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Abstract
Over the past few years, the increased affordability of genome
sequencing and the ensuing availability of genetic data have
propelled important progress in precision medicine and en-
abled a market for personal genomic testing. This yields ex-
citing new opportunities for faster and more accurate diag-
nosis, personalized treatments, and genetically tailored well-
ness plans. At the same time, however, it also creates impor-
tant security and privacy threats. In this paper, we present a
new cryptographic protocol, PAPEETE (Private, Authorized,
fast PErsonal gEnomic TEsting) suitable for running different
types of tests on users’ genetic data—specifically, SNPs. The
protocol, which builds on additively homomorphic encryption,
provides privacy for both users and test facilities, and it guar-
antees that the test is authorized by an appropriate authority
like the FDA. Finally, we present a prototype implementation
of PAPEETE, and an experimental evaluation that attests to
the real-world practicality of our techniques.

1 Introduction
Over the past few years, progress in DNA sequencing and ge-
nomics has paved the way for a not-so-distant future where
large chunks of the population in developed countries will
have access to genetic testing. Sequencing is not the only way
to analyze the genome, as in-vitro techniques have long been
used to look for known genetic differences using biomarkers.
However, the availability of affordable sequencing makes it
possible to perform genetic testing via computer algorithms,
more easily and at a lower cost. Individuals will soon be able
to get their genome fully sequenced once, then, all tests can be
done in computation over digitized copies of the genomes.

This progress is also fostering a new “direct-to-consumer”
(DTC) personal genomic market, with companies offering ge-
netic testing for a few hundred US dollars or less. Most DTC
companies require individuals to provide a saliva sample via
mail, and then perform either genotyping or whole exome se-
quencing to extract relevant genetic information and provide
their customers with access to personalized reports related to
health (i.e., the individual’s susceptibility to Parkinson’s dis-
ease), carrier status, wellness (i.e., how well they metabolize
caffeine), and ancestry/genealogy, which reveal the ethnic her-
itage of the individual.

Moreover, well-known efforts aimed to recruit participants

to voluntarily make their genome available for research pur-
poses (e.g., the 100K Genomes Project in the UK [13], the
Precision Medicine initiative in the US [24], or the Personal
Genome Project [20]). Also, pundits and policymakers have
also begun to advocate that we completely replace in-vitro
testing with sequencing, motivated by a possible reduction in
life-time costs [21].

Alas, widespread availability of genomic data prompts eth-
ical, security, and privacy concerns. A full genome sequence
not only identifies its owner, but also contains information
related to ethnic heritage, disease predispositions, and many
other phenotypic traits [10]. Furthermore, due to its hereditary
nature, access to one’s genome also implies access to close
relatives’ genomes. Therefore, disclosing genomic data of a
single individual might put at risk the privacy of more people
and for a long period, since genomes do not change much over
time and across generations [14].

1.1 Private & Authorized Personal Genomic
Testing

In this paper, we focus on personal genomic tests: these are
somewhat similar to those performed by DTC companies and
essentially work by analyzing an individual’s set of SNPs (Sin-
gle Nucleotide Polymorphisms). SNPs are the most common
DNA variations across individuals, occurring in 1% or more
of a population [16]. They constitute the genetic feature that
is most commonly studied, and are used in the majority of ap-
plications of genetic testing [25].

We assume that users undergo sequencing/genotyping and
obtain the list of the SNPs they carry; users can then allow
doctors and testing facilities to perform genomic tests for a va-
riety of reasons, including personalized medicine [19] as well
as any kinds of test depending on their SNPs. Consider, for
instance, the following products already offered today:

• Personalized nutrition plans by the company Nu-
trigenomix, which tests 45 genetic SNPs [17];

• Analysis and personalization of diet, lifestyle, exercise,
cardiovascular and mental activities by GeneSNP, testing
61 SNPs [11];

• Genetic health risks and carrier status by 23andMe, test-
ing a few hundred SNPs [1];

• Assessment of drug response and disease susceptibility at
GenePlanet [12].
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Figure 1: PAPEETE Architecture.

