry in dsvList and curDepth.

5. Otherwise:

(a) Set curPosition = curPosition+ (bitsBefore+ 1 + bitsAfter)

(b) Set bitsBefore = 2×(the number of 0 bits in the first bitsBefore bits)

(c) If the bit at the (curDepth+ 1)th position of id is 1, add 1 to bitsBefore.

(d) Set nodesPresent = nodesPresent+ the number of 1s in the trailing bitsAfter bits
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(e) Set bitsAfter = 2× (the number of 0 bits in the bitsAfter bits after the bit of interest)

(f) If the bit at the (curDepth+ 1)th position of id is 0, add 1 to bitsAfter.

(g) Set curDepth = curDepth+ 1 and return to step 2.

Now, when applied to the three scenarios.

Figure 5: Day 1

1. Day 1 with no revoked vehicles, gets encoded as 1.

Figure 6: Day 2

2. Day 2 with 2, 3, 7 revoked, gets encoded as 0 01 00 1010 0010 (= 13 bits).

3. Pathological with every other vehicle revoked, gets encoded as 0 00 0000 00000000 1010101010101010
(= 31 bits).

For a binary tree of depth d, on an average, our encoding algorithm produces encodings that are
d
2 times smaller in size than the basic encoding algorithm (where each published node is uniquely
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Figure 7: Pathological

represented using d + 1 bits). For the specific use case of SCMS where tree depth would be 40 so
that there is a unique leaf node for every possible vehicle ID, our algorithm produces encodings
that are 20 times smaller in length. Note that the nodes to be published (i.e., solid black) are the
siblings of the nodes that are marked revoked (i.e., striped). So, if the number of revoked nodes is
much smaller than the total number of nodes, and if the revoked nodes are randomly distributed
throughout the tree, it is very likely that only a small fraction of the sibling pairs in the tree will
have both nodes marked revoked. Thus, the number of solid black nodes is roughly equal to the
number of striped nodes, resulting in an encoding of size roughly 2 times the number of published
nodes.

Our decoding algorithm, which is a breadth-first algorithm, is also fast, because the max queue
size is the number of revoked vehicles. This is significant because the full breadth of our tree is 240

compared to the number of revoked vehicles, which is expected to be in thousands.

4.5 Experimental Results

In this Section we discuss the bandwidth requirements for broadcasting SRL and DSV list.

4.5.1 SRL

SRL is a bitmap (i.e., 0=valid, 1=soft-revoked) in sequential vehicle ID order such that the revo-
cation status is identified by bit position in the list. An uncompressed SRL is about 42 megabytes
(MB) for 350 million cars, as illustrated below.

• 1,048,900 bits per Group of size

– 20 bits: Group ID

– 16 bits: BCAM period

– 32 bits: compression parameters

– bits: 1 bit per vehicle

– 256 bits: signature
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Table 1: Broadcast Latency for SRL

Soft-revoked Avg. entropy Compressed Latency

(%) per bit SRL size (MB) (min.)

1 0.08 4.07 8.69

3 0.19 9.80 20.90

10 0.47 23.64 50.43

Table 2: Broadcast Latency for DSVs

Hard-revoked Published nodes Size of DSV list Latency

(#) (#) (MB) (min.)

1000 17,156 0.53 1.13

10,000 138,202 4.25 9.07

100,000 1,049,991 32.32 68.94

• 1,048,900 bits/group ×334 groups ≈ 42 megabytes

Depending on the number of vehicles that need to be revoked, different amounts of compression
can be achieved. For example, if 3% of vehicles are revoked, the probability of a bit being 1 is
p = .03, resulting in an average entropy per bit of(

p · log2

(
1

p

)
+ (1− p) · log2

(
1

1− p

))
= 0.19, (3)

and compression factor of about 0.23 (assuming 20% loss in compression efficiency), i.e. about
10 megabytes. Table 1 provides broadcast latency for SRL with a 64 kbps channel for 3 different
scenarios of soft-revoked vehicles. Even in the extreme case of 10% vehicles (i.e., 35 million vehicles)
with compromised software, it will only take about 50 minutes to download the entire SRL.

4.5.2 DSVs

It consists of the binary tree encoding followed by the list of published node values. As explained
in Section 4.1.3, for a system with a total of n users out of which r users are hard-revoked, number
of published binary tree nodes for 1 ≤ r ≤ n/2 is about

(
r · log2

(
n
r

))
(cf. Theorem 1 of [2]).

Table 2 shows the efficiency of the encoding algorithm presented in Section 4.4. Our binary
tree has 240 leaf-nodes. For each of the three revocation scenarios, we ran several iterations for
each row in the table, each time randomly picking revoked nodes from a set of 350 million nodes
(corresponding to all the vehicles in the system at any point of time). Reported figures are averages
over all iterations.

