
CryptHOL: Game-based Proofs in
Higher-order Logic?

David A. Basin, Andreas Lochbihler, and S. Reza Sefidgar

Institute of Information Security, Department of Computer Science, ETH Zurich,
Zurich, Switzerland

Abstract. Game-based proofs are a well-established paradigm for struc-
turing security arguments and simplifying their understanding. We present
a novel framework, CryptHOL, for rigorous game-based proofs that is
supported by mechanical theorem proving. CryptHOL is based on a new
semantic domain with an associated functional programming language for
expressing games. We embed our framework in the Isabelle/HOL theorem
prover and, using the theory of relational parametricity, we tailor Isabelle’s
existing proof automation to game-based proofs.
By basing our framework on a conservative extension of higher-order
logic and providing sufficient automation support, the resulting proofs
are trustworthy and comprehensible, and the framework is extensible and
widely applicable. We evaluate our framework by formalizing different
game-based proofs from the literature and comparing the results with
existing formal-methods tools.

Keywords: Provable Security, Game-based Proofs, Theorem Proving,
Higher-order Logic, Isabelle/HOL

1 Introduction

Problem Context. In the 1980s, Provable Security emerged as a way of using reduc-
tion arguments to put the security of public-key cryptography on a firm scientific
footing. But difficulties in applying this idea raised doubts on the credibility of the
resulting proofs [35]. For example, in 1994 the OAEP scheme was proposed and
proved secure using a reductionist security argument by Bellare and Rogaway [11]
and thereafter became part of the SET electronic payment standard of MasterCard
and Visa. Seven years later, Shoup found a gap in OAEP’s security proof [64]. The
reason such proofs are difficult to get right in practice are manifold and include:
the proofs are technical with many corner cases that are easily overlooked; more
careful validation is needed than the current scientific review processes afford [68];
and there is tension between making the proofs comprehensible yet precise.

Various proposals have been made to address the above problems. For instance
different structuring techniques and abstractions were proposed to simplify con-
structing proofs and understanding the resulting security arguments. Game-based
proofs [12,65], Canetti’s universal composability framework [22], and Maurer’s con-
structive cryptography [47] are prominent examples of this. Moreover, in response

? A preliminary version of this paper appeared at ESOP 2016 [42].
Corresponding address: ETH Zürich, Universitätstrasse 6, 8092 Zürich, Switzerland,
Fax +41 44 6321172, basin,andreas.lochbihler,reza.sefidgar@inf.ethz.ch

1

to Halevi’s [29] call for more rigour in cryptographic arguments, numerous formal-
methods tools were developed to mechanically check game-based security proofs,
such as CryptoVerif [18], CertiCrypt [8], Verypto [15], EasyCrypt [6], and FCF [55].

We believe the above approaches all have their merits and are good starts,
but they do not go far enough. An effective methodology for provable security
should ideally produce proofs that are trustworthy in two respects:

Rigour: The methodology should allow only valid proof steps. In practice, this
requires formal verification, since humans err.

Comprehensibility: The methodology should capture relevant proof ideas in a
way that humans can also create, understand, and check. This means that
although humans can trust the formally verified proofs, they do not have to,
as they can in principle verify the proofs themselves.

With respect to the current state-of-the-art, structuring techniques and abstrac-
tions are insufficiently rigorous when they depend on human validation [73,54].
Moreover, existing formal-methods tools have not yet found a satisfactory balance
between comprehensibility and rigour. Their emphasis on increased rigour through
formal proofs either diminishes their comprehensibility or limits their scope, for
example by offering only a fixed set of proof strategies.

We propose the following desiderata for a formal-methods tool that is trust-
worthy and applicable to a wide range of security proofs.

Foundational approach: All proof steps are justified by a small number of
simple axioms that are known to be consistent.

Automation: Proof automation avoids cluttering the main proof ideas with
low-level technical details.

Naturality: Abstractions enable users to express security arguments using fa-
miliar mathematical notions.

Extensibility: Users may introduce new proof rules in a trusted way to overcome
the incompleteness of existing proof principles.

In Section 7 we will use these desiderata to evaluate the shortcomings of existing
formal-methods tools and to evaluate the merits of our own proposal.

CryptHOL. In this paper, we present CryptHOL, a new framework for game-
based proofs that is supported by mechanical theorem proving. To satisfy the
aforementioned desiderata, CryptHOL combines the rigour of Higher-Order Logic
(HOL), within the Isabelle/HOL [53] theorem prover, with the structuring benefits
of game-based proofs.

First, we introduce the new notion of Generative Probabilistic Values (GPVs),
which constitute a kind of probabilistic computations with input and output.
These provide a compositional semantic foundation for games with oracles. Second,
on top of GPVs we define a functional programming language to express relevant
concepts in game-based proofs. These include discrete probability distributions,
failure events, games, reductions, oracles, and adversaries. Third, we leverage
relational parametricity from the theory of programming languages to formally
justify congruence reasoning. This provides a theory about relations between
(sub)programs where subprograms may be replaced by equivalent programs.
This theory plays an important role in allowing computers and humans alike to
focus on, and reason about, parts of games in a compositional way. Fourth, we
embed this foundation in Isabelle/HOL in a way that leverages Isabelle’s existing

2

infrastructure, automation support, and library of formalized mathematics. Finally,
we apply our framework to a number of game-based proofs from the literature.

Our framework and all proofs presented in this paper are available online
in the Archive of Formal Proofs [43,44]. In particular, the Isabelle/HOL proof
assistant has mechanically checked every definition and verified every theorem.

Contributions. CryptHOL meets our desiderata for a trustworthy and widely-
applicable formal-methods tool for game-based proofs. Moreover, in comparison
to existing tools, CryptHOL strikes a better balance between rigour and the
comprehensibility of provable security results. We achieve this by combining ideas
from cryptology, formal-methods, and programming language research, which we
now explain in more detail.

Foundational approach. CryptHOL ensures that each proof step is a valid
application of logical inference rules in HOL. Games are modeled using GPVs,
which themselves are constructed from first principles in HOL (i.e., as a conser-
vative extension of HOL). This thereby ensures the consistency of the resulting
theory. Moreover, all definitions and proof steps are mechanically checked by
Isabelle, guaranteeing soundness and providing the highest degree of rigour.

Automation. Our framework’s automation avoids cluttering the main proof
ideas with low-level technical details. Users only specify the main proof steps
in a declarative way and let the automation fill in the formal details. Here, we
benefit from Isabelle’s structuring techniques and proof automation support that
has been extensively developed during the past 25 years. This includes Isabelle’s
language of human-readable proof scripts, module system, and rewriting engine.

We also develop new ways of automating game-based proofs. In particular,
we use the theory of relational parametricity to extend Isabelle’s existing proof
automation to justify game transformations. Moreover, by making the flow of data
explicit in CryptHOL’s programming language, we support syntactical reasoning
about probabilistic independence, which is frequently needed in game-based proofs.

Naturality. Naturality concerns the users’ ability to construct proofs at the
right level of abstraction, using familiar concepts. The use of GPVs leads to a
clean embedding of game-based proofs in Isabelle/HOL. Thus Isabelle’s large
library of formalized mathematics, e.g., theorems in algebra or number theory, can
be used directly in proofs. Moreover, CryptHOL allows users to decompose proofs
into small parts. As each such part can abstract over irrelevant details, it becomes
a building block that can be used in other contexts too. This modular approach
makes CryptHOL suitable for formalizing complex security arguments (Section 6).

The use of a functional programming language plays also a large role here. First,
the functional syntax is close to the mathematical notation of probability distribu-
tions as found in the literature [26,65]. Our syntax additionally provides a monadic
notation for games, which resembles more familiar imperative pseudo-code. Sec-
ond, referential transparency and compositionality ensure that programs can be
manipulated algebraically. For example, unlike in an imperative setting, a program
may be replaced by an equal one within any larger program without checking for
state updates that may hide behind procedure calls. Third, CryptHOL programs
can abstract over all relevant concepts like adversaries, oracles, and games. This
greatly improves the modularity of the theorems and proofs and of the framework
as a whole. For example, we provide higher-order combinators for composing
these concepts, which are implemented themselves as functional programs.

Extensibility. Embedding our framework in a proof assistant provides a
trusted way for users to add new proof principles. Using our framework’s proof

3

automation, users may derive new proof principles that are consistent with the
formalized game semantics. Furthermore, using CryptHOL’s functional program-
ming language, users may introduce new abstractions and operators on the fly
(see Sections 5.7 and 5.8 for several examples), which cannot be easily done in
imperative programming languages.

To demonstrate our framework’s rigour, comprehensibility, and applicability, we
used CryptHOL to formalize different provable security results from the literature.
We have formalized an IND-CPA secure scheme based on pseudo-random functions
in the random oracle model, as well as various examples from Shoup’s tutorial on
game based proofs [65]: the IND-CPA security of Elgamal in the standard model,
and hashed Elgamal in the random oracle model; an extension of a pseudo-random
function with a universal hash function; and the IND-CCA security of a symmetric
scheme that utilizes a pseudo-random function and an unpredictable function.
We will present some of these results in the forthcoming sections.

Structure. We start by briefly reviewing game-based proofs, higher-order logic, and
the functional programming paradigm in Section 2. Next in Section 3, we illustrate
the syntax and usage of our framework by proving IND-CPA security for the
Elgamal encryption scheme. In Section 4, we delve into the syntax and semantics of
CryptHOL’s functional programming language, focusing on language support and
reasoning principles for games that do not involve oracle interaction. In Section 5,
we present GPVs as a new semantic domain for games that involve the adversary’s
interaction with different oracles. We also present CryptHOL’s language constructs
and reasoning principles for analysing the aforementioned games. In Section 6,
we demonstrate our framework’s rigour, automation, and naturality through a
case study, where we formalize the IND-CCA security argument of a symmetric
encryption scheme. Finally, in Sections 7 and 8, we provide a detailed comparison
between our framework and existing formal-methods tools and draw conclusions.

2 Background

We introduce here the background necessary for this paper. First, in Section 2.1,
we review the various flavours of game-based proofs in the cryptography literature
and position our framework CryptHOL in this spectrum. Then, we introduce
higher-order logic and the Isabelle/HOL proof assistant (Section 2.2) and review
basic notions and notations of functional programming (Section 2.3). Impatient
readers may want to read this section lightly on a first pass.

2.1 Game-Based Cryptographic Proofs

Game hopping was originally proposed as a technique for structuring crypto-
graphic security proofs and taming their complexity [26,74]. Over time, the level
of formality has increased; Kilian and Rogaway [33] put forth the idea of games as
programs written in a semi-formal language. Bellare and Rogaway [12] suggested
that the games be expressed in a probabilistic programming language and the
proofs consist of applications of pre-defined program transformations until the
security claim is obvious. In their model, a game consists of three phases: initiali-
sation, running the adversary with access to the oracles, and finalisation. Halevi
[29] picked up this idea and envisioned an interactive proof checker that uses
static program analysis to apply simple game transformations specified by the
user and to verify their correctness; game hops with complicated probabilistic or

4

algebraic reasoning are to be proven by the user on paper and checked by human
reviewers instead of the tool.

In contrast to Halevi’s proposal, Shoup [65] objected to being restricted to
a fixed toolbox of syntactic program manipulations. He considered games to be
a convenient notation for probability distributions rather than formal syntactic
objects. This lowers the bar for cryptographers, as they can give free reign to
their creativity. So, his proofs mix different types of reasoning, including syntactic
program transformations, conventional reasoning about conditional probabilities,
and algebraic arguments.

Bellare, Rogaway, and Shoup [12,65] all agree that extending the notation,
i.e., programming language, with problem-specific conventions is essential, as
otherwise, the definitions and proofs become unreadable and hard to check.

In CryptHOL, a game is just a (discrete sub-)probability distribution expressed
in CryptHOL’s notation, but the notation has a well-defined formal meaning.
Thus, CryptHOL combines the best of two worlds: We achieve the extensibility
and flexibility that Shoup calls for because a game is just a distribution rather
than a program written in a fixed programming language. At the same time, like
envisioned by Bellare and Rogaway, we can express program transformations, prove
them correct, and apply them to the syntactic objects as the notation is formal.
Instead of constructing sequences of games by applying game transformations
like in Halevi’s vision, CryptHOL users themselves explicitly specify all the
intermediate games and then Isabelle/HOL checks that the given justifications for
the transformations are correct. This yields declarative proofs, which are in general
easier to understand and maintain as experience has shown in other domains [72].

2.2 Higher-Order Logic in Isabelle

Higher-order logic (HOL) combines functional programming with logic [52], and,
as we will show, functional programming is relevant for cryptographic notions.
This section introduces the logic part and its implementation in the proof assistant
Isabelle. Functional programming aspects will be reviewed in the next section.

Terms in higher-order logic are expressed in the simply typed λ-calculus with
let-polymorphism [58]. That is, a HOL type is either a type variable (we use
Greek letters α, β, . . . for type variables) or a type constructor applied to the
appropriate number of types as arguments; we usually write type constructors
in blackboard bold (B,L,P, . . .) or infix (+,×,⇒, . . .). HOL terms are built from
variables, constants, function applications, and abstractions. The notation t : τ
means that the HOL term t has type τ .

HOL has a simple set-theoretic semantics [58,37], where types are interpreted
as sets and terms denote elements of the set corresponding to their type. In
particular, the HOL type A⇒B of functions from A to B is interpreted as the
full function space between A’s and B’s interpretation. A function need not be
given a name: λx : α. t(x) denotes the anonymous function that maps every value
v of type α to the interpretation of t where x is replaced by v. Typically, we omit
the type annotation : α and leave type inference to deduce the most general type.
Also, if x does not occur in t, we write instead of x, like in the constant function
λ . True. A HOL proposition is a closed well-typed λ-term of the type B of the
two truth values True and False.

To prove a proposition, one constructs a derivation using the HOL deduction
system. Its proof rules include α-, β- and η-conversion of the λ-calculus, the
standard inference rules for implication (−→) and equality (=), and the axioms of

5

excluded middle, of function extensionality, of choice, and of the existence of an
infinite type. In short, HOL is a classical logic of total functions with the axiom of
choice. Everything else, e.g., quantifiers and induction schemas, can be expressed
as HOL terms and derived from these first principles. For example, the universal
quantifier ∀x. P (x) is defined like in Church’s simple theory of types [23] by a
constant1 All : (α⇒ B)⇒ B given by All ≡ λP. P = (λ . True) and ∀x. P (x) is
syntactic sugar for All (λx. P (x)). Defining equations are indicated by ≡ and
defined constants are written in sans-serif. In theorems, all variables are implicitly
universally quantified.

Clearly, mechanical checks are only meaningful if the axioms and proof rules
are consistent, which is the case for HOL [58,37]. Moreover, when a user adds more
axioms, e.g., a theory of the real numbers, he himself has to ensure that a model
still exists. To avoid the danger of inconsistency, all concepts in Isabelle/HOL
are introduced definitionally. That is, one first defines a new constant in terms of
existing HOL terms (for example, the universal quantifier is expressed in terms of
equality of functions) and then derives the desired properties of the new constant
as HOL theorems. Importantly, when sufficiently many properties have been
formally derived from the construction (e.g., introduction and elimination rules
for All), one no longer needs the internal construction for reasoning. Similarly, a
new type is introduced by identifying a suitable, non-empty subset of an existing
HOL type. These definition principles are conservative, i.e., by making definitions,
one cannot prove more than what was possible before. This ensures the overall
consistency of the formalisation.

The proof assistant Isabelle/HOL is an implementation of HOL written in
Standard ML. Its so-called trusted kernel implements the simply typed λ-calculus
and the HOL proof rules and checks that definitions adhere to the principles
mentioned above [37]. Isabelle accepts a HOL term as a theorem only if the theorem
has been constructed using the kernel’s proof rules. This design ensures a small
trusted code base: only implementation errors in the kernel (a few thousand lines of
well-tested and scrutinized code) could result in erroneous proofs being accepted.

To alleviate the user from the burden of constructing proofs from primitive
derivations, Isabelle/HOL comes with several proof engines that compile high-level
proof steps down to primitive inferences. Thus, users can write their proofs at
a high level of abstraction and call the appropriate proof engine, possibly with
some hints.

Isabelle/HOL comes with a library of formalised mathematics that follows these
principles. For example, the rationals are constructed from a pair of integers (nu-
merator and denominator) and the reals as Dedekind cuts of rationals. Probability
theory, analysis, and many algebraic concepts have been formalised in this way.

We emphasize that our framework is definitional too. Thus, the correctness
of proofs done in our framework can be reduced to the consistency of the HOL
axioms. No further axioms are required.

2.3 Functional Programming in HOL

Analogous to the proof engines, Isabelle’s definitional packages alleviate the user
from the low-level details of the definitional principles. They take a specification
of the new type or constant, internally construct the definition from existing
concepts, and derive the user specification as theorems from the definition. This
way, users can work in HOL like in a functional programming language with

1 All function symbols in HOL are called constants as function application is primitive.

6

algebraic datatypes and recursive functions, which we explain in this section. We
make heavy use of functional programming idioms when formalising cryptographic
constructions and in the definitions of our framework.

An algebraic datatype is a disjoint union of (combinations of) HOL types
where the embedding into the union is made explicit using constructors. For
example, the natural numbers N form an algebraic datatype as they are the
disjoint union of the singleton set {0} and the successors of all natural numbers
{n + 1 | n ∈ N }, i.e., the constructors are 0 : N and Suc : N⇒ N. Algebraic
datatypes can be polymorphic. For example, the type of pairs α× β has only one
polymorphic constructor (,) : α⇒β⇒α×β. Datatype values are analysed using
case expressions. For example, case x of Suc(y)⇒ (y,True) | 0⇒ (0,False) anal-
yses x : N and returns the predecessor y of x and a Boolean to indicate whether
x is greater than 0. In Isabelle, the command datatype [20] introduces algebraic
datatypes according to definitional principles. It also derives an induction schema,
e.g., P (0) −→ (∀x. P (x) −→ P (Suc(x))) −→ (∀x. P (x)) for N.

Recursive function definitions also need justification as recursive definitions
are not primitive in HOL. For this paper, three kinds of justification suffice: well-
founded recursion, least fixpoints, and primitive corecursion, which are explained
in Appendix A.1. They are all supported by Isabelle packages.

We typically curry functions with several arguments, for example, a function
f with n arguments has type τ1⇒ τ2⇒ . . .⇒ τn⇒ τ , where the function type
constructor ⇒ associates to the right. So f takes its arguments individually
rather than as a single tuple of type τ1 × τ2 × . . . τn⇒ τ . Function application
is written as usual using parentheses as in f(t1, t2, . . . , tn). Currying has the
advantage that functions can be applied partially: if too few arguments are
supplied, the result is a specialised function that waits for the missing arguments,
e.g., f(t1, t2) = λx3 . . . xn. f(t1, t2, x3, x4, . . . , xn), when x3, . . . , xn are not free
in t1 and t2. Tuples nevertheless occur as arguments when the components form
a conceptual entity, e.g., a two-part ciphertext (β, ζ). To avoid ambiguities with
partial applications, we do not merge the function application parentheses with
the tuple constructor: g((β, ζ)) applies the unary function g to the tuple (β, ζ) and
h(β, ζ) is a two-argument function h applied to β and ζ. Enclosing a binary infix
operator in parentheses like in (=) and (−→) turns it into a relation or a function.

Other types and operations. The singleton type 1 has only one element �.
Pairs (type α × β) come with two projection functions π1 and π2. Tuples are
identified with pairs nested to the right, i.e., (a, b, c) is identical to (a, (b, c)) and α×
β×γ to α×(β×γ). Dually, the sum type α+β models the disjoint union of the types
α and β with the injections Left :: α⇒α+β and Right :: β⇒α+β. The predicates
is-Left(x) and is-Right(x) check whether x is of the form Left() or Right().

Sets (type P(α)) are isomorphic to predicates (type α⇒ B) via the bijections
membership ∈ and set comprehension {x | }; the empty set is { }. Binary rela-
tions are sets of pairs and written in infix, for example, x R y denotes (x, y) ∈ R.
We write R[A] ≡ { y | ∃x ∈ A. x R y } for the image of a set A under a relation R.

The datatype M(α) = None | Some α adjoins a new element None to α
while all existing values in α are prefixed by Some. Maps (partial functions) are
modelled as functions of type α⇒M(β), where None represents undefinedness
and f(x) = Some(y) means that f maps x to y. The empty map ∅ ≡ (λ . None)
is undefined everywhere. Map update is defined as f(a 7→ b) ≡ (λx. if x =
a then Some(b) else f(x)).

7

It is sometimes convenient to write function application forward: x� f ≡ f(x)
expresses that x is passed to f and � associates to the left, e.g., x�f�g = g(f(x)).
Function application can be lifted to most HOL types. Typically, we write the
operation that lifts functions to a type constructor as the type constructor with a
hat .̂ For example, (×̂) on pairs is given by (x, y) � f ×̂ g ≡ (f(x), g(y)), and +̂
for sums by x� f +̂ g ≡ case x of Left(y)⇒ Left(f(y)) | Right(z)⇒ Right(g(z)).
In case of a unary type constructor, we often attach the type constructor to

� when using forward application. For sets, e.g., A �̂P f ≡ { f(x) | x ∈ A }
denotes the image of A under f ; and M̂ : (α⇒ β)⇒M(α)⇒M(β) is given by

M̂(f,None) = None and M̂(f, Some(x)) = Some(f(x)).

Effects. All HOL functions are pure in that they cannot perform any kind of side
effect like probabilistic choice, interaction with an environment, or state updates.
Such effects are explicitly modelled using Haskell-style monads [71]. A monad
consists of a polymorphic type constructor T(α) and two polymorphic operations
return : α⇒ T(α) and (>>=) : T(α)⇒ (α⇒ T(β))⇒ T(β). Intuitively, the type
constructor T models the effects and the type variable α represents the computa-
tion’s result. Then, return embeds an effect-free value into the effectful world, and
(>>=) models sequential composition, where the second computation may depend
on the result of the first. Every monad must satisfy the following monad laws:

return x >>= f = f v >>= (λx. return x) = v (neutrality)

(v >>= f)>>= g = v >>= (λx. f(x)>>= g) (associativity)

For readability, CryptHOL uses Haskell-style do notation for monadic compu-
tations: do { x ← v; f } desugars to v >>= (λx. do { f }) and do { v } to v
otherwise. In this paper and our formalisation, we use return, (>>=), and do for
all the different monads and rely on type inference to resolve the overloading.

For example, the type constructor M models the effect of undefined values as
a monad. Here, return x ≡ Some(x) marks a value as being defined, None denotes
undefinedness, and x>>=f applies the partial function f : α⇒M(β) to the possibly
undefined value x : M(α), propagating undefinedness. Formally, None>>=f ≡ None
and Some(x′)>>= f ≡ f(x′). Hence, given two partial functions f : α⇒M(β) and
g : β⇒M(γ), we can compose them sequentially to a function h : α⇒M(γ) by
h(x) ≡ f(x)>>= g, or using do notation: h(x) ≡ do { y ← f(x); g(y) }, which is
by the neutrality law equivalent to h(x) ≡ do { y ← f(x); z ← g(y); return z }.
Unlike in C-like languages, return does not return from a procedure. For example,
do { x← f(1); y ← if even(x) then g(x) else return 0; h(x+ y) } assigns to the
local variable x the result of f(1) and to y the result of g(x) if x is even and 0
otherwise, and returns the result of h applied to x+ y, propagating undefinedness.

Every monad has a canonical operation T̂ to lift functions into the monad

given by v �̂T f ≡ do { x← v; return f(x) }. We typically use T̂ to post-process

the result of an effectful computation. In the M example, M̂(f, x) = x�M̂ f applies
a total function f : α⇒ β to a possibly undefined value x : M(α); the result is
undefined if and only if (iff) x is.