Overall, we focus on tests that can be expressed as a weighted
average computed over the SNPs and some importance factors
(or weights). Specifically, the result R to test X is computed
as:

R(X) =
∑i wi ·Pr[X |SNPi]

∑i wi
(1)

where, for each of SNPi, wi is the weight and Pr[X |SNPi ∈
{0,1,2}] a SNP-dependent weight. {0,1,2} represents, re-
spectively, the presence of the SNP in no, one, or both chro-
mosomes.

Privacy. Our goal is to support testing in such a way that the
only information revealed is the outcome of the test. No other
information is leaked, for both the user and the test owner.
This is crucial for both parties: the former so that testing can
be performed on their genomic data without having to expose
the whole genome; the latter as test specifics might need to be
kept confidential, as they likely constitute valuable intellectual
property.

Authorization. Furthermore, we argue that the test itself –
specifically, the weights in Eq. 1 as well as their position –
needs to be authorized by an appropriate authority, such as the
FDA. This is just as important as privacy in order to guarantee
the user that, while the test specifics are concealed for con-
fidentiality reasons, the test has actually been verified by an
appropriate authority so that the testing facility cannot dishon-
estly learn SNPs information from the user. As discussed be-
low, this is a crucial issue that has been overlooked in previous
work [2, 4].

PAPEETE. With this motivation in mind, we present PA-
PEETE (Private, Authorized, fast PErsonal gEnomic TEsting).
As illustrated in Fig. 1, the protocol involves three entities: (1)
a Testing Facility, which wants to run a test on user’s genomic
data without revealing which positions are being tested and the
weights associated to them; (2) a User, who allows the Test-
ing Facility to run the test, if authorized, without revealing her
SNPs; and (3) a Certification Authority, which is trusted to au-
thorize the Testing Facility’s test, specifically, the weights and
their positions.

The protocol is formed by two main blocks, one for the
authorization and one for the actual test, built on top of Ad-
ditively Homomorphic Elliptic Curve El-Gamal, both incur-
ring complexity linear in the number of the SNP dictionary.

We also implement a protocol prototype, demonstrating that
our authorization mechanism introduces a negligible over-
head compared to related work yielding non-authorized pro-
tocols [4].

1.2 Related Work

Our work aims to support personal genomic testing, expressed
as a weighted average computed over SNPs, while simulta-
neously guaranteeing privacy, authenticity, and efficiency. To
the best of our knowledge, prior work has not produced any
solution that simultaneously achieves all of our requirements.

[3] introduce a protocol for private personalized medicine
testing, guaranteeing authorization and privacy; they only
support testing for the presence of some SNPs in the user’s
genome, but not more complex operations like weighted av-
erage. Their protocol relies on Authorized Private Set Inter-
section [7] and can operate on full genomes, but can achieve
efficiency by means of offline pre-computation.

[2] introduce Private Disease Susceptibility (PDS) testing
which, similar to our work, aims to perform a weighted aver-
age over a patient’s SNPs. They use Paillier [18] to privately
compute the weighted average and rely on a semi-trusted au-
thority (Storage & Processing Unit, or SPU) to store and re-
trieve the user’s encrypted SNPs. Their protocol is relatively
slow when considering hundreds of thousand/million SNPs
and, more importantly, does not provide any mechanism for
authorizing the weights.

[4] present an improvement over [2], introducing a differ-
ent encoding allowing them to replace Paillier with Additively
Homomorphic El-Gamal cryptosystem [9], reducing computa-
tional and communication complexities. Their protocol does
not support authorization either.

The difference between PAPEETE and previous work is
also summarized in Table 1.

