
Searchable Encryption with Optimal Locality:
Achieving Sublogarithmic Read Efficiency

Ioannis Demertzis1, Dimitrios Papadopoulos1,2, and Charalampos Papamanthou1

1 University of Maryland
2 Hong Kong University of Science and Technology

Abstract. We propose the first linear-space searchable encryption scheme with
constant locality and sublogarithmic read efficiency, strictly improving the pre-
viously best known read efficiency bound (Asharov et al., STOC 2016) from
Θ(logN log logN) to O(logN/ log logN), where N is the size of the dataset.
Our scheme is size-sensitive, meaning our bound is tight only for keyword lists
whose sizes lie within the specific range (N1−1/ log logN , N/ log2N ]—outside
this range the read efficiency improves to O(log2/3N). For our construction
we develop two techniques that can be of independent interest: New probabil-
ity bounds for the offline two-choice allocation problem and a new I/O-efficient
oblivious RAM with o(

√
n) bandwidth overhead and zero failure probability.

1 Introduction

Searchable Encryption (SE), proposed by Song et al. [23] in 2000, enables a data owner
to outsource a private dataset D to a server, so that the latter can answer keyword
queries without learning too much information about the underlying dataset and the
posed queries. An alternative to expensive primitives such as oblivious RAM and fully-
homomorphic encryption, SE schemes are practical at the expense of formally-specified
leakage. In typical SE schemes, the data owner prepares a private index which is sent
to the server. To perform a query on a keyword w, the data owner engages in a pro-
tocol with the server such that by the end of the protocol the data owner retrieves the
list of document identifiers D(w) of documents containing w. During this process, the
server should learn nothing except for the (number of) retrieved document identifiers—
referred to as (size of) access pattern—and whether the keyword search query w was
repeated in the past or not—referred to as search pattern.

To retrieve the document identifiersD(w) (also referred to as keyword list in the rest
of the paper), most SE schemes so far require the server access approximately |D(w)|
randomly-assigned memory locations [23,18,9,17,7,24]. While this random allocation
is essential for security reasons, it creates a big bottleneck when accessing large indexes
stored on disk—due to expensive I/Os. Therefore the aforementioned schemes cannot
scale for data stored on disk3 due to their poor locality—the number of non-contiguous
memory locations that must be read to retrieve the result.

3 Demertzis and Papamanthou [10] recently showed that SE with good locality improves practi-
cal performance for in-memory data as well, due to the reduced number of server cryptographic
operations required to retrieve the result.



Locality and Read Efficiency Trade-offs. One trivial way to design an SE scheme that
has optimal locality L = 1 is to have the client download the whole encrypted index for
every query w. Unfortunately, such an approach increases the bits that have to be read
by a factor of N/|D(w)|, where N is the total size of the index. Cash et al. [7] were the
first to observe this trade-off: To improve the locality of SE, one should expect to read
additional entries per query. The ratio of the total number of entries read over the size of
the initial query result was defined as read efficiency. This trade-off was subsequently
formalized by Cash and Tessaro [8] who proved it is impossible4 to construct an SE
scheme with linear space, optimal locality and optimal read efficiency.

In response to this impossibility result, several positive results with various trade-
offs have appeared. Cash and Tessaro [8] presented a scheme with Θ(N logN) space,
O(1) read efficiency and O(logN) locality, which was later improved to O(1) by
Asharov et al. [5]. Demertzis and Papamanthou [10] presented a scheme with bounded
localityO(N ε),O(1) read efficiency but linear space (where ε < 1 is a constant). How-
ever, due to practical reasons, the most challenging question has been a study of these
trade-offs in a constant-locality and linear-space regime.

SE with Constant Locality and Linear Space. Asharov et al. [5] presented two SE
schemes with linear space and constant locality: The first one (A1) has very low read ef-
ficiencyΘ(log logN log2 log logN) but is based on the assumption that no keyword list
D(w) has size more thanN1−1/ log logN 5. The second one (A2) hasΘ(logN log logN)
read efficiency and does not depend on any assumptions about the input dataset. To the
best of our knowledge A2 is the best SE scheme with O(1) locality and linear space
known to-date for general datasets.

Our Contribution. We design the first linear-space SE scheme for general datasets
with constant locality and sublogarithmic read efficiency, strictly improving upon the
best known scheme A2 by Asharov et al. [5]. In particular the read efficiency of our
scheme is O( logN

log logN ) as opposed to A2’s Θ(logN log logN). Note that we make use
of O(.) notation instead of Θ(.) notation: Unlike A2, our scheme achieves its worst-
case O(logN/ log logN) bound only for keyword lists whose sizes are within a small
range. For all other ranges, the read efficiency is much better, in the order of either
O(log2/3N) or even O(log logN log2 log logN).

1.1 Our Techniques

Our techniques (as well as previous works on low-locality SE) are using the notion of an
allocation algorithm, whose goal is to store the dataset’s keyword lists in memory such
that each keyword list D(w) can be efficiently retrieved (both in terms of locality and
read efficiency) by accessing memory locations that are independent of the distribution

4 The result holds for a setting where lists D(w) are stored in consecutive memory locations.
5 We tested this assumption for 4 real datasets: One containing crime records in Chicago since

2001 [1], the Enron email dataset [2], the USPS dataset [4] and the TPC-H dataset [3]. The as-
sumption was not violated only in the Enron email dataset. For the crimes dataset, for example,
the assumption was violated in 12 out of 21 attributes for 31% of the keywords on average.



of the rest of the underlying SE dataset—this is needed for security reasons, and in
particular for ensuring that accessing a list D(w) does not reveal information about the
rest of the dataset. Common techniques to achieve this is to store keyword lists using a
balls-and-bins procedure [5].

Our main observation is that in order to build an SE scheme with sublogarithmic
read efficiency for general datasets, we must only allocate the dataset’s large keyword
lists—those that have size greater than N1−1/ log logN . Smaller lists can be easily allo-
cated using scheme A1 of Asharov et al. [5] as a black box which provides much better
read efficiency than sublogarithmic, as we discussed before.

Offline Two-Choice Allocation. Our main allocation algorithm will be using an offline
two-choice allocation (OTA) procedure [21] as a black box. In an OTA, there arem balls
and n bins. For each ball two possible bins are chosen independently and uniformly at
random. After all choices have been made, one can run a maximum flow algorithm to
find the final assignment of balls to bins such that the maximum load is minimized. This
strategy achieves an almost perfectly balanced allocation (where the maximum load is
at most dm/ne+ 1) with probability at least 1−O(1/n) [21]—see Lemma 1.

Central Idea: One OTA Per Size and Then Merge. We use one OTA separately for every
size s that falls in the range

(N1−1/ log logN , N/ log2N ]

as follows: Let As be an array of M buckets As[1],As[2], . . . ,As[M ], for some appro-
priately chosenM . One can visualize a bucket As[i] as a vertical structure of unbounded
capacity. Let ks be the number of keyword lists of size s and let bs =M/s be the num-
ber of superbuckets in As, where a supebucket is a collection of s consecutive buckets
in As. We perform an OTA of ks keyword lists to the bs superbuckets. From [21], there
will be at most dks/bse + 1 lists of size s in each superbucket with probability at least
1− O(1/bs), meaning the capacity of each bucket due to lists of size s will be at most
dks/bse+ 1 with the same probability, given there are s buckets in an superbucket.

Our final allocation involves merging the arrays As for all sizes s into an array A of
M buckets. To bound the final load of each bucket A[i] in the merged array A one can
compute ∑

s

(dks/bse+ 1)

which turns out to be O(M/N + logN/ log logN)—see Lemma 5. By setting M =
N log logN/ logN , our allocation occupies linear space and every bucket of A has load
O(logN/ log logN)—therefore to read one list of size s, one reads the two superbuck-
ets initially picked by the OTA and therefore the read efficiency isO(logN/ log logN).

Handling Bucket Overflows with Additional Stashes. Our analysis above assumes the
maximum load of each bucket is at most dks/bse + 1. However, there is a noticeable
probability O(1/bs) of overflowing beyond this bound—this will cause our allocation
algorithm to fail, leaking information about the dataset. To deal with this problem, for
each size s, we place the lists of size s that overflow in a stash Bs (at the server) that can



store up to O(log2N) such overflowing lists. In particular we prove that when the OTA
described previously is performed for lists of size s greater than N1−1/ log logN but
less than N/ log2N , there are at most O(log2N) lists of size s overflowing with non-
negligible probability and therefore our stashes Bs suffice, see Lemma 6. We stress that
the condition s ≤ N/ log2N is necessary for deriving the non-negligible probability
bound, justifying the pick of N/ log2N as the endpoint of the range where we apply
OTA.

New Probability Bounds for OTA. Our proof for the O(log2N) stash size extends the
analysis of [21] in non-trivial ways, see Section 3: First, in Theorem 1 we show that
in an OTA, the probability that more than τ bins overflow decreases with (1/τ)τ . Our
proof requires showing the 0/1 random variables indicating whether a bin overflows or
not are negatively associated. Second, in Theorem 2 we show the probability that an
OTA of m balls to n bins yields a maximum load of more than dm/ne + τ is at most
O(1/n)τ + exp(−n).

Accessing Stashes Obliviously. Because keyword lists of size s can now live in the
stash Bs, retrieving an arbitrary keyword list D(w) is a two-step process: First, access
the superbuckets that were initially assigned by the OTA and then access a position
x in the stash. In case D(w) is not in the stash (because it was not an overflowing
list), x should be still assigned as any unoccupied (dummy) position of the stash, if
such a position exists. If not, there will be a collision, in which case the adversary can
deduce information about the distribution of the dataset, e.g., that the dataset contains
at least log2N lists of size |D(w)|. To avoid such leakage, the stash must be accessed
obliviously.

New ORAM with o(
√
n) Bandwidth,O(1) Locality and Zero Failure Probability. Since

the stash has only log2N entries of size |D(w)| each, one can access it obliviously
by reading it all. This however increases read efficiency to log2N , which is no longer
sublogarithmic. Thus we need an ORAM withO(1) locality and o(

√
N) bandwidth. At

the same time our ORAM should fail with zero probability since it will be applied on
only log2N indices. In Section 4, we devise a new ORAM satisfying the above (with
O(n1/3 log2 n) bandwidth) that is based on one recursive application of Goldreich’s
and Ostrovsky’s square-root ORAM [12]. This protocol can be of independent interest.

Handling Keyword Lists with Sizes Greater Than N/ log2N . We develop a new allo-
cation algorithm called AllocateLarge(min,max) for these lists—see Section 5.4. In
fact, the algorithm can be used for any list with size in the range (min,max] and works
as follows: Let A be an array that has 2N entries decomposed in N/max buckets of ca-
pacity 2max each. To store a list of size s in (min,max], we pick a bucket uniformly at
random, from the ones that have not been picked before for the specific size s, and store
the list in this bucket. If there is no space available in the picked bucket, we store this list
in a stash Bs (that is kept separately for each size s) that can store up to N/max lists of
size s (as before, Bs will have to be accessed obliviously). In Theorem 8 we prove that
this algorithm will never cause the stashes to overflow and will occupy linear space. So
one could wonder, why cannot it be applied for the range [1, N ] covering all sizes? The



reason is that its read efficiency is O(max/min): To read a list with the smallest size
min requires reading a bucket of size 2max. Therefore to maintain sublogarithmic read
efficiency, we apply it in two appropriate ranges, namely (N/ log2N,N/ log4/3N ]

and (N/ log4/3N,N/ log2/3N ]. For the final range (N/ log2/3N,N ], we just read the
whole dataset. Overall, for all sizes> N/ log2N we get a read efficiencyO(log2/3N).

1.2 Paper Structure

We present definitions of SE and ORAM in Section 2. Section 3 presents our new
analysis of OTA. Section 4 presents our new ORAM scheme with o(

√
n) bandwidth.

Section 5 presents our detailed allocation algorithms for all the different ranges. Sec-
tion 6 presents our full construction, our final result stated formally (Theorem 9) and
our proof of security. We conclude in Section 7.

2 Notation and Definitions

Our protocols involve a client and a server. We use the notation 〈C ′, S′〉 ↔ Π〈C, S〉 to
indicate that a protocol Π is executed between a client with input C and a server with
input S. After the execution of the protocol the client receivesC ′ and the server receives
S′. Server operations are written in light gray background. All other operations are
performed by the client. The client typically interacts with the server via two operations.
First, via an Encrypt-And-Write data operation, with which the client encrypts
data locally with a CPA-secure encryption scheme and writes the encrypted data data
remotely to server. Second, via a Read-And-Decrypt data operation, with which
the client reads encrypted data data from server and decrypts them locally.

In the following,D will denote the searchable encryption dataset (SE dataset) which
is a set of keywords listsD(wi). Each keyword listD(wi) is a set of keyword-document
pairs (wi, id), called elements, where id is the document identifier containing keyword
wi. We denote with N the size of our dataset, i.e., N =

∑
w∈W |D(w)|, where W is the

set of unique keywords of our datasetD. Without loss of generality, we will assume that
all keyword lists D(wi) have size |D(wi)| that is a power of two. This can always be
enforced by padding with dummy elements, and will only increase the space at most by
a factor of 2. Finally, a function f(κ) is negligible, denoted neg(κ), if for sufficiently
large κ it is less than 1/p(κ), for all polynomials p(κ).