For 10,000 hard-revoked vehicles, which is currently set as the upper limit on the CRL size in
the CAMP design, it takes less than 10 minutes to download all the DSVs. On the other hand, in
the extreme case of 100,000 hard-revoked vehicles, it takes a little over an hour to download all the
DSVs.
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To further illustrate the efficiency of our encoding algorithm, let’s look at the scenario with 1000
hard-revoked vehicles in a bit more detail. 17,156 node values equal 536 kilobytes in size, as each
node is 32 bytes, compared with 540 kilobytes for full packet (including the encoding), i.e. encoding
takes less than 1% of the packet. On the other hand, an encoding produced by the basic encoding
scheme (that uniquely identifies each node in the tree), would take more than 13% (< 5/(32 + 5))
of the packet.

5 Discussion

In this section we discuss issues related to BCAM:

1. security primitives selected in BCAM in Section 5.1,

2. cost implications of BCAM in Section 5.2,

3. potential risks due to BCAM concept in Section 5.3,

4. operations in Section 5.4.

5.1 Security Primitives

Hash functions like SHA-256 and binary trees built using them are standard cryptographic prim-
itives that have been used to construct numerous secure protocols in the past. In this section, we
briefly argue that the design underlying BCAM provisioning is secure assuming that SHA-256 is
a Pseudo Random Function (PRF), which is widely believed to be true in the cryptography and
security community.

BCAM batches are encrypted using keys that are calculated using a key-derivation function
based on HMAC-SHA256, which has been shown to be a PRF assuming the underlying compression
function SHA-256 is a PRF [3]. So, if the device picks its key at random, no one other than the
CAM and the device itself can derive the BCAM batch encryption key.

Next we argue that a hard-revoked device can’t use broadcasted DSVs to derive its BCAM
batch encryption key. In the binary hash tree that is used in DSV computation, any node in the
tree (including leaf nodes) can be computed using any node above on the path of that node to the
root node, e.g. parent node, grandparent node, and so on. Moreover, these (nodes on the path to
the root node) are the only nodes that can be used to compute any given node. When a device is
hard-revoked, the leaf node corresponding to that device, and all the nodes on the path from the
leaf node to the root node, are excluded from the broadcasted DSVs. So, the collision-resistance
(as PRF implies collision-resistance [5]) of hash function like SHA-256 ensures that none of the
revoked nodes (and the nodes on the path of the revoked nodes to the root node) can be derived
from broadcasted DSVs. Thus, a hard-revoked device won’t be able to derive its BCAM batch
encryption keys.

5.2 Cost Considerations

We compare this proposal with the current CAMP design for costs under two categories: (1)
hardware, and (2) connectivity.
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5.2.1 Hardware

Given that most vehicles have satellite radios by default in the US, radio cost is not considered here.
The initial storage required for certificates in BCAM is about 8 times bigger than that of CAMP,
but we argue that this won’t increase the overall cost. As the certificates are stored encrypted in
standard, non-secure storage, one could easily leverage spare storage from other in-vehicle system,
e.g. satellite module, infotainment system, etc.

5.2.2 Connectivity

Unlike CAMP, in the BCAM approach vehicles don’t need connectivity for downloading certificates.
Other than that, vehicles can use existing broadcast channels (such as the ones used for downloading
CRLs in CAMP) for downloading SRL and DSV list.

5.3 Potential Risks

5.3.1 System Agility

BCAM requires vehicles to be provisioned with their lifetimes worth of certificates. While this
alleviates the need for a bidirectional connectivity for certificate downloads, it does mean that a
vehicle is locked for the rest of its life into the provisioning decisions (e.g. cryptographic algorithms
to use, number of certificates per week, root CA certificate) that were made at provisioning time.

5.3.2 Incorrect Encryption of BCAM Batches

A malicious or malfunctioning RA that gives wrong batches of certificates to CAM for encryption,
or that gives the wrong encrypted BCAM batches to the vehicles, will go undetected until later
when the DSV list for that batch will be broadcasted. And, even when the DSV list will be
broadcasted, the vehicles will have no way of knowing why it can’t decrypt the BCAM batches,
i.e. whether it has been revoked or it received the wrong (or incorrectly encrypted) batch. Note
however that these are also known limitations of the current SCMS design.

5.3.3 Loss of Binary Tree Seed Values by CAM

If a CAM suffers a catastrophic event such that it loses access to its storage (which may include
binary tree seed values), all the corresponding vehicles will be locked out and will need to be re-
initialized. There is no straightforward mechanism for disaster recovery in this scenario. There are,
however, options for disaster management: for example, the RA can retain the original encrypted
certificates it received from the PCA and BCAM-enabled devices can fall back to the current CAMP
model of opportunistically “topping up” when they get connectivity.

