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Abstract. Side-channel distinguishers play an important role in differ-
ential power analysis, where real world leakage information is compared
against hypothetical predictions in order to guess at the underlying secret
key. A class of distinguishers which can be described as ‘cluster-based’
have the advantage that they are able to exploit multi-dimensional leak-
age samples in scenarios where only loose, ‘semi-profiled’ approximations
of the true leakage forms are available. This is by contrast with univari-
ate distinguishers exploiting only single points (e.g. correlation), and
Template Attacks requiring concise fitted models which can be overly
sensitive to mismatch between the profiling and attack acquisitions. This
paper collects together—to our knowledge, for the first time—the various
different proposals for cluster-based DPA (concretely, Differential Cluster
Analysis, First Principal Components Analysis, and Linear Discriminant
Analysis), and shows how they fit within the robust ‘semi-profiling’ at-
tack procedure proposed by Whitnall et al. at CHES 2015. We provide
discussion of the theoretical similarities and differences of the separately
proposed distinguishers as well as an empirical comparison of their per-
formance in a range of (real and simulated) leakage scenarios and with
varying parameters. Our findings have application for practitioners con-
strained to rely on ‘semi-profiled’ models who wish to make informed
choices about the best known procedures to exploit such information.

1 Introduction

It is well-established that the extent and accuracy of an attacker’s knowledge
about the data-dependent functional form of side-channel leakage impacts sub-
stantially on the effectiveness of a differential side-channel analysis (DPA)3. At
one end of the spectrum are detailed, usually multivariate fitted models acquired
in a profiling stage during which the attacker has access to a device identical
to the target [4]; at the other, are reasoned guesses based on general knowledge
of circuit activity, such as Hamming weight or Hamming distance assumptions

Author version of an article to appear at SAC 2017.
3 The ‘P’ in DPA stands for Power but the principles of DPA extend equally to other
data-dependent observables such as electromagnetic radiation.
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[9]. The former can be used to perform Bayesian classification on target traces.
These can be highly efficient at recovering secret values in the case that there
is a close match between the profiling and the attack acquisitions, but can fail
altogether in the presence of discrepancies [5,11]. The latter are most typically
used in correlation attacks [3], which succeed as long as the guessed model is
reasonably proportional to the true form of the leakage, but are less efficient
(or entirely ineffective) the larger the divergence between model and reality [15].
They are also inherently univariate, raising the question of how best to combine
relevant information from different points in the traces.

A form of ‘semi-profiling’, sitting somewhere between the two extremes, is
achieved by unsupervised clustering of leakage traces with known intermediates,
as proposed by Whitnall et al. at CHES 2015 [16]. This procedure assumes some
a priori access to measurements from a duplicate device, without necessarily
requiring the degree of control over or replicability of the acquisitions assumed
in a ‘fully profiled’ setting. Rather than outputting precise and detailed models,
these aim at rough arrangements of intermediate values into similarly-leaking
classes, which can be used as ‘nominal power models’ [17] in cluster- (AKA
partition- [13]) based DPA.

Several proposals for cluster-based DPA distinguishers have been made, in-
cluding the recent Linear Discriminant Analysis (LDA) based attack [8]. How-
ever, practitioners have so far had little guidance as to which of these might
be preferable for use in real attack scenarios when constrained to rely on ‘semi-
profiled’ nominal models. Most of the experimental investigations done previ-
ously have been performed under standard (non-profiled) leakage assumptions
such as the Hamming weight, and in leakage scenarios conforming well to those
assumptions. Further, each new cluster-based distinguisher has typically been
compared against correlation-based DPA (a popular benchmark) rather than
against existing proposals of a similar nature; to the best of our knowledge,
there does not yet exist a study collecting together all of these conceptually
similar methodologies, as we aim to do here. We explore and explain the points
on which the different distinguishers differ and, by integrating them within the
clustering-based semi-profiling attack procedure of [16], are able to empirically
test their performance for a wider range of leakage scenarios and prior knowledge
assumptions than previously attempted, thus arriving at a clearer picture of the
best options for semi-profiling adversaries and evaluators.