2.1 Searchable Encryption

Our new Searchable Encryption (SE) scheme uses a modification of the square-root
ORAM protocol as a black box, which is a two-round protocol. Therefore to model our
SE scheme we use the protocol-based definition as proposed by Stefanov et al. [24]. An
SE scheme consists of protocols (SETUP, SEARCH) as defined below.

– 〈st, I〉 ↔ SETUP〈(1κ,D), 1κ〉: SETUP takes as input the security parameter κ and
an SE datasetD and outputs a secret state st (for the client), and an encrypted index
I (for the server).



bit← RealSE(κ):
1: D0 ← Adv(1κ);
2: 〈st0, I0〉 ↔ SETUP〈(1κ,D0), 1

κ〉;
3: for k = 1 to q do
4: wk ← Adv(1k, I0,M1, . . . ,Mk−1);
5: 〈(D(wk), stk), Ik〉 ↔ SEARCH〈(stk−1, wk), Ik−1〉;
6: Let Mk be the messages from client to server in the SEARCH protocol above;
7: bit← Adv(1k, I0,M1,M2, . . . ,Mq);
8: return bit;
bit← IdealSE

L1,L2
(κ):

1: D0 ← Adv(1κ);
2: (stS , I0)← SIMSETUP(1κ,L1(D0));
3: for k = 1 to q do
4: wk ← Adv(1k, I0,M1, . . . ,Mk−1);
5: (stS ,Mk, Ik)← SIMSEARCH(stS ,L2(wk), Ik−1);
6: bit← Adv(1k, I0,M1,M2, . . . ,Mq);
7: return bit;

Fig. 1. Real and ideal experiments for the SE scheme.

– 〈(D(w), st′), I ′〉 ↔ SEARCH〈(st, w), I〉: SEARCH is a protocol between the client
and the server, where the client’s input is the secret state st, and a keyword w.
Server’s input is the encrypted index I. Client’s output is the the set of document
identifiers D(w) matching the keyword w and an updated secret state st′ and the
server’s output is an updated encrypted index I ′.

Just like in previous works [5], the goal of our SE protocols is for the client to re-
trieve the document identifiers (i.e., the list D(w)) corresponding to a specific keyword
w. The document themselves can be downloaded from the server in a second round,
by just providing D(w). This part is orthogonal to our protocols and we do not con-
sider/model it here explicitly. The correctness definition of SE is given in Appendix A.
We now give the security definition.

Definition 1 (Security of SE). An SE scheme (SETUP, SEARCH) is secure in the semi-
honest model if for any PPT adversary Adv, there exists a stateful PPT simulator
(SIMSETUP, SIMSEARCH) such that

|Pr[RealSE(κ) = 1]− Pr[IdealSE
L1,L2

(κ) = 1]| ≤ neg(κ) ,

where experiments RealSE(κ) and IdealSE
L1,L2

(κ) are defined in Figure 1 and where the
randomness is taken over the random bits used by the algorithms of the SE scheme, the
algorithms of the simulator and Adv.

Leakage Functions L1 and L2. As in previous work [5], L1 and L2 are stateful leakage
functions such that L1(D0) = |D0| = N and L2(wi) leaks the size of the access pattern



bit← RealORAM(κ):
1: M0 ← Adv(1κ);
2: 〈σ0,EM0〉 ↔ ORAMINITIALIZE〈(1κ,M0), 1

κ〉;
3: for k = 1 to q do
4: ik ← Adv(1κ,EM0,m1, . . . ,mk−1);
5: 〈(vik , σk),EMk〉 ↔ ORAMACCESS〈(σk−1, ik),EMk−1〉;
6: Letmk be the messages from client to server in the ORAMACCESS protocol above;
7: bit← Adv(1k,EM0,m1,m2, . . . ,mq);
8: return bit;
bit← IdealORAM(κ):
1: M0 ← Adv(1κ);
2: (stS ,EM0)← SIMORAMINITIALIZE(1κ, |M0|);
3: for k = 1 to q do
4: (stS ,EMk,mk)← SIMORAMACCESS(stS ,EMk−1);
5: bit← Adv(1k,EM0,m1,m2, . . . ,mq);
6: return bit;

Fig. 2. Real and ideal experiments for the ORAM scheme.

|D(wi)| and the search pattern of wi. Formally for any keyword wi that is searched at
time i, L2(wi) is defined as

L2(wi) =

{
(|D(wi)|, j) if wi was searched at time j < i
(|D(wi)|,⊥) if wi was never searched before . (1)

2.2 Oblivious RAM

We recall Oblivious RAM (ORAM), a notion introduced and first studied by Goldreich
and Ostrovsky [12]. ORAM can be thought of as a compiler that encodes the mem-
ory into a special format such that accesses on the compiled memory do not reveal
the underlying access patterns on the original memory. An ORAM scheme consists of
protocols (ORAMINITIALIZE,ORAMACCESS). We give the definition for an ORAM
that supports only reads since this is what we need in our application—the definitions
naturally extends for writes as well.

– 〈σ,EM〉 ↔ ORAMINITIALIZE〈(1κ,M), 1κ〉: ORAMINITIALIZE takes as input the
security parameter κ and a memory array M of n indexed values (1, v1), . . . , (n, vn)
of λ bits each and outputs a secret state σ (for the client), and an encrypted memory
EM (for the server).

– 〈(vi, σ′),EM′〉 ↔ ORAMACCESS〈(σ, i),EM〉: ORAMACCESS is a protocol be-
tween the client and the server, where the client’s input is the secret state σ and an
index i. Server’s input is the encrypted memory EM. Client’s output is the value vi
that was assigned to i and an updated secret state σ′ and the server’s output is an
updated encrypted memory EM′.



(chosen, alternative)← OfflineTwoChoiceAllocation(m,n)
1: Let {1, . . . ,m} be a set of balls and {1, . . . , n} be a set of bins;
2: Initialize A and B to be empty arrays of m entries;
3: for i = 1, . . . ,m do
4: Pick two bins ai and bi from {1, . . . , n} independently and uniformly at random;
5: A[i] = ai;
6: B[i] = bi;
7: (chosen, alternative)← MaxFlowSchedule(m,n,A,B);
8: return (chosen, alternative);

Fig. 3. Offline two-choice allocation of m balls to n bins.

Definition 2 (Security of ORAM). Assume (ORAMINITIALIZE,ORAMACCESS) is an
ORAM scheme. The ORAM scheme is secure if for any PPT adversary Adv, there exists
a stateful PPT simulator (SIMORAMINITIALIZE, SIMORAMACCESS) such that

|Pr[RealORAM(κ) = 1]− Pr[IdealORAM(κ) = 1]| ≤ neg(κ) ,

where experiments RealORAM(κ) and IdealORAM(κ) are defined in Figure 2 and where
the randomness is taken over the random bits used by the algorithms of the ORAM
scheme, the algorithms of the simulator and Adv.

3 New Bounds for Offline Two-Choice Allocation

As mentioned in the introduction, our central allocation algorithm uses a variation of
the classic balls-in-bins problem, known as offline two-choice allocation—see Figure 3.
Assume m balls and n bins. In the selection phase, for the i-th ball, two bins ai and bi
are chosen independently and uniformly at random. After selection, in a post-processing
phase, the i-th ball is mapped to either bin ai or bi such that the maximum load is min-
imized. This assignment is achieved by a maximum flow algorithm [21] (for complete-
ness we also give this algorithm in Figure 13 in the Appendix). The bin that ball i is
finally mapped to is stored in an array chosen[i] whereas the other bin that was chosen
for ball i is stored in an array alternative[i]. Let L∗max denote the maximum load across
all bins after this allocation process completes. Sanders et al. [21] proved the following:

Lemma 1 (Sanders et al. [21]). Algorithm OfflineTwoChoiceAllocation in Figure 3
outputs an allocation chosen of m balls to n bins such that L∗max > dmn e + 1 with
probability at mostO(1/n)6. Moreover, the allocation can be performed in timeO(n3).

For our purposes, the bounds derived by Sanders et al. [21] do not suffice. In the
following we derive new bounds. In particular:

1. We derive probability bounds on the number of overflowing bins, namely the bins
that contain more than dmn e+1 balls after OfflineTwoChoiceAllocation returns—
see Section 3.1;

6 Sanders et al. [21] gave a better bound O(1/n)d
m
n
e+1 which is O(1/n) since dm/ne ≥ 0.

Our analysis is simplified when we take this looser bound O(1/n).



2. We derive probability bounds on the overflow size, namely the number of balls
beyond dmn e+ 1 that the overflowing bins contain—see Section 3.2.

Then we combine the above to derive bounds on the total number of overflowing balls—
see Section 3.3.

3.1 Bounding the Number of Overflowing Bins

For every bin ` ∈ [n], let us define a random 0-1 variable Z` such that Z` is 1 if bin
` contains more than dmn e + 1 balls after OfflineTwoChoiceAllocation returns and 0
otherwise. What we want to bound is the random variable

Z =

n∑
`=1

Zi ,

which represents total number of overflowing bins. Unfortunately we cannot use a Cher-
noff bound directly, since (i) the variables Zi are not independent; (ii) we do not know
the exact expectation E[Z] of Z. Fortunately, we observe that if we show that the vari-
ables Zi are negatively associated (at a high level negative association indicates that
for a given set of variables, whenever some of them increase the rest tend to decrease)
and if we can derive an upper bound on the expectation of Z we can use a Chernoff-
like bound that we prove in Lemma 9 in the Appendix. We first recall the definition of
negative association:

Definition 3 (Dubhashi and Ranjan [11]). A set of random variables {X1, . . . , Xn}
is negatively associated if for every two disjoint index sets I ∈ [n] and J ⊆ [n] it is

E[f(Xi, i ∈ I)g(Xj , j ∈ J)] ≤ E[f(Xi, i ∈ I)]E[g(Xj , j ∈ J)]

for all f : R|I| → R , g : R|J| → R that are both non-increasing or non-decreasing7.

We now prove the following.

Lemma 2. The set of random variables Z1, Z2, . . . , Zn are negatively associated.

Proof. Let Xijk for all i ∈ [n], j ∈ [n] and k ∈ [m] be the random variable defined as

Xijk =

{
1 if OfflineTwoChoiceAllocation chose the two bins i and j for ball k
0 otherwise

.

For each k it holds that
∑
i,j Xijk = 1, since only one pair of bins are chosen for

ball k. Therefore, by [11, Proposition 11], it follows that each set

Xk = {Xijk}i∈[n],j∈[n]
7 A function h : Rk → R is non-decreasing when h(x) ≤ h(y) whenever x ≤ y in the

component-wise ordering on Rk.



is negatively associated. Moreover, since the sets Xk,Xk′ for k 6= k′ consist of mutu-
ally independent variables (as the selection of the two bins is made independently for
each ball), it follows from [11, Proposition 7.1] that the entire set

X = {Xijk}i∈[n],j∈[n],k∈[m]

is negatively associated. Now consider the disjoint sets U` for ` ∈ [n] where U` is
defined as

U` = {Xijk | chosen[k] = ` ∧ (` = i ∨ ` = j)} ,
where chosen is the array output by OfflineTwoChoiceAllocation. Let now

h`(Xijk, Xijk ∈ U`) =
∑

Xijk∈U`

Xijk

for ` ∈ [n]. Clearly each h` is a non-decreasing function and therefore by [11, Propo-
sition 7.2] it follows that the set of random variables Y = {Y`}`∈[n] where Y` = h` is
also negatively associated. We can finally define Z` for ` = 1, . . . , n as

Z` = f(Y`) =

{
0 if Y` ≤ dm/ne+ 1

1 otherwise
.

Since f is also a non-decreasing function (as whenever Y` grows, Z` = f(Y`) may
only increase) therefore, again by [11, Proposition 7.2], it follows that the set of random
variables Z1, Z2, . . . , Zn is also negatively associated. ut

Lemma 3. The expected number of overflowing bins E[Z] is O(1).

Proof. For all bins ` ∈ [n], it is

E[Z`] = Pr[L∗max > dm/ne+ 1] ≤ Pr[Yq > dm/ne+ 1] = O(1/n) ,

by Lemma 1. By linearity of expectation and since Z =
∑
Zi, it is E[Z] = O(1). ut

Theorem 1. Assume OfflineTwoChoiceAllocation from Figure 3 is used to allocate
m balls into n bins. Let Z be the number of bins that receive more than dm/ne + 1
balls. Then there exists a fixed positive constant c such that for sufficiently large n8 and
for any τ > 1 it is

Pr[Z ≥ c · τ ] ≤
( e
τ

)c·τ
.

Proof. By Lemma 3 we have that there exists a fixed constant c such that E[Z] ≤ c for
sufficiently large n. Therefore, by Lemma 2 and Lemma 9 in the Appendix (where we
set µH = c since E[Z] ≤ c) we have that for any δ > 0

Pr[Z ≥ (1 + δ) · c] ≤
(

eδ

(1 + δ)(1+δ)

)c
≤
(

e1+δ

(1 + δ)(1+δ)

)c
.

Setting δ = τ − 1 which is > 0 for τ > 1, we get the desired result. ut
8 This means that there exists a fixed constant n0 such that for n ≥ n0 the statement holds—we

provide a quick estimate of the constants c and n0 in Appendix E—c = 36 and n0 = 655—but
we believe the constants can be improved with a more thorough analysis.