3 IND-CPA security of the Elgamal encryption scheme

In this section, we illustrate the principles of our framework by formalising Elgamal
encryption [25] and proving indistinguishability under chosen plaintext attacks
(IND-CPA) given the decisional Diffie-Hellman (DDH) assumption. Shoup [65]

8

also provides a detailed security proof of this encryption scheme. By using the
same example, we explain how the games and the different kinds of reasoning steps
in game hopping proofs are reflected in our framework, and where mechanised
reasoning differes from rigorous reasoning with pen and paper. The framework and
its semantics is formally introduced in Section 4. In this section, we first consider
the concrete security setting where the fixed security parameter η is implicit to
all algorithms of the scheme. In the asymptotic security setting, described at the
end of this section, the security parameter will be made explicit.

A public-key encryption scheme consists of three probabilistic algorithms:
(i) the key generation algorithm key-gen takes no input and outputs a pub-
lic/private key pair (pk, sk); (ii) the encryption algorithm aenc takes as input
a public key pk and a plaintext m, and outputs a ciphertext c; and (iii) the
decryption algorithm adec takes as input a private key sk and a ciphertext c, and
outputs a message m.

For the Elgamal encryption scheme, we fix a finite cyclic group G with generator
g and order |G|. The public key α is an arbitrary group element gx and the private
key is the exponent x. Messages are group elements too. To encrypt a message m
under the public key α, the algorithm multiplies m with α raised to a random
power y; the ciphertext consists of gy and the product. Decryption inverts the
multiplication by exploiting the identity αy = (gy)x. Shoup [65] specifies the
algorithms as follows, where the set Zm contains the integers between 0 and m−1,
and

c← and ← denote random sampling and assignment, respectively.

input algorithm

key generation x
c← Z|G|, α← gx, pk ← α, sk ← x

encryption α,m y
c← Z|G|, β ← gy, δ ← αy, ζ ← δ ·m, c← (β, ζ)

decryption x, (β, ζ) m← ζ/βx

In our framework, algorithms are probabilistic HOL functions from inputs to
outputs. The main difference to Shoup’s notation is that they explicitly return
the outputs. Thus, all intermediate variables, which are not part of the outputs,
are local to the algorithm. Syntactically, we write ⊗ for group multiplication, ˆ for
exponentiation, and −1 for the inverse. Assignment ← is always probabilistic and
takes a probability distribution on the right hand side. For example, uniform(A)
denotes the uniform distribution over the non-empty, finite set A.

key-gen ≡ do {
x← uniform(Z|G|);
return (g ˆx, x) }

aenc(α,m) ≡ do {
y ← uniform(Z|G|);
return (g ˆy, (αˆy)⊗m) }

adec(x, (β, ζ)) ≡
return ζ ⊗ (β ˆx)−1 (1)

IND-CPA security is modelled as a game between a challenger and the attacker
A following Goldwasser and Micali [26]. Figure 1 shows our formalisation on the
left and Shoup’s notation on the right.

1. The challenger generates a new key pair (pk, sk)← key-gen (line 2).
2. The adversary is given pk, chooses two plaintexts m0 and m1, and gives these

to the challenger (line 3).
3. The challenger randomly picks one of the two messages and encrypts it under
pk (coin abbreviates uniform({ 0, 1 })) (lines 5–6).

4. The adversary receives the challenge ciphertext and outputs a bit b′ (line 7).

The adversary tries to guess the random bit b. The IND-CPA advantage is therefore
the difference between the probability of b = b′ and 1/2.

9

1 G((A1,A2)) ≡ try do {
2 (pk, sk)← key-gen ;
3 ((m0,m1), σ)← A1(pk);
4 assert(valid-plains (m0,m1));
5 b← coin;
6 c← aenc (pk, if b then m0 else m1);
7 b′ ← A2(c, σ);
8 return b = b′

9 } else coin

adv(A) ≡ |P[G(A) = True]− 1/2|

x
c← Z|G|, α← gx

r
c←R, (m0,m1)← A(r, α)

b
c←{ 0, 1 }

y
c← Z|G|, β ← gy, δ ← αy, ζ ← δ ·mb

b′ ← A(r, α, β, ζ)

advantage is |P[b = b′]− 1/2|

Fig. 1: The IND-CPA game in our framework (left) and by Shoup [65] (right)

There are several points worth discussing. First, the game returns the boolean
b = b′ because this is the event we are interested in. Recall that assignments are
local in our framework, and hence the game must return the event(s) of interest.
Accordingly, the advantage adv(A) checks the probability of whether the game
reports a successful guess.

Second, our definitions are in fact parametrized by the encryption scheme.
That is, we define the IND-CPA game and the advantage in a module IND-CPA
that takes the encryption scheme as a parameter (the grey parts in Figure 1).
Thus, we get the game specialised for Elgamal by instantiating the module with
the Elgamal encryption scheme. Modules typically contain definitions and generic
theorems, which can be reused for different schemes by instantiation. Note that
the locality of assignments is crucial for modularity, as otherwise, e.g., assigning to
b within some instantiation of aenc in line 6 would overwrite the coin flip in line 5.

Third, we use assertions (assert) and error handling (try else). Assertions
serve two purposes: (i) We use them to validate inputs received from the adversary
(line 4). For Elgamal, for example, the predicate valid-plains checks that both
plaintext messages indeed belong to the group G. When an assertion fails, the
current computation is aborted and the execution continues with the else branch
of the closest block surrounding the failure, if any. In Figure 1, if any step in the
game fails, G behaves like a fair coin flip, and the advantage is 0 in that case. With
input validation, we can prove a stronger security theorem that does not need the
assumption that the adversary always produces valid plaintexts. (ii) Even if we
had constrained the adversary to produce only valid plaintexts, this information
would not be obvious to Isabelle’s reasoning engines. Here, assertions provide a
way to include such information syntactically into the programs. The reasoning
engines, in particular contextual rewriting, can then pick the asserted properties
up from the program text and therefore know that they hold when analysing the
remainder of the program. Footnote 5 on page 22 gives an example where the
assertion in line 4 helps with proof automation.

Finally, compare our formalisation to Shoup’s in Figure 1 on the right. Apart
from input validation, there are three main differences: First, Shoup’s definition
is tailored to Elgamal instead of being generic. Second, Shoup assumes all as-
signments are visible globally, i.e., he formulates arbitrary events over program
variables. Third, his adversary A is a deterministic algorithm, which takes a
uniformly sampled r as random input. In contrast, we model the adversary A as
a pair (A1,A2) of two probabilistic algorithms. Our formulation is more suitable
for a formal setting because we do not need to specify a set R that supplies

10

enough randomness to the given adversary.2 Instead, the adversary can pass an
(adversary-specific) state σ from the first invocation to the second. This way, the
first part can communicate its random choices to the second.

The security of the Elgamal scheme relies on the hardness of computing the
discrete logarithm. In detail, the DDH assumption states that given two random
group elements gx and gy, it is hard to distinguish gx·y from a random group
element gz, where · denotes multiplication on numbers. Formally, a DDH adversary
A is a probabilistic computation that takes three group elements and outputs a
Boolean. We model the two settings as two games G0 and G1 parametrised by the
adversary. The DDH advantage adv(A) captures the difficulty of A distinguishing
the two settings.

G0(A) ≡ do {
x← uniform(Z|G|);
y ← uniform(Z|G|);
let z = x · y;
A(g ˆx, g ˆy, g ˆz) }

G1(A) ≡ do {
x← uniform(Z|G|);
y ← uniform(Z|G|);
z ← uniform(Z|G|);
A(g ˆx, g ˆy, g ˆz) }

(2)

adv(A) = |P[G0(A) = True]− P[G1(A) = True]| (3)

Figure 2 shows the Elgamal security proof in our framework expressed in the
Isar proof language [16]. We emphasize that this is a faithful pretty print of the
Isabelle source code, except for small omissions marked with 〈 〉. When such a
proof script is given to Isabelle/HOL, it checks that all definitions are type-correct
and conservative extensions of HOL and verifies the proofs of all theorems by
constructing a formal derivation using the HOL’s proof rules, which is guided
by the proof engines and the given hints. In case this fails, Isabelle reports the
malformed definitions and the non-verified proof steps as errors; there are no such
errors for the proof script in Figure 2. Readers may convince themselves that the
formal proof script is readable and at an adequate level of abstraction.

The definitions and proofs are in a module ELGAMAL (a locale in Isabelle
terminology) parametrized by a group G that is assumed to be finite and cyclic
(lines 1–2). Such assumptions become implicit assumptions for all statements
proved within the module. This module also contains the definitions in (1), and
imports the modules DDH and IND-CPA as instances with the name qualifiers
ddh and ind-cpa, respectively (not shown in Figure 2). That is, we can refer to
the definitions in (2, 3) and in Figure 1 specialised to the group and the Elgamal
encryption scheme using these qualifiers, e.g., ddh.G0 and ind-cpa.adv. The concrete
security statement (lines 12) shows that A’s advantage in the IND-CPA game is
the same as the DDH advantage of the reduction (defined in lines 3–11). The proof

2 It is possible to formalise Shoup’s adversary model in HOL, but it is harder to
reason with. For example, Hurd [32] formalised probabilistic functions as deterministic
functions that receive an infinite stream of random bits as input and consume a finite
part of it. Being infinite, the stream can never run out of fresh randomness. But this
comes at a cost: infinite bitstreams are not discrete, so every function must be proven
measurable. Moreover, Hurd must formally prove healthiness conditions for every
function, e.g., that the function looks only at the random bits it consumes. Also, this
model is not extensional. For example, the function which consumes and returns the
first bit mathematically yields the same distribution on bits as the one which returns
the negation of the first bit, but in Hurd’s model, the two distributions are unequal.
Hence, equational reasoning about probability distributions cannot use the equality
notion built into the logic, which complicates proofs.

11

1 locale ELGAMAL = fixes G : group(α)
2 assumes finite-cyclic-group(G) begin

3 function elgamal-red(A1,A2)(α, β, γ) ≡
4 try do {
5 ((m0,m1), σ)← A1(α);
6 assert valid-plains(m0,m1);
7 b← coin;
8 let m = if b then m0 else m1;
9 b′ ← A2((β, γ ⊗m), σ);
10 return b = b′

11 } else coin

12 theorem security : ind-cpa.adv(A) = ddh.adv(elgamal-redA)
13 proof –
14 obtain A1 and A2 where A = (A1,A2) by(cases A)
15 note [simp] = bind-map-spmf 〈 〉
16 have ddh.G1(elgamal-redA) = try do {
17 x← uniform(Z|G|);
18 y ← uniform(Z|G|);
19 ((m0,m1), σ)← A1(g ˆx);
20 assert valid-plains(m0,m1);
21 b← coin;
22 m← uniform(Z|G|) �̂D (λz. g ˆz ⊗ (if b then m0 else m1));
23 b′ ← A2((g ˆy,m), σ);
24 return b = b′

25 } else coin
26 by(simp add: ddh.G1-def)
27 also have . . . = try do {
28 x← uniform(Z|G|);
29 y ← uniform(Z|G|);
30 ((m0,m1), σ)← A1(g ˆx);
31 assert (valid-plain(m0) ∧ valid-plain(m1));
32 m← uniform(Z|G|) �̂D (λz. g ˆz);
33 b′ ← A2((g ˆy,m), σ);
34 coin �̂D (λb. b = b′)
35 } else coin
36 by(simp add: one-time-pad-group 〈 〉)
37 also have . . . = coin
38 by(simp add: one-time-pad-B try-bind-lossless)
39 also have ddh.G0(elgamal-redA) = ind-cpa.G(A)
40 by(simp add: ddh.G0-def ind-cpa.G-def nat-pow-pow 〈 〉)
41 ultimately show ind-cpa.adv(A) = ddh.adv(elgamal-redA)
42 by(simp add: ddh.adv-def ind-cpa.adv-def)
43 qed

44 end

45 locale ELGAMAL′ = fixes G : N⇒ group(α)
46 assumes ∀η. finite-cyclic-group(G(η)) begin
47 sublocale concrete ≡ ELGAMAL(G(η)) for η by(simp add: 〈 〉)
48 theorem security′ :
49 assumes negl(λη. ddh.adv(η, concrete.elgamal-redη,A(η)))
50 shows negl(λη. ind-cpa.adv(η,A(η)))
51 by(simp add: concrete.security 〈 〉)
52 end

named context
declaration

definition
of the

reduction

concrete security
statement

preliminaries
and proof engine

configuration

step 1:
inline the
reduction

in the game

step 2: apply
one-time-pad

for cyclic groups
and sample

challenge bit b
after the guess

of the adversary

step 3: apply
one-time-pad
for booleans

and eliminate
dead code

step 4: use DH
group property

deduce claim
from interme-

diate steps

asymptotic
security

statement
and proof

Fig. 2: Elgamal security proof

12

proceeds by several intermediate steps (have) in which the game is transformed;
the commands by . . . call Isabelle’s proof engines (e.g., simp for term rewriting)
with appropriate hints. The highlighted parts show the game transformations: the
original game and the transformed game are written out declaratively and their
equality is expressed as an equality between the probability distributions they
denote. Here, . . . stands for the right-hand side of the previous have statement.
The first three steps prove that the game ddh.G1(elgamal-redA) is identical to a
coin flip in a series of equality statements: The first step inlines the reduction
elgamal-redA in the ddh.G1 game (lines 16–26). The second step applies the one-
time-pad lemma for cyclic groups, making the challenge ciphertext m independent
of the challenge bit b, which can then be sampled after the adversary’s guess
(lines 27–36). The third step then uses the one-time-pad lemma for booleans to
transform most of the game into dead code, which is then eliminated (lines 37–38).
The fourth and last step shows that the other DDH game ddh.G0(elgamal-redA)
is the same as the IND-CCA game for Elgamal (lines 39–40). In summary, A’s
IND-CCA advantage is the same as the DDH advantage of elgamal-redA (lines 41–
42). We will look closer at this proof in Sections 4.3 and 4.4 when we describe the
reasoning principles of our framework.

So far, the security parameter η has been implicit in our formalisation. Using
Isabelle’s module system, we make all definitions and statements dependent on
the security parameter and derive the conventional asymptotic security state-
ment3 from the concrete security statement (lines 45–52). In detail, the module
ELGAMAL′ now fixes a family G of finite and cyclic groups (lines 45–46). The
command sublocale in line 47 imports the ELGAMAL module parametrically for
every η with the name qualifier concrete. Imports must immediately discharge the
assumptions of the imported module; here, the finite cyclic group assumption of
ELGAMAL trivially follows from ELGAMAL′’s assumption. Thus, A’s advantage
against the Elgamal scheme is negligible (as a function of η) if elgamal-redA’s ad-
vantage against the DDH game is (lines 48–51). Here, negl(f) holds for a function
f iff f ∈ o(λx. 1/xc) for all c > 0.

4 Formal Reasoning about Probability Distributions

Machine-checked proofs need a formal language for expressing probabilistic com-
putations and reasoning principles for the language constructs. We model prob-
abilistic computations as HOL functions from inputs to discrete subprobability
distributions over results. For example, a game takes an adversary as input and
returns a discrete subprobability distribution over outcomes. Such distributions
are formulated as monadic functional programs in HOL (Section 4.1).

We choose a functional monadic language over an imperative one for two
reasons: First, a functional language provides better abstraction and extension
facilities. For example, many operators can be expressed as higher-order functions
that abstract over parts of the program (see Sections 5.7 and 5.8 for examples).
Second, functions are pure and a (part of a) program has the same meaning
in every context. Hence, we can replace equal programs in any contexts and
all dependencies are explicit. For example, we can read off the independence of
random variables syntactically.

3 Typically, asymptotic security statements quantify over all polynomially-bounded
adversaries and thus eliminate the dependence on the concrete reduction. For further
discussion of that point, see Section 8.

13

Subprobability distributions have two advantages over full probability dis-
tributions. First, they form a chain-complete partial order, so we can define
recursive computations as least fixpoints (see Section 4.2 for examples). Second,
the unassigned probability mass can be used to model failures, which serve two
purposes: (i) we can transfer control non-locally in error cases, such as invalid
data produced by the adversary; and (ii) we can use assertions to embed properties
into the program such that the proof engines can pick them up easily during
proof checking. We choose to restrict our framework to discrete distributions
because they are easier to reason about than measure-theoretic distributions,
which clutter proofs with measurability requirements. For most cryptographic
arguments, discrete subprobability distributions suffice.

We derive proof rules for reasoning about probabilistic programs and illustrate
their usage using the Elgamal example from Figure 2 (Sections 4.3–4.5).

4.1 Syntax and Semantics

Our syntax and semantics is mostly standard [59,2]. The technical novelties are
that our fixpoints are more general than in previous work and thus easier to use
(they require only monotonicity instead of continuity) and how we use assertions
and error handling. We briefly introduce the relevant concepts and notation here
and discuss the design choices.

A discrete subprobability distribution is given by its subprobability mass
function (spmf), which is a non-negative real-valued function that sums up to
at most 1. We define the type D(ω) of all spmfs over elementary events from the
type ω, such as the winning condition in the IND-CCA game in Figure 1. We
use variables p and q for spmfs. We make applications of spmfs explicit using the
operator !; so, p ! x denotes the subprobability mass that the spmf p assigns to
the elementary event x. An spmf can be considered as a discrete random variable:
an event A : P(ω) is a set of elementary events whose subprobability P[p ∈ A]
is given by

∑
y∈A p ! y. In case of a singleton set A = {x }, we write P[p = x]

instead of P[p ∈ {x }]. The support support(p) = {x | p ! x > 0 } is countable by
construction. Moreover, the weight ‖p‖ of p is the total probability mass assigned
by p, i.e., ‖p‖ =

∑
y p ! y. If p is a probability distribution, that is ‖p‖ = 1,

then we call p lossless following [8] (notation lossless(p)). Note that many game
transformations, e.g., transitions based on failure events (Proposition 2), require
that the distributions involved are lossless. So losslessness is a frequent assumption
of the security theorems in CryptHOL. We include non-lossless distributions in
our semantic domain such that we can formally state and prove that recursive
definitions terminate and therefore are lossless (Section 4.2).

Subprobability distributions are constructed using four language primitives:

1. the uniform distribution uniform(A) over a set A : P(ω) given by

uniform(A) ! x =

{
1/|A| if x ∈ A and A is finite

0 otherwise;

2. monadic sequencing (>>=) : D(ω1)× (ω1⇒ D(ω2))⇒ D(ω2) given by

(p >>= f) ! x =
∑

y∈support(p)

(p ! y) · (f(y) ! x);

14

that is, p >>= f averages over the distributions f(x), weighing each according
to the distribution p; from a computational point of view, p>>= f first executes
p to obtain a result x and then f(x);

3. error handling try p else q, which distributes the probability mass not assigned
by p according to q—formally (try p else q) ! x = p ! x+ (1− ‖p‖) · q ! x; and

4. least fixpoints of monotone functions (see Section 4.2), which give semantics
to recursively defined subdistributions.

Any discrete subprobability distribution can be expressed in terms of these four
operations as shown by Knuth and Yao [34]. For convenience, our framework pro-
vides many derived language elements. This is an advantage of the functional style
over the imperative: new language constructs can be integrated easily since every-
thing is compositional—as long as the construct can be expressed in the semantic
domain. For example, we define three special cases of the uniform distribution:

– coin : D(B) given by coin ≡ uniform({True,False }) samples a random bit;
– return : ω⇒ D(ω) given by return x ≡ uniform({x }) computes the one-point

distribution on x, which is the monadic unit operation; and
– the failure distribution ⊥ : D(ω) given by ⊥ ≡ uniform({}) does not assign

any probability mass at all.

The failure element ⊥ aborts the current part of the program, as ⊥ propagates:
⊥>>= f = ⊥. Typically, we do not use ⊥ in programs directly. It is more natural
to define an assertion statement assert b ≡ if b then return � else ⊥. Assertions
are useful in validating the inputs received from the adversary. For example, the
assertion in the IND-CPA security game in Figure 1 checks that the adversary
A1 produced valid plaintexts. Failed assertions are handled using the try else
statement. For example, the IND-CPA game treats failures as fair coin flips. This
is sound as the advantage is the probability of the outcome True less 1/2.

As spmfs are a monad, the dependent computation f : ω1⇒D(ω2) in a sequence
p>>=f can use all the control structures (e.g., if-then-else and pattern matching) of
HOL. Recall that we can process the result of a probabilistic computation p : D(ω1)

with a deterministic function f : ω1⇒ω2 to get a new distribution p �̂D f : D(ω2),

namely p �̂D f ≡ p >>= (λx. return f(x)). For example, uniform(Zm) �̂D (λn. n · n)
uniformly samples a square number between 0 and (m− 1)2 inclusive.

4.2 Recursive Definitions as Least Fixpoints

Sampling, sequencing, and HOL control structures suffice to write straight-line
computations. But cryptographic games also require loops and other forms of
repetition. As is usual in functional programming, we capture repetitions by
recursive definitions of probabilistic computations.

In CryptHOL, we support unbounded recursion and provide proof rules for
probabilistic termination. Strictly speaking, bounded recursion would suffice to
model the probabilistic computations that appear in cryptographic constructions,
as they have bounded run-time. But it is more natural and flexible to allow
unbounded recursion. For example, the Bernoulli distribution bernoulli(r), which
returns True with probability r for any 0 ≤ r ≤ 1, can be sampled from fair coin
flips using the recursive computation shown in Figure 3 [32]. Similarly, we can
implement the uniform distribution over Zn for any n using coin flips by adapting
Lumbroso’s sampling algorithm [46] (unif in Figure 3). This implementation shows
that we could have chosen coin as a language primitive instead of uniform because

uniform({ a0, a1, . . . , an }) = unif(n) �̂D (λn. an) holds. However, our choice of

15

bernoulli(r) ≡ do {
b← coin;
if b then return r ≥ 1/2
else if r < 1/2 then bernoulli(2 · r)
else bernoulli(2 · r − 1) }

geometric(r) ≡ do {
b← bernoulli(r);
if b then return 0

else geometric(r) �̂D (λn. n+ 1) }

unif(n) ≡ unif-aux(n, 0, 1)

unif-aux(n, c, v) ≡ if v ≥ n then
if c < n then return c
else unif-aux(n, v − n, c− n)

else do {
b← coin;
unif-aux(n, 2 · v, 2 · c+ (if b then 1 else 0)) }

Fig. 3: The Bernoulli, geometric and uniform distributions built from fair coin flips.

uniform simplifies the reasoning over coin because it does not need to explicitly
enumerate the elements (ai)i<n in the set A. Moreover, the geometric distribution
can be implemented in terms of the Bernoulli distribution using a recursive
computation. Note that none of these computations has a bound on the number
of iterations, but they all terminate with probability 1. With the proof rules in
our framework, it is easy to show that they all are lossless. Note that we could
have included all these distributions as primitives in our language and thereby
avoided the need for recursive specifications. However, it is clearly more elegant
to add one general primitive (unbounded recursion) to the language and derive
the distributions as special cases.

By supporting unbounded recursion, we can also reason about repetitions
without having to prove termination. This reduces the overall proof effort, because
we do not need to prove that every repetition in every probabilistic computation in
every (intermediate) game indeed terminates. Unbounded loops, which terminate
only probabilistically, do show up in some cryptographic constructions (see [24]
for an overview). For example, some protocols for fair two-party computations
[27,1] sample the number of rounds in the protocol from a geometric distribution.
Thus, their games contain snippets such as

do { n← geometric(r); for i = 0 to n do . . . }

where . . . typically contains some abort conditions. Rather than sampling the
number of iterations up front and then aborting the for loop prematurely, it can
be convenient to fuse the implementation of geometric with the for loop as in

do { . . . ; b← bernoulli(r) } while (b).