The rest of the paper proceeds as follows: Section 2 covers the preliminar-
ies of DPA generally, cluster-based DPA in particular, and the application of
unsupervised clustering for building the semi-profiled power models used by
cluster-based DPA. In Section 3 the four distinguishers are empirically tested
in one hardware and one software leakage scenario, as parameters vary. We also
test them against simulated leakage with increasing levels of Gaussian noise.
Section 4 discusses some of the reasons for the difference in performance from a
theoretical perspective, and Section 5 concludes.
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2 Preliminaries

2.1 Differential Power Analysis

We consider a ‘standard DPA attack’ scenario as defined in [10], and briefly ex-
plain the underlying idea as well as introduce the necessary terminology here. We
assume that the power consumption P = {P1, ..., PT } of a cryptographic device
(as measured at time points {1, ..., T}) depends, for at least some τ ⊂ {1, ..., T},
on some internal value (or state) Fk∗(X) which we call the target : a function

Fk∗ : X → Z of some part of the known plaintext—a random variable X
R
∈ X—

which is dependent on some part of the secret key k∗ ∈ K. Consequently, we
have that Pt = Lt ◦ Fk∗(X) + εt, t ∈ τ , where Lt : Z → R describes the data-
dependent leakage function at time t and εt comprises the remaining power
consumption which can be modeled as independent random noise (this simplify-
ing assumption is common in the literature—see, again, [10]). The attacker has
N power measurements corresponding to encryptions of N known plaintexts
xi ∈ X , i = 1, . . . , N and wishes to recover the secret key k∗. The attacker can
accurately compute the internal values as they would be under each key hypothe-
sis {Fk(xi)}Ni=1, k ∈ K and uses whatever information he possesses about the true
leakage functions Lt to construct a prediction model (or models) Mt : Z →Mt.

A distinguisherD is some function which can be applied to the measurements
and the hypothesis-dependent predictions in order to quantify the correspon-
dence between them, the intuition being that the predictions under a correct key
guess should give more information about the true trace measurements than an
incorrect guess. For a given such comparison statistic,D, the theoretic attack vec-
tor is D = {D(L◦Fk∗(X)+ε,M ◦Fk(X))}k∈K, and the estimated vector from a
practical instantiation of the attack is D̂N = {D̂N (L◦Fk∗(x)+e,M ◦Fk(x))}k∈K
(where x = {xi}Ni=1 are the known inputs and e = {ei}Ni=1 is the observed noise).
Then the attack is o-th order theoretically successful if #{k ∈ K : D[k∗] ≤
D[k]} ≤ o and o-th order successful if #{k ∈ K : D̂N [k∗] ≤ D̂N [k]} ≤ o.

2.2 Cluster-Based Distinguishers

Differential Cluster Analysis Differential Cluster Analysis (DCA) was pro-
posed by Batina et al. in [2]. The main idea of DCA is that the hypothesised
cluster arrangement (M ◦ Fk(X))) arising from the correct key guess conforms
with the real power consumption, so that the between-cluster variance (or the
sum of the variances within each cluster) as the separation criterion would be
maximum (or minimum) when compared with the cluster arrangements arising
under other key hypotheses. The distinguisher score can be expressed as:

DDCA(k) =
∑
m∈M

∑
t∈τ ′

var({Pt,i|M ◦ Fk(xi) = m})2 (1)

where {Pt,i}Ni=1 is the power traces, τ ′ is the attacker’s best knowledge about τ
(one hopes that τ ′∩τ 6= ∅),M is a nominal approximation (taking values inM)
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for the leakage output by a power model, and nm = #{xi|M ◦Fk(xi) = m}, i.e.
the number of observations in the trace set for which the predicted cluster label
is m. An alternative separation criterion, also suggested in [2], is the variance
ratio of [13]:

DDCA-VR(k) =

∑
t∈τ ′

var({Pt,i}Ni=1)
2

1
N

∑
m∈M

nm
∑
t∈τ ′

var({Pt,i|M ◦ Fk(xi) = m})2
, (2)