3.2 Bounding the Overflow Size

Next, we turn our attention to the number of balls Y` that can be assigned to bin `. In
particular we want to derive a probability bound Pr[Y` > dm/ne+τ ] defined in general
for parameter τ ≥ 2—Sanders et al. [21] studied only the case where τ = 1. To do
that, we will bound the probability that after OfflineTwoChoiceAllocation returns the
maximum load L∗max is larger than dm/ne+ τ for τ ≥ 2. We now prove the following
result.

Theorem 2. Assume OfflineTwoChoiceAllocation from Figure 3 is used to allocate
m balls into n bins. Let L∗max be the maximum load across all bins. Then for any τ ≥ 2

Pr
[
L∗max ≥

⌈m
n

⌉
+ τ
]
≤ O(1/n)τ +O(

√
n · 0.9n) .

Proof. Our analysis here closely follows the one of [21]. Without loss of generality, we
assume the number of balls m to be a multiple of the number of bins n9 and we will set
b = m/n. Let now (ai, bi) be the two random choices that OfflineTwoChoiceAllocation
makes for ball i where i = 1, . . . ,m. For a subset U ⊆ {1, . . . , n} of bins we define
the random variables XU

1 , . . . , X
U
m such that

XU
i =

{
1 if ai ∈ U and bi ∈ U
0 otherwise

,

i.e., XU
i is 1 if both selections for the i-th ball are from subset U , which unavoidably

leads to this ball being assigned to a bin within subset U . The random variable LU =∑m
i=1X

U
i is called the unavoidable load of U . Also, for a set U and a parameter τ ,

let PU = Pr[LU ≥ (b + τ)|U | + 1]. Finally let L∗max be the optimal load, namely
the minimum maximum load that can be derived by considering all possible allocations
given the random choices (a1, b1), . . . , (am, bm). Since MaxFlowSchedule computes
an allocation with the optimal load, we must compute the probability Pr[L∗max > b+τ ],
where τ ≥ 2. From [22, Lemma 5] we have that

L∗max = max
∅6=U⊆{1,....,n}

{
LU
|U |

}
.

Thus we can write

Pr[L∗max > b+ τ ] =Pr[∃U ⊆ [n] : LU/|U | > b+ τ ]

=Pr[∃U ⊆ [n] : LU ≥ (b+ τ)|U |+ 1]

≤
∑
∅6=U⊆[n] Pr[LU ≥ (b+ τ)|U |+ 1] =

∑n
|U |=1

(
n
|U |
)
PU ,

9 If not, we pad to m = ndm′/ne balls, where m′ is the original number of balls. Then, to get
an allocation for the m′ balls, we get an allocation for the m balls and we remove the balls
that we do not need. Clearly, if L∗ is the optimal maximum load for the m′ balls, it is the case
that L∗ ≤ L∗max (if L∗ > L∗max you can get a better allocation for the m′ balls through the
allocation of them balls, a contradiction) and therefore whatever probability bounds we derive
for L∗max hold for L∗.



where the inequality follows from a simple union bound and for the last step we used
the fact that PU is the same for all sets U of the same cardinality. This is because for all
sets U1 and U2 with |U1| = |U2| we have that Pr[LU1 ≥ (b+ τ)|U1|+ 1] = Pr[LU2 ≥
(b+ τ)|U2|+ 1] since U1 and U2 are identically distributed.

Next, we need to bound the sum
∑n
|U |=1

(
n
|U |
)
PU . For this we will split the sum

into three separate summands

T1 =
∑

1≤|U |≤n8

(
n

|U |

)
PU , T2 =

∑
n
8<|U |<

nb
b+τ

(
n

|U |

)
PU and T3 =

∑
nb
b+τ≤|U |≤n

(
n

|U |

)
PU .

We begin with the simple observation that T3 = 0. To see why, note that for |U | ≥
nb/(b+ τ) it holds that PU = Pr[LU ≥ (b+ τ)|U |+ 1] = Pr[LU ≥ (b+ τ)nb/(b+
τ) + 1] = Pr[LU ≥ m + 1] = 0 as m is a natural upper bound for LU (i.e., if both
selections fall withinU for all balls). Regarding T2, we argue as follows. First, from [21,
Lemma 9] we have that ∑

n
8<|U |<

nb
b+1

(
n

|U |

)
P ∗U = O(

√
n · 0.9n) ,

where P ∗U = Pr[LU ≥ (b + 1)|U | + 1]. Clearly, for all U , PU ≤ P ∗U . Moreover,∑
n
8<|U |<

nb
b+τ

P ∗U ≤
∑

n
8<|U |<

nb
b+1

P ∗U for all τ ≥ 2. Putting it all together it follows
that

T2 ≤
∑

n
8<|U |<

nb
b+1

(
n

|U |

)
P ∗U = O(

√
n · 0.9n).

By Lemma 10 in the Appendix, we get T1 = O(1/n)b+τ = O(1/n)b+τ for all τ ≥
2 and therefore for all τ ≥ 2 it is

∑n
|U |=1

(
n
|U |
)
PU = O(1/n)τ since b ≥ 0. This

completes the proof. ut

3.3 Bounding the Total Number of Overflowing Balls

Let T > 0 be the number of overflowing balls, i.e., T =
∑`
i=1 Zi(Yi − dm/ne − 1).

We now have the following:

Theorem 3. Assume OfflineTwoChoiceAllocation from Figure 3 is used to allocate
m balls into n bins. Let T be the number of overflowing balls as defined above. Then
there exist fixed positive constants c, c1, c2 such that for sufficiently large n and for any
τ ≥ 2 it is

Pr[T > c · τ2] ≤
( e
τ

)c·τ
+
(c1
n

)τ
+ c2
√
n · 0.9n .

Proof. Define the events E : T > c · τ2, E1 : Z > τ and E2 : L∗max > dm/ne+ τ , for
some τ ≥ 2. By the law of total probability

Pr[E] = Pr[E|E1 ∧ E2] Pr[E1 ∧ E2] + Pr[E|E1 ∧ E′2] Pr[E1 ∧ E′2]
Pr[E|E′1 ∧ E2] Pr[E

′
1 ∧ E2] + Pr[E|E′1 ∧ E′2] Pr[E′1 ∧ E′2]

≤ Pr[E1] Pr[E2] + Pr[E1] Pr[E
′
2] + Pr[E′1] Pr[E2] + 0 ,



where Pr[E|E′1 ∧E′2] Pr[E′1 ∧E′2] = 0 since the probability Pr[E|E′1 ∧E′2] = 0. This
is because there is no way there can be more than τ2 overflowing balls given both the
number of overflowing bins and the maximum overflow per bin is at most τ . Therefore
by Theorem 1 and Theorem 2 we have

Pr[E] ≤ Pr[E1] + 2Pr[E2] ≤
( e
τ

)c·τ
+O(1/n)τ +O(

√
n · 0.9n) ,

which completes the proof by taking c1 and c2 to be the constants in the O() notations
O(1/n) and O(

√
n · 0.9n) respectively. ut

4 New Oblivious RAM withO(1) Locality and o(
√
n) Bandwidth

Our constant-locality SE construction requires the use of an Oblivious RAM (ORAM)
scheme as a black box. As we explained in the introduction, the ORAM scheme that
will be used must have the following properties:

1. It needs to have constant locality, meaning that for each oblivious access it should
only readO(1) non-contiguous locations in the encrypted memory. Existing ORAM
constructions with polylogarithmic bandwidth have logarithmic locality. For ex-
ample, a path ORAM access [26] traverses log n binary tree nodes stored in non-
contiguous memory locations—therefore we cannot use it here.
This property is required as our underlying SE scheme must have O(1) locality;

2. It needs to have bandwidth cost o(
√
n ·λ). Note that this is less than the bandwidth

of the square-root ORAM by Goldreich and Ostrovsky [12] (which also has O(1)
locality if an I/O-efficient oblivious sorting algorithm [14] for the reshuffling is
used) but we will use the square-root ORAM as our starting point.
This property is required because we would be applying the ORAM scheme on an
array ofO(log2N) entries, yielding ovelall bandwidth equal to o(logN ·λ), which
would imply sublogarithmic read efficiency for the underlying SE scheme.

We note here that an existing scheme that seems to be satisfying both properties
above is the ORAM construction based on a randomized shuffling algorithm from [20,
Theorem 7] by Ohrimenko et al. (where we set c = 3). This ORAM has O(1) locality
and O(n1/3 log n · λ) bandwidth. However we cannot apply it here due to its failure
probability which is neg(n), where n is the size of the memory array. Unfortunately,
since our array hasO(log2N) entries (whereN is the size of the SE dataset), this would
give a probability of failure neg(log2N) which is not necessarily neg(N).

4.1 Achieving O(n1/3 log2 n · λ) amortized bandwidth and O(1) amortized
locality

In the following we summarize our amortized construction first—see Figure 4, and then
we present our final de-amortized ORAM construction in Figure 16 in the Appendix
that is derived by using standard techniques by Goodrich et al. [15]. To simplify the
exposition, we consider just read-only ORAM since this is what we need for our SE
scheme. Our ORAM algorithms can be easily extended for writes as well.



ORAM Setup. Given memory M storing n index-value pairs (1, v1), (2, v2), . . . , (n, vn)
we allocate three main arrays for storage: A of size na = n + n2/3, B of size nb =
n2/3 + n1/3, and C of size nc = n1/3. Initially A stores all elements encrypted with
a CPA-secure encryption scheme and permuted with a pseudorandom permutation10

πa : [na]→ [na] and B and C are empty, containing encryptions of dummy values.
We also initialize another pseudorandom permutation πb : [nb] → [nb] used for

accessing elements from array B. In particular, if an element x ∈ [n] is stored in array
B, it is located at position πb[Tab[x]] of B, where Tab is a hash table that is stored
locally and maps an element x ∈ [n] to an index Tab[x] ∈ [nb]. Note that the hash table
is necessary to index elements in B since nb < n.

ORAM Access. To access element x, the algorithm always downloads, decrypts and
sequentially scans array C. Similarly to the square-root ORAM, we consider two cases:

1. Element x is in C. In this case the requested element has been found and the algo-
rithm performs two additional dummy accesses for security reasons: it accesses a
random11 position in array A and a random position in array B.

2. Element x is not in C. In this case we distinguish the following subcases.
– Element x is not in B.12 In this case x can be retrieved by accessing the ran-

dom position πa[x] of array A. Like previously, the algorithm also accesses a
random position in array B.

– Element x is in B. In this case x can be retrieved by accessing the random
position πb[Tab[x]] of array B. Like previously, the algorithm also accesses a
random position in array A.

In the end of the access, the retrieved element x is being written in the next available
position of C, the algorithm computes a fresh encryption of C and writes C encrypted
back to the server. Also, element x is being recorded as an accessed element in array
SCRATCH—SCRATCH will be the input to a small reshuffling, see below.

Reshuffling, epochs and superepochs. Our algorithm for obliviously accessing an ele-
ment x described above proceeds in epochs and superepochs. An epoch is defined as a
sequence of n1/3 accesses. A superepoch is defined as a sequence of n2/3 accesses.

At the end of every epoch C becomes full, and all elements in C along with the
ones that have been accessed in the current superepoch (and are now stored in B) are
obliviously reshuffled into B using a fresh pseudorandom permutation πb. In our im-
plementation in Figure 4, we store all the elements that must be reshuffled in an array
SCRATCH. After the reshuffling C can be emptied (denoted with ⊥ Line 30) so that it
can be used again in the future.

At the end of every superepoch all the elements of the dataset are obliviously reshuf-
fled into array A using a fresh pseudorandom permutation πa and arrays B, C and
SCRATCH are emptied.
10 In practice (and since we will be applying our ORAM on a “small domain” of O(log2N)

elements), πa will be implemented with efficient small-domain pseudorandom permutations
(e.g., [16,25,19]).

11 As in the square-root ORAM, the position chosen is not entirely random—it is chosen from
the ones that have not been chosen so far.