This shows that such unbounded loops, which are defined by recursion, are useful.
As is usual in programming languages, we interpret a recursively specified

spmf as the least fixpoint of the associated functional. In the case of a spmf,
the approximation order v is given by p v q ≡ (∀x. p ! x ≤ q ! x) [2]. In this
order, every chain Y has a supremum

⊔
Y which is taken pointwise: (

⊔
Y) ! x =

SUP { p ! x. p ∈ Y }, where SUP A denotes the supremum of a bounded set A of
real numbers. Thus, the approximation order is a chain-complete partial order
(ccpo) with least element ⊥. In Appendix B.1 we prove:

Proposition 1. The approximation order v is a chain-complete partial order.

By the Knaster-Tarski fixpoint theorem, every monotone function f on a ccpo
has a least fixpoint fix(f), which is the least upper bound of the transfinite iteration
of f starting at the least element. Therefore, we can define recursive probabilistic
computations as the least fixpoint of the associated (monotone) functional.

16

Isabelle’s package for recursive monadic function definitions [36] hides the
internal construction using fixpoints from the user and automates the monotonicity
proof. For example, Figure 3 exactly reproduces the Isabelle specifications of
these functions. The monotonicity proof succeeds as (>>=) is monotone in both
arguments. Namely, if p v q and f(x) v g(x) for all x, then p >>= f v q >>= g.
In contrast, try else is monotone only in the second argument, but not in the
first. For example, ⊥ v return 0, but try ⊥ else return 1 = return 1 6v return 0 =
try return 0 else return 1. Therefore, recursion is always possible through (>>=)
and else, but not in general through try.

Audebaud and Paulin-Mohring [2] previously studied least fixpoints in the
approximation order v. They showed that all countable chains have least upper
bounds, and defined the fixpoints as the least upper bound of a countable iteration.
Consequently, they demand that the functionals for recursive definitions be order-
continuous, which is a stronger property than monotonicity. Thus, our fixpoint
combinator can handle more recursive functions (see Appendix B.1 for an example).
Apart from expressivity, our monotonicity requirement is easier to automate
than continuity: monotonicity proofs in Isabelle are typically automatic, whereas
continuity proofs are not.

4.3 Equational reasoning

Our framework provides three kinds of reasoning techniques for probabilistic
programs: equational, relational and via the semantics. In this and the next
section, we describe these techniques and their theory, and show how they formally
capture the reasoning steps that are commonly found in cryptographic proofs. In
this section, we focus on equational reasoning.

Equational reasoning establishes that two programs compute the same sub-
probability distribution. To this end, our framework comes with a large library of
identities about the operators in our language. As our semantics is compositional,
we can replace one subprogram by an equal one in any program context.

Isabelle’s term rewriting engine simp automates this process. Term rewriting
orients the given equations from left to right and keeps replacing instances of
left-hand sides in the term with the corresponding right-hand sides until a normal
form is reached [3]. So the user must just choose the right set of equations.

In game hopping proofs, equational reasoning is important for applying indis-
tinguishability assumptions and bridging steps. To apply an indistinguishability
assumption in a formal proof, one must show that the two games indeed have
the right format. To do this, one constructs a distinguisher explicitly and shows
that if the assumption is applied to the distinguisher, one obtains the two games
of the hop. Typically, the two games in the proof do not syntactically match this
format of the games interacting with a distinguisher. Equational reasoning can
be used to bring them into the right shape. In this section, we show how this is
done in the security proof of Elgamal in Figure 2; along the way we encounter
the most important identities in our framework.

In the Elgamal example, we want to apply the DDH assumption to the
IND-CPA game for the encryption scheme. That is, we want to consider the IND-
CPA game ind-cpa.G(A) as an instance of the DDH game ddh.G0(A′) for some
distinguisher A′. Indeed, the probabilistic computation elgamal-redA in lines 3–11,
which uses the IND-CPA adversary A as a black box, provides the instance. In
lines 39–40, we prove the two distributions equal. Such an identity could be
considered obvious in informal, paper-based reasoning, but in a mechanized proof,

17

we must justify that this identity follows from our equations. With our framework,
term rewriting automates this justification: a single call to simp suffices.

In the remainder of the proof (lines 16–38) the other game ddh.G1(elgamal-redA)
of the DDH assumption is analysed. We discuss its features in the following.

Sequencing satisfies the monad laws of (neutrality) and (associativity). These
two identities ensure that definition unfolding is transparent. For example, un-
folding the Elgamal definition of aenc in the IND-CPA game in Figure 1 results
in nested blocks as shown below on the left. The rewriting engine automatically
flattens nested blocks by rewriting with neutrality and associativity, the result of
which is shown on the right. (If a name clash between variables occurs, the rewrit-
ing engine automatically renames them, which is correct as all variables are local.)

try do { . . .
b← coin;
c← do {
y ← uniform(Z|G|)
return (g ˆy, (αˆy)⊗m) }

b′ ← A2(c, σ); . . . }

try do { . . .
b← coin;

y ← uniform(Z|G|);

b′ ← A2((g ˆy, (αˆy)⊗m), σ); . . . }

Moreover, the order of two independent computations can be swapped, as D
is a commutative monad. Formally,

p >>= (λx. q >>= (λy. f(x, y))) = q >>= (λy. p >>= (λx. f(x, y))). (4)

Also, if the result of a distribution is not used, then it can be removed:

p >>= (λ . q) = ‖p‖ ∗ q, (5)

where r ∗ p scales the subprobability masses of p by r, i.e., (r ∗ p) ! x = r · (p ! x)
for 0 ≤ r ≤ 1/‖p‖. In particular, if p is lossless, then p >>= (λ . q) = q.

Equations (4) and (5) form the semantic foundation for rearranging indepen-
dent parts and dropping unused parts of a probabilistic program. For example,
in Figure 2, the rewriting engine uses commutativity (4) to move the flipping of
the random bit b (lines 21 to 34) past the guess b′ of the adversary (lines 23 and
33), and (5) is the cornerstone to collapsing the entire game to a coin flip in lines
37–38. (The collapsing additionally requires some equalities about try-else such as
try-bind-lossless in line 38, which we do not present in detail here; we refer the
interested reader to the source code of the formalisation [43,44].)

It is because of these two equations that we chose to not include state man-
agement in the sequencing operations. This is why the game explicitly passes
the adversary state σ from line 3 to 7 in Figure 1. If we had included it (as,
e.g., EasyCrypt and CertiCrypt do), every probabilistic computation could pos-
sibly access and modify the state. We would then need additional assumptions
and dedicated decision procedures whenever we want to rearrange the order of
statements. In particular, term rewriting would no longer suffice to reason about
rearrangements and dead code, but in the simplest cases. By leaving the state
explicit, our formalisation integrates better with Isabelle’s existing reasoning
infrastructure and term rewriting in particular.

Similarly, many identities hold for the other language elements. For example,

the one-time pad for booleans is expressed by the equation coin �̂D (λb. b = b′) =
coin. It says that if we flip a coin b and check whether it is equal to some (locally)
fixed b′, then this is the same as randomly flipping a coin. In line 38 in Figure 2,
e.g., one-time-pad-B refers to this equation; rewriting line 34 with this equation

18

turns the guess of the adversary into dead code, whereby the rewrite engine can
use (5) to eliminate it from the game.

The final step of the proof summarises the reasoning so far and shows the
equality of the advantages by unfolding their definitions (lines 41–42).

4.4 Relational Reasoning

Relational reasoning establishes a relation on the outcomes of two probabilistic
computations, namely, one can execute them in a coordinated way such that the
relation holds on the outcomes, which is called coupling [40]. Accordingly, we
can relate the probabilities of events in two coupled computations. Relational
reasoning generalises equational reasoning as follows: If we establish the identity
relation on outcomes, then the distributions are in fact equal.

Some relational reasoning takes place in the Elgamal proof, although we only
use term rewriting in Figure 2. Line 22 multiplies a random group element with
the challenge plaintext, whereas line 32 samples a random group element and
omits the multiplication. Their executions shall be coordinated such that they
always return the same group element, which is possible because multiplication
by a fixed group element—if b then m0 else m1 in this case—is a bijection on the
carrier. So in this case, the relation is the graph of the bijection; see (8) below for
details. This change is the main step in the security proof as it makes the guess
b′ of the adversary independent of the challenge bit b.

We will return to this example at the end of the section. Before that, we
formalise the reasoning infrastructure for such couplings. We establish a connection
to the theory of relational parametricity [51,60,70] (Appendix A.3 summarises
the relevant background). This helps us to automate the checking of the proof
steps, similar to how the theory of term rewriting supports equational reasoning.
We provide more examples of relational reasoning in the case study in Section 6.

We first define an operator to lift relations over elementary events to relations
over spmfs. With this operator, our primitive operations are relationally parametric.
From parametricity, we derive our logic for reasoning about coupled computations.

Lifting The lifting operation D̃ : P(ω1 × ω2)⇒ P(D(ω1) × D(ω2)) transforms

a binary relation R over elementary events into a relation D̃(R) on spmfs over
these events. For lossless distributions, a number of definitions have appeared
in the literature. We generalise the one from [30]. Formally, D̃(R) relates the
spmfs p : D(ω1) and q : D(ω2) iff there is an spmf w : D(ω1 × ω2) such that

(i) support(w) ⊆ R, (ii) w �̂D π1 = p, and (iii) w �̂D π2 = q. We call w an R-
coupling of p and q. This definition reformulates the one by Larsen and Skou
[39] for lossless spmfs. They consider w as a non-negative weight function on
the relation such that the marginals are the original distribution., i.e., w must
satisfy (i) x R y whenever w ! (x, y) > 0, (ii)

∑
y w ! (x, y) = p ! x for all x, and

(iii)
∑
x w ! (x, y) = q ! y for all y. Using our language for spmfs, our definition

expresses the same conditions more succinctly without summations. In previous
work [30], our definition led to considerably shorter proofs about D̃, e.g., for
distributivity over relation composition.

Recently, Sack and Zhang [61] showed that if p and q are lossless, then

p D̃(R) q iff ∀A. P[p ∈ A] ≤ P[q ∈ R[A]]

From this characterisation, which we have formalised too [41], we derive the

following characterisation of D̃ for arbitrary spmfs.

19

Lemma 1 (Characterisation of D̃). The following are equivalent for all R, p,
and q:

(a) p D̃(R) q

(b) support(w) ⊆ R and w �̂D π1 = p and w �̂D π2 = q for some w
(c) P[p ∈ A] ≤ P[q ∈ R[A]] for all A and ‖p‖ ≥ ‖q‖

The lifting operation D̃ enjoys a number of useful properties. For example,
(i) it generalises equality, namely p D̃((=)) q iff p = q, (ii) it distributes over

relation composition, (iii) it is monotone: p D̃(R) q implies p D̃(R′) q provided
that x R y implies x R′ y for all x ∈ support(p) and y ∈ support(q), and (iv) it

commutes with converses: D̃(R−1) = (D̃(R))−1 where x R−1 y iff y R x.
Most importantly, the characterisation allows us to infer bounds on the

probabilities of related events for related computations. In particular, if we
can find a relation R such that R[A] ⊆ B and p D̃(R) q, then the probability
P[p ∈ A] of event A in p is bounded by the probability P[q ∈ B] of event B in q.
Moreover, let A R? B denote that R cannot distinguish the events A and B, i.e.,
A R? B ≡ x ∈ A↔ y ∈ B for all x R y. Then their probabilities are the same for
R-coupled spmfs. Formally,

p D̃(R) q A R? B

P[p ∈ A] = P[q ∈ B]
. (6)

This rule plays an important role in Bellare and Rogaway’s identical-until-bad
lemma [13]: Given two programs which are syntactically equal except for code that
is executed after a boolean flag bad has been set, the probability of their outputs
being different is bounded by the probability of the flag being set. Lacking syntax,
we cannot express their syntactic condition of setting a bad flag in HOL. Borrowing
ideas from EasyCrypt [6], we instead rephrase the condition in terms of the lifting.

Lemma 2 (Identical-until-bad lemma [6,13]). Let A, F1 and B, F2 be events
of two spmfs p and q, respectively, such that

p D̃({ (a, b) | (a ∈ F1 ↔ b ∈ F2) ∧ (b /∈ F2 −→ a ∈A↔ b ∈B) }) q.

Then the probability difference between A occurring in p and B in q is bounded by
the probability of F1 in p, which equals F2’s in q.

|P[p ∈ A]− P[q ∈ B]| ≤ P[p ∈ F1] = P[q ∈ F2]

We next derive proof rules with which we can establish p D̃(R) q for two
probabilistic computations p and q that avoid probabilistic reasoning entirely.

Relational Parametricity Our observation is that the lifting operation D̃ also
serves as the relator for spmfs in relational parametricity. This insight enables
us to leverage the existing theory of relational parametricity (Appendix A.3) to
substantially automate proof checking.

For example, the sequencing operation (>>=) : D(ω1)× (ω1⇒ D(ω2))⇒ D(ω2)
is parametric in the event spaces ω1 and ω2. Formally,

∀R1 R2. (>>=) (D̃(R1) ×̃ (R1 ⇒̃ D̃(R2)) ⇒̃ D̃(R2)) (>>=),

where the relator R1 ×̃R2 for pairs lifts the relations R1 and R2 component-wise
to pairs and the relator ⇒̃ for the function space is defined by f (R1 ⇒̃R2) g iff
f(x) R2 g(y) whenever x R1 y. Note the similarity between (>>=)’s type and the
relation, in which type constructors have been replaced by relators.

20

Similarly, parametricity of the one-point distribution function return : ω⇒D(ω)

is expressed by the statement ∀R. return (R ⇒̃ D̃(R)) return. We prove this
statement for return by unfolding the definitions and taking return (x, y) as the
coupling for return x and return y for all x R y. The parametricity proof for
sequencing is similar. Also, try else and ⊥ are parametric.

Parametricity is compositional because function application and function
composition preserve parametricity. Thus, any combination of parametric com-
putations is also parametric. This holds in particular for our derived language

elements such as assert and �̂D.
From the parametricity statements, we derive reasoning rules by unfolding

some relator definitions. For example, we get the following rules for the monad
operations. Note that parametricity dictates the shape of the rules.

x R y

(return x) D̃(R) (return y)

p D̃(R) q ∀(x, y) ∈ R. f(x) D̃(R′) g(y)

(p >>= f) D̃(R′) (q >>= g)

With such rules, we can prove the existence of an appropriate coupling between two
computations without having to construct it explicitly. Conceptually, a proof with
these rules implicitly constructs the coupling behind the scenes in a compositional
way. Moreover, being able to derive these rules from the types acts as a sanity
check for our definitions, roughly similar to what type checking achieves for
programming (“Type-safe programs cannot go wrong!” [50]).

Unfortunately, not all computations are fully parametric. For example, uniform
sampling uniform : P(ω) ⇒ D(ω) is not parametric in ω because it relies on
polymorphic equality, which is not relationally parametric [70]: the cardinality of
a set depends on the equality of elements. Hence,

uniform (P̃(R) ⇒̃ D̃(R)) uniform (7)

holds if (and only if) the relation R respects equality, i.e., (=) (R ⇒̃R ⇒̃ B̃) (=)

holds.4 Here, the relator P̃(R) for sets relates two sets A and B iff R[A] ⊆ B and
R−1[B] ⊆ A. It turns out that this conditional parametricity property captures
the well-known idea of optimistic sampling in cryptographic proofs. Namely, if f
is injective on A, then

uniform(A) �̂D f = uniform(A �̂P f) (8)

To see this, choose the graph Gf = { (x, f(x)) | x : ω } of f for R in (7) and

note that lifting the graph of a function is the same as postprocessing: p D̃(Gf) q

iff q = p �̂D f , and A P̃(Gf) B iff B = A � P̂f . Injectivity is equivalent to Gf
respecting equality.

This is one example of Wadler’s free theorems [70] in our context. If we
specialise A to bitstrings of a fixed length and f to the bitwise exclusive or (xor)
with a fixed bitstring, we obtain the well-known one-time-pad lemma:

uniform({ 0, 1 }n) �̂D (λs′. s⊕ s′) = uniform({ 0, 1 }n), (9)

where s is a bitstring of length n and { 0, 1 }n denotes the set of all bitstrings of
length n.

4 This restriction on uniform’s parametricity stems from our avoiding the enumeration
of the set elements (cf. Section 4.2). If we had defined uniform on enumerations, i.e.,
lists rather than sets, then uniform would be parametric, but we would then incur the
cost of reasoning about lists (where the order of the elements matters) instead of sets
(which are unordered).

21

Finally, we now return to the security proof of Elgamal in Figure 2. It is
optimistic sampling that justifies the change from line 22 to line 32. Formally, the
reasoning goes as follows (where c is an arbitrary group element):

uniform(Z|G|) �̂D (λz. g ˆz ⊗ c) = uniform(Z|G| �̂P (λz. g ˆz ⊗ c))

= uniform(Z|G| �̂P (λz. g ˆz))

= uniform(Z|G|) �̂D (λz. g ˆz),

where the first and third step hold by (8) and the second follows from both sets
being the same. Our lemma one-time-pad-group captures this reasoning as a
reusable rewrite rule with the condition that c is in G’s carrier.5 Admittedly, this
security proof did not involve much relational reasoning. The reason is that we
used only the identity relation on elementary events, whereby relational reasoning
reduces to equational reasoning. Relational reasoning will become important
when oracles enter the stage, for example, for reasoning up to failure events (see
Proposition 2 and Section 6 below).

In summary, guided by parametricity, we have essentially rediscovered the
functional counterpart to probabilistic relational Hoare logic as implemented
in EasyCrypt. But parametricity offers yet another point of view. Mitchell [51]
uses parametricity to express representation independence, i.e., one can change
the representation of data without affecting the overall result. In Section 6,
we will exploit representation independence in the bridging steps of the game
transformations. Proofs by parametricity and representation independence are
highly automated in Isabelle [31,38] and therefore lead to concise proof scripts.

Finally, note that parametricity does not stop at probabilistic computations.
Observe that (6) merely rephrases P[∈]’s parametricity statement

∀R. P[∈] (D̃(R) ⇒̃R? ⇒̃ R̃) P[∈]

where R̃ denotes the identity relation on the reals (type R). Thus, parametricity
can take us beyond reasoning about probabilistic elements in our language.

Parametricity of Recursively Defined Subdistributions We have not yet
covered one building block of our probabilistic language in our parametricity
analysis: the fixpoint combinator. It turns out that it preserves parametricity.

Theorem 1 (Parametricity of spmf fixpoints). If f : D(ω1)⇒ D(ω1) and

g : D(ω2)⇒ D(ω2) are monotone with respect to v and f (D̃(R) ⇒̃ D̃(R)) g, then

fix(f) D̃(R) fix(g).

The proof can be found in Appendix B.2. Analogues to Thm. 1 hold for fixpoints
over ⇒D(ω), D(ω1)×D(ω2), etc.. We use them to show parametricity of (mutually)
recursive probabilistic computations (Section 5.5) rather than that of distributions.

4.5 Reasoning via the Semantics

The relational proof rules are not complete. For example, we cannot establish

uniform({ 0, 1, 2 }) D̃({(x, y) | x = y ∨ x+ 1 = y }) uniform({ 0, 1, 2, 3 }) (10)

5 This proof step also highlights the use of assertions. To apply the rewrite rule, the
rewrite engine must be able to discharge the assumption that if b then m0 else m1

is indeed a group element. The assertion in line 20 makes precisely this information
available because valid-plains checks that both messages are group elements.

22

using the proof rules derived from parametricity, in particular (7). Intuitively,
the reason is that parametricity looks only at the types, not at the definitions of
functions. Hence, the proof rules derived from parametricity cannot be used for
arguments that non-trivially involve the semantics.

In such cases, we directly employ the semantic definitions and derive new
proof rules or conduct proofs by unfolding these definitions. For example, we
derived the following rule from the definition of uniform:

∀X ⊆ A. |B| · |X| ≤ |A| · |B ∩R[X]|
uniform(A) D̃(R) uniform(B)

if A and B are non-empty and finite.

This rule is strictly stronger than (7) whenever the side condition holds. For
example, we use it to establish (10): Let A = { 0, 1, 2 } and B = { 0, 1, 2, 3 } and
R = {(x, y) | x = y ∨ x + 1 = y } and X ⊆ A. Then, |B ∩ R[X]| = |X|+ 1. So,
|B| · |X| = 4 · |X| ≤ 3 · (|X|+ 1) = |A| · |B ∩R[X]| holds since |X| ≤ 3.

Deriving new rules is possible because our formalisation is embedded in a
generic-purpose logic like HOL. If we were using a dedicated tool like EasyCrypt,
we would have to change its implementation whenever we need a more general rule.

5 Games with Oracles

In many security games, oracles control how the adversary can access information
or use cryptographic primitives. For example, in the random oracle model, the ad-
versary can inspect a random function by evaluating it at points of his choosing, but
he cannot analyse a representation of the function itself (Section 5.1). Similarly, a
decryption oracle allows the adversary to decrypt any ciphertext different from the
challenge ciphertext, but it prevents the adversary from getting hold of the decryp-
tion key (Section 6.1). In general, an oracle is a probabilistic function that main-
tains mutable state across different invocations, but the adversary must not access
this state. In other words, the adversary has only black-box access to the oracle.

In this section, we formalise black-box access in higher-order logic. We propose
a new semantic domain for probabilistic input-output systems, which we call
generative probabilistic values (GPV). We use GPVs in two ways. First, to model
adversaries with oracle access (Section 5.2): To access an oracle, a GPV can
output a query and wait for a response before it continues. Second, we build
oracle converters from GPVs to handle how reductions replace oracles, and we
define the composition of GPVs, converters, and oracles (Section 5.3). We then
derive high-level proof principles from the definitions (Sections 5.4–5.6). Finally,
we present operators to modify and impose restrictions on adversaries and we
generalise our framework to multiple oracles (Sections 5.7–5.9). Overall, we obtain
a natural formalisation of black-box access, which relies heavily on the higher-order
features of our logic.

5.1 Example: Pseudo-Random Functions

To illustrate how we model black-box access, we formalise the notion of a pseudo-
random function. Informally, a family of functions (Fs)s∈S from A to B, indexed
by a seed s ∈ S, is called pseudo-random if—given black-box access—it is hard to
distinguish a random function from A to B from a random member of the family.

Formally, we define two games (Figure 4). In the game GRF on the left, the
adversary A gets black-box access to a random oracle ORF, which models the

23

ORF(D,x) ≡ case D(x) of
None⇒ do { y ← rnd; return (y,D(x 7→ y)) }
| Some(r)⇒ return (r,D)

GRF(A) ≡ do {
(b,)← exec(ORF,A,∅);
return b }

OsPRF(�, x) ≡ return (F(s, x),�)

GPRF(A) ≡ do {
s← seed-gen;
(b,)← exec(OsPRF,A,�);
return b }

Fig. 4: Games for formalising pseudo-randomness of F, defined in the module PRF

random function. In the game GPRF on the right, A interacts with a randomly
chosen element of the family. The advantage

adv(A) ≡ |P[GRF(A) = True]− P[GPRF(A) = True]|

measures the adversary’s ability to distinguish whether he interacted with the
random oracle or with the pseudo-random function.

The random oracle ORF stores all queries and their responses in its state, a map
D : α⇒M(β). When the adversary queries the image of a point x that has not
previously been queried (case D(x) = None), the oracle samples a new point y ac-
cording to the distribution rnd,6 returns y, and updates the map. Otherwise (case
D(x) = Some(y)), the oracle returns the stored value y and leaves the state un-
changed. In contrast, the oracle OsPRF merely evaluates the chosen element F (s) of
the family F at the point x. As the index s remains unchanged during all queries, we
pass s as an initialisation parameter to the oracle instead of storing it in the oracle’s
state. Hence, the state degenerates to the singleton type, whose only element is �.