First Principal Components Analysis Principal component analysis (PCA)
is a popular method for unsupervised dimensionality reduction. An N × T ma-
trix is orthogonally transformed so that the T columns in the new matrix are
linearly uncorrelated and sorted in decreasing order of variance. By construction,
the columns are the eigenvectors of the covariance matrix, sorted according to
the size (largest to smallest) of the corresponding eigenvalues λ1, . . . , λT . The
first q < T of these columns maximise (w.r.t. all other N × q transformations)
the total variance preserved whilst minimising the mean squared reconstruction
error

∑T
i=q+1 λi. The hope is that all of the ‘important’ information will be

concentrated into a small number of components.
First Principal Components Analysis (FPCA) as a distinguisher for SCA is

proposed by Souissi et al. in [12]. The procedure is to sort the total power con-
sumption {Pt,i}Ni=1 into different clusters {{Pt,i} |M ◦ Fk(xi) = m, t ∈ τ ′} under
the key hypothesis k and power model M4. Mean vectors are computed within
each cluster and combined into a matrix upon which PCA is subsequently per-
formed. The FPCA distinguisher score is defined as the sum of the first m
eigenvalues λ1, . . . , λT associated with the PCA transformation.

Linear Discriminant Analysis Linear Discriminant Analysis (LDA) is an-
other widely-used—in this case, supervised—dimensionality reduction method.
It seeks the directions along which the projected data displays large between-
cluster distances and small within-cluster distances. Suppose the original N ×T
size data, which is already sorted into p different clusters with jth (1 ≤ j ≤ p)

cluster Cj has nj vectors (
p∑
j=1

nj = N). The mean vector of of the whole data is

µ and the mean vector of jth cluster is µj . The projection direction ω is given
by,

SBω = λSWω (3)

where SB =
∑p
j=1Nj(µj − µ)T (µj − µ), SW =

∑p
j=1

∑
x∈Cj

(x− µj)T (x− µj)

represents the between-cluster scatter matrix and within-cluster scatter matrix
respectively (for details see [6]). Performing LDA amounts to calculating the

4 Because the hypothesised class labels are used to perform FPCA, it is no longer
‘unsupervised’ relative to that information.
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generalized eigenvalues λ1, . . . , λT ′ (from largest to smallest and T ′ ≤ T ) and
the corresponding generalized eigenvectors eigenvector ω1, . . . , ωT ′ .

The use of LDA as a DPA distinguisher is proposed by Mahmudlu et al. in
[8]. Similar in procedure to FPCA, LDA-based DPA operates as follows: arrange
the power consumption traces into clusters according to the key hypothesis and
the power model; perform LDA on the labeled clusters; extract the first (largest)
generalized eigenvalue as the distinguisher score for the key hypothesis.

2.3 Unsupervised Clustering for Semi-Profiled Power Models

Unsupervised clustering for robust semi-profiled power models was proposed by
Whitnall et al. in [16]. The idea is to learn meaningful groupings of known
intermediates displaying similar leakage characteristics. It can be regarded as a
tradeoff between a non-profiled power model which can be easily used for attacks
but might not precisely describe the power consumption and the profiled power
model which can precisely describe the power consumption but might not be
easily used in attacks. The procedure for semi-profiled modelling is as follows.
First, sort the Np w-width (subset of τ ) profiling traces into different clusters
according to the intermediate value Fk∗(xi) (F, k∗, xi are known in the profiling
phase). Second, the mean vector of each cluster is used to represent the cluster
and PCA is performed to concentrate the relevant leakage information into fewer
dimensions. Finally, an unsupervised clustering method such as K-means or
hierarchical clustering is used to learn a partitioning on the reduced data. Thus,
the intermediate values are mapped onto K cluster labels. This is then the power
model, which can be paired with any cluster-based distinguisher (i.e. one which
operates on a so-called ‘nominal’ model) in a (multivariate) attack phase.

3 Performance Evaluation

As demonstrated in [16], the parameters have some influence on the performance
of the distinguishers. For the purpose of comprehensive comparison, we investi-
gate the performance of the clustering distinguishers under different realizations
of these parameters in this paper:

– The number of profiling power traces Np used to profile the power model.
– The window width of profiling traces wp and the window width of attacking

traces wa.
– The number of clusters K.