5.3.4 CAM Compromise

If binary tree nodes (especially the root node) are compromised, a vehicle can be given its future
DSVs and thereby avoid hard revocation. Therefore, we recommend that if any soft-revoked device
managed by that CAM is seen to misbehave, it is added to the CRL and kept on the CRL for the
rest of its lifetime. It is clear from this that the physical security of the binary tree nodes is central
to the security of the system as a whole. CAM can be made robust against security compromises
using standard techniques of secret sharing [21].
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5.3.5 Device Key Compromise

If the device key is compromised, the attacker will be able to derive the BCAM batch keys from the
DSVs broadcasted by the CAB. This is, however, not a major concern as the certificates returned
by the CA are encrypted for the device. Note that if such a compromise is detected, the device
should be hard-revoked and re-initialized.

5.4 Operations

5.4.1 Signature on DSV list

We recommend that the DSV list be signed by the CAM that generated it, so that the receiving
devices can be certain that they downloaded the right DSV list in its entirety. Note however that
this has very little significance in terms of security as an attacker can’t forge a DSV, and an incorrect
DSV will eventually be detected by the vehicle when it will fail to derive the correct BCAM batch
key.

5.4.2 Certificate Lifetime of CA

As the CA needs to issue certificates valid up to 25 years into the future, it needs a certificate with
validity of 25 years and more. This has a cascading effect on the certificate lifetimes of CAs up in
the hierarchy.

5.4.3 Enforcing Latest SRL in BCAM Batch Key Derivation

The HSM has to use the latest SRL while performing the BCAM batch key derivation, otherwise
a software-compromised and soft-revoked vehicle may trick its HSM by passing it an old SRL that
doesn’t list it as soft-revoked, thereby retrieving the BCAM batch key for decrypting the encrypted
BCAM batch. This is done by ensuring that the HSM uses the BCAM period from the SRL in key
derivation, so if a malicious vehicle software were to provide an old SRL to the HSM, the resulting
BCAM batch key would not be correct and hence the decryption of BCAM batch of certificates
would fail.

5.4.4 Multiple CAs

There is a known limitation in the CAMP’s current design, in that the first batch of certificates has
limited privacy against the CA, as the first batch needs to be generated in a short amount of time
and hence the RA doesn’t have enough number of requests to shuffle. As vehicles are provisioned
with 25 years’ worth of certificates in BCAM, they will have limited privacy against CAs for their
entire lifetime. This can be alleviated by employing multiple CAs. For maximum privacy, the
number of CAs should be equal to the number of concurrently valid certificates (currently set to
20), so that for any vehicle and validity period, a CA would be generating exactly 1 certificate, hence
eliminating any possibility of CAs linking two concurrently valid certificates to a single vehicle.

5.4.5 Fail-over

If the BCAM distribution system goes down, legitimate vehicles could be locked out of their cer-
tificates because they can’t obtain the DSVs. To mitigate this, we propose that the RA store all
the certificates issued by the CA (i.e., before BCAM batch encryption), and when the CAM is
unavailable, the vehicle download them from the RA similar to the current CAMP approach.
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5.4.6 Misbehavior Reporting

Because BCAM does not offer an upload channel, it does not address how misbehavior reporting
should occur. As such, it leaves open the question of how and to which vehicles connectivity is
provided for misbehavior reporting.

6 Conclusion

Connected vehicles need certificates to participate in V2V communications. To dismiss messages
coming from revoked entities, vehicles also need to download a certificate revocation list (CRL) and
search through it. The 2-way communication and CRL management (i.e., distribution, processing,
etc.) contribute significantly to the overall cost of the system. Therefore, in this paper, we pre-
sented a Binary hash tree based Certificate Access Management (BCAM) which has the following
advantages over the current CAMP design:

1. Bidirectional connectivity: Vehicles do not need bidirectional connectivity for download-
ing certificates from the SCMS as they are provisioned with all their certificates at the be-
ginning.

2. Revocation enforced at sender: By putting a vehicle on the SRL and/or excluding the
vehicle from the broadcasted DSVs, a revoked vehicle is prevented from decrypting its cer-
tificates. This is in contrast with the current CAMP design where the burden of checking
revocation (via CRL) is on the receiving vehicles.

(a) Vehicles can be removed from the system with surety rather than potentially being
trusted by receivers that don’t have up-to-date CRL.

(b) Receivers do not need to store revocation information about revoked vehicles.

(c) BCAM scales naturally, enabling it to handle revocation rates orders of magnitude higher
than the current system.

3. Unrevoke: If vehicles have been revoked by error (or, if the vehicles’ compromise/malfunction
have been properly addressed), they can be easily reinstated by simply removing them from
the SRL and/or sending their DSVs again. Note that unrevoking a vehicle that has previ-
ously appeared on the CRL is not possible (or, perhaps possible but not implemented) in the
current CAMP design.

However, as discussed in this paper, the BCAM approach comes with its set of issues such
as weaker system agility and longer (than currently desired) validity periods for CA certificates.
Nevertheless, we believe that this approach offers the potential for cost reductions and also offers
significant improvements in security management and scalability. More importantly, this approach
helps alleviate the concerns around the need for bidirectional connectivity in all vehicles, thereby
improving the success probability of NHTSA’s proposed regulation on life-saving V2V technologies.
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