The oracles must not be passed as arguments to the adversary. Otherwise,
the adversary would receive an encoding of the oracle and its state, which he
could analyse. This would be white-box access. To ensure black-box access, we
define a composition operator exec(O,A, s) in Section 5.3. It runs the adversary
A together with the oracle O from the oracle’s initial state s and returns the
response of the adversary (a bit b in Figure 4) and the final state of the oracle. For
the random function, GRF runs A with the random oracle with the empty map
∅ as initial state. For the pseudo-random function, GPRF picks an index s from
the family according to the distribution seed-gen and then runs A with access to
F(s). Both games return A’s response and discard the final oracle state.

We next illustrate how we apply the indistinguishability assumption between
the PRF and a random oracle in a game hop (Figure 5). Let G1 be a game that
gives an adversary A access to some oracle O1 that both use the PRF. We want
to obtain a game G2 that uses the random oracle instead of the PRF. The formal
justification of such a transition proceeds in four steps. First, we break the game G1

into two parts: the game GPRF and the remainder R. Similarly, we split the oracle
O1 into OPRF and the rest C. Second, we define the reduction red(A) that runs R
(which internally runs A) and answers A’s queries by calling C and querying the
oracle OPRF. We prove that GPRF(red(A)) yields the same distribution as G1(A)
by associativity of composition. Conceptually, C converts the oracle OPRF into A’s
oracle O1. Third, we switch to the game GRF(red(A)), which differs by red(A)’s
PRF-advantage from GPRF(red(A)). Finally, we apply associativity of composition
again and obtain the new oracle O2 as the composition of C and ORF and the
new game G2 built from GRF and R.

6 The distribution rnd abstracts the distribution on the codomain. Typically, rnd is
uniform, but our formulation also supports any other discrete distribution.

24

A

A

A

A

G1

R

O1

C OPRF

GPRF

GPRF

OPRFR C
x

y
b

GRF ORFR C
x

y
b

red(A)

G2

RGRF

O2

C ORF

= (associativity)

≈adv(red(A))

= (associativity)

Fig. 5: Game hop from a game G1–A–O1 to the game G2–A–O2 using the indis-
tinguishability of the pseudo-random function from a random oracle.

In the remainder of this section, we formalise interaction and composition and
derive the reasoning principles used. We thus develop the formal counterpart to
the pictorial reduction proofs that appear in the literature [66]. In Section 6, we
show our framework in action by proving an encryption scheme IND-CCA-secure.
We thereby express reduction proofs similar to Figure 5 formally in HOL.

5.2 Probabilistic Computations with Oracle Access

We explicitly model the interactions between the adversary and the oracle using
resumptions [49], which we combine with subprobabilities in the style of Piróg and
Gibbons [57]. The type constructors G and Grepresent generative and reactive
probabilistic values, respectively. They satisfy the following recursion equations:7

G(α, γ, ρ) ∼= D(α+ γ × G(α, γ, ρ)) G(A,Q,R) ∼= R⇒G(A,Q,R) (11)

Formally, we define G and Gas the greatest solution to these equations, namely
the algebraic coinductive datatype (codatatype)

codatatype G(α, γ, ρ) ≡ GPV (un-GPV : D(α+ γ × G(α, γ, ρ)))
type-synonym G(α, γ, ρ) ≡ ρ⇒G(α, γ, ρ)

where the bijections GPV : D(α + γ × G(α, γ, ρ)) ⇒ G(α, γ, ρ) and un-GPV :
G(α, γ, ρ) ⇒ D(α + γ × G(α, γ, ρ)) witness the isomorphism of the recursion
equation. (Appendix A.2 provides some background on coinductive definitions.)

Conceptually, each GPV chooses probabilistically between failing, terminating
with a result of type α, and continuing by producing a query q : γ and transitioning
into a reactive probabilistic value (RPV). The RPV waits for a response r : ρ
from the environment and then moves to the generative successor state.

We choose the greatest solution to (11) because it allows us to model more
adversary behaviours than any other solution. For example, the type G includes
adversaries which terminate only probabilistically. That is, they terminate with
probability one (and possibly even within polynomially many steps on average),
but if we ignore probabilities and consider them as a non-deterministic system,

7 HOL has isorecursive types in the form of algebraic (co)datatypes, but does not
support equirecursive types. So, we only demand isomorphism (∼=), not equality.

25

return x ≡ GPV (return Pure(x))
call q ≡ GPV (return IO(q, return))

sample(p) ≡ GPV (p �̂D Pure)
fail ≡ GPV ⊥
assert b ≡ if b then return � else fail
try v else v′ ≡

GPV (try (un-GPV(v) �̂D (id +̂ (id ×̂ (λr x. try r(x) else v′)))) else un-GPV(v′))

v >>= f ≡ GPV (do {
x← un-GPV(v);
case x of Pure(y)⇒ un-GPV(f(y))
| IO(c, r)⇒

return IO(c, λw. r(w)>>= f) })

Fig. 6: Primitive operations for GPVs

then there are executions that do not terminate. In distributed computing, such
executions are typically considered unfair [28]. Such adversaries naturally arise
from reductions in security proofs of protocols that terminate only probabilistically,
e.g., for fair two-party computations [27,1].

Computations on GPVs are written in a monadic language similarly to spmfs.
The basic operations for GPVs are the monadic functions return and (>>=), calling
an oracle call, sampling sample, exceptional termination fail (from which we derive
assertions assert similar to Section 4.1), and failure handling try else . They are
implemented as shown in Figure 6, where Pure ≡ Left and IO(c, r) ≡ Right((c, r))
and id is the identity. Note that (>>=) and try else are well-defined because the
corecursive calls on the right-hand sides occur in guarded and friendly contexts [19].

GPVs can be visualised as possibly infinite trees of nestings of probability
distributions. For example, consider the following process p, which interacts with
an environment that takes a number and returns a bit. Before each query, it flips
a fair coin. If the result is heads, then it terminates and returns the parity of all
the bits received so far. If it is tails, then it asks another query that is labelled by
the number of True responses received so far. Figure 7 visualises this process as
follows: A GPV is a box with rounded corners, which contains a subprobability
distribution. The distribution is written as a list of probabilities, which add up
to at most one. Dashed lines connect the probabilities to the elementary events
they are associated to. The distributions inside a GPV contain two kinds of
elementary events. First, Pure(x) values denote that the process terminates with
result x. Second, IO(q, f) corresponds to a query q, whose response r determines
the subtree f(r). In Figure 7, the function f is written as a • with arrows to the
subtrees that are labelled with the response.

This process can also be expressed syntactically as follows, where the state s
stores the number of True responses so far and odd(n) returns whether n is odd.

p(s) = do {
b← sample coin;
if b then return (odd(s)) else do { b′ ← call s; p(if b′ then s+ 1 else s) } }

In fact, all GPV operations can be interpreted graphically. A box models the
constructor GPV, which embeds a subprobability distribution into the type of
GPVs. Conversely, the destructor un-GPV unboxes a GPV and returns the con-
tained distribution. Figure 8 depicts four simple operations: (a) return(x) packages
the one-point distribution on Pure(x) in a box; (b) fail’s box is “empty” in that
its subprobability distribution does not assign any mass to any event; (c) sample
takes a distribution p, which assigns probability pi to xi, marks all elementary
events xi with Pure, and boxes the resulting distribution as a GPV; and (d) call(q)
performs the query q and terminates with the response ri of the environment.

26

p(0) =
1/2

1/2

Pure(False)

IO(0, •)

1/2

1/2

Pure(True)

IO(1, •)

1/2

1/2

Pure(False)

IO(2, •)

1/2

1/2

Pure(True)

IO(1, •)

1/2

1/2

Pure(False)

IO(0, •)

1/2

1/2

Pure(True)

IO(1, •)

1/2

1/2

Pure(False)

IO(0, •)

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

True

False

True

False

True

False

True

False

True

False

True

False

True

False

p(1) = p(2) =

p(1) =

p(0) =

p(1) =

p(0) =

Fig. 7: Visualisation of GPVs as nested boxes of subprobability distributions

The sequencing operation v>>=f takes a GPV v and a family f of GPVs indexed
by v’s possible results. It replaces all occurrences of Pure(x) in any box inside v with
the contents of the box f(v) scaled to the probability of Pure(x). Figure 9 shows
an example. The probability 1/2 for Pure(x) on the left is distributed to Pure(a)
and Pure(b) on the right according to f(x). When several branches yield identical
subtrees, these probabilities are merged, e.g., 4/15 = 1/5 · 1/3 + 4/5 · 1/4 for Pure(a).

Error handling try v else v′ fills all unassigned probability masses in any of v’s
subdistributions according to the contents of v′. Figure 10 shows an example. As
the error handler in the else part contains non-lossless subprobability distributions,
so does the result of the error handling. As with sequencing, the probabilities of
identical subtrees are merged (e.g., 7/12 = 1/2 + (1− (1/2 + 1/3)) · 1/2).

We emphasize that these definitions define only the denotational semantics
of the GPV operations. Operationally, these possibly infinite trees are never
constructed explicitly and probabilities are need not be merged because execution
relies on the syntactic description whereas the reasoning happens at the semantic
level (see Section 8 for more details).

The operations on GPVs behave as expected. In particular, return and (>>=)
satisfy the monad laws, fail propagates, and sample is a monad homomorphism.

return x >>= f = f(x) v >>= (λx. return x) = v

(v >>= f)>>= g = v >>= (λx. f(x)>>= g) fail>>= f = fail

sample(do { x← p; f(x) }) = do { x← sample(p); sample(f(x)) }
sample(return x) = return x sample(⊥) = fail sample(assert b) = assert b

sample(try p else q) = try sample(p) else sample(q)

(12)

Not all properties carry over from the spmf monad. For example, commutativity
(4) and cancellation (5) do not hold for (>>=) in general. Therefore, most of our

27

1 Pure(x)

(a) return x

⊥

(b) fail

p1
p2
p3

...

x1
x2
x3

...

p1
p2
p3

...

Pure(x1)

Pure(x2)

Pure(x3)

...

sample

(c) sample

1 IO(q, •)

1 Pure(r1)

1 Pure(r2)

1 Pure(r3)

...

r1

r2

r4

(d) call q

Fig. 8: Visualisation of the primitive GPV operations return, fail, sample, and call

1/2

1/2

Pure(x)

IO(q, •)

1 Pure(y)

1/5

4/5

Pure(x)

Pure(y)

r1

r2

>>= f =

1/6

1/3

1/2

Pure(a)

Pure(b)

IO(q, •)

1/4

3/4

Pure(a)

Pure(c)

4/15

2/15

3/5

Pure(a)

Pure(b)

Pure(c)

r1

r2

where f(x) =
1/3

2/3

Pure(a)

Pure(b)
and f(y) =

1/4

3/4

Pure(a)

Pure(c)

Fig. 9: Visualisation of a sequencing example for GPVs

reasoning happens when we compose GPVs with oracles because composition
takes the reasoning back to spmfs. We define composition next.

5.3 Oracle Converters and Composition

A GPV models a probabilistic computation that interacts with an environment,
i.e., the oracle. In this respect, GPVs resemble the models of probabilistic reactive
systems from the literature [30,63,67]. When we look at a GPV in isolation, then
we consider the oracle as non-deterministic. After we have composed a GPV with
an oracle, the non-determinism has been resolved, so only an spmf remains.

In this section, we formally define composition for GPVs, oracles, and con-
verters. Our definitions are quite technical, but we derive high-level proof rules
for reasoning about compositions in Sections 5.4 and 5.5. Thanks to the proof
rules, users of our framework need not understand the technical details, as they
only need to use the proof rules. Only when they want to derive additional rules
from the semantics must they understand the underlying definitions.

Formally, an oracle is a stateful environment of type O(σ, γ, ρ) ≡ σ⇒ γ ⇒
D(ρ × σ): for each query q : γ and local state s : σ, the oracle probabilistically
produces a response r : ρ and updates its local state.

28

try 1/2 IO(q, •)
1/2

1/3

Pure(x)

Pure(y)

r
else

1/2

1/3

Pure(x)

IO(q, •) 1 Pure(z)
r =

1/2

1/4

1/6

IO(q, •)

Pure(x)

IO(q, •)

7/12

1/3

1/18

Pure(x)

Pure(y)

IO(q, •) 1 Pure(z)

1 Pure(z)

r

r

r

Fig. 10: Visualisation of an error-handling example for GPVs

As discussed in Section 5.1 and illustrated in Figure 5, the adversary red(A)
constructed in a reduction proof intercepts the queries of the original adversary
A, forwards some of them to its oracles and answers others himself. Thus, the
reduction must convert between its oracles and the oracles of the original adversary
using a converter C, as the reduction uses the adversary as a black box. In our
framework, stateful converters have type C(σ, γ, ρ, γ′, ρ′) ≡ σ⇒γ⇒G(ρ×σ, γ′, ρ′).
They intercept queries γ and produce responses ρ for a GPV. In doing so, they
interact with an environment (oracle) through queries γ′ and responses ρ′. The
converter maintains a local state σ, which persists between intercepts.

We first consider composition with converters as composition with an oracle
is a special case. Syntactically, composition corresponds to inlining the converter
into the adversary. Semantically, we define an operator inline : C(σ, γ, ρ, γ′, ρ′)⇒
G(α, γ, ρ)⇒ σ⇒G(α× σ, γ′, ρ′). It takes a converter C, a GPV, and the initial
state of the converter and returns a GPV that produces a result α and C’s new
state after interacting with C’s environment.

Inlining combines recursion and corecursion as follows: The recursive part goes
through the interactions between the GPV and the converter and searches for
the next interaction between the converter and its oracles. The corecursive part
performs the interaction found and iterates the search.

The search is captured by the recursive function search. If the GPV v terminates
with result x, there are no queries and the search terminates; otherwise, the GPV
outputs q and becomes the RPV v′. In that case, search analyzes C under the
query q. If C returns r without issuing a query, the search continues recursively
on v′(r). Otherwise, the first query is found and the search terminates.

search : C(σ, γ, ρ, γ′, ρ′)⇒G(α, γ, ρ)⇒ σ
⇒ D(α× σ + γ′ × G(ρ× σ, γ′, ρ′)× G(α, γ, ρ))

search(C, v, s) ≡ do {
z ← un-GPV(v);
case z of Pure x⇒ return Left((x, s))
| IO(q, v′)⇒ do {
y ← un-GPV(C(s, q));
case y of Pure (r, s′)⇒ search(C, v′(r), s′)
| IO(q′, v′′)⇒ return Right((q′, v′′, v′)) } }

29

The function inline first calls the auxiliary function search, which searches for
the first query issued by the converter to its oracle during a query of the caller. If
search finds none, it returns the caller’s response r and the converter’s updated
state s′. Then, inline terminates with the same outcome. Otherwise, inline issues
the call q′ and forwards the response r′ to the RPV v′′ of the converter, which
may issue further calls. The result r of the converter is then fed to the RPV v′ of
the caller and inline corecurses with the updated state s′ of the converter.

inline : C(σ, γ, ρ, γ′, ρ′)⇒G(α, γ, ρ)⇒ σ⇒G(α× σ, γ′, ρ′)
inline(C, v, s) ≡ GPV (do {
z ← search(C, v, s);
case z of Left((a, s′))⇒ return Pure((a, s′))
| Right((q′, v′′, v′))⇒ return IO(q′, λr′. do {

(r, s′)← v′′(r′);
inline(C, v′(r), s′)}) })

As search lives in the spmf monad, it can be defined using the fixpoint operator
on spmf (Section 4.2). Conversely, inline operates in the GPV monad. So, corecur-
sion is the appropriate definition principle. Accordingly, we prove properties about
search by fixpoint induction and about inline by coinduction (Sections 5.4 and 5.5).

If we compose a GPV with an oracle O instead of a converter, i.e., an spmf
rather than a GPV, the oracle cannot issue further calls. Thus, search(O) always
returns a result of the form Left(x, s′) and the corecursion in inline is not needed.
Therefore, we define the execution of a GPV v with O as follows (where projl is
the left inverse to Left).

exec : O(σ, γ, ρ)⇒G(α, γ, ρ)⇒ σ⇒ D(α× σ)

exec(O, v, s) ≡ search(λ(s, x). sample(O(s, x)), v, s) �̂D projl

Composition can also be interpreted graphically. Figure 11(a) shows a converter
C that intercepts integer queries q. This converter does not need any state, so
the state � is just of the singleton type 1. With probability 1/2, it immediately
responds with True, and with probability 1/2, it queries its own oracle for −q − 1.
In the latter case, if the oracle’s response is True, C also responds with True;
otherwise the converter next queries its oracle with q and returns the negated
response. In the following, we compose the GPV p(0) as shown in Figure 7 with C.

Graphically, composition first replaces each IO(q, •) in the outer-most box p(0)
with the contents of C(�, q) and replaces every Pure((r,�)) in this copy of C(�, q)
with IO(q, •)’s subtree with edge label r. Then, the same replacement happens
recursively in all these subtrees again.8 Such replacements create direct nestings
of probability distributions (without IO in between), which are then flattened by
scaling the probabilities accordingly. The replacement and the flattening up to the
first occurrence of IO(, •) in the converter tree is done by the function search, and
inline continues the replacement and flattening after the converter has terminated.

The composed GPV is shown in Figure 11(b). The result Pure(False) of the
outer-most box in Figure 7 is still possible, but it is now formally combined with
C’s final state �. The original IO(0, •) of the outer-most box has been replaced
with C(�, 0)’s box contents and the resulting probabilities are merged into the
outer-most probability distribution. As C(�, 0) queries its own oracle with −1

8 In general, composition also takes care of correctly passing the state of the converter,
which is not necessary in this simple example.

30

C(�, q) =
1/2

1/2

Pure((True,�))

IO(−q − 1, •)

1 IO(q, •)
1 Pure((False,�))

1 Pure((True,�))

1 Pure((True,�))

True

False

True

False

(a) An example of a state-less converter

8/15

2/15

1/4

1/16

1/256

...

Pure((False,�))

Pure((True,�))

IO(−1, •)

IO(−2, •)

IO(−3, •)

inline(C, p(1),�)

1 IO(0, •)
inline(C, p(0),�)

inline(C, p(1),�)

True

False

True

False

inline(C, p(2),�)

1 IO(1, •)
inline(C, p(1),�)

inline(C, p(2),�)

True

False

True

False

· · ·

· · ·

True

False

...

(b) Composition of the GPV from Figure 7 with the converter C

Fig. 11: Composition example

with probability 1/2, IO(−1, •) has probability 1/2 · 1/2 = 1/4. Its subtrees are the
remainder of C(�, 0) with the Pure subtrees replaced by p(1) and p(0), where
inlining continues. But C(�, 0) can also immediately respond with True without
performing any queries. Therefore, the True subtree of IO(0, •) in Figure 7, i.e.,
p(1), also gets included in the outer-most probability distribution in Figure 11(b).
This is the reason why Pure((True,�)) has positive probability. For the same
reason, the first query to C’s oracle may originate from the second call to C in the
upper p(1) box in Figure 7. Hence, IO(−2, •) has probability 1/16 = 1/2 · 1/2 · 1/2 · 1/2,
as all probabilistic choices are independent. Similarly, Pure((False,�)) is also
a possible response in case C immediately responds twice in a row. Therefore,
Pure((False,�)) has not probability 1/2, but 1/2 ·

∑∞
i=0(1/2 · 1/2 · 1/2 · 1/2)i = 8/15.

Analogously, Pure((True,�)) has probability 2/15 = 1/8 ·
∑∞
i=0

1/16i.

5.4 Equational Reasoning about Composition

Cryptographic reasoning primarily happens after the GPV has been composed
with oracles, i.e., in the spmf monad with the reasoning principles from Sections 4.3,
4.4, and 4.5. Therefore, the important principles for reasoning about GPVs concern
the composition operators inline and exec.

As with spmf, equational reasoning plays a central role in bringing (intermedi-
ate) games into the right syntactic shape for a hardness assumption or a property
to apply, like in the first and last step in Figure 5. We have already mentioned in

31

(12) that the usual structural identities hold for GPVs. We now show that the
composition operators interact nicely with the rest of the language too. For inline,
e.g., the following identities hold (the ones for exec are analogous):

inline(C, call q, s) = C(s, q) inline(C, return x, s) = return (x, s)

inline(C, v >>= f, s) = inline(C, v, s)>>= (λ(x, s′). inline(C, f(x), s′))

inline(C, fail, s) = fail inline(C, sample(p), s) = sample(p �̂D (λx. (x, s)))

The reader might wonder why the definition for inline appears so complicated
when these equations would have been enough to define inline recursively over
GPV programs. This is because our definition relies solely on the semantics of
GPV programs, not their syntax. This gives us a strong notion of extensibility: any
extension that we or users of our framework add to our language will not interfere
with these equations unless the extension requires changes to the semantic domain
of GPVs itself. In Section 5.7, we will make use of this extensibility.

The most important property for cryptographic proofs is the associativity of
composition. As shown in Figure 5, reductions transform the adversary A for one
game into an adversary for another game, where the oracles of the two games in
general differ. So, the reduction emulates the original oracle O using a converter C,
which has access to the new oracle O′. In this way, the new adversary is built from
the composition inline(C,A) and the game in the hardness assumption executes it
with access to O′. By the associativity of composition, this is equivalent to execut-
ing the original adversary A with access to the emulated oracle exec(O′, C(),).
Thus, it suffices to establish that the emulation exec(O′, C(),) of O is good
enough, i.e., indistinguishable from O. Formally, the following equations hold

inline(C1, inline(C2, v, s2), s1) = inline(inline(C1) ◦◦ C2, v, (s2, s1)) (13)

exec(O, inline(C, v, s2), s1) = exec(exec(O) ◦◦ C, v, (s2, s1)), (14)

where f ◦◦ g abbreviates λ(x, y) z. f(g(x, z), y) and where we have omitted
reassociations of tuples, identifying (x, y, z) with ((x, y), z).

Thus, we have captured a fundamental reasoning principle in cryptographic
proofs [47] in two simple equations. This supports our thesis that GPVs are at
the right level of abstraction for the semantic domain of interaction: It is not too
abstract because we can model composition, and it does not contain unnecessary
details as otherwise associativity could not be expressed as an equality.

5.5 Relational Reasoning

Reasoning up to bisimilarity shows up in many bridging steps of game hopping
proofs. For example, if we change an oracle to keep track of additional state or
compute quantities in equivalent ways, it suffices to prove bisimilarity of the old
and new oracle (see Section 6 for concrete examples). In our model, bisimilarity
can be expressed using relational parametricity. Thus, the theory of representation
independence provides the formal underpinning to conclude that the overall results
of the game do not change.

Our relational reasoning, which we derive from parametricity, follows the same
line as for spmfs. First, we define the canonical relator G̃ for GPVs as follows.
Given relations A, Q, and R on results, queries, and responses, respectively,
G̃(A,Q,R) is the largest relation on GPVs that is consistent with the rule

un-GPV(v) D̃((A +̃Q ×̃ (R ⇒̃ G̃(A,Q,R)))) un-GPV(v′)

v G̃(A,Q,R) v′
==.