We also experiment with different leakage settings. We evaluate the perfor-
mance of the clustering distinguishers on traces acquired from two unprotected
implementations of AES—one software, running on an ARM microcontroller
(10,000 traces total); one hardware, designed for an RFID-type system (5,000
traces total). Our chosen evaluation metric is the mean rank of the correct subkey
[14].
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3.1 Software Scenario

Influence of number of profiling traces Np First, we consider the influence
of the profiling sample size on the performance of the clustering distinguishers.
For the software implementation, the attack intermediate value is the output
of the first S-box. We denote the DCA distinguisher, variance ratio-based DCA
distinguisher, FPCA distinguisher, LDA distinguisher by DCA, DCA-VR, FPCA
and LDA respectively in the experimental results graphs hereafter. Since Np is
the only parameter under test here, we fix the window width of profiling and
attack traces to 20, and restrict the number of clusters K to be no larger than
10, allowing the clustering procedure to test different values of K and choose the
one producing the largest mean silhouette index (SI) as per [16].5 Fig. 1 shows
the guessing entropies of different clustering distinguishers under the clustering
power models as profiled using different numbers of samples.

We first observe that the LDA distinguisher—the most recent to have been
introduced for the purposes of side-channel key recovery—is actually less ef-
ficient than its predecessors, for all tested profiling sample sizes. A particular
drawback of LDA is that it needs a certain number (and spread) of attack traces
to return a meaningful distinguishing score; if samples are too small to evidence
within-group scatter then the computations entail division by zero, leading to
eigenvalues of ‘infinite’ value. We assign the maximum rank in such instances,
which amounts to concluding that the attack has returned no information about
the subkey. Table 1 reports the scale of the problem, which especially dimin-
ishes the ability for the distinguisher to succeed in attack sample sizes of 25 or
smaller, regardless of the size of the profiling sample. In Section 4 we examine
this phenomenon in more detail and explain why it is an inevitable feature of
LDA.

As for the other distinguishers, when the profiling sample size is not sufficient
(e.g. 200), DCA-VR (to our knowledge, the earliest of the three, dating back
to 2008 [13]) appears to achieve fractionally better outcomes than DCA and
FPCA. But for larger profiling samples (sufficient to profile the power model
more accurately), the results of DCA, DCA-VR, and FPCA are almost the
same.

Influence of window widths wp and wa We then test the influence of the
widths of the profiling and attack trace windows (wp and wa respectively). As
is clear from the previous subsection, more profiling traces will lead to better
results, so for this part of the analysis we fix the number of profiling traces at
4000. Again, the number of clusters is not assigned but is constrained to be no
larger than 10. The values of wp and wa we test are {4, 10, 20, 40}.

5 The silhouette index is defined for the ith object as Si =
bi−ai

max(ai,bi)
, where ai is the

average distance from the ith object to the other objects in the same cluster, and bi
is the minimum (over all clusters) average distance from the ith object to the objects
in a different cluster.
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DCA DCA−VR LDA FPCA

Fig. 1. Mean subkey rank of clustering distinguishers against the software implemen-
tation, as profiling sample size varies. (Window width: 20; reps: 100).

Attack sample
5 10 15 20 25 ...

P
ro
fi
le

sa
m
p
le 200 145 189 200 152 0 0

500 194 203 202 157 0 0
1000 204 201 200 157 0 0
4000 207 203 198 158 0 0

Table 1. Mean number of ‘infinite’ scores returned by the LDA distinguisher as profile
and attack sample sizes vary (reps: 100, width: 20).

First, we consider the scenario in which the width of the profiling trace win-
dow is equal to that of the attacking trace window (wp = wa). The results are
shown in Fig. 2. It seems that the DCA-VR is the most stable distinguisher as
the window widths vary. The efficiencies of the DCA and FPCA distinguishers
are almost equal. Both of them perform better when the widths become wider,
in contrast with the LDA distinguisher, which performs worse as the widths
increase.