12 This can be decided by checking whether Tab[x] is null or not.



Protocol 〈σ,EM〉 ↔ ORAMINITIALIZE〈(1κ,M),⊥〉:
1: Parse M as (1, v1), (2, v2), . . . , (n, vn) where |i, vi| = λ (the values are λ bits long);
2: Let na ← n+ n2/3, nb ← n2/3 + n1/3, nc ← n1/3;
3: Let A, B and C be arrays of size na, nb and nc respectively. Initialize them with 0 entries;
4: Let SCRATCH be an array of size nb. Initialize it with 0 entries;
5: Let πa : [na]→ [na] and πb : [nb]→ [nb] be pseudorandom permutations;
6: For i = 1, . . . , n, store (i, vi) at location πa[i] in A;
7: Encrypt-And-Write arrays A, B, C and SCRATCH and add them to EM ;
8: Let counta ← 0 and countb ← 0;
9: Let Tab be an empty hash table;

10: Set σ = (πa, πb,Tab, counta, countb);
11: return 〈σ,EM〉;
Protocol 〈(vi, σ′),EM′〉 ↔ ORAMACCESS〈(σ, i),EM〉:
1: Parse σ as (πa, πb,Tab, counta, countb) and EM as (A,B,C,SCRATCH);
2: Increment counta and countb;
3: Read-And-Decrypt array C;
4: if (i, vi) ∈ C then . (i, vi) was accessed before and is stored in C
5: indexa ← πa[n+ counta];
6: indexb ← πb[n

2/3 + countb];
7: else
8: if Tab[i] 6= null then . (i, vi) is stored in B[indexb]
9: indexa ← πa[n+ counta];

10: indexb ← πb[Tab[i]];
11: else . (i, vi) is stored in A[indexa]
12: indexa ← πa[i];
13: indexb ← πb[n

2/3 + countb];
14: Read-And-Decrypt A[indexa];
15: Read-And-Decrypt B[indexb];
16: Retrieve (i, vi) from either A[indexa] or B[indexb] or C;
17: C[countb]← (i, vi);
18: Encrypt-And-Write array C;
19: Tab[i]← counta;
20: Encrypt-And-Write element (Tab[i], vi) at position counta of array SCRATCH;
21: if counta > n2/3 then . Transition to a new superepoch
22: Let πa and πb be new pseudorandom permutations;
23: counta ← 0 and countb ← 0;
24: 〈⊥, A〉↔OBLIVIOUSSORTING〈(πa, na, n1/3 log2 n), A〉; . large rebuild
25: Set B ← ⊥; C ← ⊥; SCRATCH← ⊥; Set Tab← ⊥;

26: if countb > n1/3 then . Transition to a new epoch
27: Let πb be new pseudorandom permutation;
28: countb ← 0;
29: 〈⊥, B〉↔OBLIVIOUSSORTING〈(πb, nb, n1/3 log2 n),SCRATCH〉; . small rebuild
30: Set C ← ⊥;

31: return 〈(vi, (πa, πb,Tab, counta, countb)), (A,B,C,SCRATCH)〉;

Fig. 4. Read-only ORAM construction with O(n1/3 log2 n · λ) amortized bandwidth and O(1)
amortized locality.



Oblivious Sorting With Good Locality. As in previous works, our reshuffling in the
ORAM protocol is performed using an oblivious sorting protocol. Since we are using
the ORAM scheme in an SE scheme that must have good locality, we must ensure that
the oblivious sorting protocol used has good locality as well, i.e., it does not access
too many non-contiguous locations. One way to achieve that is to download the whole
encrypted array, decrypt it, sort it and encrypt it back. This has excellent locality L = 1
but requires linear client space. A standard oblivious sorting protocol such as Batcher’s
odd-even mergesort [6] does not work either since its locality can be linear.

Fortunately, Goodrich and Mitchenmacher [14] developed an oblivious sorting pro-
tocol for an external memory setting that is a perfect fit for our application—see the
pseudocode of the protocol in Figure 15 in the Appendix. The client interacts with
the server only by reading and writing b consecutive blocks of memory. We call each
b-block access (either for read or write) an I/O operation. The performance of their
protocol is characterized in the following theorem.

Theorem 4 (Goodrich and Mitchenmacher [14], Goodrich [13]). Given an array X
containing n comparable blocks, we can sortX with a data-oblivious external-memory
protocol that uses O((n/b) log2(n/b) I/O operations and local memory of 4b blocks,
where an I/O operation is defined as the read/write of b consecutive blocks of X .

Note that in the above oblivious sorting protocol one can parametrize the block
size, affecting the local space accordingly. In our case, we set the block size to be equal
to n1/3 log2 n—see Lines 24 and 29 in Figure 4. This will be enough for achieving
constant (amortized) locality in our SE scheme.

The correctness and security proofs of our ORAM scheme can be found in Ap-
pendix C.

Lemma 4. The ORAM scheme of Figure 4 hasO(n1/3 log2 n ·λ) amortized bandwidth
per access andO(1) amortized locality per access and the client space isO(n2/3 log n+
n1/3 log2 n · λ).

Proof. Over the course of n accesses, each access 1 ≤ i ≤ n incurs the following:

– O(n1/3 ·λ) bandwidth andO(1) locality due to access ofA,B, C and SCRATCH;
– O(n2/3 log2 n · λ) bandwidth and O(n1/3) locality due to the small rebuilding

which happens only when i mod n1/3 = 0 (i.e., n2/3 times);
– O(n log2 n · λ) bandwidth and O(n2/3) locality due to the large rebuilding which

happens only when i mod n2/3 = 0 (i.e., n1/3 times).

Note that in order to derive the locality of the rebuilding above, we used Theorem 4 for
b = n1/3 log2 n. Now, the amortized bandwidth is

λ · n ·O(n1/3) + n2/3 ·O(n2/3 log2 n) + n1/3 ·O(n log2 n)

n
= O(n1/3 log2 n · λ)

and the amortized locality is

n ·O(1) + n2/3 ·O(n1/3) + n1/3 ·O(n2/3)

n
= O(1) .



Finally, the client must store Tab locally, that consists of n2/3 entries of log n bits each
and also needs to have O(n1/3 log2 n · λ) space locally for the oblivious sorting—see
Theorem 4. ut

4.2 From Amortized to Worst-Case Bandwidth and Locality

To turn the amortized version of our scheme into worst-case we must perform some
reshuffling work (in particular c · n1/3 log2 n work where c is an appropriate constant)
during every regular ORAM access so that by the time n1/3 or n2/3 accesses have been
performed, the small or large reshuffling respectively is complete and therefore there is
no need for an expensive massive reshuffling. That idea was described for the square
root ORAM by Goodrich et al. [15]. The details are given in Appendix D. We now have
the following results.

Theorem 5. Let n is the size of the memory array and λ be the size of the block. The
ORAM scheme of Figure 16 (i) is correct according to Definition 5; (ii) is secure accord-
ing to Definition 2 and assuming pseudorandom permutations and CPA-secure encryp-
tion; (iii) has O(n1/3 log2 n · λ) worst-case bandwidth and O(1) worst-case locality
per access and requires client space O(n2/3 log n+ n1/3 log2 n · λ).

Further Reducing the Local Space for Big Block Sizes. We now observe that for big
block sizes that are Ω(n1/3) bits (as is the case for our application), the space required
to store the hash table (n2/3 log n) becomes asymptotically less or equal to the local
space required to do the oblivious sorting (n1/3 log2 n · λ), and therefore the total local
space becomes O(n1/3 log2 n · λ). Therefore we have the following.

Corollary 1. Let λ = Ω(n1/3) bits be the block size. Then the ORAM scheme of Fig-
ure 16 hasO(n1/3 log2 n·λ) worst-case bandwidth per access,O(1) worst-case locality
per access and O(n1/3 log2 n · λ) client space.

5 Allocation Algorithms

As we mentioned in the introduction, to construct our final SE scheme we are going
to use a series of allocation algorithms. The goal of an allocation algorithm for an SE
dataset D consisting of q keyword lists D(w1),D(w2), . . . ,D(wq) is to store/allocate
the elements of all lists into an array A (or multiple arrays).

Retrieval Instructions. To be useful, an allocation algorithm should also output a hash
table Tab such that Tab[w] contains “instructions” on how to correctly retrieve a key-
word listD(w) after the list is stored. For example, for a keyword listD(w) that contains
four elements stored at positions 5, 16, 26, 27 of A by the allocation algorithm, some
valid alternatives for the instructions Tab[w] are: (i) “access positions 5, 16, 26, 27 of
array A”; (ii) “access all positions from 3 to 28 of array A”; (iii) “access the whole
array A”. Clearly, there are different tradeoffs among the above instructions, as we
discuss in the following.



Independence Property. For security purposes, and in particular for being able to sim-
ulate the search procedure of the SE scheme, it is important the instructions Tab[w]
output by an allocation algorithm for a specific keyword list D(w) be independent of
the distribution of the rest of the underlying SE dataset—intuitively this implies that ac-
cessing D(w) as instructed by the allocation algorithm does not reveal any information
about the rest of the dataset.

Two Examples. The aforementioned independence property is easy to achieve, for ex-
ample, with the following naive allocation “read-all” algorithm: Allocate D(w1) in the
first |D(w1)| positions of array A, D(w2) in the next |D(w2)| positions of array A and
so on. Then, for all keywords w in D, output Tab[w]← “access the whole array A” as
the instruction. Clearly Tab[w] is independent of the distribution of the dataset. How-
ever, even accessing a small list (e.g., consisting of just one element) requires reading
the whole array A (N elements) which is very inefficient. Note that our final construc-
tion uses this algorithm for keyword list that are very large, for which reading the whole
array is not an issue.

We can improve the above allocation algorithm by applying a random permutation
π in the array A, storing element A[i] in position A[π[i]]—this is actually the allocation
algorithm used by most existing SE schemes, e.g., [9]. In that case, the allocation algo-
rithm sets Tab[w] to contain the positions assigned by the random permutation π to the
elements of D(w). Due to the random permutation π, instructions Tab[w] are indepen-
dent from the distribution of the rest of the dataset (any allocation is equally likely) and
at the same time retrieving any list requires accessing exactly |D(w)| locations. While
this “permute” algorithm seems ideal, it has a major shortcoming: it requires |D(w)|
random jumps in the memory—this can lead to impractical protocols when array A is
so large that needs to be stored on disk.

Our Approach. In this section, we wish to develop allocation algorithms that satisfy the
independence property that are only required to jump to a constant number of locations
to retrieve the result (just like “read-all” did), while minimizing the additional entries
that are being retrieved (just like “permute” did). As we said before, our final alloca-
tion algorithm that will be used by our proposed SE scheme consists of four different
allocation algorithms that work for specific size ranges of keyword lists. First we begin
with some terminology.

5.1 Buckets and Superbuckets

Following terminology from [5], our allocation algorithms use fixed-capacity buckets
for storage. A bucket with capacity C can store up to C elements—in our case an
element is a keyword-document pair (w, id). To simplify notation, we represent a set of
B buckets A1, A2, . . . , AB as an array A of B buckets, referring to bucket Ai as A[i].
Additionally, a superbucket A{k, s} is a set of the following s consecutive buckets

A[(k − 1)s+ 1],A[(k − 1)s+ 2], . . . ,A[ks] .



Algorithm (A,Tab)← AllocateSmall(D, N): (taken from [5])

1: Let max← N1−1/ log logN , C = cs · log logN log2 log logN a and B ← N/C;
2: Let A be an array of B buckets—each bucket has capacity C;
3: Initialize an empty hash table Tab;
4: for sizes s = max,max/2,max/4, . . . , 1 do
5: for each keyword w such that |D(w)| = s do
6: Pick α and β from {1, . . . , B

s
} independently and uniformly at random;

7: Let A{α, s} and A{β, s} be two superbuckets;
8: Let x ∈ {α, β} correspond to the superbucket with the minimum load;
9: Store D(w) horizontally into superbucket A{x, s};

10: Tab[w] = (s, α, β,⊥);
11: if there is a bucket A[i] that overflows then
12: return FAIL;
13: else
14: Pad every bucket A[i] to C elements using dummy values;
15: return (A,Tab);

a Constant cs can be appropriately chosen in [5].

Fig. 5. Allocation algorithm for small sizes from Asharov et al. [5].

We say that we store a keyword list D(w) = {(w, id1), (w, id2), . . . , (w, ids)} hori-
zontally into superbucket A{k, s} when each element (w, idi) is stored in a separate
bucket of the superbucket.13

Finally, the load of a bucket or a superbucket is the number of elements stored in
each bucket or superbucket.

5.2 Allocating Small Keyword Lists with Two-Dimensional Balanced Allocation

We refer to keyword lists that have size at most N1−1/ log logN as small. For those
keyword lists we use the two-dimensional allocation algorithm of Asharov et al. [5].
For completeness we provide the algorithm in Figure 5, which we call AllocateSmall.
Let C = cs · log logN log2 log logN , for some appropriately chosen constant cs [5].
The algorithm uses B = N/C buckets of capacity C each. It then considers all small
keyword lists starting from the largest to the smallest, and depending on the list’s size
s, it picks two superbuckets from {1, 2 . . . , B/s} uniformly at random, horizontally
placing the keyword list into the superbucket with the minimum load. The algorithm
records the chosen superbucket, as well as the other chosen superbucket as instructions
in a hash table Tab. If, during this allocation process some bucket overflows, then the
algorithm outputs FAIL. We now have the following result.

13 For example consider an array A consisting of 20 buckets A[1],A[2] . . . ,A[20] where each
bucket A[i] has capacity C = 5. Superbucket A{3, 4} contains the buckets A[9], . . . ,A[12].
Horizontally storing {a1, a2, . . . , a4} into A{3, 4} means storing a1 into A[9], a2 into A[10],
and so on, reducing the capacity of A[9], . . . ,A[12] from 5 to 4, and increasing their load from
0 to 1.



Theorem 6 (Asharov et al. [5]). Algorithm AllocateSmall in Figure 5 outputs FAIL
with probability neg(N). Moreover the output array of buckets A occupies spaceO(N).

Note that a list of size s can be read by accessing s consecutive buckets (i.e., a
superbucket), therefore the read efficiency for these lists isO(log logN log2 log logN).