32

The double horizontal line indicates that this definition should be interpreted
coinductively, i.e., as the largest relation consistent with the rule. As we have chosen
the largest solution to (11) for GPVs, we also choose the largest solution for the

relator G̃. Note that G̃ generalises equality, since v G̃((=), (=), (=)) v′ iff v = v′.
With this relator, all our operators are relationally parametric: Since para-

metricity is compositional, it suffices to note that the operators are all defined in
terms of parametric functions and that the definition principles such as primitive
corecursion and least fixpoints on spmf preserve parametricity (Theorem 1). For
example, the following holds for all relations A, Q, Q′, R, R′, and S:

sample (D̃(A) ⇒̃ G̃(A,Q,R)) sample

inline ((S ⇒̃Q ⇒̃ G̃(R ×̃ S,Q′, R′)) ⇒̃ G̃(A,Q,R) ⇒̃ S ⇒̃ G̃(A ×̃ S,Q′, R′)) inline

exec ((S ⇒̃Q ⇒̃ D̃(R ×̃ S)) ⇒̃ G̃(A,Q,R) ⇒̃ S ⇒̃ D̃(A ×̃ S)) exec (15)

Taking the representation independence point of view on parametricity, we
obtain a bisimulation principle from (15): If S is a bisimulation relation between
the two oracles O1 and O2 and S relates their initial states s1 and s2, then an
adversary returns the same result when run with both oracles and the resulting
oracle states are related again. Formally,

∀(s1, s2) ∈ S. ∀c. O1(s1, c) D̃((=) ×̃ S) O2(s2, c) (s1, s2) ∈ S
exec(O1,A, s1) D̃((=) ×̃ S) exec(O2,A, s2)

(16)

follows from (15) by choosing (=) for A, Q, and R.
Bisimulation reasoning does not suffice if a failure event occurs during an

oracle call because, in such a case, the oracles simply are not bisimilar. Therefore,
we provide a different proof rule for reasoning up to failure events. Reasoning up
to failure events relies on properties of the composition operators that cannot be
encoded into the HOL type of the function. Consequently, we cannot base such
reasoning on relational parametricity.

We need two definitions first. We call a GPV terminating iff it cannot engage
in an infinite interaction with the environment, i.e., with its oracles.9 A GPV v is
lossless iff all the subprobability distributions in v are lossless; formally,

lossless(un-GPV(v)) ∀IO(q, v′) ∈ support(un-GPV(v)). ∀r. losslessG(v′(r))

losslessG(v)
===.

If a terminating adversary is lossless and we compose it with a lossless oracle,
then the resulting subdistribution is again lossless, i.e., executing the adversary
with the oracle always yields a result. This property is crucial for our proof rule:

Proposition 2 (Oracle bisimulation up to failure). Let S be a relation
between the states of two oracles O1 and O2 and let F1 and F2 be predicates on
states of the oracles O1 and O2, respectively. Define the relation R by

R ≡ { ((x, s1), (y, s2)) | F1(s1) = F2(s2) ∧ (s1, s2) ∈ S ∧ (¬F2(s2) −→ x = y) }.
9 The terminating GPVs are the least solution to (11), i.e., they form an algebraic
inductive datatype. Hence, we can prove statements about terminating GPVs by
induction. This form of termination is stronger than probabilistic termination, which
we have also formalised in our framework using weakest pre-expectations. For example,
the GPV in Figure 7 terminates only probabilistically. In this article, we present only
non-probabilistic termination. Most statements about terminating adversaries also
hold for probabilistically terminating adversaries.

33

Then exec(O1,A, s1) D̃(R) exec(O2,A, s2) if

(i) O1(s1, q) D̃(R) O2(s2, q) for all q and (s1, s2) ∈ S such that F1(s1) =
F2(s2) = False, and

(ii) (s1, s2) ∈ S and F1(s1) = F2(s2), and
(iii) O1(s1, q) and O2(s2, q) are lossless for all q and (s1, s2) ∈ S such that

F1(s1) = F2(s2) = True and all possible successor states s′1 and s′2 in their
supports satisfy F1(s′1) = F2(s′2) = True and (s′1, s

′
2) ∈ S.

(iv) A is terminating and lossless.

The predicates F1 and F2 indicate whether a failure event has happened in
the oracle O1 and O2, respectively. Condition (i) expresses that O1 and O2 are
bisimilar unless a failure event occurs and failure events occur in both oracles at
the same time, and (ii) states that they start in bisimilar states. The last two
conditions ensure that a failure event persists.

Proof. We explicitly construct the coupling of exec(O1,A, s1) and exec(O1,A, s1)
as follows: By (i), there is an R-coupling O12((s1, s2), q) of O1(s1, q) and O2(s2, q)
for all q and (s1, s2) ∈ S with F1(s1) = F2(s2) = False. First, the coupling runs A
with O12 until the failure event happens. When the failure happens, the coupling
continues by running the remainder of A independently with the two oracles O1

and O2. Losslessness and termination of A and condition (iii) ensure that these
independent executions are lossless. Hence, the projections of the coupling to
either side can drop the other independent execution (by using (5) on page 18
with scaling factor 1). ut

Losslessness and termination of A in condition (iv) are not just technical side
conditions needed to make the proof go through, they are essential (probabilistic
termination suffices). Otherwise, some of the unassigned probability mass in
exec(Oi,A, si) may actually correspond to the failure event. Interrupting the
execution when the failure event occurs is not an option either: since converters
in reductions typically cannot identify the failure event themselves (as they would
have to know certain secrets to do so; Figure 15 in Section 6.4 presents an example),
they do not know when to abort the interaction. Hence, reasoning up to failures
in oracles is in general sound only if the adversary is lossless and terminating.

5.6 Reasoning via the semantics

Like in the spmf case (Section 4.5), the relational reasoning rules are incomplete.
For example, it is an open problem [7] how relational reasoning can be used to
hoist probabilistic computations out of loops such as exec and inline. In such cases
(Section 6.5 mentions an example), we derive appropriate proof rules directly from
the operator’s definitions. In the case of exec and inline, the derivation is typically
justified by fixpoint induction and coinduction.

5.7 Interruptible Adversaries

Sometimes, a reduction must stop the interactions with the given adversary A at
a certain point. Consider, for example, a reduction that guesses in the beginning
at which interaction A will violate a hardness assumption—say, A correctly
predicts an unpredictable function (Section 6.2)—and the reduction then stops
the simulation of A at this query. The composition operator inline, however, runs
the simulation until the adversary finishes and produces a result. We could emulate
the early termination by having the converter, which processes the queries, change

34

its behaviour: since it cannot stop the simulation right away, it would answer all
further queries with dummy values until the adversary terminates. This approach,
while possible, would be inconvenient to reason about.

Instead, we exploit our language’s extensibility and define by primitive recur-
sion a new operation interruptible : G(α, γ, ρ)⇒G(M(α), γ,M(ρ)) that makes an
adversary interruptible:

interruptible(v) ≡ GPV (un-GPV(v) �̂D (Some +̂ id ×̂ (

λv′. λr. case r of None⇒ return None | Left(r′)⇒ interruptible(v′(r′))))).

Thus, if a converter C wants to stop interacting with the black-box adversary A, it
returns None as a response. Then, inline(C, interruptible(A), s) stops immediately
with the result None and the current state of the converter. The same works for an
oracle O instead of a converter: exec(O, interruptible(A), s) stops immediately with
result None and the state of the oracle when O responds with None. Conversely, if
C or O never request a stop, the execution continues until A finishes with a result
a and then returns Some(a) together with the state of the converter or oracle.

5.8 Operators for Oracles and Converters

So far, the adversary can access at most one oracle. However, many cryptographic
constructions involve multiple oracles. For example, in the game for symmetric-key
IND-CCA security (Section 6.1), the adversary has access to a decryption oracle
and an encryption oracle, which encrypts one of the two challenge plaintexts.
Similarly, a security protocol may use encryptions, signatures, and hashes simul-
taneously, all of which have their own oracles. In this section, we show that with
a bit of functional programming, we cover all these settings with the operations
already presented. To this end, we introduce three operators on oracles.

First, suppose we have two oracles O1 : O(σ, γ1, ρ1) and O2 : O(σ, γ2, ρ2),
which operate on the same state of type σ, but accept different types of queries
(γ1 and γ2) with different types of responses (ρ1 and ρ2), like the IND-CCA
encryption and decryption oracles. As both oracles share the state, we can view
them as a single oracle which accepts both kinds of queries. We formalize this
change of view with a composition operator +O for oracles that acts as a query
dispatcher: those queries tagged with Left go to O1 and those tagged with Right
go to O2. Formally,

(+O) : O(σ, γ1, ρ1)⇒O(σ, γ2, ρ2)⇒O(σ, γ1 + γ2, ρ1 + ρ2)

(O1 +O O2)(s, Left(q1)) ≡ O1(s, q1) �̂D (Left ×̂ id)

(O1 +O O2)(s,Right(q2)) ≡ O2(s, q2) �̂D (Right ×̂ id).

Clearly, we can iterate composition and thus combine finitely many oracles to
O1 +O O2 +O . . .+O On, where +O associates to the right.

Second, suppose that the adversary requires access to oracles of different
cryptographic primitives, say encryptions and signatures. Naturally, the oracles of
one primitive operate on a state that is disjoint from the oracle state of the other
primitive. Similar to +O, this situation can be expressed by a parallel composition
operator || that separates the state of the two oracles.

(||) : O(σ1, γ1, ρ1)⇒O(σ2, γ2, ρ2)⇒O(σ1 × σ2, γ1 + γ2, ρ1 + ρ2)

(O1 || O2)((s1, s2), Left(q1)) ≡ O1(s1, q1) �̂D (Left ×̂ (λs′1. (s′1, s2)))

(O1 || O2)((s1, s2),Right(q2)) ≡ O2(s1, q2) �̂D (Right ×̂ (λs′2. (s1, s
′
2)))

35

Similarly, our framework provides operators for families of oracles. For example,
they transform oracles for a single-user setting into an oracle for a multi-user
setting as used in [10]. Moreover, each of these operators comes with a variant for
interruptible adversaries, which we do not distinguish in this paper.

The third operator on oracles deals with state extensions.10 Many bridging
steps require adding additional state information to the oracle. This can be
keeping a record of the previous queries or simply a bad flag to indicate whether
a failure event has happened. Since this kind of transformation is so common,
it is convenient to introduce an operator & : O(σ, γ, ρ)⇒ O(σ′ × σ, γ, ρ) given

by &O((s∗, s), q) ≡ O(s, q) �̂D (id ×̂ (λs′. (s∗, s′))). This operator lets an oracle
ignore the new component of the state. It is most useful in combination with +O.
For example, consider an IND-CCA game with oracles for encryption Oenc and
decryption Odec and suppose that we want to add a bad flag to the decryption
oracle, producing a new oracle O′dec. Since the encryption oracle does not care
about the bad flag, the new oracle combination is simply &Oenc +O O′dec.

All our operators are relationally parametric. Hence, we can derive reasoning
rules for them from relational parametricity in the same way as for our language
primitives. Moreover, the proof automation for representation independence can
also handle them smoothly.

Analogous operations are available for converters instead of oracles, e.g., +C.

5.9 Upper Bounds on Interactions

Bounds on the advantage in the concrete security setting typically depend on the
number of queries an adversary can make. For example, in the RP/RF switching
lemma, the chance to distinguish a random permutation (RP) from a random
function increases quadratically with the number of queries the adversary can
ask [12]. In this section, we formalise the concepts needed to bound the number
of interactions between the adversary and the oracles.

As we model adversaries using GPVs (instead of, say, a for loop that repeatedly
asks the adversary for its next query), we express query bounds as an assumption
on the adversary using the HOL function qboundP : G(α, γ, ρ)⇒ N∞, where N∞
denotes the natural numbers extended with infinity. qboundP returns the least
upper bound on the number of queries that the GPV makes and that satisfy
the predicate P : γ ⇒ B. This predicate is useful to classify the adversary’s
queries. For example, if the adversary A has access to two oracles O1 +O O2,
qboundis-Left(A) denotes the number of calls made to O1. We omit P when we
want to consider a bound on all calls, i.e., when P = (λ . True). Formally, we
define qbound recursively:

qboundP (v) ≡ SUPx∈support(un-GPV(v))

(case x of Pure(y)⇒ 0
| IO(c, r)⇒ (if P (c) then 1 else 0) + SUPw qboundP (r(w)))

We use the natural numbers extended with infinity N∞ instead of the plain natural
numbers as qbound’s return type because N∞ is a complete lattice, i.e., suprema
of infinite sets exist and we can define qbound by recursion.

The choice of N∞ also yields simple rules for reasoning about qbound because
we need not prove that the suprema exist. In detail, the following identities hold:

10 The modelling of state in our framework is flexible. Here, we use tuples of fields for
simplicity, but this does not scale to hundreds of fields. More advanced models are
possible; see Schirmer and Wenzel for an overview [62].

36

qboundP (return x) = 0 qboundP (fail) = 0 qboundP (sample p) = 0

qboundP (call(x)) = (if P (x) then 1 else 0)

qboundP (interruptible(v)) = qboundP (v)

qboundP (v >>= f) = qboundP (v) + SUPx∈results(v) qboundP (f(x)),

where results(v) denotes the set of possible values that v can return after interaction
with an oracle. There is no simple equation for inline, but we proved the following
upper bound:

qboundP ′(v) ≤ p ∀s q. qboundP (C(s, x)) ≤ (if P ′(x) then q else 0)

qboundP (inline(C, v, s)) ≤ p · q
.

The bound on the oracle calls is typically needed to bound the probability of
a failure event F . If we can bound the probability of an event F occurring during
one oracle call by k, then we can bound the probability of F anywhere in the
game by k · n, where n is a bound on the oracle calls in which F may occur. In
the RP/RF switching lemma, (a slight generalisation of) the following lemma is
the key to obtain the bound on the advantage, which is quadratic in the number
of interactions.

Lemma 3. If qboundP (v) ≤ n, and F is an event on the state space of an oracle

O such that s0 /∈ F , and P
[
O(s, q) �̂D π2 ∈ F

]
≤ k for all states s /∈ F and all

queries q, then P
[
exec(O, v, s0) �̂D π2 ∈ F

]
≤ k · n.

6 Case Study: Proving IND-CCA Security

Having presented the main formalisation and reasoning principles of our framework,
we now put them to work in a case study. We formalise a symmetric-key encryption
scheme taken from Shoup’s tutorial [65] (Section 6.3), which is built from a pseudo-
random function (Section 5.1) and an unpredictable function (Section 6.2), and
prove it IND-CCA secure (Sections 6.1, 6.4–6.5). In detail, we prove the following
statements where the formal definitions of advantages and reductions will be given
in the remainder of this section:

Theorem 2 (Concrete IND-CCA security). Let (Fs)s∈S be pseudo-random
with domain Dom and (Hk)k∈K be unpredictable and A be a lossless IND-CCA
adversary that makes at most q encryption queries and q′ decryption queries. Then,

ind-cca.adv(A) ≤ prf.adv(redprf(A)) + q′ · uf.adv(redq
′

uf(A)) +
q2

|Dom|
.

Corollary 1 (Asypmtotic IND-CCA security). Let A be a lossless IND-
CCA adversary that makes at most polynomially many encryption and decryption
queries. Suppose that (Fs)s∈S is pseudo-random with domain Dom and (Hk)k∈K is
unpredictable, so prf.adv(redprf(A)) and 1/|Dom| and uf.adv(reduf(A)) are negligible.
Then, ind-cca.adv(A) is negligible too.

Our proof loosely follows Shoup’s [65] and consists of three main game hops.
Here, we focus only on the first hop, as the last two hops use the same techniques
and proof principles. The complete formalization of this cryptographic construct
and the proofs are available online [44].

Our formalisation modularises the definitions and proofs using Isabelle’s
locales. When a section starts by introducing a locale, all the definitions and

37

locale IND-CCA ≡
fixes key-gen : D(κ)
and enc : κ⇒ µ⇒ D(χ)
and dec : κ⇒ χ⇒M(µ)
and valid-plain : µ⇒ B

G(A) ≡ do {
k ← key-gen;
b← coin;

(b′,)← exec(Ok,benc +O Okdec,A, {});
return b′ = b }

Ok,benc (L, (m1,m0)) ≡ try do {
assert (valid-plain(m1) ∧ valid-plain(m0));
c← enc(k, if b then m1 else m0);
return (Some(c), {c} ∪ L)
} else return (None, L)

Okdec(L, c) ≡ return
(if c ∈ L then None else dec(k, c), L)

adv(A) ≡ |P[G(A) = True]− 1/2|

Fig. 12: IND-CCA security game for symmetric-key encryption schemes

lemmas in that section are defined in this locale. This yields reusable components
that can be specialised to different settings by instantiating the locale’s parameters.

6.1 IND-CCA Security of Symmetric-key Ciphers

A symmetric-key encryption scheme consists of three algorithms key-gen, enc, and
dec. The probabilistic algorithm key-gen takes no input (other than the implicit
security parameter) and generates a key k. The probabilistic encryption algorithm
enc takes as input a key k and a plaintext m and outputs a ciphertext c. Finally,
the deterministic decryption algorithm dec takes a key k and a ciphertext c as
input and either rejects c or outputs a plaintext m.

IND-CCA security for symmetric encryption schemes is defined using a game
between a challenger and an adversary (Figure 12). In our framework, we leave
the encryption scheme abstract by making key-gen, enc, and dec parameters of the
module IND-CCA (a locale in Isabelle). In this module, the type variables κ, µ, and
χ represent the space of keys, plaintexts and ciphertexts, respectively. Note that
the probabilistic algorithms key-gen and enc return a subprobability distribution
whereas the deterministic algorithm dec yields a value of type M(µ), where None
models rejection and Some(m) corresponds to the decryption succeeding. The
additional parameter valid-plain tests whether (an encoding of) a plaintext is valid
(e.g., it has the right length or represents an element of an algebraic structure).
In contrast, µ models the set of all syntactically correct (encodings of) plaintexts.
As explained in Section 3, distinguishing the validity of plaintexts from syntactic
correctness yields both stronger theorems and better proof automation.

In the IND-CCA game G, the challenger first generates a fresh key k and a
random bit b : B. Afterwards, the adversary A is given access to an encryption
oracle Ok,benc and a decryption oracle Okdec, which mediate the access to k and b.
Finally, the adversary outputs a bit b′ and wins if b = b′.

For an encryption query, the adversary submits a pair of messages (m1,m0) :
µ× µ. The encryption oracle Oenc checks that both messages are valid using the
predicate valid-plain and returns the encryption c of mb under k. The oracles’ state
L keeps track of all ciphertext responses of the encryption oracle, so Oenc adds c
to L too. If either plaintext is invalid, the query is rejected (response None).

A decryption query consists of a ciphertext c. If the encryption oracle has
previously output c (i.e., c ∈ L), the decryption oracle rejects the query. Otherwise,
it responds with result of the decryption algorithm dec.

The advantage adv(A) measures A’s ability to do better than guessing.

38

locale UF ≡ fixes key-gen : D(κ) and H : κ⇒ α⇒ β

Okeval(L, x) ≡
return (H(k, x), {x} ∪ L)

G(A) ≡ do {
k ← key-gen;

((x, h), L)← exec(Okeval,A, {});
return (h = H(k, x) ∧ x /∈ L) }

adv(A) ≡ P[G(A) = True]

Oksubmit((b, L), (x, h)) ≡
return (�, (b ∨ (h = H(k, x) ∧ x /∈ L), L))

Gm(A) ≡ do {
k ← seed-gen;

(�, (b,))← exec(&Okeval +O Oksubmit,A, (False, {}));
return b }

advm(A) ≡ P[Gm(A) = True]

Fig. 13: Security game for unpredictability with a single guess (left) or multiple
adaptive guesses (right)

6.2 Unpredictable Functions

The encryption scheme we consider uses two components: a pseudo-random
function as formalised in Section 5.1 and an unpredictable function (UF), which
we formalise now.

Let H := (Hk)k∈K be a family of keyed functions. Unpredictability of this
family is formalized as a game defined in a locale UF (Figure 13) with two
algorithms: the probabilistic algorithm key-gen generates a key k : κ and the
deterministic function H represents H.

We formalise two variants of unpredicability, which differ in the number of
guesses that the adversary is allowed. In the first setting (game G on the left), the
adversary outputs a single guess. Formally, the challenger generates a fresh key k
and gives the adversaryA access to an oracleOkeval that provides black-box access to
the function H. That is, A can evaluate H(k, x) by querying Oeval for x. All queries
are recorded in the oracle’s state L (initially the empty set). Finally, the adversary
makes a guess (x, h) and wins if he correctly predicted H(k, x), i.e., h = H(k, x)
and x has not been queried (x /∈ L). This formalises Shoup’s description [65].

In the other setting (game Gm on the right), the adversary may submit several
guesses through a second oracle Osubmit and may even interleave querying H(k)
and guessing. The oracle Osubmit evaluates the guess with respect to the current
history L of guesses, records the result in the winning flag b of the state, and
acknowledges the guess. However, its response does not indicate whether the guess
was correct. (In Gm, we extend the state of the old oracle Oeval with the winning
flag using &.) The adversary wins Gm if he has submitted a correct guess before
he terminates.11

In both settings, the advantage is the probability that the adversary wins the
game. In Section 6.5, we will reduce the multi-guess setting to the single-guess
setting by using a generic many-to-one reduction. Before that, we will reduce
the security of our encryption scheme to the multi-guess setting. This separation
leads to a cleaner and more abstract proof.

11 This formulation is not equivalent to the more conventional formulation where the
adversary produces a list of guesses that is evaluated at the end of the game. In our
setting, a (sub-optimal) adversary may submit a correct guess and then waste a query
to see whether he was right. If his guesses were evaluated only at the end of the game,
the wasted query would have invalidated his correct guess.

39

locale CIPHER ≡
fixes seed-gen : D(σ) and F : σ⇒ L(B)⇒ L(B) and Dom : P(L(B))
and key-gen : D(κ) and H : κ⇒ L(B)⇒ ω
and dlen : N
and clen : N
assumes lossless(seed-gen) and lossless(key-gen) and finite(Dom) and Dom 6= {}
and ∀x ∈ Dom. ‖x‖ = dlen and ∀s ∈ support(seed-gen). ∀x ∈ Dom. ‖F(s, x)‖ = clen

sublocale prf ≡ PRF(seed-gen,F, uniform({ 0, 1 }clen))
sublocale uf ≡ UF(key-gen,H)

kg ≡ do {
s← seed-gen;
k ← key-gen;
return (s, k) }

enc((s, k),m) ≡ do {
x← uniform(Dom);
let c = F(s, x)⊕m;
let t = H(k, x++ c);
return (x, c, t) }

dec((s, k), (x, c, t)) ≡
if ‖x‖ 6= dlen ∨ t 6= H(k, x++ c)
then None else Some(F(s, x)⊕ c)

valid-plain(m) ≡ ‖m‖ = clen

Fig. 14: Symmetric encryption scheme built from a pseudo-random function and
an unpredictable function

6.3 Cipher Construction

We formalize Shoup’s encryption scheme in a module CIPHER, which abstracts
over the pseudo-random function F and the unpredictable function H (Figure 14).
The pseudo-random function F maps bitstrings (type L(B)) to bitstrings and
we assume that F is used only on bitstrings from a finite, non-empty set Dom,
all of which have length dlen (‖ ‖ denotes the length of a bitstring), and that if
x ∈ Dom and the seed s has been correctly generated, then F(s, x) always returns
a bitstring of length clen. The unpredictable function H goes from bitstrings to an
arbitrary type ω. The seed and key generators for F and H must both be lossless.

The sublocale commands import the modules PRF and UF from Section 5.1
and Figure 13, which specify pseudo-randomness and unpredictability, specialising
the parameters and types as needed and qualifying the names with the prefixes
prf and uf. In particular, the pseudo-random function F’s output is assumed to be
pseudo-uniform over all bitstrings of length clen.

The symmetric-key encryption scheme is given by the three algorithms shown
at the bottom of Figure 14. A key (s, k) consists of a psedudo-random function’s
seed s and an unpredictable function’s key k, so the key generation algorithm kg
runs both seed-gen and key-gen. The encryption algorithm enc works as follows:
First, it picks a random element x in Dom, runs it through F and exclusive-
ors (notation ⊕) the result with the message m : L(B) to obtain c. Then, it
applies the unpredictable function to the concatenation x ++ c of x and c to
obtain t. Finally, it responds with the ciphertext (x, c, t) : L(B)× L(B)× ω. The
decryption algorithm dec checks whether the ciphertext (x, c, t) is valid, i.e., t
acts as a message authentication code (MAC) for (x, c). If not, it responds with
the rejection None. Otherwise, it decrypts the ciphertext using F and xoring.