Next, we focus on the scenario in which the width of the profiling window is
not equal to that of the attacking window. Although we test all 4 × 4 pairwise
combinations, for the purposes of presentation we focus on profiling widths wp
4 and 20, in each case varying wa as previously. The results are shown in Fig. 3
and Fig. 4. We observe that the DCA-VR performs best when the profiling
window is narrow. The profiling window width has more of an impact than
the attacking window width for the DCA-VR, DCA and FPCA distinguishers
according to these two figures (the same holds for the remaining figures which
are not presented here due to space restrictions). However, this is opposite for
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the LDA distinguisher, which is affected more by the window width of the attack
traces than that of the profiling traces.
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DCA DCA−VR LDA FPCA

Fig. 2. Mean subkey rank of clustering distinguishers against software implementation,
as window widths vary (reps: 100, wp: window width of profiling traces, wa: window
width of attacking traces).

Influence of number of clusters K In the above subsections, rather than
fixing the number of clusters K we let the clustering algorithm choose the num-
ber for each power model according to the SI. However, an ‘optimal’ clustering
according to the SI need not necessarily imply optimality with regards to DPA
performance. We therefore next explore how varying the number of clusters (from
2 to 8) affects the performance of the cluster-based distinguishers. As before, we
fix the number of profiling traces at 4000, and we fix the profiling and attacking
window widths at 20. The result is shown in Fig. 5. We clearly see that DCA-VR
still performs best whatever the value of K. The performance of DCA is almost
the same as that of FPCA, and both decrease as K increases. By contrast, the
value of K seems to barely influence the performance of DCA-VR and LDA.

3.2 Hardware Scenario

Influence of number of profiling traces Np We now move to consider the
practical performance of the cluster-based distinguishers in the hardware setting.
Preliminary investigations of the data acquired from the hardware implementa-
tion revealed considerable variation in the exploitability of the different S-boxes;
we picked one (S-box 14) which was more amenable to attack in order to report
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DCA DCA−VR LDA FPCA

Fig. 3. Mean subkey rank of clustering distinguishers against software implementation,
for a profiling window of width 4 as attacking window widths vary (reps: 100, wp:
window width of profiling traces, wa: window width of attacking traces).
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DCA DCA−VR LDA FPCA

Fig. 4. Mean subkey rank of clustering distinguishers against software implementation,
for a profiling window of width 20 as attacking window widths vary (reps: 100, wp:
window width of profiling traces, wa: window width of attacking traces).
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DCA DCA−VR LDA FPCA

Fig. 5. Mean subkey rank of clustering distinguishers against software implementation,
as the numbers of clusters varies (reps: 100, window width of profiling traces: 20,
window width of attacking traces: 20).

interesting (but clearly not definitive) results. We first investigate the influence
of the number of profiling traces Np on the performance of the distinguishers. As
done in the software scenario, we fix the window width (to 10 this time, owing to
the coarser granularity of leakages from hardware, which typically runs in fewer
clock cycles), and allow the cluster algorithm to select up to 10 clusters according
to the SI. Fig. 6 shows the experimentally observed performance of these distin-
guishers given different numbers of profiling traces to profile the power model.
Unlike the result in the software scenario, the DCA-VR is no longer the most
efficient distinguisher. However, LDA still performs the least efficiently. Besides,
as in the software scenario, distinguishing scores of ‘infinite’ value are frequently
returned when the sample size is small; as before we interpret such outcomes as
a failure to deduce anything about the key.

Influence of window widths wp and wa As before, we investigate the influ-
ence of window width on the performance of cluster-based distinguishers against
hardware leakages. The power model is profiled using 4000 power traces with the
number of clusters constrained to be no larger than 10, just as in the software
scenario. The values of wp and wa we test are {4, 10, 20, 40}. First, we fix the
attack window width wa equal to the profiling window width wp. The experi-
mental result is indicated in Fig. 7. Then, the profiling window width wp is fixed
at 4 and then 10, while the attacking window width wa is allowed to vary. The
results are presented in Figs. 8 and 9.
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DCA DCA−VR LDA FPCA