5.3 Allocating Medium Keyword Lists with Offline Two-Choice Allocation

We refer to keyword lists with sizes greater than min = N1−1/ log logN and at most
max = N/ log2N as medium. The allocation algorithm for these lists is shown in Fig-
ure 6. The algorithm uses an array A of B = N log logN/ logN buckets, where each
bucket has capacity C = 3 · logN/ log logN . Just like AllocateSmall, the allocation
algorithm for medium sizes stores a list D(w) of size s horizontally into one of the
superbuckets

A{1, s},A{2, s}, . . . ,A{B/s, s} .

However, unlike AllocateSmall, the supebucket that is finally chosen to storeD(w)
depends only on keyword lists of the same size with D(w) that have already been allo-
cated and not on all other keyword lists encountered so far. In particular, let ks be the
number of keyword lists that have size s. Let also bs = B/s be the number of super-
buckets with respect to size s. To figure out which superbucket to pick for horizontally
storing a particular keyword list of size s, the algorithm views the ks keyword lists as
balls and the bs superbuckets as bins and performs an offline two-choice allocation of
ks keyword lists (balls) into bs superbuckets (bins), as described in Section 3. When,
during this process some superbucket contains⌈

ks
bs

⌉
+ 1

keyword lists of size s, any subsequent keyword list of size smeant for this superbucket
is instead placed into a stash Bs that contains exactly c · log2N buckets of size s each
for some fixed constant c derived in Theorem 1. Our algorithm will fail, if

– Some bucket A[i] overflows (i.e., the total number of elements that are eventually
stored into A[i] exceeds its capacity C), which as we show in Lemma 5 never
happens; or

– More than c · log2N keyword lists of size s must be stored at some stash Bs, which
as we show in Lemma 6 happens with negligible probability.

All the choices that the algorithm makes, such as the two superbuckets originally
chosen for every list during the offline two-choice allocation as well as the position
in the stash (in case the list was an overflowing one) are recorded in Tab as retrieval
instructions. We now prove the following lemma.

Lemma 5. During the execution of algorithm AllocateMedium in Figure 6, no bucket
A[i] (for all i = 1, . . . , B) will ever overflow.



Algorithm (A,B,Tab)← AllocateMedium(D, N):

1: Let min← N
1− 1

log logN , max← N
log2 N

,C ← 3· logN
log logN

,B ← N/C and ` = c·log2N ;a

2: Let A be an array of B buckets—each bucket has capacity C;
3: Initialize an empty hash table Tab;
4: for sizes s = 2min, 4min, . . . ,max do
5: Let Bs be an array of ` buckets—each bucket has capacity s; . This is the stash
6: i← 0;
7: Let ks be the number of keywords in D with |D(w)| = s;
8: Let bs ← B/s be the number of superbuckets with respect to size s;
9: Let inStashs ← 0;

10: (chosen, alternative)← OfflineTwoChoiceAllocation(ks, bs);
11: for each keyword w such that |D(w)| = s do
12: Increment i;
13: Set α← chosen[i];
14: Set β ← alternative[i];
15: if superbucket A{α, s} contains ≤ d ks

bs
e keyword lists of size s then

16: Store D(w) horizontally into superbucket A{α, s};
17: Tab[w] = (s, α, β, 1);
18: else . Move to stash
19: Increment inStashs;
20: if inStashs > ` then . Stash overflows
21: return FAIL;
22: Store D(w) in the bucket Bs[inStashs];
23: Tab[w] = (s, α, β, inStashs);
24: if there is a bucket A[i] that has overflown then
25: return FAIL;
26: else
27: Pad every bucket A[i] to C elements using dummy values;
28: return (A, (B2min,B4min,B8min,B16min . . . ,Bmax),Tab);

a Constant c is derived by Theorem 1.

Fig. 6. Allocation algorithm for medium sizes.

Proof. For each size s = 2min, 4min, . . . ,max, Line 15 of AllocateMedium allows at
most dks/bse+1 keyword lists of size s to be stored in any superbucket A{i, s}. Since
every keyword list of size s is stored horizontally in a superbucket A{i, s}, it follows
that every bucket A[i] within every superbucket A{i, s}will have load, due to keywords
lists of size s, at most s · (dks/bse+ 1)/s = dks/bse+ 1. Therefore the total load of a
bucket A[i] due to all sizes s = 2min, 4min, . . . ,max is at most

∑
s

(⌈
ks
bs

⌉
+ 1

)
≤
∑
s

ks
bs

+
∑
s

2 .



We now bound the above sums separately. Since bs = B/s,
∑
s ks · s ≤ N and B =

N log logN/ logN it is∑
s

ks
bs

=
1

B

∑
s

ks · s ≤
N

B
=

logN

log logN
.

Now since min = 2 ·N1−1/ log logN = 2logN−logN/ log logN+1, max = N/ log2N =
2logN−2 log logN and size s takes only powers of 2, there are logN

log logN − 2 log logN

terms in the sum
∑
s 2 and therefore

∑
s

(⌈
ks
bs

⌉
+ 1

)
≤ 3 · logN

log logN
− 4 · log logN ≤ 3 · logN

log logN
,

which is equal to the capacityC of the bucket in AllocateMedium. Therefore no bucket
will ever overflow. ut

Lemma 6. During the execution of algorithm AllocateMedium in Figure 6, no stash
Bs (for s = 2min, 4min, . . . ,max) will ever overflow, except with probability neg(N).

Proof. Recall that for each s = 2min, 4min, . . . ,max, placing the ks keyword lists of
size s into the bs superbuckets of size s is performed via an offline two-choice alloca-
tion of ks balls into bs bins. Also recall that the lists that end up in the stash Bs (that
has capacity log2N ) are originally placed by the allocation algorithm in superbuckets
containing more than dks/bse+1 keyword lists of size s, thus they are overflowing. Let
Ts be the number of these lists. By Theorem 9, where we set T = Ts and n = bs and
τ = logN , we have that for large bs and for fixed constants c, c1 and c2

Pr[Ts > c · log2N ] ≤
(

e

logN

)c·logN
+

(
c1
bs

)logN

+ c2
√
bs · 0.9bs = neg(N) ,

since bs = B/s = N log logN/s logN ≥ logN log logN as s ≤ max = N/ log2N .
ut

Theorem 7. Algorithm AllocateMedium in Figure 6 outputs FAIL with probability
neg(N). Moreover, the size of the output array A and the stashes B is O(N).

Proof. AllocateMedium can fail either because a bucket A[i] overflows, which by
Lemma 5 happens with probability 0, or because some stash Bs ends up having to store
more than log2N elements for some s = 2min, 4min, . . . ,max, which by Lemma 6
happens with probability neg(N).

For the space complexity, since no bucket A[i] overflows, array A occupies space
O(N). Also each stash Bs contains log2N buckets of size s each so the total size
required by the stashes is

c · log2N(min + 2min + 4min + . . .+ max) ≤ 2 · c · log2N ·max = O(N) ,

since max = N/ log2N . ut



Algorithm (A,B,Tab)← AllocateLarge(D, N,min,max):
1: Initialize an empty hash table Tab;
2: Let A be an array of t = N/max buckets—each bucket has capacity 2max;
3: for sizes s = 2min, 4min, 8min, 16min . . . ,max do
4: Let Bs be and array of N/max buckets—each bucket has capacity s;
5: inStashs ← 0;
6: availables ← {1, 2, . . . , t};
7: for each keyword w such that min < |D(w)| ≤ max do
8: s← |D(w)|;
9: Pick k ∈ availables uniformly at random;

10: Set availables ← availables − {k};
11: if bucket A[k] has at least s available space then
12: Store D(w) in bucket A[k];
13: Tab[w]← (s, k,⊥, 1);
14: else
15: Increment inStashs;
16: if inStash ≥ N/max then
17: return FAIL;
18: Store D(w) in bucket Bs[inStashs];
19: Tab[w]← (s, k,⊥, inStashs);
20: return (A, (B2min,B4min,B8min,B16min . . . ,Bmax),Tab);

Fig. 7. Allocation algorithm for large sizes.

5.4 Allocating Large Keyword Lists

We call a keyword list large, if its size is in the range N/ log2N and N/ log2/3N .
Algorithm AllocateLarge in Figure 7 is used to allocate lists whose size falls within
a specific subrange (min,max] of the above range. Our actual construction (see Fig-
ure 9) will use two such consecutive subranges—that is why we pass min and max as
arguments in AllocateLarge.

For a given subrange (min,max], AllocateLarge stores all keyword lists in either
an array A of t = N/max buckets of capacity 2max each or in some stash Bs that con-
tains N/max buckets of capacity s each and which is kept for each size s. In particular,
for a large keyword list D(w) of size s, the algorithm picks a bucket A[i] uniformly at
random and tries to place the list in this bucket. If there is no space in A[i], it places the
list in the next available position in Bs. The algorithm records both the chosen bucket
for keyword w as well as the stash position, irrespective of whether D(w) is placed in
the bucket A[i] or not (as we will see later, for security purposes, both of these will be
accessed when w is searched for). Now, when another keyword of size s must be allo-
cated, the algorithm picks from a set of buckets availables that does not contain i (and
in general all previous choices made for lists of size s), and repeats the same procedure.
The formal description of the algorithm is shown in Figure 7. We now prove that if we
follow this procedure, our stashes will never overflow.

Theorem 8. Algorithm AllocateLarge in Figure 7 never outputs FAIL. Moreover, the
size of the output array A and the stashes B is O(N).



Algorithm (A,Tab)← AllocateHuge(D, N):

1: Let min← N/ log2/3N ;
2: Initialize an empty hash table Tab;
3: Let A be an array of N entries;
4: count← 1;
5: for all keywords w such that |D(w)| > min do
6: Store D(w) in positions count, count + 1, . . . , count + |D(w)| − 1 of array A;
7: count← count + |D(w)|;
8: Tab[w]← (|D(w)|,⊥,⊥,⊥);
9: return (A,Tab);

Fig. 8. Allocation algorithm for huge sizes.

Proof. Assume AllocateLarge fails. Then for some s = max,max/2, . . . ,min it has
to be the case that N/max pieces of size s are placed in the stash Bs. A piece of size s
is placed in the stash because a bucket of size 2max in array A has occupancy at least
2max−s+1. Therefore, by the time the overflow happensN/max different buckets in
array A must have occupancy at least 2max−s+1 (this is because AllocateLarge does
not probe buckets that have been probed before for pieces of the same size). Therefore
the number of entries that should have been considered up to that point is

N

max
(2max− s+ 1) ≥ N

max
(max + 1) ≥ N +

N

max
≥ N + log2/3N ,

since s ≤ max ≤ N/ log2/3N . This is a contradiction, however, since the number
of entries of our dataset is exactly N . For the space complexity, since the output array
A has at most N/max buckets of size 2max each, it follows that A has size O(N).
Finally, since each stash Bs has N/max buckets of size s each, the total size is

N

max
(max + max/2 + max/4 + . . .+ min) = O(N) .

ut

5.5 Allocating Huge Keyword Lists with a Read-All Algorithm

Keyword lists that have size from N/ log2/3N up to N are stored directly in an array
A of N entries, one after the other—see Figure 8. To read a huge list in our actual
construction, one would have to read the whole array A—however, due to the huge size
of the list, the read efficiency would still be small.

6 Our SE Construction

We now present our main construction that uses the ORAM scheme presented in Sec-
tion 4 and the allocation algorithms presented in Section 5 as black boxes. Our formal
protocols are shown in Figure 9 and Figure 10.



Protocol 〈st, I〉 ↔ SETUP〈(1κ,D),⊥〉:
1: Let N ←

∑
w∈W |D(w)|;

2: Let Tab be an empty hash table of capacity N ;
3: (S,TabS)← AllocateSmall(D, N);
4: for all buckets S[i] ∈ S do
5: Encrypt-And-Write bucket S[i] and add encrypted S[i] to server index I;
6: (M,BM ,TabM )← AllocateMedium(D, N);
7: for all buckets M[i] ∈ M do
8: Encrypt-And-Write bucket M[i] and add encrypted M[i] to server index I;
9: (L,BL,TabL)← AllocateLarge(D, N,N/ log2N,N/ log4/3N);

10: for all buckets L[i] ∈ L do
11: Encrypt-And-Write bucket L[i] and add encrypted L[i] to server index I;
12: (L,BL,TabL)← AllocateLarge(D, N,N/ log4/3N,N/ log2/3N);
13: for all buckets L[i] ∈ L do
14: Encrypt-And-Write bucket L[i] and add encrypted L[i] to server index I;
15: (H,TabH)← AllocateHuge(D, N);
16: Encrypt-And-Write array H and add encrypted H to server index I;
17: Set Tab← TabS ∪ TabM ∪ TabL ∪ TabL ∪ TabH ;
18: st← Tab;
19: for every stash Bs ∈ BM ∪ BL ∪ BL corresponding to size s do
20: 〈σs,EMs〉 ↔ ORAMINITIALIZE〈(1κ,Bs),⊥〉;
21: Encrypt-And-Write σs and add σs and EMs to server index I;
22: if AllocateSmall or AllocateMedium or AllocateLarge called above output FAIL then
23: return FAIL;
24: return 〈st, I〉;

Fig. 9. The setup protocol of our SE construction.

6.1 Setup Protocol of SE scheme

Our setup algorithm allocates keyword lists depending on whether they are small, medium,
large or huge, as defined in Section 5. We describe the details below.