Clearly, encryption only works if the plaintext m has length clen—otherwise,
the computation of exclusive-or is not well-defined. Therefore, the predicate
valid-plain checks the length.

Finally, we import the IND-CCA game specialised to our cipher using the
following command:

sublocale ind-cca ≡ IND-CCA(kg, enc, dec, valid-plain)

40

But before we analyse the security of the cipher in the next section, we let Isabelle’s
rewriting engine prove automatically the following correctness statement:

Lemma 4 (Correctness). Under the assumptions of the module CIPHER, if
sk ∈ support(kg) and ‖m‖ = clen, then

do { c← enc(sk ,m); return dec(sk , c) } = return Some(m).

6.4 Formalizing Security I: first reduction step

To show that the cipher is IND-CCA secure, we first bound the advantage
ind-cca.adv(A) of the adversary A by the advantages of two related adversaries.
The first adversary is against F’s pseudo-randomness and is obtained by the
(efficient) reduction redprf. The second adversary is against H’s unpredictability in
the multi-guess setting, and is obtained by the (efficient) reduction reduf-m. Thus,
the security of the cipher follows from the assumed security of the two primitves.

Lemma 5. Under the assumptions of the module CIPHER, if A is lossless and
sends at most q encryption queries (i.e., qboundis-Left(A) ≤ q), then

ind-cca.adv(A) ≤ prf.adv(redprf(A)) + uf.advm(reduf-m(A)) +
q2

|Dom|
.

Proof. This lemma is proved by defining a sequence of games and showing that
the probability of a specific event of interest changes by a small amount between
each pair of games in the sequence. The final result is then obtained using the
triangle inequality, which sums up differences between successive game steps. All
definitions and statements in this section are in the locale CIPHER.

This sequence starts with the game G0 ≡ ind-cca.G. The next game G1 differs
from G0 only in its decryption oracle rejecting all decryption queries. As the
IND-CCA game is defined in the parametrized module IND-CCA, we can specify
G1 simply by importing another instance of IND-CCA:

sublocale ind-cca1 ≡ IND-CCA(kg, enc, (λ . None), valid-plain)
abbreviation G1 ≡ ind-cca1.G

Next, we want to bound the difference in the probability of A winning G0

vs. winning G1. To this end, let F be the failure event that t is a correct MAC
for some decryption query (x, c, t). It is clear that G0 and G1 proceed identically
until the event F happens. To formally prove this, we must be able to express the
event F in both games. In our framework, this is possible by adding a boolean
flag bad to the oracle states. That is, we define two new games G′0 and G′1 that
additionally return whether the failure event has happened and prove that they

refine G0 and G1, i.e., G0 = G′0 �̂D π1 and similarly for G1.
We only present the necessary steps for G′0, as those for G′1 are analogous. First,

we modify ind-cca.Odec to obtain a new decryption oracle Odec0’, which behaves
the same except that the new flag bad records whether F has happened. The game
G′0 uses Odec0’ instead of ind-cca.Odec and returns the winning condition and the
final value of the flag. Note that we do not need to modify the encryption oracle
itself; the operator & suffices to adapt the encryption oracle so that it ignores the
new flag bad.

41

O(s,k)
dec0’ ((bad, L), (x, c, t)) ≡ return
(if (x, c, t) ∈ L ∨ ‖x‖ 6= dlen then (None, (bad, L))
else (dec((s, k), (x, c, t)), (bad ∨ H(k, x++ c) = t, L)))

G′0(A) ≡ do {
key ← kg;
b← coin;

(b′, (bad,))← exec(&Okey,benc +O Okeydec0’,A, (False, {}));
return (b′ = b, bad) }

Second, we prove G0 = G′0 �̂D π1 using our relational parametricity toolbox.
That is, for any pair of results (bad, b′) that G′0 returns, G0 returns b′ and vice
versa. In detail, we define the relation S ≡ { (L1, (bad, L2)) | L1 = L2 } and prove
that S is a bisimulation relation for ind-cca.Odec and Odec0’ and relates the initial
states {} and (False, {}); this step is checked automatically by term rewriting.

From this, we derive G0 = G′0 �̂D π1 by representation independence, which is
automatic too. This shows that equational reasoning and the ideas from relational
parametricity do help when conducting formal cryptographic proofs.

We are now ready to state the bound on the difference in probabilities, as G′0 and
G′1 capture the failue event F ≡ {True,False }×{True }, but neither G0 nor G1 do.

Claim 5.1. |P[G0(A) = True]− P[G1(A) = True]| ≤ P[G′1(A) ∈ F]

We apply Prop. 2 to the compound oracles &Okey,benc +OOkeydec0’ and &Okey,benc +OOkeydec1’

with the failure predicates F1 ≡ F2 ≡ π2 and the relation S ≡ (=) to couple G′0
and G′1, where Odec1’ differs from Odec0’ in that it returns None instead of calling
the decryption algorithm dec. Then, the claim follows by the Lemma 2, which

formalises the reasoning about failure events, as G0 = G′0 �̂D π1 and G1 = G′1 �̂D π1.
Finally, we claim that the probability of the event F in G′1 corresponds to the

advantage of an efficient adversary reduf-m(A) against H’s unpredictability.

Claim 5.2. P[G′1(A) ∈ F] = uf.advm(reduf-m(A))

The reduction consists of three parts (Figure 15): two converters Cenc and Cdec

answer the encryption and decryption queries of the IND-CCA adversary A using
the evaluation and guessing oracles of the unpredictability game uf.Gm; and the
GPV reduf-m(A) initialises the converters with a seed for the pseudo-random
function and the challenge bit from the IND-CCA game ind-cca.G and composes
the adversary A with them.

The converter Cenc for encryption queries behaves exactly like ind-cca.Oenc

except that it does not evaluate H itself, but calls the oracle uf.Oeval instead.
Hence, it does not take H’s key as a parameter. Similarly, Cdec computes a guess
from every decryption query for a ciphertext that has not been produced by Cenc

and submits it to the guessing oracle uf.Osubmit.
The state shared by both converters consists of two sets L and X, which are

initially empty. The set L corresponds to the state L of the IND-CCA oracles,
which keeps track of all previously generated ciphers. The set X records all the
decryption queries that have been submitted as a guess. It is not used by the
reduction, only in the proof of Claim 5.2.

The proof of Claim 5.2 consists of two steps which are typical for reduction
proofs. Both steps are largely automated. First, we exploit the associativity of
composition (14) and consider the composition of the converters with the UF

42

C
(s,b)
enc ((L,X), (m1,m0)) ≡
if ‖m1‖ = clen ∧ ‖m0‖ = clen then do {
x← sample(uniform(Dom));
let c = F(s, x) ++ (if b then m1 else m0);
t← evaluate(x++ c);
return (Some(x, c, t), ({(x, c, t)} ∪ L,X))
} else return (None, (L,X))

reduf-m(A) ≡ do {
s← sample(seed-gen);
b← sample(coin);

inline(C
(s,b)
enc +C Cdec,A, ({}, {}));

return � }

Cdec((L,X), (x, c, t)) ≡
if (x, c, t) ∈ L ∨ ‖x‖ 6= dlen then

return (None, (L,X))
else do {

submit-guess(x++ c, t);
return (None, (L, {(x, c, t)} ∪X))
}

evaluate(x) ≡ call(Left(x))
submit-guess(y, t) ≡ call(Right(y, t))

Fig. 15: Reduction against the unpredictability in the multi-guess setting

A

A

G′
1

R

&Oenc +O Odec1’

Cenc

Cdec

Oeval

Osubmit

(m1,m0)

Some(x, c, t)

(x, c, t)

Noneb

uf.Gm

uf.Gm

Oeval

Osubmit

R
Cenc

Cdec

(m1,m0)

Some(x, c, t)

x++ c

t

(x++ c, t)

�

(x, c, t)

None
b

�
reduf-m(A)

= (associativity)

Fig. 16: Illustration of Claim 5.2: the reduction reduf-m transforms G′1 into the
unpredicability game uf.Gm

oracles, as illustrated in Figure 16. Second, we prove that this composition is
bisimilar to the UF oracle &uf.Oeval +O uf.Osubmit, where the bisimulation relation
enforces among others the condition that X contains a correct guess iff the flag b
has been set in Osubmit. Here, we prove bisimilarity by term rewriting and resolution
and then appeal to representation independence, as we did for G0 and G′0.

Claims 5.1 and 5.2 show that the first game hop changes the adversary’s advan-
tage by at most uf.advm(reduf-m(A)), which according to Corollary 1 is assumed
to be negligible. This completes the first game hop.

The remaining three game hops follow a similar pattern, so we only sketch
the idea. The second game hop from G1 to G2 changes the encryption oracle such
that it uses the random oracle prf.ORF instead of the pseudo random function F.
This game hop is justified by the reduction redprf to F being pseudo-random. The
reduction follows the same lines as reduf-m; Figure 17 shows the formal definition.

Claim 5.3. |P[G1(A) = True]− P[G2(A) = True]| ≤ prf.adv(redprf(A))

The third hop makes the random oracle forgetful, whereby it always returns a
freshly sampled value even if the same point is queried several times. This yields
the game G3.

43

redprf(A) ≡ do {
k ← sample(key-gen);
b← sample(coin);

(b′,)← inline(C
(k,b)
prf ,A,�);

return b′ = b }

C
(k,b)
prf (, x) ≡ case x of Left(m1,m0)⇒

if ‖m1‖ = clen ∧ ‖m0‖ = clen then do {
x← sample(uniform(Dom));
p← call(x);
let c = p⊕ (if b then m1 else m0);
let t = H(k, x++ c);
return (Left(Some(x, c, t)),�)

} else return (Left(None),�)
| Right(x, c, t)⇒ return (Right(None),�)

Fig. 17: Reduction from games G1 and G2 to F’s pseudo-randomness

Claim 5.4. |P[G2(A) = True]− P[G3(A) = True]| ≤ q2

|Dom|
The term q2/|Dom| bounds the probability of querying the random oracle twice
with the same point x, as there are at most q encryption queries.

The last hop applies the one-time-pad for bitstings (9). Then, the ciphertexts
are independent of the plaintexts, so the whole game reduces to a coin flip like
in the Elgamal example (Figure 2, lines 37–38).

Claim 5.5. P[G3(A) = True] = 1/2

Lemma 5 follows directly from Claims 5.1–5.5 by the triangle inequality. ut

The bound in Lemma 5 is expressed in the multi-guess setting for the unpre-
dictable function. For comparison, Shoup’s cipher-specific reduction goes directly
to the single-guess setting [65]. We added the multi-guess setting as an intermedi-
ate step because the security proof can be split nicely into two simpler, modular
steps. The first step, which is specific to the cipher construction, remains simple
as the IND-CCA game with multiple decryption queries matches well with the
multi-guess UF setting (Claim 5.2). The second step in the next section is indepen-
dent of the cipher and can thus be reused in other proofs. Despite the modularity
and generality, we obtain the same overall bound on the advantage as Shoup.

6.5 Formalizing Security II: a generic reduction for games with
multiple guesses

We have formalised unpredictability in two ways: the multi-guess setting and
the single-guess setting. In this section, we reduce the multi-guess setting to the
single-guess setting by picking a random guess of the (multi-guess) adversary,
where the bound on the advantage deteriorates linearly in the number of guesses.
Randomly picking an output of the adversary is a common trick in reductions and
we demonstrates here how such common steps can be expressed in our framework.
Actually, we formalise the reduction abstractly as a reusable module GOM and
then instantiate the module for the unpredictable function.

The module GOM (Figure 18) abstracts over the initialisation part init, the
oracle orc of the single-guess adversary, and the evaluation function eval for
guesses. The types are left abstract as type variables with the following meaning:
o represents secret initialisation data that is given only to the oracle, α the public
initialisation data that is given to the adversary, σ the oracle’s state space, γ the
guesses, θ the queries, and ρ the responses. Evaluating a guess eval(co, ca, s, g)
depends on the initialisation data (co, ca) and the oracle state s, and may be
probabilistic.

44

locale GOM ≡
fixes init : D(o× α× σ)
and orc : o⇒O(σ, θ, ρ)
and eval : o⇒ α⇒ σ⇒ γ⇒ D(B)

Gsingle(A) ≡ do {
(co, ca, s0)← init;
(g, s)← exec(orcco,A(ca), s0);
eval(co, ca, s, g) }

advsingle(A) ≡ P[Gsingle(A) = True]

Oco,caguess ((b, s), g) ≡ do {
b′ ← eval(co, ca, s, g);
return (�, (b ∨ b′, s)) }

Gmulti(A) ≡ do {
(co, ca, s0)← init;
(, (b,))←

exec(&orcco +O Oco,caguess ,A(ca), (False, s0));
return b }

advmulti(A) ≡ P[Gmulti(A) = True]

Fig. 18: Guessing games in the single-guess and multi-guess setting

Ccall(s, x) ≡ case s of
Left(g) ⇒ return (None, Left(g))
| Right(j)⇒ do { r ← call(x); return (Some(r),Right(j)) }

Cguess(s, g) ≡ case s of
Left(g′) ⇒ return (None, Left(g′))
| Right(0) ⇒ return (None, Left(g))
| Right(j + 1)⇒ return (Some(�),Right(j))

redq(A, ca) ≡ do {
js ← sample(Zq);
(, s)← inline(Ccall +C Cguess, interruptible(A(ca)),Right(js));
return(projl(s)) }

Fig. 19: Reduction from the abstract multi-guess setting to the single-guess setting

We define two games Gsingle and Gmulti for the two settings. They first generate
the initialisation data (co, ca) and the initial oracle state s0 using init. Then, in
Gsingle, the adversary A produces a guess g after interacting with the oracle orc,
and g is evaluated in the final oracle state s using eval. In the multi-guess game
Gmulti, the adversary A need not produce a guess at the end, but instead submits
his guesses through the additional oracle Oguess. This oracle is an abstract version
of Osubmit in Figure 13: it evaluates the guess using eval, updates the winning flag
b in the oracle state, which records whether a correct guess has been submitted,
and acknowledges the receipt of the submission to the adversary. Again, the oracle
operators & and +O introduced in Section 5.8 combine the two oracles into one. In
both settings, A’s advantage is the probability of winning the appropriate game.
The next lemma bounds the multi-guess advantage by the single-guess advantage.

Proposition 3. Let orcco(s, x) and eval(co, ca, s, g) be lossless for all s, x, g,
and (co, ca,) ∈ support(init). Assume that A(ca) submits at most q guesses, i.e.,
qboundis-Right(A(ca)) ≤ q whenever (, ca,) ∈ support(init). Then,

advmulti(A) ≤ q · advsingle(red q(A)),

where the reduction red q is defined in Figure 19.

Proof. The proof consists of three game transformations. First, we express the
probability of winning in Gmulti in terms of the winning probabilities of individual
guess queries. Let { g0, g1, ..., gq } denote all guesses submitted to Oguess in Gmulti.

45

Let j0 be the index of the first such query that sets the flag b in Oguess. Also,
let Ei be the event that j0 = i for i ≤ q. Then, the probability of winning in
Gmulti is

∑q
i=0 P [Ei] by the total probability law. To show this equivalence in our

framework, we define another game Gmulti’ that captures the Ei events. Namely,
its oracle Oguess’ replaces the flag b in Oguess with a pair (j, j′) where j counts the
number of guesses so far and j′ = Some(j0) if the first correct guess was the j0-th
and j′ = None if all guesses were incorrect so far.

Oco,caguess’(((j, j
′), s), g) ≡ case j′ of

Some(j0)⇒ return (�, ((j + 1,Some(j0)), s))
| None ⇒ do {

b′ ← eval(co, ca, s, g);
return (�, ((j + 1, if b′ then Some(j) else None), s)) }

Gmulti’(A) ≡ do {
js ← uniform(Zq);
(co, ca, s0)← init;
(, ((, j0),))← exec(&orcco +O Oco,caguess’,A(ca), ((0,None), s0));

return j0 = Some(js) }

Claim 5.6. advmulti(A) = q · P[Gmulti’(A) = True]

We prove this claim in two steps. First, we prove thatOguess andOguess’ are bisimilar
and extend this result to the two games using representation independence. Second,
we use the law of total probability from the Isabelle probability library and
elementary facts about summations mostly using term rewriting.

In the second game hop, we change Gmulti’ to Gstop such that the adversary
is stopped immediately after js-th guess query using the operator interruptible
from Section 5.7. Accordingly, the new oracles Oo and Og trigger the interrupt
by returning None. Their state has two shapes: Right(j) models that the js-th
guess will be after j more guesses and Left(g, s) records the js-th guess g with
the oracle state s.

Ocoo ((σ, s), x) ≡ case σ of
Left() ⇒ return (None, (σ, s))
| Right()⇒ do { (r, s′)← orcco(s, x); return (Some(r), (σ, s′)) }

Og((σ, s), g) ≡ case σ of
Left() ⇒ return (None, (σ, s))
| Right(0) ⇒ return (None, (Left(g, s), s))
| Right(i+ 1)⇒ return (Some(�), (Right(i), s))

Gstop(A) ≡ do {
js ← uniform(Zq);
(co, ca, s0)← init;
(, (σ,))← exec(Ocoo +O Og, interruptible(A(ca)), (Right(js), s0));
case σ of Right()⇒ return False | Left(g, s)⇒ eval(co, ca, s, g) }

Claim 5.7. P[Gmulti’(A) = True] ≤ P[Gstop(A) = True]

Claim 5.7 is the crucial step in the proof because eval is now called only at
the game’s end, but not by the oracles. This step requires reasoning about the
semantics of the operator exec as it is an open problem how to move probabilistic
computations out of loops (such as exec) using relational reasoning [7]. Instead,

46

we prove a suitable loop transformation using fixpoint induction. Claim 5.7 is an
upper bound instead of an equality because we have not bounded the number of
A’s queries to orc, so interruptible(A(ca)) may terminate more often than A(ca).

The third game hop transforms Gstop(A) into the game Gsingle(redq(A)) where
the converters of the reduction red (Figure 19) closely follow the oracles in Gstop.

Claim 5.8. P[Gstop(A) = True] ≤ P[Gsingle(redq(A)) = True]

This claim is proven using a combination of equational and relational reasoning.
Again, this claim is not an equality, because the two games differ in case the
adversary makes less than js queries. Then, the reduction redq(A) returns an
unspecified value projl(s) that may happen to be a correct guess.

The statement of Prop. 3 follows from Claims 5.6, 5.7, and 5.8. ut

Proposition 3 yields a bound on the advantage in the multi-guess setting for
the unpredictable function in terms of the single-guess advantage. To this end,
the module UF imports the module GOM as follows.

initialize ≡ do { k ← key-gen; return (k,�, {}) }
oracle ≡ Oeval

eval(k,�, L, (x, h)) ≡ return (h = H(k, x) ∧ x /∈ L)

sublocale gom ≡ GOM(initialize, oracle, eval)

The following corollary is then proved automatically by term rewriting.

Corollary 2. In the locale UF, if the lossless adversary A sends at most q guess
queries, then

advm(A) ≤ q · adv(gom.redq(λ . A)).

We are now ready to finish the IND-CCA security proof.

Proof (Theorem 2). Recall that the locale CIPHER imports UF and UF imports
GOM. Thus, in CIPHER, we can reuse the reduction from Figure 19 specialised

to the unpredictable function H. So, let redq
′

uf(A) ≡ uf.gom.redq
′
(λ . reduf-m(A)).

Then, qboundis-Right(reduf-m(A)) ≤ qboundis-Right(A), and Theorem 2 follows from
Lemma 5 and Corollary 2. ut

Corollary 1 follows from Theorem 2 in the same way as the asymptotic
statement for Elgamal followed from the concrete one in Section 3.

6.6 Comparison with Shoup’s security proof

We now compare our formalised proof with Shoup’s informal one. The three game
hops and the overall proof structure are the same, except that we factor out the
generic many-to-one reduction (Section 6.5), which Shoup does on the fly. In
particular, our reductions in Figure 17 and Figures 15 and 19 are codified versions
of his oracle machines DO and BO, respectively.

The main difference lies in the level of formality. Shoup does not make the
games and proofs precise. Indeed, he writes the following [65]:

Because it would be rather unwieldy, we do not give an explicit, low-level,
algorithmic description of these games, but it should by now be clear
that this could be done in principle. Rather, we give only a high-level
description of Game 0, and brief descriptions of the modifications between
successive games.

47

This suggests that Shoup’s semi-formal notation, which he uses in earlier examples
like Elgamal, does not scale well to more complicated settings. Apparently, the
level of abstraction is too low as Shoup has no good notation for modelling
interactions with oracles, which he emulates with for loops. In contrast, our case
study shows that CryptHOL’s GPVs can handle such settings easily, capturing
oracle interactions and reductions in a natural way.

The other major difference is the underlying probability space. In Shoup’s
model, all games in a sequence of game hops operate on the same probability
space, which is left implicit and assumed to be sufficiently large. In contrast, a
definitional approach like ours forbids such implicitness. Instead, in CryptHOL,
each distribution lives in its own space and there are operators to combine them.
The practical implications of this difference can be seen, e.g., in the proof of
Claim 5.1. Shoup can simply define the failure event F and reason about it as all
random variables are global. In contrast, our proof must first make the relevant
information accessible by introducing the games G′0 and G′1. In return, we get a
compositional and modular semantics in which equality coincides with contextual
equivalence, that is, we can replace a program by another equal program in any
context. This does not hold for Shoup’s notation where care is needed to avoid
capturing global variables.

7 Comparison and Discussion

The previous sections presented CryptHOL’s semantic foundation and demon-
strated its usage. Now, we evaluate CryptHOL using the desiderata from Section 1
and argue that it strikes a better balance between rigour and comprehensibility
than existing frameworks for mechanising game hopping proofs (Section 7.1). We
also review other related work (Section 7.2).

7.1 Evaluation and comparison with existing frameworks

We compare our framework CryptHOL with CertiCrypt [8], EasyCrypt [6], FCF
[55], and Verypto [4]. Our comparison is along the four desiderata from the
introduction: foundational approach, automation, naturality, and extensibility.

Foundational approach. Rigour requires a formal language for formalising
the cryptographic constructions, security notions, and proof rules that a trusted
proof checker requires to check proofs. The foundational approach demands that
these proof rules are rigorously derived from simple axioms that are known to
be consistent. To this end, all frameworks assign semantics to the language and
justify the proof rules using the semantics, but they differ in the choice of language,
semantic domain, and in the justification.

The semantic domain determines what notions and constructions can be
expressed in the language. CertiCrypt and EasyCrypt support discrete subprob-
ability distributions, all of which can be expressed using a probabilistic while
language. CryptHOL has the same semantic domain and the language is equally
expressive, thanks to the fixpoint operator. Verypto’s semantic domain is more
general as it builds on measure theory and it therefore supports continuous
distributions and higher-order functions at the price of incurring measurability
proof obligations. FCF’s semantics allows only probability distributions with finite
support. The syntax further restricts probabilistic effects to the random sampling
of bitstrings and conditional probabilities.

48

CryptHOL, CertiCrypt, and FCF all construct the semantic domain from first
principles of the underlying logic (HOL or the calculus of inductive constructions,
CIC) and have the proof assistant (Isabelle or Coq) check the derivation of the
proof rules. Thus, they all achieve the highest degree of trustworthiness in the proof
rules as HOL and CIC are known to be consistent. Verypto falls behind because its
measure theory is only axiomatized rather than constructed. For EasyCrypt, we
are neither aware of a consistency proof for its underlying logic, in particular for
the module system, nor of a derivation of its probabilistic relational Hoare logic.