Fig. 6. Mean subkey rank of clustering distinguishers against the hardware implemen-
tation, as profiling sample size varies. (Window width: 10; reps: 100).
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DCA DCA−VR LDA FPCA

Fig. 7. Mean subkey rank of clustering distinguishers against hardware implementa-
tion, as window widths vary (reps: 100, wp: window width of profiling traces, wa:
window width of attacking traces).
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DCA DCA−VR LDA FPCA

Fig. 8. Mean subkey rank of clustering distinguishers against hardware implementa-
tion, for a profiling window of width 4 as attacking window widths vary (reps: 100, wp:
window width of profiling traces, wa: window width of attacking traces).
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Fig. 9. Mean subkey rank of clustering distinguishers against hardware implementa-
tion, for a profiling window of width 10 as attacking window widths vary (reps: 100,
wp: window width of profiling traces, wa: window width of attacking traces).
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Influence of the number of clusters K Fig. 10 shows the distinguishers’
performance when the power models are constructed to have different (fixed)
numbers of clusters (keeping the window widths at 10). We observe that DCA,
DCA-VR, and LDA distinguishers are stable as the number of clusters changes,
with the relative performance summarised as DCA>DCA-VR>LDA. The per-
formance of FPCA deteriorates as the number of clusters increases, just as in
the software setting.
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Fig. 10. Mean subkey rank of clustering distinguishers against hardware implementa-
tion, as the numbers of clusters varies (reps: 100, window width of profiling traces: 10,
window width of attacking traces: 10).

3.3 Influence of Noise

Since LDA has been promoted as especially useful in scenarios exhibiting high
levels of noise [8], we now explore the performance of all four distinguishers
as noise increases. To do this, we simulate traces by adding Gaussian noise of
increasing magnitude to the Hamming weight of intermediate value.

From Fig. 11 it can be observed that FPCA is detrimentally affected by the
increase of noise, but the poor performance of LDA relative to DCA and DCA-
VR is unchanged as the noise level increases. This is explained in part by the
PCA dimensionality reduction step that all of the distinguishers share: LDA may
have an advantage over methods that don’t pre-process leakages to strengthen
the signal, but among known approaches following a similar procedure it remains
less efficient than the alternatives. Besides, the result of FPCA under Hamming
weight model (9 clusters) also confirms the previous finding that it is affected
by the number of cluster more (see Fig. 5 and Fig. 10).
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Fig. 11. Mean subkey rank of clustering distinguishers against simulated traces as noise
varies (reps: 100, window width: 20).

4 Discussion

In this section, we unpack some of the theoretical similarities and differences of
the cluster-based distinguishers.

4.1 Similarities

The basic operating procedure is the same for all four of the distinguishers
considered: first partition the traces into different clusters {Cj}pj=1 according
to the key guess and the power model, then compute an indicator of ‘cluster
quality’ to evaluate the extent to which the particular key guess produces a
good partition. This strategy takes advantage of the fact that, for a correct key
guess, the arrangement produced by the power model should correspond with
the true cluster structure of the leakage measurements, so that the indicator
value stands out by comparison with the wrong key guesses.

Specifically, for DCA, if the partition is correct, all traces within one cluster
Cj would be ‘close’ to each other. Thus the indicator – the sum of the variances
of each cluster – would be low for the correct key candidate. The DCA-VR is
another kind of DCA, the indicator is the ratio between the overall variance
and the weighted mean of the variances of each cluster, which would be high
for the correct key candidate. FPCA exploits the fact that if the partition is
correct then the mean traces within each cluster Cj are well separated from
each other. Performing PCA on these mean traces finds the directions along
which they exhibit the greatest dispersion. Since the eigenvalues associated with
the projection directions measure this dispersion, the first (i.e. the largest) of
these is chosen as the indicator; it should be maximal under the correct key
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guess. Similarly, LDA finds the directions along which the clusters have small
within-cluster scatter and large between-cluster scatter; the ratio of the latter
to the former is the indicator in this instance and should (again) be largest for
the correct key.