Finally, [15] introduce a primitive called Controlled Func-
tional Encryption (C-FE) and use it to let individuals authorize
use of their genetic data for specific research purposes. C-FE
is used to encrypt the user’s genome under a public key issued
by a central authority; then, testing facilities can run tests us-
ing a one-time function key, obtained by the authority, which
corresponds to a specific function. In other words, the autho-
rization mechanism determines whether or not a function can
be executed, without any control on the data being tested or
the weights used. Also, [8] proposed a secure evaluation al-
gorithm to compute genomic tests that are based on a linear
combination of test-specific genome components and coeffi-
cients defined by the test. Their scheme is based on the use of
partially homomorphic Paillier encryption and private infor-
mation retrieval (PIR). Additional related work include [5, 6].

2 Preliminaries

We now review relevant cryptography background.
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Work Privacy Authorization Efficiency Weighted Avg

[3] ! ! ! %

[2] ! % % !

[4] ! % ! !

PAPEETE ! ! ! !

Table 1: Comparison to previous work.

Elliptic Curve Discrete Logarithm Problem (ECDLP). Let
E be an elliptic curve of order q with generator g. Informally,
given points P,Q ∈ E, such that Q ∈ 〈P〉, the ECDLP assump-
tion states that determining k s.t. Q = Pk is computationally
unfeasible.

Decisional Diffie-Hellman assumption (DDH). Let E be an
elliptic curve of order q with generator g. Informally, the DDH
assumption states that, given ga and gb for uniformly and inde-
pendently chosen a,b ∈ Zq, the value gab is indistinguishable
from a random element in E.

Additively Homomorphic Elliptic Curve based El-Gamal
(AH-ECC). The AH-ECC cryptosystem [9] involves three al-
gorithms:

1. KeyGen(1λ): On input a security parameter λ, select an
appropriate elliptic curve E of order q and public gen-
erator g. Choose random private key x ∈ Zq, define
the public key as pk = gx, and output public parameters
(E,g,pk).

2. Encrypt(m,pk): The message m is encrypted by drawing
a random element k ∈ Zq and computing two EC-points
as (A,B) = (gk,pkk ·gm). The output ciphertext is (A,B).

3. Decrypt(A,B,x): Compute the element gm = B ·A−x. A
pre-computed table of discrete logarithms may then be
used to recover m from gm (which is practical for small
ranges of m).

The cryptosystem is additively homomorphic, as (A1,B1) ·
(A2,B2) = (A1 ·A2,B1 ·B2) = (gk1+k2 ,pkk1+k2 ·gm1+m2). Thus,
m1 +m2 is encrypted under k1 + k2.

3 The PAPEETE Protocol
We now present the PAPEETE (Private, Authorized, fast PEr-
sonal gEnomic TEsting) protocol.

Entities. PAPEETE involves the following parties:

• User (U), on input their genomic data {SNP1, . . . ,SNPn},
stored on their device and encoded as 3-bit binary vectors
– e.g., if SNPi = 1, it is encoded as 010;

• Testing Unity (T), on input weights, w1, . . . ,wn, to be as-
signed to each SNP; and

• Certification Authority (CA).

• Common input: E,q,G,n

• T’s input: {w1, · · · ,wn}

1. CA chooses following values and keeps them secret:
d← Zq and e = 1/d (mod q)

2. T - CA: {w1, · · · ,wn}

3. CA:
∀i = 1, · · · ,n, compute: Wi = Gi·e ·Gwi·e ·Ge

4. CA - T: {W1, · · · ,Wn}

5. T:
Pick: x← Zq and, ∀i, ki← Zq

∀i, compute: cti = (Ai,Bi) = (Gki ,Gx·ki ·Wi)

Figure 2: Authorization (offline).

Authorization. As illustrated in Fig. 2, T needs to obtain,
from the CA, the authorization to use weights {w1, . . . ,wn} to
conduct personal genomic testing on users. Public parameters
include an elliptic curve E of order q, a generator G, as well
as the number of SNPs n. We also assume that T and CA can
establish a secure and authenticated channel, using standard
network security techniques.