Checking the individual proof steps, be it a security proof or the derivation
of a proof rule, must be done by some program, the so-called trusted code base.
Proof assistants like Isabelle and Coq perform this task in a small kernel, which
has been carefully scrutinized and tested. Additionally, they can produce proof
terms or proof objects that an independent checker can certify. Consequently,
CryptHOL, CertiCrypt, FCF, and Verypto achieve high marks here. EasyCrypt
does not have a small kernel, so the whole implementation in OCaml and the
external SMT solvers must be trusted.

In summary, CryptHOL, CertiCrypt, and FCF all follow the foundational
approach to a large extent. More could be achieved by formally verifying the
implementation of the proof checker and possibly even the hardware and software
it is running on.

Automation. The formalisation effort determines a framework’s usability. For
this comparison, we estimate the effort by lines of proof that the user must
manually write, i.e., the input to the proof checker. Clearly, personal proof
styles affect line counts, so the numbers must be taken with a grain of salt (for a
discussion on the subtleties of comparing formalisation effort, see [9]). Nevertheless,
they roughly indicate the effort required to produce such proofs. Table 1 lists the
length (in lines) of the security statement for different cryptographic algorithms
and frameworks. The line count includes the statement of the reduction, the
concrete security theorem, its proof, and all intermediate games. It does not
cover the cryptographic algorithm itself nor the security definition. We obtained
the numbers by inspecting the proof scripts distributed with the frameworks.
Unfortunately, there are no line counts for Verypto because we could not get
access to the sources. For example, the 49 lines of the IND-CPA security proof for
Elgamal in CryptHOL correspond to lines 1–44 in Figure 2; the difference in line
counts is due to changes in line breaking and whitespace. In particular, it includes
the calls and hints to the proof engines. Hence, the line counts measure the degree
of automation as better automation can fill in more details with less hints.

As Petcher and Morrisett have observed [56], shallow embeddings (FCF,
CryptHOL) have an advantage over deep ones (CertiCrypt, Verypto), as all the
reasoning infrastructure and libraries of the proof assistant can be reused directly;
a deep embedding would need to encode the libraries in the syntax of the language.
Despite being more general, CryptHOL leads to shorter proofs than FCF. We see
two reasons for this. First, our language works directly in the semantic domain,
even for effectful programs. Thus, more program equalities hold and all conversions
between syntax and semantics become superfluous. For example, the FCF rule
for loop fission holds only in the relational logic, but it is a HOL equality in
our model. Second, Isabelle’s built-in proof automation, in particular conditional
rewriting and the support for representation independence, provides a reasonable
level of automation, especially for the equational proofs mentioned above. So far,

49

Table 1: Framework comparison by line counts of the reduction definition and
concrete security theorems

Cryptographic Security Crypt Certi Easy Shoup

algorithm property HOL Crypt Crypta FCFb [pages]

RP-RF switching lemma 120 225 448 1.3

Elgamal (Section 3) IND-CPA 49 238 68 156 1.8

Hashed Elgamal in the ROM IND-CPA 253 789 216

Encryption using a PRF [55] IND-CPA 357 1167

Extension of a PRF with a pseudo- 217 2.2
universal hash function [65] random

Encryption using a PRF IND-CCA 616 2.9
and an UF (Section 6) + 224c

a Version 263740c on github.com/EasyCrypt/easycrypt.git, 19 Dec 2016
b Version adb0bdc on github.com/adampetcher/fcf, 11 Feb 2017
c The 224 lines formalise the generic reduction from Section 6.5 whereas the 616 lines

are specific to the encryption scheme.

we have not implemented any problem-specific proof engines that could automate
the proofs even further. In comparison to EasyCrypt, the state of the art in proof
automation, we achieve a similar degree of automation when reasoning about
programs. The RP-RF switching lemma involves considerable reasoning about
probabilities rather than programs.12 Here, the CryptHOL proof is much shorter
than EasyCrypt’s because in CryptHOL we can leverage the richer Isabelle/HOL
library and generic proof automation.

The last column in Table 1 lists the pages that Shoup [65] needs for proving
the same statements on paper. Clearly, the expansion factor varies greatly. In his
introductory example of Elgamal, Shoup is very explicit about every step and
writes out the reductions. Therefore, our formal proof (Figure 2) requires less
space, but also omits all informal explanations. Conversely, even our informal
presentation of the IND-CCA security proof (Sections 6.4–6.5) is much longer
than his proof simply because Shoup omits many formal details (see Section 6.6
for a comparison). Such liberties are not allowed in machine-checked proofs, which
are therefore much more detailed than what is standard today for cryptographic
security proofs. The flip side, of course, is that one does not have the liberty of
making mistakes, either.

12 In CertiCrypt, the random permutation oracle

ORP(D,x) ≡ case D(x) of
None⇒ do { y ← repeat uniform(A) until (λy. y /∈ ran(D));

return (y,D(x 7→ y)) }
| Some(r)⇒ return (r,D)

is formalised using a loop, where repeat p until P satisfies

repeat p until P ≡ do { x← p; if P (x) then return x else repeat p until P }

and ran(D) denotes the range of the map D. CryptHOL and EasyCrypt use y ←
uniform(A− ran(D)) instead of the loop. This requires an additional game hop, which
accounts for 44 and 93 lines, respectively. These lines are included in the line counts
in Table 1.

50

https://github.com/EasyCrypt/easycrypt.git
https://github.com/adampetcher/fcf

Naturality. Naturality requires that the language supports recurring crypto-
graphic idioms. One particularly important idiom is the adversary’s black-box
access to an oracle. CertiCrypt, FCF, and Verypto assume that the adversary is
implemented in the language of the framework. Thus, the semantics and proof
rules need not distinguish between the unknown code of the adversary and the
user-defined games and reductions. For CertiCrypt and Verypto, in particular,
the adversary is subject to the restrictions of the language. Access to an oracle
can be modelled as an ordinary procedure call as described by Halevi, Bellare,
and Rogaway [12,29] because the language ensures that there is only black-box
access. In EasyCrypt, the language restrictions on the adversary are not clear
as the adversary is formalised as an abstract module, but to our knowledge no
formal semantics for the module system has been published.

In contrast, one of CryptHOL’s distinguishing features is not being restricted
to a specific language. So, we need another means to enforce black-box access.
Our choice of GPVs appears to be at the right level of abstraction as the elegant
composition properties indicate (13,14). They are clearly superior to Shoup’s ap-
proach [65] where the game mediates the oracle access as follows: Upon activation,
the adversary either returns its final output or a query that the game then feeds
to the oracle. The response is then given to the adversary with the next activation.
This approach is not modular, as every game needs to implement the dispatching
in a loop, one cannot easily abstract over a game’s oracles, and it makes it hard
to capture reasoning about oracles in proof rules.

Security definitions should resemble those in the cryptographic literature so
that cryptographers can understand and evaluate them. All frameworks achieve
good scores in this regard, but in different ways. CertiCrypt and EasyCrypt embed
an imperative procedural language in their logics. They closely model Bellare’s
and Rogaway’s idea of a stateful language with oracles as procedures [13]. Verypto
deeply embeds a higher-order language with mutable references based on hard-to-
read de Bruijn indices in HOL. Readability is regained by reflecting the syntax in
HOL’s term language using parsing and pretty-printing tricks. In contrast, FCF
and CryptHOL shallowly embed a functional language with monadic sequencing
in Coq and Isabelle/HOL, respectively, which is close to standard mathematical
notation. Like in Shoup’s treatment [65], the state of the adversary and the oracles
must be passed explicitly. This improves clarity as it makes explicit which party
can access which parts of the state. Yet, it can also be a source of errors as the
user must ensure that the states are only used linearly.

Mathematical background theories like number theory and algebra are impor-
tant too. As CryptHOL, CertiCrypt, FCF, and Verypto are integrated with the
general-purpose proof assistants Isabelle/HOL or Coq, they immediately benefit
from the extensive libraries of formalised mathematics. Here, the shallow embed-
ding of CryptHOL and FCF has an advantage over CertiCrypt’s and Verypto’s
formalised programming languages because in the latter the theorems from the
library must first be transferred to the deep embedding, which can be non-trivial
in practice. In comparison to Isabelle/HOL and Coq, EasyCrypt’s library is
miniscule. As EasyCrypt is designed for reasoning about programs, not general
mathematics, its usage in practice follows Halevi’s idea that the tool checks only
the “boring” game hops and leaves the challenging mathematical problems to
human reviewers. Such transitions from formal to informal reasoning and back are
particularly subtle, as humans must fully understand the semantics of the formal
model to ensure that the informal reasoning is correct. In principle, CryptHOL
also supports such mixing as the proofs are written declaratively and (unverified)

51

LaTeX proofs can be embedded into the proof script. The crucial difference is
that in CryptHOL, such informal proofs can later be made formal and checked
within the same tool, so no translation gap necessarily exists.

Most frameworks support abstraction and reuse via a module system. Crypt-
HOL, FCF, and CertiCrypt build on Isabelle’s and Coq’s module system. Easy-
Crypt has its own module system, which is less expressive than Isabelle locales
and lacks a published semantics.

Finally, the embedding and the logic determine what kinds of security prop-
erties can be formalised. We now discuss this for all of the five frameworks. All
frameworks support concrete security proofs in the style of Theorem 2. Thanks
to their deep embeddings, CertiCrypt and Verypto also support statements about
efficiency. Therefore, statements can quantify over all polynomially bounded ad-
versaries and reductions can be proved efficient. Thus, the reductions, which are
explicit in asymptotic security statements like Corollary 1, disappear in the quan-
tifiers. This raises the level of abstraction, as the statement no longer refers to the
reduction, which is internal to the proof. FCF comes with an axiomatic cost model
for efficiency, which is not formally connected to an operational model. The cost
model is only partial in that it just covers the operations needed in the reductions
of the case studies. That is, it has been sufficiently developed to eliminate the
reductions from the security statements of the case studies. However, the users
themselves must change the cost model when they want to prove their own re-
ductions efficient. In these three frameworks, asymptotic bounds are derived from
concrete bounds. In EasyCrypt and CryptHOL, the efficiency of computations
cannot be expressed formally because their logics identify terms up to computation:
for example, the computation (λx. x+x)(1) cannot be distinguished from the value
2. However, we have started working on an operational execution model in HOL
and connecting it to our shallow embedding using logical relations (Section 8).

Extensibility. Extensibility demands trusted ways to add both new (stronger)
proof rules and new language constructs to a framework. CryptHOL is the best
in this category. Users can derive new proof rules from the semantics of language
primitives when needed as demonstrated in Sections 4.5 and 6.5, and Isabelle
makes sure that the new rules are sound by checking the derivation. Moreover,
users can define new language constructs simply by giving their semantics in the
domain of spmfs and GPVs. Crucially, all existing theorems of the other operators,
e.g., associativity of composition, remain valid thanks to the shallow embedding.

None of other frameworks supports the two kinds of trusted extensibility
discussed above. In EasyCrypt, all proof rules are implemented in OCaml. Any
extension thus must change the implementation of EasyCrypt, so there are no
mechanised checks. The language is hard-coded into EasyCrypt’s implementation,
too. CertiCrypt, FCF, and Verypto support the derivation of stronger proof rules
like CryptHOL, but not language extensions due to the deep embedding. Users
would have to change the language formalisation itself and then adapt all proofs of
all proof rules that are proven by induction over the syntax. Even worse, if different
users independently do such language extensions, their modified frameworks are in-
compatible. This problem does not arise in CryptHOL as it does not rely on syntax.

7.2 Other related work

The tool CryptoVerif by Blanchet [18] can prove secrecy and correspondence
properties such as authentication of security protocols. It can automatically

52

decompose games into reductions and oracles and even discover the intermediate
games themselves. Hence, the tool achieves a much higher degree of automation
than any of the frameworks discussed in Section 7.1. Unfortunately, it satisfies
none of the other desiderata. Users must trust that the whole implementation
correctly implements the game transformations that have been proven correct in
the transition system semantics just with pen and paper proofs. The tool lacks
abstraction and extensibility as it supports only a fixed set of language primitives
and game transformations. In particular, reasoning about probabilities or the
semantics like in the RP-RF switching lemma (Section 5.1) is impossible. The
language—a process calculus inspired by the π calculus—distinguishes between a
unique output process and possibly many input processes, which communicate via
channels. Our GPVs also distinguish between inputs and outputs, but composition
works differently. In CryptoVerif, several input processes may be able to receive an
output and the semantics picks one uniformly at random. In our setting, the callee
represents all input processes and receives all calls. In principle, one could embed
Blanchet’s calculus in our semantic domain of GPVs using a different composition
operator. CryptoVerif’s abstractions could then be proven sound in our framework.

The functional programming language F∗ [14,69] has been used to verify
implementations of cryptographic algorithms and protocols [5]. Security properties
are formulated as type safety of an annotated, dependently-typed program and the
type checker ensures type safety. While this approach scales to larger applications
[17], the security properties cannot be stated concisely as the typing assertions are
scattered over the whole implementation, and the approach relies on an external
soundness result in the style of computational soundness.

Audebaud and Paulin-Mohring [2] formalised the spmf monad in Coq. They
also define the approximation order v on spmfs and show that it forms an ω-com-
plete partial order, i.e., countable chains have least upper bounds. Using Kleene’s
fixpoint theorem, they obtain a fixpoint operator for continuous functions. We
generalise their result in that arbitrary spmf chains have least upper bounds.
Thus, monotonicity (rather than continuity) suffices for the fixpoints.

CertiCrypt [8] uses Audebaud’s and Paulin-Mohring’s monad as the semantic

domain for programs and adds the lifting operator D̃. Zanella Béguelin proves a
special case of Theorem 1, where the functions f and g are projections of a joint
continuous function [75].

Micciancio and Tessaro [48] propose to model multi-party protocols as systems
of equations, which are interpreted as order-continuous functions that transform
input streams to probability distributions over output streams. Like CryptHOL,
their system of equations can be manipulated algebraically as the semantics is
compositional. For example, composition is associative in their model, too. Yet,
their model is only a notational framework, not a mechanised proof calculus. In
particular, the syntax of equations lacks any formal treatment, which is crucial for
mechanised proof checking. Local variables of a process are therefore not really
local and users themselves must watch out for unintended variable capture when
they perform algebraic transformations, in particular as variable names determine
the composition of processes. Moreover, there are no checks that recursive systems
as they arise, e.g., from composition, are productive, i.e., finite amounts of outputs
require only finite amounts of inputs, and measurable. A coalgebraic approach
like ours might be a better semantic foundation than domain theory in this
respect. Further, their framework ignores computational aspects and can therefore
only be used for information-theoretically secure protocols where a simulator

53

for the ideal functionality can emulate the real functionality exactly instead of
indistinguishably.

Our framework reuses the existing infrastructure for relational parametricity
in Isabelle/HOL, but in new ways. The Lifting package [31] exploits representa-
tion independence to transfer theorems between raw types and their quotients
or subtypes. Lammich’s tool AutoRef [38] uses transfer rules to refine abstract
datatypes and algorithms to executable code. Blanchette et al. [19] use parametric-
ity to express well-formedness conditions for operators under which corecursion
may appear in corecursive functions. In contrast, we derive a relational logic for
reasoning about shallowly embedded programs from parametricity and apply
representation independence to replace oracles in games by bisimilar ones.

8 Conclusions and Future Work

We have presented the semantic foundations of our framework CryptHOL and
demonstrated that it is well-suited for formalising cryptographic notions and
mechanically checking game-hopping proofs. Proofs conducted with CryptHOL in
the proof assistant Isabelle/HOL are highly trustworthy as our framework strikes
a good balance between rigour and comprehensibility and follows a foundational
approach. Apart from the case studies in this paper, it has been also used to
formalise the security of multi-party computations [21].

Our framework cannot express efficiency notions such as polynomial runtime
yet. Hence, asymptotic reasoning can be used only in limited ways. This is
the flipside of the shallow embedding in higher-order logic and all its benefits.
For example, the type D(ω) of subprobability distributions is extensional, i.e.,
two subdistributions are equal iff they assign the same probability mass to
each elementary event. In particular, it does not matter how the distribution is
computed. Accordingly, equational reasoning cannot be used for computationally
indistinguishable distributions as one may replace the other only in polynomially
bounded contexts. We have recently started to formalise an operational execution
model in HOL that will be connected to our framework. This will allow us to
make formal statements about the efficiency of HOL functions and GPVs, in
particular about their run time being bounded by a polynomial. Then, asymptotic
reasoning will be possible and (polynomial) bounds on execution time have to be
proven only when needed.13

Although we have focused on game-hopping proofs, we believe that CryptHOL
is also an excellent foundation for other structuring techniques like the universal-
composability framework [22] and constructive cryptography [47]. In the future,
we want to explore how these frameworks can be formalised using CryptHOL and
the proofs mechanically checked.

Beyond cryptographic arguments, our semantic domain of generative prob-
abilistic values could be applied in different contexts. In previous work [45], we

13 As observed already by Bellare and Rogaway [12], the intermediate games in a
sequence of game hops need not meet any computability or efficiency constraints. It
is only when we apply a hardness assumption that we must show that the reduction
runs in polynomial time. Thus, by treating run-time constraints independently of
the advantages, we avoid cluttering the proofs with unnecessary details about run-
time. This demonstrates that it is important that the semantic domains of games,
adversaries, and reductions are not artificially restricted, e.g., by termination or
efficiency constraints, as these constraints would have to be proven whenever a game
is written down formally.

54

used a (less abstract) precursor to model interactive programs in HOL. The
domain could also serve as a basis for formalising and verifying CryptoVerif or
as a backend for the new EasyCrypt, as EasyCrypt’s logic and module system
resemble Isabelle’s.

Acknowledgements Andreas Lochbihler and S. Reza Sefidgar were supported by
the Swiss National Science Foundation grant 153217 “Formalising Computational
Soundness for Protocol Implementations”.

Appendix A Further Background

This appendix provides further background to make the paper more accessible
to cryptographers missing background in languages and logic. It is indended
to enable them to convince themselves that cryptographic formalisations using
CryptHOL have the indented meaning.

A.1 Justifying recursive function definitions

Recursive function definitions must be justified to avoid inconsistencies. For
example, the recursive specification bad(�) ≡ 1+bad(�) for a function bad : 1⇒N
must not be admitted. If it were, we could derive 0 = bad(�) − bad(�) =
(1 + bad(�))− bad(�) = 1 + (bad(�)− bad(�)) = 1 + 0 = 1, a contradiction. So,
the justification must prove that the recursion equation has a solution.

The recursive definitions in this paper are justified using three principles:
well-founded recursion, least fixpoints, and primitive corecursion. Each definition
principle yields a corresponding proof principle.

For well-founded recursion, the specification must be accompanied by a proof
that the recursion terminates. Then, there is always a solution. Proofs about
functions defined by well-founded recursion proceed by well-founded induction.

For least fixpoints, a recursive specification f(x) ≡ . . . f(. . .) . . . x . . . of a
function f : τ1 ⇒ τ2 is transformed into the associated functional F (f, x) ≡
. . . f(. . .) . . . x . . ., which is not recursive. If f ’s codomain τ2 is a chain-complete
partial order (i.e., there is a partial order v on τ2 in which every totally ordered
subset has a least upper bound) and F : (τ1 ⇒ τ2)⇒ (τ1 ⇒ τ2) is monotone,
then the transfinite iteration of F starting at the least element leads to the least
fixpoint of F , which is taken as the definition of f [36]. Proofs about least fixpoints
use fixpoint induction, i.e., the property P must hold for the least element and
be preserved by the functional F . Fixpoint induction also demands that P be
admissible, i.e., whenever P holds for all elements of a non-empty, totally ordered
subset A of τ1⇒ τ2, then P must also hold for the least upper bound of A.

Primitive corecursion is explained in the next section A.2.

A.2 Corecursion and Coinduction

CryptHOL heavily uses coinductive definitions and proofs to handle finite and
infinite objects uniformly. To make the formalisation and proofs more accessible,
we briefly review the coinductive concepts that we use and compare them to their
inductive counterparts using a simple example. In a nutshell, coinduction is the
dual to induction.

55

Coinductive Datatypes. To compare inductive and coinductive definitions, consider
the construction rules for binary trees with integers at the leaves:

(a) If n : Z, then Leaf(n) is a tree.
(b) If l and r are trees, then Node(l, r) is a tree.

If we want to define the set T of trees inductively, we say that T is the smallest
set that is closed under the construction rules (a) and (b). This means that every
tree in T is built in finitely many steps according to the above rules. Thus, T
contains all finite binary trees. This yields an (inductive) datatype:

datatype T = Leaf(Z) | Node(T,T)

Conversely, in a coinductive definition, we say that T is the largest set that is
consistent with the rules (a) and (b). This means that T contains everything
where we cannot rule out in finitely many steps that it was not built according
to the above rules. Thus, every tree can be decomposed into either a leaf or a
node with two child trees. Additionally, we identify all elements in T that cannot
be distinguished by finitely many decomposition steps, i.e., bisimilar trees are
considered identical. Then, T is the set of all finite and infinite binary trees. This
gives a coinductive datatype (or codatatype):

codatatype T = Leaf(Z) | Node(T,T)

Codatatypes provide a natural way to model computations. One can only
observe finite parts of a computation’s behaviour, just like one can only decompose
codatatypes to a finite depth. In contrast, datatypes model finite objects that can
be completely analysed.

Corecursion. Recursion is the primary definition principle for functions that take
a datatype value as an argument, and corecursion is for functions that return
a codatatype value. For example, the function d below on the left computes
the depth of a finite binary tree as a natural number, which is modelled as a
datatype in Peano style. The function max (not shown) returns the maximum of
its two arguments. This recursive definition is acceptable because the recursion
terminates: the subtrees l and r given to the recursive calls are strictly smaller
than Node(l, r) since all trees in T are finite. In fact, it is even primitively recursive,
because the recursive calls are on the direct arguments l and r of the constructor
Node. In this view, d destructs its argument.

datatype N = 0 | Suc(N)

d : T⇒ N
d(Leaf()) = 0
d(Node(l, r)) = Suc(max(d(l), d(r)))

codatatype N∞ = 0 | Suc(N∞)

d : T⇒ N∞
d(Leaf()) = 0

d(Node(l, r)) = Suc(max(d(l), d(r)))

On the right, d computes the depths of trees in T. As these trees may be infinite,
d’s return type is the natural numbers extended with infinity, which we model as
the Peano codatatype (the infinite term Suc(Suc(Suc(. . .))) represents infinity).
This recursive definition cannot be justified by a termination argument because
the recursion does not terminate for infinite trees. Instead, corecursion on N∞ is
the right definition principle. To this end, one must check that d is productive, i.e.,
whenever we want to inspect d’s output to some finite depth, d decomposes its
argument t : T only to some finite depth. Here, to produce one Suc constructor,
d peels off one Node constructor. This definition is not primitively corecursive,
because the context of the corecursive calls d(l) and d(r) does not consist of only
one Suc constructor, but also includes the max function.

56

Coinduction. Induction requires an inductive assumption like “t is a finite tree”:
If we can prove that a property P holds for all Leaf(n) and is preserved by Nodes,
i.e., P is closed under the tree construction rules (a) and (b), then P holds for
all finite trees. This proof principle is valid because T is the smallest set closed
under the construction rules.

In contrast, coinduction establishes a coinductive conclusion like “two trees are
equal”. If we can prove that a relation R is consistent with the tree construction
rules (a) and (b), then R-related trees are equal. This proof principle is valid
because equality is the largest relation consistent with the construction rules (as
bisimilar trees are identified).

For example, let mirror be a function which swaps all left and right subtrees
of all nodes in a tree. We prove ∀t : T. d(mirror(t)) = d(t) by induction on the
inductive assumption t : T. Conversely, ∀t : T. d(mirror(t)) = d(t) is proven by
coinduction on the coinductive equality relation on N∞.