4.2 Differences

LDA We can see from all the experimental results that the LDA distinguisher’s
performance is much poorer than that of the others when the attack sam-
ple size is small (e.g. in the top left figure of Fig. 1, the mean subkey rank
of LDA is about 200, compared with about 150 for the other distinguishers,
given 5 attacking traces). As explained before, the reason for this is essen-
tially that a certain number of observations are needed before the indicator
can be properly computed. From equation (3) we are reminded that the indica-
tor used by the LDA distinguisher, λ, is the eigenvalue of matrix S−1W SB , where
SW =

∑p
j=1

∑
x∈Cj

(x− µj)T (x− µj). Let Σj be the covariance matrix of Cj . We

get that
∑
x∈Cj

(x− µj)T (x− µj) = (nj−1)Σj . When the number of traces in the

jth cluster nj is smaller than the width of the traces wa, the covariance matrix
is a singular matrix. In this case, the SW , as the sum of a number of singular
matrices, might be still a singular matrix, in which case its inverse does not exist.
Therefore, LDA is not well-suited to attack small sized samples. It can be useful
in the scenario that the trace window width is small, but it seldom outperforms
its (pre-dated) rivals.

DCA vs. FPCA The indicator of the DCA distinguisher in Section 2.2 can be
rewritten as follows:

DDCA(k) =

p∑
j=1

nj ||µj − µ||2 (4)

where the symbols are defined as previously, and || · ||2 denotes the squared
Euclidean norm (||z1, z2, ..., zk||2 =

∑k
i=1 z

2
i ). Equation (1) exploits the within-

cluster variance; Equation (4) exploits the between-cluster variance. Since the
sum of within-cluster variance and between-cluster variance is constant, mini-
mizing (1) is exactly equivalent to maximizing (4). The indicator of FPCA λ is
given by Σω = λω, where Σ is the covariance matrix of {µj}pj=1.

Σ =

p∑
j=1

(µj − µ)T (µj − µ) (5)

Thus, both FPCA and DCA are related to the between-cluster variance. In
the ideal environment6 , their performances are almost identical.
6 For the software implementation, the influence of noise is relatively small.
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DCA vs. DCA-VR From Equations (1) and (2) it can be seen that the only
material difference between DCA and DCA-VR is that DCA takes the total
variance of each cluster while DCA-VR takes the weighted mean of the vari-
ances of each cluster, because the numerator of Equation (2)

∑
t∈τ ′

var({Pt,i}Ni=1)
2

is constant across all key hypotheses (i.e. no matter what the partition). In
DCA-VR, two variables are monitored: the partition, and the cardinality of each
cluster nj . Under a correct key guess, these are both correct; otherwise, they
are both wrong. So, in an ideal environment, the true key hypothesis is more
clearly distinguished from the alternatives than by DCA, which only monitors
the partition; in other words, DCA-VR is a ‘reinforced’ DCA that benefits from
(correct or otherwise) information on the cluster sizes. However, for the hard-
ware implementation, the noise is large and the power model is not as precise as
in the software one, which leads to a non-ideal environment. The error on the
cluster variance induced by the noise and the partition would be amplified by
the weighting according to nj . Thus, against the hardware implementation, the
performance of DCA-VR is slightly less efficient than DCA.

5 Conclusion

Our empirical comparison of the various different suggestions for cluster-based
DPA has revealed that the variance ratio (DCA-VR) – to our knowledge, the
earliest proposal, dating back to Standaert et al. in 2008 [13] – consistently ei-
ther is, or at least closely rivals, the best performing distinguisher of its type.
This is observed across the two example scenarios tested and as implementation
parameters vary. By contrast, FPCA and DCA (which are conceptually very
close) perform strongly in some scenarios (especially in the case of hardware
leakages, where they marginally outperform DCA-VR) but are less robust to
changes in parameters. The most recent proposal, LDA, is disadvantaged by the
requirement for a certain minimum number of data points before the distin-
guishing scores can be computed, and is typically less efficient and less robust
than its competitors, even in high noise scenarios where it has been especially
advocated for use. We therefore conclude that, whilst it is interesting to seek out
alternative means of exploiting semi-profiled leakage information, for the time
being it would seem that established methodologies remain the best option for
practitioners.
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