Small Keyword Lists. These are allocated to superbuckets using AllocateSmall from
Section 5.2. The allocation algorithm outputs an array of buckets S storing the small
keyword lists and the instructions hash table TabS storing, for each small keyword list
D(w), its size s and the superbuckets α and β assigned for this keyword list by the
allocation algorithm. The setup protocol of the SE scheme finally encrypts and writes
bucket array S and stores it remotely—see Line 5 in Figure 9. It stores TabS locally.

Medium Keyword Lists. These are allocated to superbuckets using AllocateMedium
from Section 5.3. AllocateMedium outputs (i) an array of buckets M; (b) the set of
stashes {Bs}s that handle the overflows, for all sizes s in the range; (iii) the instructions
hash table TabM storing, for each keyword list D(w) that falls into this range, its size
s, the superbuckets α and β assigned for this keyword list and a stash position x in
the stash Bs where the specific keyword list could have been potentially stored, had it



Protocol 〈(D(w), st′), I′〉 ↔ SEARCH〈(st, w), I〉:
1: Parse st as Tab and I as (S,M, L,L,H, {σs,EMs});
2: Let (s, α, β, x)← Tab[w];
3: if s > N/ log2/3N then . Huge sizes
4: Read-And-Decrypt array H;
5: Retrieve D(w) from H;
6: if s ≤ N1−1/ log logN then . Small sizes
7: Read-And-Decrypt superbuckets S{α, s} and S{β, s};
8: Retrieve D(w) from S{α, s} and S{β, s};
9: else

10: Read-And-Decrypt σs;
11: 〈(vx, σs),EMs〉 ↔ ORAMACCESS〈(σs, x),EMs〉;
12: Encrypt-And-Write σs;
13: if N1−1/ log logN < s ≤ N/log2N then . Medium sizes
14: Read-And-Decrypt suberbuckets M{α, s} and M{β, s};
15: Retrieve D(w) from M{α, s} and M{β, s} or vx;
16: if N/log2N < s ≤ N/log4/3N then . Large sizes (scale 1)
17: Read-And-Decrypt bucket L[α];
18: Retrieve D(w) from L[α] or vx;
19: if N/log4/3N < s ≤ N/ log2/3 then . Large sizes (scale 2)
20: Read-And-Decrypt bucket L[α];
21: Retrieve D(w) from L[α] or vx;
22: return 〈(D(w), st), I〉;

Fig. 10. The search protocol of our SE construction.

caused an overflow (otherwise a dummy position is stored). The setup protocol finally
encrypts and writes array M and stores it remotely—see Line 8 in Figure 9. It also
builds an ORAM per stash Bs—see Line 23 in Figure 9. Finally it stores TabM locally.

Large Keyword Lists. These are allocated to buckets (and not superbuckets) using
AllocateLarge from Section 5.4. To keep read efficiency small, we run AllocateLarge
for three distinct subranges, as we detailed in Section 5. Similarly to AllocateMedium,
each execution of AllocateLarge outputs an array of buckets (either L or L depending
on the subrange) a hash table and a set of stashes {Bs}s that handle overflows for the
sizes s in each subrange. The setup protocol finally encrypts and writes arrays L or L
and stores them remotely and also builds an ORAM per stashBs. Finally it stores TabL
and TabL locally.

Huge Keyword Lists. For these lists, we use AllocateHuge from Section 5.5. This
algorithm outputs an array H and a hash table TabH . Our setup protocol encrypts and
writes H remotely and stores TabH locally.

Local State and Using Tokens. For the sake of simplicity and readability of Figure 9,
we assume that the client keeps locally the hash table Tab—see Line 20. This occupies
linear space O(N) but can be securely outsourced using standard SE techniques [24],



and without affecting the efficiency (read efficiency and locality) of our scheme: For
every hash table entry w → [s, α, β, x], store at the server the “encrypted” hash table
entry

tw → ENCkw(s||α||β||x) ,

where tw and kw comprise the tokens for keyword w (these are the outputs of a PRF
applied on w with two different secret keys that the client stores) and ENC is a CPA-
secure encryption scheme. To search for keyword w, the client just needs to send to the
server the tokens tw and kw and the server can then search the encrypted hash table and
retrieve the information s||α||β||x by decrypting.

Handling ORAM State and Failures. Our setup protocol does not store locally the
ORAM states σs of the stashes Bs for which we build an ORAM. Instead, it encrypts
and writes them remotely and downloads them when needed—see Line 21 in Figure 9.
Also, note that our setup algorithm can fail, whenever any of the allocation algorithms
fail. By Theorems 6, 7 and 8 we have the following:

Lemma 7. Protocol SETUP in Figure 9 fails with probability neg(N).

Lemma 8. Protocol SETUP in Figure 9 outputs an encrypted index I that has O(N)
size and runs in O(N) time.

Proof. The space complexity follows from Theorems 6, 7, 8, by the fact that array H
output by AllocateLarge has sizeO(N) and by the fact that the ORAM states σs, being
asymptotically less than the ORAM themselves, clearly occupy at most linear space.

For the running time, note that AllocateSmall, AllocateLarge, AllocateHuge run
in linear time and the ORAM setup algorithms also run in linear time (same analysis
with the space can be made). By Lemma 1, AllocateMedium must perform a costly
O(n3) offline allocation (a maximum flow computation) where n is the number of su-
perbuckets defined for every size s in the range. The maximum number of superbuckets
M is achieved for the smallest size handled by AllocateMedium and is equal to

M =
N log logN

N1−1/ log logN · logN
= N1/ log logN log logN/ logN .

Recall that there are at most logN/ log logN sizes handled by AllocateMedium
and therefore the time required to do the offline allocation is at most

O

(
logN

log logN
·M3

)
= O

(
N3/ log logN log3 logN/ log3N

)
= O(N) .

Therefore the total running time is O(N). ut

6.2 Search Protocol of SE scheme

Given a keyword w, the client first retrieves information (s, α, β, x) from Tab[w]. De-
pending on the size s of D(w) the client takes the following actions (see Figure 10):



– If the listD(w) is small, the client reads two superbuckets S{α, s} and S{β, s} and
decrypts them. Since the size of the buckets S[i] is log logN log2 log logN and
each superbucket contains s of them, it follows that the read efficiency for small
sizes is O(log logN log2 log logN). Note also that since only two superbuckets
are read, the locality for small lists is O(1).

– If the listD(w) is medium, the client reads two superbuckets M{α, s} and M{β, s}
and decrypts them. Also he performs an ORAM access in the stash Bs for location
x. Since the size of the buckets M[i] is O(logN/ log logN) and each superbucket
has s of them, it follows that the read efficiency for medium sizes due to accessing
array M is O(logN/ log logN).
For the ORAM access, note that in our case it is n = c·log2N . Therefore by Corol-
lary 1, and since our block size is at leastN1−1/ log logN which isΩ(log2/3N), the
bandwidth required is

O(n1/3 log2 n · s) = O(log2/3N log2 logN · s)

and therefore the read efficiency due to the ORAM access is

O(log2/3N log2 logN) = o(logN/ log logN) .

Therefore the overall read efficiency for medium sizes is O(logN/ log logN).
Again, since only two superbuckets are read and since the ORAM locality is O(1)
(Corollary 1), it follows that the locality for medium lists is O(1).

– If the list D(w) is large, the client reads bucket α (of size 2 · max) from either
arrays L, or L depending on the exact subrange (therefore the locality isO(1)), and
also does an ORAM access for position x in the stash Bs. The read efficiency due
to reading from arrays L or L is at most

2 ·max
min

= O(log2/3N) = o(logN/ log logN) ,

independently of the subrange we are considering. Concerning the ORAM access,
the ORAM is applied on an array of N/max ≤ log4/3N buckets of size s each
(since max ≥ N/ log4/3N for large sizes), and therefore the same analysis for the
ORAM that we did above holds here as well.

– For huge sizes, the read efficiency is at most O(log2/3N) = o(logN/ log logN)
since the locality is constant since the whole array H is read.

Therefore, overall, the locality is O(1), the read efficiency is O(logN/ log logN) and
the space required at the server is O(N).

6.3 Security of our Construction

We now prove the security of our construction. For this, we build a simulator SIMSETUP
and SIMSEARCH in Figures 11 and 12 respectively.



Algorithm (stS , I0)← SIMSETUP(1κ,L1(D0)):
1: Parse L1(D0) as N ;
2: Let S to be an array that contains N dummy elements; Encrypt-And-Write S;
3: Let M to be an array of N dummy elements; Encrypt-And-Write M;
4: Let L, L and L be arrays of 2 ·N dummy elements; Encrypt-And-Write L, L and L;
5: Let H be an array of N dummy elements; Encrypt-And-Write H;
6: Let min = N1−1/ log logN and max = N/ log2N ;
7: for s = 2min, 4min, 8min, . . . ,max do
8: Set Bs to be an array of c · log2N entries of s dummy elements each;
9: (stsS ,EMs)← SIMORAMINITIALIZE(1κ, |Bs|);

10: Parse stsS as σs; Encrypt-And-Write σs;
11: for exp = 2, 4/3 do
12: Let min = N/ logexpN and max = N/ logexp−2/3N ;
13: for s = 2min, 4min, 8min, . . . ,max do
14: Set Bs to be an array of N/max entries of s dummy elements each;
15: Set availables ← {1, 2, . . . , N/max};
16: (stsS ,EMs)← SIMORAMINITIALIZE(1κ, |Bs|);
17: Parse stsS as σs; Encrypt-And-Write σs;
18: Let messages be an empty hash table;
19: Set I0 = (S,M, L,L,H, {σs,EMs});
20: return ((N,Choices, {stsS}, {availables}), I0);

Fig. 11. The simulator of the setup protocol of our SE scheme.

Simulation of the Setup Protocol. To simulate the setup protocol, our simulator must
output I0 by just using the leakage L1(D0) = N . Our SIMSETUP algorithm outputs
I0 as CPA-secure encryptions of arrays (S,M, L,L,H) that contain dummy values and
have the same dimensions with the arrays of the actual setup algorithm. Also, it calls
the ORAM simulator from Figure 14 and also outputs {σs,EMs}). Due to the security
of the underlying ORAM scheme and the CPA-security of the underlying encryption
scheme, the adversary cannot distinguish between the two outputs.

One potential problem, however, is the fact that SIMSETUP always succeeds while
there is a chance that the setup algorithm can fail, which will enable the adversary
to distinguish between the two. However, by Lemma 7, this happens with probability
neg(N) = neg(κ), as required by our security definition, Definition 1.

Simulation of the Search Protocol. The simulator of the SEARCH protocol is shown in
Figure 12. For a keyword query wk, the simulator takes as input the leakage L2(wk) =
(s, b), as defined in Relation 1.

If the query on wk was performed before (thus b 6= ⊥), the simulator just outputs
the previous messages Mb plus the messages that were output by the ORAM simulator.

If the query on wk was not performed before, then the simulator can easily generate
the messages Mk depending on the size s of the keyword list D(wk). In particular note
that all the accesses on the arrays (S,M, L,L,H) are independent of the dataset that is
being considered and therefore can be easily simulated by repeating the same process
with the real execution. We can now state our final theorem.



Theorem 9. There exists a correct and secure SE scheme with linear space, constant
locality and sublogarithmic read efficiency.

7 Conclusions and Observations

First, as we showed, our construction is using ORAM as a black box and therefore one
could wonder why not use ORAM from the very beginning and on the whole dataset.
While ORAM can theoretically solve the SE problem with much better security guar-
antees, it is not a good fit when one must minimize the read efficiency. For example,
to the best of our knowledge, there is no ORAM that we could have used on the whole
dataset that would yield sublogarithmic read efficiency (irrespective of the locality).

Second, we note that Proposition 4.6 by Asharov et al. [5] states that one could not
expect to construct an allocation algorithm where the square of the locality × the read
efficiency is O(logN/ log logN). This is the case with our construction! The reason
this proposition does not apply to our approach is because our allocation algorithm is
using multiple structures for storage, e.g., stashes and multiple arrays, and therefore
does not fall into the model used to prove the negative result.

Finally, we note that our read efficiency for large sizes can be improved, by increas-
ing the space. For example, by splitting the range in three subranges

(N/ log2N,N/ log1.5N ], (N/ log1.5N,N/ logN ], (N/ log1.5N,N/ log0.5N ]

(which means keeping more stashes and one more array), we can improve the read
efficiency to O(N/ log0.5N) only for large sizes. Similarly, the read efficiency can be
further reduced by introducing more subranges. A similar observation was made by
Demertzis and Papamanthou [10] where the read efficiency and locality of their scheme
can be tuned by increasing or decreasing the space.
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Appendix

A Correctness Definitions of SE and ORAM

Definition 4 (Correctness of SE). Let (SETUP, SEARCH) be an SE scheme. Let now
〈st0, I0〉 ↔ SETUP〈(1κ,D0), 1

κ〉) for some initial SE dataset D0. Consider q keyword
queries w1, . . . , wq . An SE scheme is correct if 〈(D(wk), stk),EMk〉 are the final out-
puts of the protocol SEARCH〈(stk−1, wk),Dk−1〉 for any 1 ≤ k ≤ q, where Dk, Ik,
stk are the SE dataset, the encrypted index and the secret state, respectively, after the
k-th query, and SEARCH is run between an honest client and an honest server.