CA generates a keypair (e,d) s.t. e = 1/d (mod q), and
keeps both values secret. Granting authorization to use weight
wi at position i essentially corresponds to CA performing an
exponentiation, using her exponent e, over wi and i. Note that
CA needs to authorize the test only once (independently from
the number of users), hence, we consider this to be part of an
“offline” phase. Also, T can pre-compute the encryption of the
(authorized) weights to speed up the online phase presented
next.

Test. Fig. 3 shows how to execute a private and authorized
test on U’s SNPs. T sends each encrypted and authorized
weight, cti, to U, which, in a streaming fashion, computes the
encrypted result of the test (ctres). U also computes the sum of
the positions of the SNPs (pres) and the sum of all the SNPs
(sres), and sends it, together with ctres, to CA. The latter needs
to unmask the result before sending it back to T, in order to
make the decryption possible. Finally, Tcan decrypt the result.

Correctness. It is easy to observe that the protocol is correct.
Let s be the total sum of the SNPs, then:

3



• T’s input: x,{ct1, · · · ,ctn}
• U’s input: SNP1, · · · ,SNPn

• CA’s input: d

1. T - U: {ct1, · · · ,ctn}

2. U sets ctres, pres and sres to 0, and, in a streaming man-
ner, computes:

ctres = ctres +(cti ·SNPi)

pres = pres +(i ·SNPi)

sres = sres +SNPi

3. U - CA: ctres, pres,sres

4. CA computes:
(ctres)

d = [(Ares)
d ,(Bres)

d ], G−pres , , G−sres and
Res = [(Ares)

d ,(Bres)
d ·G−pres ·G−sres ]

5. CA - T: Res

6. T decrypts Res as: G∑w j = Bd
res ·G−pres ·G−sres ·A−x·d

res

OUTPUT: G∑w j

Figure 3: Test (online).

Res = Bd
res ·G−pres ·G−sres ·A−x·d

res

= Gd·x·∑k j ·Gd·e·∑ i j ·Gd·e·∑w j ·Gd·e·s

·G−pres ·G−sres ·G−d·x·∑k j

= G∑ i j ·G∑w j ·Gs ·G−pres ·G−sres

If ∑ i j = pres and s = sres, the equation above will be equal to
G∑w j �

Security. To ease presentation, we do not include a complete
security proof of the protocol, as it actually stems straightfor-
wardly from ECDLP and DDH assumptions, respectively, for
the authorization step and the underlying encryption scheme.
As for the former, note that even if T could somehow calcu-
late both Gd and Ge in some way, it would still not be able
to sign weights, or remove the authorization exponent e from
previously signed weights or results.

4 Evaluation and Implementation
In this section, we present an empirical evaluation of the per-
formance of the PAPEETE protocol. We also compare it
against prior work not providing authorization, specifically,
the protocol by [4]. First, we take a look at time, space, and
communication complexities for both the parts of which the
protocol is composed (offline authorization and online test).
Then, we give some detail about the setup used in our experi-
ments. Finally, we show the results of our tests and compari-
son.

Offline operations. We start by analyzing the complexity of
the authorization phase (Fig. 2), which is linear in the number

of SNPs considered. CA needs to perform n exponentiations
to authorize n weights (step (3)), while T performs O(n) expo-
nentiations to encrypt the authorized weights (5). Note that T
can reuse the same values (cti) for multiple tests. Communi-
cation complexity is also linear, as in steps (2) and (4), O(n)
values are transferred between T and CA. Finally, we observe
that all operations can be pipelined, which means that, unless
T and CA are connected via a very slow link, authorizing the
test (3) does not introduce a significant overhead on top of the
weight encryption (5).

Online test. Next, we analyze the complexity of the online test
(Fig. 3). Both computation and communication complexities
are linear in the number of SNPs, and the steps involving CA
(3)–(5) only requires the transmission of a constant number
of ciphertexts and the computation of a constant number of
exponentiations. Once again steps (1)–(2) can be pipelined.