A.3 Relational Parametricity and Representation Independence

A function like π1 : α× β⇒α is polymorphic in a type variable α if its behaviour
does not depend on the actual type of the argument, i.e., the function behaves
uniformly for all type instances. Reynolds [60] and Wadler [70] formalised this
notion of independence using relational parametricity. They interpret the type of a
function as a relation between values instead of a set of values. Type constructors
without type arguments like B, N, and R become the identity relation on the
set of values, which we denote by B̃, Ñ, and R̃, respectively. Type constructors
with type arguments like × and ⇒ become relation transformers, i.e., functions
from relations to relations, which we write with a ˜ over the type constructor.
For example, (×̃) : P(α × α′)⇒ P(β × β′)⇒ P((α × β) × (α′ × β′)) lifts two
relations componentwise to pairs. Formally, (x, y) (A ×̃B) (x′, y′) iff x A x′ and
y B y′. Similarly, A ⇒̃B for the function space relates two functions f and g iff
they transform relatedness in A into relatedness in B. Formally, f (A ⇒̃B) g
iff f(x) B g(y) whenever x A y. Now, a function is relationally parametric in a
type variable α iff it is related to itself in the relation that corresponds to its
type where α is interpreted by an arbitrary relation A. For example, π1 being
parametric in α and β is expressed by

∀A B. π1 (A ×̃B ⇒̃A) π1. (17)

Note the similarity between π1’s type and the relation. We list the relators for
further type constructors:

Sums Left(x) (A +̃B) Left(y) iff x A y, and Right(x) (A +̃B) Right(y) iff x B y,
but +̃ does not relate Left() and Right().

Sets X P̃(R) Y iff R[X] ⊆ Y and R−1[Y] ⊆ X.

Maybe M̃(A) relates None to None, and Some(x) to Some(y) whenever x A y,
and nothing else.

Wadler [70] proved that all functions definable in the polymorphic lambda
calculus are parametric. He also demonstrated that adding polymorphic equality
destroys this property. Higher-order logic has polymorphic equality (=) and
description operators, so not all HOL functions are parametric. Thus, parametricity
is not a free theorem in our setting; we must prove it for every constant. Fortunately,

57

function application and function composition preserve parametricity. Hence,
functions defined in terms of parametric functions are parametric too.

Wadler also showed that if all types are ω-ccpos, all functions are continuous
and all relations are admissible and strict, then the fixpoint operator (defined by
countable iteration) is parametric [70]. We do not consider the fixpoint operator as
part of the language itself, but as a definition principle for recursive user-specified
functions. That is, we assume that fix is always applied to a monotone function.
Thus, preservation of parametricity (Theorem 1) suffices and we do not need
Wadler’s restrictions of the semantic domains. So, monotonicity (instead of continu-
ity as discussed in Section 4.2) is expressed as a precondition on the given functions.

Wadler’s free theorems express that parametric functions commute with the
lift operation .̂ For example, we get π1((x, y) � (f ×̂ g)) = f(x) from (17) by
instantiating A and B with the graphs of the functions f and g, respectively, and
by unfolding the definitions of ×̂ and the relators. Wadler calls this a free theorem
because we do not need any property of π1 other than (17); in particular, we
do not need to unfold π1’s definition. In this tiny example, it might have been
easier to unfold the definition, but for complicated function definitions, proofs by
parametricity are more systematic and therefore automatic.

Representation independence [51] expresses that changing the implementa-
tion of a module in a program does not affect the overall result. Mitchell uses
parametricity to formalise this notion as follows. If we can find a bisimulation
relation for all functions in the interface of the module being changed, and the
remainder of the program is parametric in the type defined by the module, then
the change does not affect the program. That is, representation independence
lifts bisimimilarity over contexts using parametricity. For example, consider a
deterministic transducer given by its transition function δ : σ⇒α⇒ β×σ, which,
given a state s : σ and a input letter x : α, computes an output letter from the
output alphabet β and the successor state. This is the interface of the module.
The recursive function runδ given below computes a run of the transducer with
transition function δ from state s on the input word w : L(α).

runδ(s, []) ≡ [] runδ(s, x · w) ≡ let (y, s′) = δ(s, x) in y · runδ(s
′, w)

This is the context of the transducer module. Note that run is parametric in the
state space, i.e.,

run ((S ⇒̃ (=) ⇒̃ (=) ×̃ S) ⇒̃ S ⇒̃ (=) ⇒̃ (=)) run

for all S. Now, representation independence says that we can replace the transducer
δ1 by a bisimilar one δ2 (and the initial state s1 by s2) without changing the
overall result. Here, bisimilarity means that we find a bisimulation relation S
between the states of the two transducers, i.e., (i) S relates the initial states s1

and s2, and (ii) whenever S relates two states s1 and s2 and for all inputs x, the
transition functions δ(s1, x) and δ(s2, x) return the same output and successor
states which S relates. As parametricity is compositional, this result scales to
arbitrarily large contexts, not just a small function like run.

In Isabelle, the transfer package [31] implements representation independence
as a proof engine. That is, having proven bisimilarity of two particular transition
functions, a single invocation of this engine lifts the bisimilarity property over
arbitrarily large contexts.

58

B Proofs

B.1 Subprobabilities are a CCPO

Proof (Proposition 1). We have to show that v is a partial order and that
⊔
Y is

well-defined and the least upper bound for every chain Y , i.e., every set of spmfs
all of whose elements are comparable in v. The difficult part is to show that

⊔
Y

is well-defined. In particular, we must show that the support of
⊔
Y is countable

even if Y is uncountable. Then, it is not hard to see that
⊔
Y sums up to at most 1.

Clearly, we have support (
⊔
Y) = ∪p∈Y support(p). Yet, the union of an un-

countable sequence of increasing countable sets need not be countable in general.
In the following, we show that even for uncountable chains Y of spmfs, the union of
the supports remains countable. To this end, we identify a countable sub-sequence
of Y whose lub has the same support. The key idea is that for v-comparable
spmfs p and q, the order can be decided by looking only at the assigned probability
masses, namely, p v q iff ‖p‖ ≤ ‖q‖. So suppose without loss of generality that Y
does not contain a maximal element (otherwise, the lub is the maximal element
and we are done). The set of assigned probability masses A = { ‖p‖ | p ∈ Y } has
a supremum r ≤ 1, as 1 bounds the set from above. The closure of A contains the
supremum r, so A must contain a countable increasing sequence which converges
to r. This sequence gives rise to a countable sub-sequence Z of Y , for which we
show (∪p∈Y support(p)) ⊆ (∪q∈Zsupport(q)). For any p ∈ Y , there is a q ∈ Z such
that ‖p‖ ≤ ‖q‖, as the assigned probability masses in Z converge to r from below
and p is not maximal. Hence, p v q as p and q are related in v, and therefore
support(p) ⊆ support(q) as support is monotone. ut

The attentive reader might wonder why we need transfinite iteration for the
fixpoint despite having shown that uncountable chains can be reduced to countable
ones for the purpose of lubs. Countable fixpoint iteration, which defines the least
fixpoint as

⊔
{ f i(⊥) | i ∈ N }, does not suffice. (Here, function iteration is defined

by f0 = id and fn+1 = f ◦ fn.) The reason is that the chain { f i(⊥) | i ∈ N }
might stop before the least fixpoint is reached. Consider, e.g., the monotone spmf
transformer f : D(1)⇒ D(1) given by

f(p) ! x = if p ! x < 1
2 then 2·p!x+1

4 else 1

The countable iteration of f starting at ⊥ yields a sequence of spmfs which assign
to � the masses 0, 1/4, 3/8, 7/16, 15/32, . . . The least upper bound of this sequence
assigns 1/2 to �. That is, the iteration has not yet reached f ’s fixed point, which
assigns the mass 1 to �. This is because f is not (chain) continuous, i.e., it does
not preserve lubs.

B.2 Fixpoints Preserve Parametricity

A relation R : P(A × B) is admissible w.r.t. two ccpos iff for any chain Y ⊆ R
of pairs in the product ccpo (the ordering is component-wise), R relates the
component-wise lubs of Y .

Proof (Theorem 1). We prove Thm. 1 by parallel induction on the two fixpoints.

Both inductive cases are trivial. The base case requires D̃(R) to be strict, i.e.,
it relates the least elements, which holds trivially. The step case is precisely the
relatedness condition of f and g, which the theorem assumes. Parallel fixpoint
induction is a valid proof principle because D̃(R) is admissible by Proposition 4.

59

Proposition 4. D̃() is admissible.

Proof. We exploit the characterisation of D̃ in terms of P[∈]. We must show

(
⊔

(Y �̂P π1)) D̃(R) (
⊔

(Y �̂P π2)) for all chains Y of pairs in D̃(R). By the

characterisation of D̃ (Lemma 1), this holds as follows: The first and last step
exploit that the lub commutes with P[∈], and the inequality follows from

monotonicity of SUP and the characterisation of D̃ for elements of the chain.

P
[⊔

(Y �̂P π1) ∈ A
]

= SUP(p,)∈Y P[p ∈ A]

≤ SUP(,q)∈Y P[q ∈ R[A]] = P
[⊔

(Y �̂P π2) ∈ R[A]
]

ut

Note that it is not clear how to prove admissibility via the characterisation in
terms of couplings. The problem is that the couplings for the pairs in the chain
need not form a chain themselves. So we cannot construct the coupling for the
lubs as the lub of the couplings.

Admissibility of relators is preserved by the function space (ordered point-wise)
and products (ordered component-wise).

References

1. Asharov, G., Beimel, A., Makriyannis, N., Omri, E.: Complete characterization of
fairness in secure two-party computation of boolean functions. In: Dodis, Y., Nielsen,
J.B. (eds.) TCC 2015. LNCS, vol. 9014, pp. 199–228. Springer (2015)

2. Audebaud, P., Paulin-Mohring, C.: Proofs of randomized algorithms in Coq. Sci.
Comput. Program. 74(8), 568–589 (2009)

3. Baader, F., Nipkow, T.: Term Rewriting and All That. Cambridge University Press
(1998)

4. Backes, M., Berg, M., Unruh, D.: A formal language for cryptographic pseudocode.
In: LPAR 2008. LNCS, vol. 5330, pp. 353–376. Springer (2008)

5. Barthe, G., Fournet, C., Grégoire, B., Strub, P.Y., Swamy, N., Zanella Béguelin, S.:
Probabilistic relational verification for cryptographic implementations. In: POPL
2014. pp. 193–205. ACM (2014)

6. Barthe, G., Grégoire, B., Heraud, S., Zanella Béguelin, S.: Computer-aided security
proofs for the working cryptographer. In: CRYPTO 2011. LNCS, vol. 6841, pp.
71–90. Springer (2011)

7. Barthe, G., Grégoire, B., Hsu, J., Strub, P.Y.: Coupling proofs are probabilistic
product programs. In: POPL 2017. pp. 161–174. ACM (2017)

8. Barthe, G., Grégoire, B., Zanella Béguelin, S.: Formal certification of code-based
cryptographic proofs. In: POPL 2009. pp. 90–101. ACM (2009)

9. Basin, D., Kaufmann, M.: The Boyer-Moore prover and Nuprl: An experimental com-
parison. In: Huet, G., Plotkin, G. (eds.) Logical Frameworks. pp. 89–119. Cambridge
University Press (1991)

10. Bellare, M., Boldyreva, A., Micali, S.: Public-key encryption in a multi-user setting:
Security proofs and improvements. In: Preneel, B. (ed.) EUROCRYPT 2000. LNCS,
vol. 1807, pp. 259–274. Springer (2000)

11. Bellare, M., Rogaway, P.: Optimal asymmetric encryption. In: Workshop on the
Theory and Application of of Cryptographic Techniques. pp. 92–111. Springer (1994)

12. Bellare, M., Rogaway, P.: Code-based game-playing proofs and the security of triple
encryption. Cryptology ePrint Archive, Report 2004/331 (2004), http://eprint.iacr.
org/2004/331

13. Bellare, M., Rogaway, P.: The security of triple encryption and a framework for
code-based game-playing proofs. In: EUROCRYPT 2006. LNCS, vol. 4004, pp.
409–426. Springer (2006)

60

http://eprint.iacr.org/2004/331
http://eprint.iacr.org/2004/331

14. Bengtson, J., Bhargavan, K., Fournet, C., Gordon, A.D., Maffeis, S.: Refinement
types for secure implementations. ACM Trans. Program. Lang. Syst. 33(2), 8:1–8:45
(2011)

15. Berg, M.: Formal verification of cryptographic security proofs. Ph.D. thesis, Univer-
sität des Saarlandes (2013)

16. Berghofer, S., Wenzel, M.: Logic-free reasoning in Isabelle/Isar. In: Autexier, S.,
Campbell, J., Rubio, J., Sorge, V., Suzuki, M., Wiedijk, F. (eds.) CICM 2008. LNCS,
vol. 5144, pp. 355–369. Springer (2008)

17. Bhargavan, K., Fournet, C., Kohlweiss, M., Pironti, A., Strub, P.Y.: Implementing
TLS with verified cryptographic security. In: S&P 2013. pp. 445–459. IEEE (2013)

18. Blanchet, B.: A computationally sound mechanized prover for security protocols.
IEEE Trans. Dependable Secure Comput. 5(4), 193–207 (2008)

19. Blanchette, J.C., Bouzy, A., Lochbihler, A., Popescu, A., Traytel, D.: Friends with
benefits: Implementing corecursion in foundational proof assistants. In: Yang, H.
(ed.) ESOP 2017. pp. 111–140. LNCS, Springer (2017)

20. Blanchette, J.C., Hölzl, J., Lochbihler, A., Panny, L., Popescu, A., Traytel, D.: Truly
modular (co)datatypes for Isabelle/HOL. In: ITP 2014. LNCS, vol. 8558, pp. 93–110.
Springer (2014)

21. Butler, D., Aspinall, D., Gascon, A.: How to simulate it in Isabelle: Towards formal
proof for secure multi-party computation (2017), accepted at ITP 2017

22. Canetti, R.: Universally composable security: A new paradigm for cryptographic
protocols. In: Foundations of Computer Science, 2001. Proceedings. 42nd IEEE
Symposium on. pp. 136–145. IEEE (2001)

23. Church, A.: A formulation of the simple theory of types. The Journal of Symbolic
Logic 5(2), 56–68 (1940)

24. Cohen, R., Coretti, S., Garay, J., Zikas, V.: Probabilistic termination and compos-
ability of cryptographic protocols. In: Robshaw, M., Katz, J. (eds.) CRYPTO 2016.
LNCS, vol. 9816, pp. 240–269. Springer (2016)

25. Elgamal, T.: A public key cryptosystem and a signature scheme based on discrete
logarithms. IEEE Transactions on Information Theory 31(4), 469–472 (1985)

26. Goldwasser, S., Micali, S.: Probabilistic encryption. Journal of Computer and System
Sciences 28(2), 270–299 (1984)

27. Gordon, S.D., Hazay, C., Katz, J., Lindell, Y.: Complete fairness in secure two-party
computation. J. ACM 58(6), 24:1–24:37 (2011)

28. Grumberg, O., Francez, N., Katz, S.: Fair termination of communicating processes.
In: PODC 1984. pp. 254–265. ACM (1984)

29. Halevi, S.: A plausible approach to computer-aided cryptographic proofs. Cryptology
ePrint Archive, Report 2005/181 (2005)

30. Hölzl, J., Lochbihler, A., Traytel, D.: A formalized hierarchy of probabilistic system
types. In: ITP 2015. LNCS, vol. 9236, pp. 203–220. Springer (2015)

31. Huffman, B., Kunčar, O.: Lifting and Transfer: A modular design for quotients in
Isabelle/HOL. In: CPP 2013. LNCS, vol. 8307, pp. 131–146. Springer (2013)

32. Hurd, J.: A formal approach to probabilistic termination. In: TPHOLs 2002. LNCS,
vol. 2410, pp. 230–245. Springer (2002)

33. Kilian, J., Rogaway, P.: How to protect DES against exhaustive key search (an
analysis of DESX). Journal of Cryptology 14(1), 17–35 (2001)

34. Knuth, D.E., Yao, A.C.: The complexity of nonuniform random number generation.
In: Traub, J.F. (ed.) Algorithms and Complexity—New Directions and Recent
Results. pp. 357–428. Academic Press, Inc. (1976)

35. Koblitz, N., Menezes, A.J.: Another look at “provable security”. Journal of Cryptol-
ogy 20(1), 3–37 (2007)

36. Krauss, A.: Recursive definitions of monadic functions. In: PAR 2010. EPTCS,
vol. 43, pp. 1–13 (2010)

37. Kunčar, O., Popescu, A.: A consistent foundation for Isabelle/HOL. In: Urban, C.,
Zhang, X. (eds.) ITP 2015. LNCS, vol. 9236, pp. 234–252. Springer (2015)

61

38. Lammich, P.: Automatic data refinement. In: ITP 2013. LNCS, vol. 7998, pp. 84–99.
Springer (2013)

39. Larsen, K.G., Skou, A.: Bisimulation through probabilistic testing. Inf. and Comp.
94(1), 1–28 (1991)

40. Lindvall, T.: Lectures on the Coupling Method. Dover Publications, Inc. (2002)
41. Lochbihler, A.: A formal proof of the max-flow min-cut theorem for countable

networks. Archive of Formal Proofs (2016), http://isa-afp.org/entries/MFMC
Countable.shtml, Formal proof development

42. Lochbihler, A.: Probabilistic functions and cryptographic oracles in higher order
logic. In: Thiemann, P. (ed.) Programming Languages and Systems (ESOP 2016).
LNCS, vol. 9632, pp. 503–531. Springer (2016)

43. Lochbihler, A.: CryptHOL. Archive of Formal Proofs (2017), http://isa-afp.org/
entries/CryptHOL.shtml, Formal proof development

44. Lochbihler, A., Sefidgar, S.R., Bhatt, B.: Game-based cryptography in HOL. Archive
of Formal Proofs (2017), http://isa-afp.org/entries/Game Based Crypto.shtml,
Formal proof development

45. Lochbihler, A., Züst, M.: Programming TLS in Isabelle/HOL. Isabelle Workshop
2014 (2014)

46. Lumbroso, J.: Optimal discrete uniform generation from coin flips, and applications.
CoRR abs/1304.1916 (2013), http://arxiv.org/abs/1304.1916

47. Maurer, U.: Constructive cryptography – a new paradigm for security definitions
and proofs. In: Moedersheim, S., Palamidessi, C. (eds.) Theory of Security and
Applications (TOSCA 2011). LNCS, vol. 6993, pp. 33–56. Springer (2011)

48. Micciancio, D., Tessaro, S.: An equational approach to secure multi-party computa-
tion. In: ITCS 2013. pp. 355–372. ACM (2013)

49. Milner, R.: Processes: A mathematical model of computing agents. In: Rose, H.E.,
Shepherdson, J. (eds.) Logic Colloquium 1973, Studies in Logic and the Foundations
of Mathematics, vol. 80, pp. 157–173. Elsevier (1975)

50. Milner, R.: A theory of type polymorphism in programming. Journal of Computer
and System Sciences 17(3), 348–375 (1978)

51. Mitchell, J.C.: Representation independence and data abstraction. In: POPL 1986.
pp. 263–276. ACM (1986)

52. Nipkow, T., Klein, G.: Concrete Semantics. Springer (2014)
53. Nipkow, T., Paulson, L.C., Wenzel, M.: Isabelle/HOL — A Proof Assistant for

Higher-Order Logic, LNCS, vol. 2283. Springer (2002)
54. Pass, R., Shi, E., Tramer, F.: Formal abstractions for attested execution secure

processors. Cryptology ePrint Archive, Report 2016/1027 (2016), http://eprint.iacr.
org/2016/1027

55. Petcher, A., Morrisett, G.: The foundational cryptography framework. In: POST
2015. LNCS, vol. 9036, pp. 53–72. Springer (2015)

56. Petcher, A., Morrisett, G.: A mechanized proof of security for searchable symmetric
encryption. In: CSF 2015. pp. 481–494. IEEE (2015)

57. Piróg, M., Gibbons, J.: The coinductive resumption monad. In: Jacobs, B., Silva,
A., Staton, S. (eds.) MFPS 2014. ENTCS, vol. 308, pp. 273–288 (2014)

58. Pitts, A.M.: The HOL logic. In: Gordon, M.J.C., Melham, T.F. (eds.) Introduction to
HOL: a theorem proving environment for higher order logic, pp. 191–232. Cambridge
University Press (1993)

59. Ramsey, N., Pfeffer, A.: Stochastic lambda calculus and monads of probability
distributions. In: POPL 2002. pp. 154–165. ACM (2002)

60. Reynolds, J.C.: Types, abstraction and parametric polymorphism. In: IFIP 1983.
Information Processing, vol. 83, pp. 513–523. North-Holland/IFIP (1983)

61. Sack, J., Zhang, L.: A general framework for probabilistic characterizing formulae.
In: VMCAI 2012. LNCS, vol. 7148, pp. 396–411. Springer (2012)

62. Schirmer, N., Wenzel, M.: State spaces – the locale way. In: Huuck, R., Klein, G.,
Schlich, B. (eds.) SSV 2009. Electronic Notes in Theoretical Computer Science, vol.
254, pp. 161–179 (2009)

62

http://isa-afp.org/entries/MFMC_Countable.shtml
http://isa-afp.org/entries/MFMC_Countable.shtml
http://isa-afp.org/entries/CryptHOL.shtml
http://isa-afp.org/entries/CryptHOL.shtml
http://isa-afp.org/entries/Game_Based_Crypto.shtml
http://arxiv.org/abs/1304.1916
http://eprint.iacr.org/2016/1027
http://eprint.iacr.org/2016/1027

63. Segala, R.: Modeling and Verification of Randomized Distributed Real-Time Sys-
tems. Ph.D. thesis, Department of Electrical Engineering and Computer Science,
Massachusetts Institute of Technology (1995)

64. Shoup, V.: OAEP reconsidered. In: Annual International Cryptology Conference.
pp. 239–259. Springer (2001)

65. Shoup, V.: Sequences of games: A tool for taming complexity in security proofs.
Cryptology ePrint Archive, Report 2004/332 (2004), http://eprint.iacr.org/2004/332

66. Smart, N.P.: Cryptography Made Simple. Information Security and Cryptography,
Springer (2016)

67. Sokolova, A.: Coalgebraic Analysis of Probabilistic Systems. Ph.D. thesis, Technische
Universiteit Eindhoven (2005)

68. Stern, J., Pointcheval, D., Malone-Lee, J., Smart, N.P.: Flaws in applying proof
methodologies to signature schemes. In: Annual International Cryptology Conference.
pp. 93–110. Springer (2002)

69. Swamy, N., Chen, J., Fournet, C., Strub, P.Y., Bhargavan, K., Yang, J.: Secure
distributed programming with value-dependent types. J. Funct. Program. 23(4),
402–451 (2013)

70. Wadler, P.: Theorems for free! In: FPCA 1989. pp. 347–359. ACM (1989)
71. Wadler, P.: The essence of functional programming. In: POPL 1992. pp. 1–14. ACM

(1992)
72. Wiedijk, F.: A synthesis of the procedural and declarative styles of interactive

theorem proving. Logical Methods in Computer Science 8(1:30) (2012)
73. Xi, L., Yang, K., Zhang, Z., Feng, D.: DAA-related APIs in TPM 2.0 revisited. In:

International Conference on Trust and Trustworthy Computing. pp. 1–18. Springer
(2014)

74. Yao, A.C.: Theory and application of trapdoor functions. In: FOCS 1982. pp. 80–91.
IEEE Computer Society (1982)

75. Zanella Béguelin, S.: Formal Certification of Game-Based Cryptographic Proofs.
Ph.D. thesis, École Nationale Supérieure des Mines de Paris (2010)

63

http://eprint.iacr.org/2004/332

	CryptHOL: Game-based Proofs in Higher-order Logic