Definition 5 (Correctness of ORAM). Let (ORAMINITIALIZE,ORAMACCESS) be
an ORAM scheme. Let 〈σ0,EM0〉 ↔ ORAMINITIALIZE〈(1κ,M0), 1

κ〉) for some ini-
tial memory M0 of n indexed values (1, v1), (2, v2), . . . , (n, vn). Consider q arbitrary
requests i1, . . . , iq . We say that the ORAM scheme is correct if 〈(vik , σk),EMk〉 are the
final outputs of the protocol ORAMACCESS〈(σk−1, ik),EMk−1〉 for any 1 ≤ k ≤ q,
where Mk, EMk, σk are the memory array, the encrypted memory array and the secret
state, respectively, after the k-th access operation, and ORAMACCESS is run between
an honest client and server.

B Various Useful Lemmata

Lemma 9. Let {X1, . . . , Xn} be negatively associated 0-1 random variables and X
be their sum. Let µ = E[X] and µH be an upper bound on µ, i.e., µ ≤ µH . Then, for
any δ > 0, the following version of the Chernoff bound holds

Pr[X ≥ (1 + δ)µH ] ≤
(

eδ

(1 + δ)(1+δ)

)µH
.

Proof. For i = 1, . . . , n, let pi = Pr[Xi = 1]. By linearity of expectation, we have that
µ =

∑n
i=1 pi. Since variables Xi are negatively associated, from [11, Lemma 2], we

have that for t > 0,

E[etX ] = E[etX1 · etX2 . . . etXn ] ≤
n∏
i=1

E[etXi ] .

For each E[etXi ], it holds that E[etXi ] = pie
t+ (1− pi) = 1+ pi(e

t− 1) ≤ epi(et−1),
where we used the fact that for any k, it holds that 1 + k ≤ ek. Replacing above we get
that

E[etX ] ≤
n∏
i=1

E[etXi ] ≤
n∏
i=1

epi(e
t−1) = e

∑n
i=1 pi(e

t−1) = eµ(e
t−1) ≤ eµH(et−1) .



(chosen, alternative)← MaxFlowSchedule(m,n,A,B) (Section 3.3 of [21])
1: Let G be a graph that has n nodes and the following m unit-capacity directed edges

{(A[1],B[1]), (A[2],B[2]) . . . , (A[m],B[m])} ;

2: Let s and t be two new nodes added to G serving as the source and the sink;
3: For all v ∈ G such that indeg(v) > dm/ne+ 1, add a directed edge (s, v) of capacity

indeg(v)− (dm/ne+ 1) ;

4: For all v ∈ G such that indeg(v) < dm/ne+ 1, add a directed edge (v, t) of capacity

(dm/ne+ 1)− indeg(v) ;

5: Compute the maximum flow in G from s to t;
6: if the maximum flow in G from s to t saturates all the edges having s as origin then
7: Change the direction of all edges (A[i],B[i]) by calling swap(A[i],B[i]) that carry flow;
8: Let chosen and alternative be emtpy arrays of m entries;
9: for i = 1 to m do

10: Set chosen[i]← B[i];
11: Set alternative[i]← A[i];
12: return (chosen, alternative);

Fig. 13. Maximum flow algorithm for finding allocation.

Finally, applying Markov’s inequality, for any t > 0 we get that

Pr[X ≥ (1 + δ)µH ] = Pr[etX ≥ et(1+δ)µH ] ≤ E[etX ]

et(1+δ)µH
≤ eµH(et−1)

et(1+δ)µH
.

By now setting t = ln(1 + δ) (since δ > 0) we get that

Pr[X ≥ (1 + δ)µH ] ≤
(

eδ

(1 + δ)(1+δ)

)µH
.

ut

Lemma 10. For any set U ⊆ {1, . . . , n} and for any τ ≥ 2 it holds that

∑
1≤|U |≤n8

(
n

|U |

)
PU ≤

(
|U |
n

)(b+τ−1)|U |+1

· e(b+1)|U |+1 = O(1/n)b+τ ,

where PU = Pr[LU ≥ (b + τ)|U | + 1] and LU is the unavoidable load of a subset of
bins U , where the unavoidable load LU is defined in Section 3.2.

Proof. By the Stirling approximation, we have that(
n

|U |

)
≤
(
ne

|U |

)|U |
=

(
n

|U |

)|U |
e|U |.



To bound PU = Pr[LU ≥ (b + τ)|U | + 1] we note that the variables XU
i are

distributed independently from each other, and thus for a set U the variable LU follows
the binomial distribution with success probability p2 where p = |U |/n. By applying
the strong version of Chernoff bound, it follows from [21, Lemma 7] that for any x ≥
E[LU ]

Pr[LU ≥ x] ≤
(
mp2

x

)x(
1− p2

1− x/m

)m−x
. (2)

By Equation 2, setting x = (b+ τ)|U |+ 1 ≥ E(LU ) (since |U | ≤ n) we get that

Pr[LU ≥ (b+τ)|U |+1] ≤
(

b|U |2/n
(b+ τ)|U |+ 1

)(b+τ)|U |+1(
1− |U |2/n2

1− ((b+ τ)|U |+ 1)/bn

)bn−(b+τ)|U |−1
.

Let f =
(

b|U |2/n
(b+τ)|U |+1

)(b+τ)|U |+1

and g =
(

1−|U |2/n2

1−((b+τ)|U |+1)/bn

)bn−(b+τ)|U |−1
, i.e.,

Pr[LU ≥ (b+ τ)|U |+ 1] ≤ f · g. We will proceed to bound these two values indepen-
dently. For f we have that

f =

(
b|U |2/n

(b+ τ)|U |+ 1

)(b+τ)|U |+1

=

(
b|U |2

n(b+ τ)|U |+ n

)(b+τ)|U |+1

≤
(

b|U |2

n(b+ τ)|U |

)(b+τ)|U |+1

=

(
b|U |

n(b+ τ)

)(b+τ)|U |+1

≤
(
|U |
n

)(b+τ)|U |+1(
b

b+ τ

)(b+τ)|U |

=

(
|U |
n

)(b+τ)|U |+1(
1− τ

b+ τ

)(b+τ)|U |

≤
(
|U |
n

)(b+τ)|U |+1

· e−τ |U |.

Regarding g, first note that 1 − |U |2/n2 = (1 + |U |/n)(1 − |U |/n). We now split g
into two functions g1, g2 with g = g1g2 such that

g1 =

(
1 +
|U |
n

)bn−(b+τ)|U |−1
≤
(
1 +
|U |
n

)bn
≤ eb|U |

g2 =

(
1− |U |/n

1− ((b+ τ)|U |+ 1)/bn

)bn−(b+τ)|U |−1
=

(
bn− b|U |

bn− (b+ τ)|U | − 1

)bn−(b+τ)|U |−1
=

(
1 +

(b+ τ)|U | − b|U |+ 1

bn− (b+ τ)|U | − 1

)bn−(b+τ)|U |−1
≤ e(b+τ)|U |−b|U |+1 = eτ |U |+1.



By combining all the bounds, we get(
n

|U |

)
PU ≤

(
n

|U |

)|U |
e|U | ·

(
|U |
n

)(b+τ)|U |+1

· e−τ |U | · eb|U | · eτ |U |+1

=

(
|U |
n

)(b+τ−1)|U |+1

· e(b+1)|U |+1.

Let us view
(
|U |
n

)(b+τ−1)|U |+1

· e(b+1)|U |+1 as function h(|U |). Its second derivative

can written in the form A ln2(|U |/n) +B ln(|U |/n) + C where

A =
(
τ2 + (2b− 2) τ + b2 − 2b+ 1

)
|U | ,

B =
(
2τ2 + (6b− 2) τ + 4b2 − 4b

)
|U |+ 2τ + 2b− 2 ,

and

C =
(
τ2 + 4bτ + 4b2

)
|U |+ 3τ + 5b− 1 .

Its discriminant is −4 (τ + b− 1)
2
((τ + b− 1) |U | − 1) which is ≤ 0 when τ ≥ 2

and |U | > 0, as it is in our scenario. Since also for τ ≥ 2 it is A ≥ 0 it follows that
for positive |U | the second derivative is always non-negative. Therefore, for any [x, y]
interval with x, y > 0, x ≤ y, h gets it maximum value as h(x) or h(y). Therefore, we
can write

T1 =
∑

1≤|U |≤n8

(
n

|U |

)
PU ≤ h(1) + (n/8)max{h(2), h(n/8)}.

Moreover it holds that

(1) h(1) = n−(b+τ) · eb+2 = n−(b+τ) · eb+τe2−τ ≤ e2(e/n)b+τ = O(1/n)b+τ

(2) (n/8)h(2) = (n/8)(2/n)2b+2τ−1 · e2b+3 ≤ (1/16 · e3)(2e/n)2(b+τ) = O(1/n)2(b+τ).

Finally, it also holds that

(3) (n/8)h(n/8) = (n/8)

(
1

8

)(b+τ−1)(n/8)+1

· e(b+1)(n/8)+1

= (n/8) · e(ln
1
8 )
(
(b+τ−1)(n/8)+1

)
+(b+1)(n/8)+1

= (n/8) · e(n/8)
(
(ln 1

8 )(b+τ−1)+(b+1)
)
+1+ln 1

8

< O(n)e−(n/8)(b+2τ−3) = e−Ω(n) ,

where we used the fact that ln(1/8) < −2 and τ ≥ 2. Combining these three bounds
we get that T1 = O(1/n)b+τ (which is the weakest one). ut



C ORAM Correctness and Security Proofs

Lemma 11. The ORAM scheme in Figure 4 is correct according to Definition 5.

Proof. It is enough to prove that for all indices i, (i, vi) will be always stored either in
C or in A[πa[i]] or in B[πb[Tab[i]]]—these are the values from which we retrieve vi in
Line 16 of our construction in Figure 4. We consider the following disjoint cases.

1. (i has been accessed since the last reshuffle) In this case, (i, vi) can be found in
C since it was stored there during the last access to it and C has not been emptied
in the meantime.

2. (i has not been accessed since the last large reshuffle) In this case, (i, vi) can be
found only in A[π[i]] since during a large reshuffle all the elements of the dataset
are reshuffled into A (and stay there if not accessed afterwards) and all the other
arrays are emptied.

3. (i has been accessed since the last large reshuffle but not since the last small
reshuffle) In this case, the element can be found in B[πb[Tab[i]]]. This is because,
after its first access that occurred after the large reshuffle element i moved to C and
after the small reshuffle element i moved to B with a new index Tab[i] in B and
it was stored at location πb[Tab[i]] during the small reshuffle. Since it was never
accessed after the small reshuffle, it remained in B.

ut

Algorithm (stS ,EM0)← SIMORAMINITIALIZE(1κ, |M0|):
1: Let (n, λ) = |M0|; . Recall λ is the size of the ORAM block
2: for i = 1 to n do
3: Set vi = 0λ;
4: M0[i] = (i, vi);
5: 〈σ0,EM0〉 ↔ ORAMINITIALIZE〈(1κ,M0),⊥〉;
6: return (σ0,EM0);

Algorithm (stS ,EMk,mk)← SIMORAMACCESS(stS ,EMk−1):
Parse stS as σk−1;
Choose ik ∈ [n];
〈(vik , σk),EMk〉 ↔ ORAMACCESS〈(σk−1, ik),EMk−1〉;
Let mk be the messages sent from client to server during the above ORAMACCESS protocol;
return (σk,EMk,mk);

Fig. 14. The simulator for the ORAM scheme of Figure 4.

Lemma 12. The ORAM scheme in Figure 4 is secure according to Definition 2 and
assuming pseudorandom permutations and CPA-secure encryption.

Proof. Our simulator is shown in Figure 14. Note that all EMi are trivially indistin-
guishable from the EMi output by the real game due to the CPA-security of the en-
cryption scheme that is used—recall that whatever is being written on the server by our
protocols is always freshly encrypted.



We now argue that the messages m1,m2, . . . ,mq in the real game are indistin-
guishable from the messages m1,m2, . . . ,mq output by the simulator. This is because
for each 1 ≤ k ≤ q, the set of message mk is entirely independent of the queried
value ik had we used truly random permutations for πa and πb. This follows from the
following facts:

– When accessing ik, array C, stored at a fixed memory location is accessed in its
entirety. Also (Tab[ik], vik) is uploaded encrypted at a fixed position counta in
SCRATCH (see Line 20). So both memory accesses are independent of the index
ik.

– When accessing ik within a specific superepoch, a location x = πa[y] from array
A is accessed for the first and last time within the specific superepoch. Since x
is the output of a truly random permutation and is accessed only once within the
specific superepoch, x is independent of ik. The same argument applies for the
accesses made to arrayB. Now if we replace the truly random permutation with the
pseudorandom permutation of our construction, the adversary can gain a negligible
advantage which is acceptable.

– When accessing ik at the end of the current superepoch, an oblivious sorting is
executed whose memory accesses do not depend on the actual data that are being
sorted, but only on the size of the array that is being sorted. Same argument appies
for the case when ik is accessed at the end of an epoch.

ut

D ORAM Construction with Worst-Case Complexities

Our ORAM construction with worst-case complexities is in Figure 16. We now describe
the main idea.