Experimental setting. We have implemented our protocols
and performed 1,000 runs to evaluate real-world running times
and bandwidth consumption. Both T and CA run on an Ap-
ple MacBook Pro (OSX 10.11) equipped with an Intel Core
i5 2.4 GHz processor and 8GB of RAM memory, while U on
a Google Nexus 5 (Android 6.0.1), with a Qualcomm Snap-
dragon 800 2.3 GHz CPU and 2GB of RAM memory, all con-
nected over a WiFi network (40Mbps) using TCP sockets. Our
code base, available upon request, is written in Java, using the
Spongy Castle cryptographic library for Android [22] and the
Bouncy Castle library for Mac [23].1

Experimental results. To speed up operations, we have used
the following encoding in step (2) in the online test protocol
(Fig. 3): if SNPi = 0, we jump to the next value, while if
SNPi = 1, we execute the two computations as described; oth-
erwise (SNPi = 2), we sum the ciphertext cti twice. In Table 2,
we report the running times as well as bandwidth consumption
incurred by the PAPEETE protocol, and compare them against
prior work that does not support authorization. More specif-
ically, we have re-implemented and run the protocol in [4]
using the same experimental settings discussed above. Note
that [4] also has an “offline” step where weights can be pre-
encrypted. We vary the number of SNPs considered, assum-
ing that, on average, 20% of them is non-zero, as advised by
colleagues in UCL’s Genetics Department.

We note that in all cases, complexities grow linear in the
number of SNPs. Above few hundred thousand SNPs, we
also observe a small “penalty” on the mobile device that is
introduced by Android’s garbage collector, which is executed
more often, thus occupying a non-negligible CPU time. With
1 million SNPs, the time required to authorize and encrypt the
weights is approximately 1 hour, and anyway this operation
needs to be performed only once. The same values can be
used to run any number of tests on user’s SNPs, taking only
an average time of less than 19 minutes. As for the band-

1Somewhat unexpectedly, we find that, if we encode elliptic curve points
in byte arrays before transferring them, we get a significant performance slow
down. Thus, we encode and send each coordinate of the points individually.
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SNPs Offline Online Bandwidth
PAPEETE [4] PAPEETE [4]

1,000 3.88s 3.85ms 0.83s 0.82s 64.51KB
10,000 37.77s 37.40s 7.04s 7.03s 645.12KB

100,000 6.27m 6.22m 1.31m 1.31m 6.3MB
1,000,000 62.77m 62.21m 18.89m 18.88m 63MB

Table 2: Execution times and bandwidth consumption.
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Figure 4: Running time for different % of non-zero SNPs.

width, with 1 million SNPs, 35MB are exchanged during the
offline and 63MB during the online parts. We also measure the
space required to store the SNPs on U’s smartphone, and for
the authorized and encrypted weights on T’s computer. With 1
million SNPs, we need 418.5KB on the smartphone and 63MB
on the laptop. Overall, our experiments demonstrate that (1)
the overhead incurred by the authorization is negligible, when
compared to state of the art [4] (running times are only 1%
slower), and (2) our protocol is very efficient and can already
be used in the real world.

Finally, we perform another experiment aiming to evaluate
the impact of non-zero SNPs on the user’s genome. To this
end, in Fig. 4, we plot the total running time for the execution
of a test using 10,000 SNPs, varying the percentage of non-
zero SNPs from 20 (as in the previous experiments) to 50. We
observe that performance also grows linearly, similarly to [4],
but not to [2], where exponentiations are executed on all the
SNPs, even the zero ones.

5 Conclusion
In this short paper, we presented PAPEETE, a novel protocol
supporting Private, Authorized, fast PErsonal gEnomic TEst-
ing. We implemented a prototype of the protocol and evalu-
ated experimentally, also comparing it against prior work that
does not support authorization [4]. Our experiments attested
to the real-world practicality of the protocol, which makes us
confident that we will soon be able to deploy it in pilot appli-
cations in collaboration with geneticists and doctors.

As part of future work, we plan to develop a full-blown
graphical user interface and perform user studies to assess the
usability and acceptability of our techniques.
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