Large Reshuffling. Along with the first ORAM access, we can immediately perform
c · n1/3 log2 n work (or one I/O) of the large reshuffling, under another pseudorandom
permutation π′a. This is because we know ahead of time that what needs to be reshuffled
is the dataset we started with—this is because no writes are supported and therefore data
will never change.14 By continuing in this way, after n2/3 accesses, the large reshuffling
would be complete. To store the output of the new reshuffling of A under π′a we use
another array A of n+ n2/3 entries.

Small Reshuffling. Unlike the large one, the small reshuffling cannot start right along
with the first ORAM access. This is because when the first ORAM access is performed,
it is not known in advance which elements are going to be accessed in this epoch (this
information will only be available by the end of this epoch). To address this problem,
we introduce some artificial delay in the reshuffling. More formally, during the n1/3

accesses of an epoch i, what is being reshuffled are the elements that were accessed
during epochs 1, 2, . . . , i − 1 of the same superepoch—and we store these elements in

14 We can support writes as well, but the de-amortization of the large reshuffling would be much
more complicated and we do not describe it here.



an array SCRATCH. Note that this implies that during the very first epoch (i = 1), we
are reshuffling an array that contains dummy elements. We now give some more details
concerning the implementation of the above.

As in the amortized version, while an epoch i proceeds, we move elements accessed
in epoch i into array C. However, we also maintain an other array C of size nc. When
epoch i finishes we perform the following steps:

1. We append the contents of array C to SCRATCH;
2. We set our new array C to be array C;
3. We empty array C.

At that point, all elements of epochs 1, 2, . . . , i − 1 are stored in SCRATCH and they
are ready for reshuffling.

E Computing the Constants in the Asymptotics

In this section, we compute the hidden constants for c, n0 in Theorem 1. In order to do
this, we first provide the closed formula for an upper bound on Pr[L∗max > dm/ne+1]
from [21], which is the following:

Pr[L∗max > dm/ne+ 1] ≤ e(e/n)b+1 +B(n) +
∑

n
8<|U |<

nb
b+1

(
n

|U |

)
P ∗U

where B(n)
def
= max{(n/8)(2/n)2b+1e2b+3, (n/8)(1/8)(1/8)nb+1e(n/8)(b+1)+1} and

P ∗U = Pr[LU ≥ (b+ 1)|U |+ 1].
Regarding the first term, note that ∀n > 2 it is upper bounded by e2/n. In order to

bound B(n), we handle the two values separately. For the first value we have that

(n/8)(2/n)2b+1e2b+3 = (e3/4)(2e/n)2b

which ∀n > 5 is upper bounded by e4/2n. For the second value we have that

(n/8)(1/8)(1/8)nb+1e(n/8)(b+1)+1 = (e/64) · n · eln(1/8)(nb/8)+(nb/8)+n/8

= (e/64) · n · e(n/8)(b(ln(1/8)+1)+1)

< (e/64) · n · e(n/8)(ln(1/8)+2)

where we used the fact that ln(1/8) + 1 < −1. For n > 655, the above is also upper
bounded by e4/2n.

Lastly, in order to bound the sum we proceed as follows. First, recall that we defined
p = |U |/n. Then, from [21, Lemma 7] we have that

P ∗U ≤

((
bp

b+ 1

)p(b+1)(
1− p2

1− p− p/b

)b−p(b+1)
)n

.



Protocol 〈⊥, Y 〉 ↔ OBLIVIOUSSORTING〈(π, n, b), X〉:
. Assume n and b are powers of 2 . Also assume that X[i] also stores the respective index i, so
that comparisons using π are possible while elements are being moved around
1: if n ≤ b then
2: Read-And-Decrypt array X . Set Y to be the sorted version of Xa;
3: else
4: 〈⊥, Y1〉 ↔ OBLIVIOUSSORTING〈(π, n/2, b), X[1, . . . , n/2]〉;
5: 〈⊥, Y2〉 ↔ OBLIVIOUSSORTING〈(π, n/2, b), X[n/2 + 1, . . . , n]〉;
6: 〈⊥, Y 〉 ↔ OBLIVIOUSMERGE〈(π, n, b), (Y1, Y2)〉;
7: Encrypt-And-Write array Y ;
8: return 〈⊥, Y 〉;

Protocol 〈⊥, Y 〉 ↔ OBLIVIOUSMERGE〈(π, n, b), (Y1, Y2)〉: . Y1, Y2 must be sorted
1: if n ≤ b then
2: Read-And-Decrypt array Y1;
3: Read-And-Decrypt array Y2;
4: Set Y to be the merged array of Y1 and Y2;
5: else
6: Let D be a 2× n/2 matrix and Y be a length n array stored at the server;
7: j = 0;
8: for i = 1, 2b+ 1, 4b+ 1, . . . , n/2− 2b+ 1 do
9: Initialize arrays D1, D2, D3, D4 of size b;

10: Read-And-Decrypt subarray Y1[i, . . . , i+ b− 1];
11: Read-And-Decrypt subarray Y1[i+ b, . . . , i+ 2b− 1];
12: Read-And-Decrypt subarray Y2[i, . . . , i+ b− 1];
13: Read-And-Decrypt subarray Y2[i+ b, . . . , i+ 2b− 1];
14: Store Y1[i], Y1[i+ 2], . . . , Y1[i+ 2b− 2] at the first available position of D1;
15: Store Y1[i+ 1], Y1[i+ 3], . . . , Y1[i+ 2b− 1] at the first available position of D3;
16: Store Y2[i], Y2[i+ 2], . . . , Y2[i+ 2b− 2] at the first available position of D2;
17: Store Y2[i+ 1], Y2[i+ 3], . . . , Y2[i+ 2b− 1] at the first available position of D4;
18: Encrypt-And-WriteD1 in D’s row 1, from position 1 + j · b onwards;
19: Encrypt-And-WriteD2 in D’s row 1, from position n/4 + 1 + j · b onwards;
20: Encrypt-And-WriteD3 in D’s row 2, from position 1 + j · b onwards;
21: Encrypt-And-WriteD4 in D’s row 2, from position n/4 + 1 + j · b onwards;
22: j ← j + 1;
23: 〈⊥, D[1, :]〉 ↔ OBLIVIOUSMERGE〈(π, n/2, b), (D[1, 1 : n/4], D[1, n/4+1 : n/2])〉;
24: 〈⊥, D[2, :]〉 ↔ OBLIVIOUSMERGE〈(π, n/2, b), (D[2, 1 : n/4], D[2, n/4+1 : n/2])〉;
25: Let Z1, . . . , Zn/2b be the 2× b submatrices that result from partitioning D horizontally;
26: for i = 1 to n/2b− 1 do
27: Read-And-Decrypt Zi;
28: Read-And-Decrypt Zi+1;
29: Sort Zi ∪ Zi+1 and let y1, . . . , y2b be the smallest resulting elements;
30: Encrypt-And-Write [y1, . . . , yb] starting at the first available position of Y ;
31: Encrypt-And-Write [yb+1, . . . , y2b] starting at the first available position of Y ;
32: Sort Zn/2b and let y1, . . . , y2b be the sorted sequence;
33: Encrypt-And-Write [y1, . . . , yb] starting at the first available position of Y ;
34: Encrypt-And-Write [yb+1, . . . , y2b] starting at the first available position of Y ;
35: return 〈⊥, Y 〉;

a We use π to perform comparisons between two elements ofX , i.e.,X[i] isLessThanX[j] iff
p[i] < p[j].

Fig. 15. Data-oblivious and I/O efficient sorting by Goodrich and Mitchenmacher [14].



Protocol 〈σ,EM〉 ↔ ORAMINITIALIZE〈(1κ,M),⊥〉:
1: Parse M as (1, v1), (2, v2), . . . , (n, vn) where |i, vi| = λ (the values are λ bits long);
2: Let na ← n+ n2/3, nb ← n2/3 + n1/3, nc ← n1/3;
3: Let A, B and C be arrays of size na, nb and nc respectively. Initialize them with 0 entries;
4: Let A, B and C be arrays of size na, nb and nc respectively. Initialize them with 0 entries;
5: Let SCRATCH be an array of size nb. Initialize it with 0 entries;
6: Let πa : [na]→ [na] and πb : [nb]→ [nb] be pseudorandom permutations;
7: Let π′a : [na]→ [na] and π′b : [nb]→ [nb] be pseudorandom permutations;
8: For i = 1, . . . , n, store (i, vi) at location πa[i] in A;
9: Encrypt-And-Write arrays A, B, C, A, B, C and SCRATCH and add them to EM ;

10: Let counta ← 0 and countb ← 0;
11: Let Tab be an empty hash table;
12: Set σ = (πa, πb, π

′
a, π
′
b,Tab, counta, countb);

13: return 〈σ,EM〉;
Protocol 〈(vi, σ′),EM′〉 ↔ ORAMACCESS〈(σ, i),EM〉:
1: Parse σ as (πa, πb, π′a, π′b,Tab, counta, countb), EM as (A,B,C,A,B, C,SCRATCH);
2: Increment counta and countb;
3: Read-And-Decrypt arrays C and C;
4: if (i, vi) ∈ C or (i, vi) ∈ C then . (i, vi) was accessed before and is stored in C or C
5: indexa ← πa[n+ counta];
6: indexb ← πb[n

2/3 + countb];
7: else
8: if Tab[i] 6= null then . (i, vi) is stored in B[indexb]
9: indexa ← πa[n+ counta];

10: indexb ← πb[Tab[i]];
11: else . (i, vi) is stored in A[indexa]
12: indexa ← πa[i];
13: indexb ← πb[n

2/3 + countb];
14: Read-And-Decrypt A[indexa];
15: Read-And-Decrypt B[indexb];
16: Retrieve (i, vi) from either A[indexa] or B[indexb] or C or C;
17: C[countb]← (i, vi);
18: Encrypt-And-Write arrays C and C;
19: Tab[i]← counta;
20: Execute one I/O of the protocol

〈⊥,A〉↔OBLIVIOUSSORTING〈(π′a, na, c · n1/3 log2 n), A〉 ;

21: Execute one I/O of the protocol

〈⊥,B〉↔OBLIVIOUSSORTING〈(π′b, na, c · n1/3 log2 n),SCRATCH〉 ;

22: if counta > n2/3 then
23: πa ← π′a;
24: Let π′a, πb, π′b be new pseudorandom permutations;
25: counta ← 0 and countb ← 0;
26: Set A← A; B ← ⊥; C ← ⊥; A ← ⊥; B ← ⊥; C ← ⊥; SCRATCH← ⊥; a

27: Set Tab← ⊥;
28: if countb > n1/3 then
29: πb ← π′b;
30: Let π′b be a new pseudorandom permutation;
31: countb ← 0;
32: Set C ← C; C ← ⊥; B ← B; B ← ⊥;
33: Read-And-Decrypt array C;
34: y ← counta − n1/3 and cnt← 0;
35: for (i, vi) ∈ C do
36: Increment cnt;
37: Encrypt-And-Write (Tab[i], vi) into SCRATCH[y + cnt];
38: return 〈(vi, (πa, πb, π′a, π′b,Tab, counta, countb)), (A,B,C,A,B, C,SCRATCH)〉;

a These are all pointer operations, and not actual copying.

Fig. 16. Read-only ORAM construction with O(n1/3 log2 n ·λ) worst-case bandwidth and O(1)
worst-case locality.



We can also write without loss of generality that
∑

n
8<|U |<

nb
b+1

(
n

|U |

)
=

∑
1
8<|p|<

b
b+1

(
n

pn

)
.

From the lower bound of Stirling’s approximation for the factorial, for these values of
p we have that(

n

pn

)
=

n!

pn!(n− pn)!
<

n!
√
2πpn

(
pn
e

)pn√
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Using the upper bound of Stirling’s approximation it is easy to verify that for n > 1 we
have that(
n

pn

)
<

n!

2π
√

1/8 · n
(
n
e

)n
(pp(1− p)(1−p))n

<
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√
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)n
2π
√

1/8 · n
(
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=
1.05√
π/4
· 1√

n
·
(
p−p(1− p)(1−p)

)n
.

Finally, from [21, Lemma 9] we have that(
bp
b+1

)p(b+1) (
1−p2

1−p−p/b

)b−p(b+1)

pp(1− p)1−p
< 0.9

therefore we get that∑
n
8<|U |<

nb
b+1

(
n

|U |

)
P ∗U ≤ n ·

1.05√
π/4
· 1√

n
· 0.9n =

1.05√
π/4
·
√
n · 0.9n

since the sum contains at most n terms, and for n > 57 the above is upper bounded by
1.05/(n

√
π/4).

Putting it all together, we have that ∀n > 655, it holds that

Pr[Y` > dm/ne+ 1] ≤ e2/n+ e4/2n+
1.05

nπ/4
<

36

n
.

From the above it follows that n0 = 655 and c = 36.15 Concretely, this implies that
in order to apply the bound of Theorem 1 for our main construction, one must ensure
that there exist at least 655 bins per layer for medium-size allocations. Recall that the
smallest number of bins in our scheme is logN log logN . For reasonable database
sizes, e.g., N = 232, this yields 160 bins. The desired minimum number can be easily
achieved by “padding” with the necessary amount of bins (e.g., by multiplying the
number of bins per layer by a constant factor of 4).

15 We also believe that a more mathematically involved analysis can yield a tighter bound.
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